In-Network Support for Transaction Triaging

Theo Jepsen
Stanford University
USA
Robert Soulé
Yale University
USA
ABSTRACT

We introduce Transaction Triaging, a set of techniques that ma-
nipulate streams of transaction requests and responses while they
travel to and from a database server. Compared to normal transac-
tion streams, the triaged ones execute faster once they reach the
database. The triaging algorithms do not interfere with the transac-
tion execution nor require adherence to any particular concurrency
control method, making them easy to port across database systems.

Transaction Triaging leverages recent programmable network-
ing hardware that can perform computations on in-flight data. We
evaluate our techniques on an in-memory database system using
an actual programmable hardware network switch. Our experimen-
tal results show that triaging brings enough performance gains to
compensate for almost all networking overheads. In high-overhead
network stacks such as UDP/IP, we see throughput improvements
from 2.05X to 7.95x. In an RDMA stack, the gains range from 1.08x
to 1.90x without introducing significant latency.

PVLDB Reference Format:

Theo Jepsen, Alberto Lerner, Fernando Pedone, Robert Soulé, and Philippe
Cudré-Mauroux. In-Network Support for Transaction Triaging. PVLDB,
14(9): 1626-1639, 2021.

d0i:10.14778/3461535.3461551

1 INTRODUCTION

Improving transaction processing performance has long been a crit-
ical concern for database systems [24]. There are many techniques
for simultaneously handling sets of concurrent transactions [4]
and for executing them efficiently [61]. These techniques focus on
the transactions after they reach the database server. However, a
portion of a transaction’s lifetime is spent on networking: sending
requests to the database server and shipping the results back. For
in-memory databases, where transactions are processed without
I/O delays, we show that such networking overhead can represent
up to 70% of the user-perceived response time for typical workloads.

The overhead occurs because the network has been agnostic
about how a database processes transaction requests and responses.
For instance, the network interrupts the database whenever a new
transaction arrives. As the transaction rate goes up, handling fre-
quent interrrupts becomes inefficient. Moreover, an interrupt stops

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 9 ISSN 2150-8097.
doi:10.14778/3461535.3461551

Alberto Lerner
University of Fribourg
Switzerland

1626

Fernando Pedone
Universita della Svizzera italiana
Switzerland

Philippe Cudré-Mauroux

University of Fribourg
Switzerland
Clients or|g|r1aI streams triaged streams DB Server
] P \ partitions
Programmable C :I
0 Network %;]
. transaction triaging logic E

transaction

AO< database partitions L]

txn types

Figure 1: Transaction Triaging uses a programmable net-
work to rearrange transaction streams mid-flight. Triaged
streams incur less networking overhead and can be executed
with fewer server resources.

one random core running the database, and not necessarily the
core that should process that particular transaction. Moving the
transaction to the desired core wastes one expensive context switch.

The inefficiencies do not stop at transaction delivery. There is
also overhead when the database responds to a transaction. As each
response is directed to a different client, the database will prepare
transaction responses and deliver them to the network one at a
time. These inefficiencies add up, especially for small transactions
such as the ones found in OLTP workloads.

Technologies such as RDMA [30, 31] can reduce the overhead,
but not all networks have RDMA-capable hardware, especially on
the client-end of the transactions. Moreover, we show that the over-
head does not simply disappear by using RDMA. Recent advances
notwithstanding, many still consider the networking overhead to
be an unavoidable “tax” on transaction processing.

The problem has never been a lack of networking power. The
switches performing the data transfers can parse and make rout-
ing decisions for a handful of billions of packets per second. The
problem is that such computing power has not been harnessed for
application use—e.g., to perform some task on its behalf—because
switches could not simply be re-programmed. Their use of closed
hardware made any modifications on how a switch works internally
require a new fabrication cycle.

Recently, however, a new generation of commercial switching
silicon became programmable [11, 74, 80]. They turn a switch’s data
plane (the component that forwards packets) into a programmable
computer, albeit with a very restrictive computing model. Devel-
opers quickly realized they could run application logic inside the
network beyond strictly networking protocols, in what is called In-
Network Computing (INC) [63]. INC has already benefited databases
in areas such as query execution [7, 41, 73], replication [42, 85], and
caching [34], to name a few applications.

https://doi.org/10.14778/3461535.3461551
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3461535.3461551

data

control — Socket API Kernel Bypass RDMA
Application Idata Appllcatlonldata Application Idaﬂ
User
bypass |
‘ Transport] ‘ Transport ‘ ‘ Transport ‘
Kenel
‘ Driver] ‘ Driver ‘ ‘ Driver ‘
””””””” 2 AR 2 A I A original
stream
Hardware NS F::> ‘ A H = ‘ NiC H =

(a) Sender

Parser

=

Match-Action Units Pipeline

Deparser
state state state Cores

= o
— i

logic logic logic packets \ #

(MAT))| | (MAT (MAT’ \ /
o # o
modified -

= stream :ﬂ o

H E— #

(b) Programmable Switch (c) Receiver

Figure 2: Main components of our end-to-end pipeline comprising (a) different types of network API; (b) PISA data plane; and
(c) Receive-Side Scaling (RSS) NIC offload. The dark grey areas denote the critical components the pipeline leverages.

In this paper, we show that INC can also address the network
overhead that transaction processing incurs. We propose several
techniques that teach a networking device to recognize transaction
requests and response data, and to reorganize them in a way to
foster database performance, as Figure 1 depicts. Our techniques
do not require any changes to existing networking protocols and
are designed to be orthogonal to them.

We call these techniques Transaction Triaging (TT). One of the
techniques can batch (coalesce) many transaction request packets
into one. The net effect is that the database is interrupted only once
for the entire batch, amortizing the overhead across many trans-
actions. This TT technique can also batch responses. The server
can coalesce responses to distinct transactions, and send them to-
gether as a batch. The network then recognizes these response sets,
breaks them into individual responses, and delivers them to each
corresponding destination.

Another technique selects which core to interrupt for the (now
batched) transaction packet. Data partitioning plays an important
role here. If a batch contains only transactions for the same parti-
tion, the core handling that partition is best suited to handle the
interrupt. Therefore, TT techniques are also concerned about which
transactions to batch together, and even the order in which they
should be delivered. We discuss these and other techniques and
show that, together, they can carefully craft the transaction stream
to and from the database.

We validate our techniques using a high-performance in-memory
database [78] and an actual programmable switch. The results show
that TT can improve workloads such as TPC-C [13] and YCSB [12],
both on an IP-based stack and an RDMA-enabled one. For instance,
in one experiment with a regular IP-based stack, we run a TPC-C
workload and achieve 182 Ktps. This number goes up to 373 Ktps,
a 2.05x improvement, by applying TT techniques. To put things
in perspective, if we preload the transactions on the server, i.e.,
artificially eliminating the cost of networking, we achieve 386 Ktps.
This means that TT techniques leverage the network’s computing
power and compensate for 97% of the networking overhead. For
RDMA-enabled networks, which are already low-overhead, triaging
can increase the transaction rate by up to 1.9% by lowering the CPU
work necessary to handle requests at very high rates.

Creating TT techniques is challenging in at least two ways. It re-
quires identifying effective and portable transaction manipulations
that influence the server’s performance. It also requires encoding
the techniques as algorithms that programmable networks can

1627

support. As mentioned above, the switch imposes a very peculiar
computing model, called feed-forward [67]. For instance, the model
does not support some regular constructs such as deep branches or
iterations; some algorithms do not easily translate into this model.
In summary, this paper makes the following contributions:

o It establishes Transaction Triaging as a new source of per-
formance improvement in transaction processing.
It presents a set of effective transaction triaging techniques
that leverage programmable networks.

It offers feed-forward formulations of these algorithms.
It discusses how to incorporate TT into existing systems.

It presents experimental results showing that TT brings sig-
nificant improvements across diverse scenarios.

The rest of this paper is structured as follows. Section 2 provides
background on the networking concepts we use. Section 3 brings
an overview of in-network transaction triaging opportunities. Sec-
tion 4 presents forward-logic formulations for our TT techniques.
Section 5 discusses how to generalize algorithms to benefit arbi-
trary workloads. Section 6 details the changes that are required
from an existing system to benefit from TT. Section 7 reports our
experimental findings. Section 8 discusses the state of the art in our
context, while Section 9 concludes the paper.

2 BACKGROUND

In this section, we introduce the components upon which Transac-
tion Triaging stands. We take advantage of the flexibility of several
networking devices, including programmable hardware switches.
We describe each component of our solution in turn.

Alternative Network APIs. Sockets have been the most common
interface with the network [70]. They rely on the OS for: (a) copy-
ing data in and out of the kernel via blocking systems calls; and (b)
executing network protocol logic. These tasks consume a signifi-
cant amounts of CPU and scale poorly with respect to networking
speed [21]. As servers became multi-core machines, the need for
alternative interfaces became apparent 25, 55].

Kernel-bypass methods offer such alternatives. A bypass model
that gained wide acceptance is called the Data Plane Development
Kit (DPDK) [16]. It gives an application direct access to a network
card , making it responsible for handling all the networking protocol
logic. In return, the application can transfer data without incurring
intermediate copies or issuing system calls.

database partitons AOOO txn types []

individual txn

RO

Triaging Techniques

_m $¥ Core A

—>cs | [@eecL) # coe®

. A® | (A A
e i L ‘ [CIoIesIBL)
reordering steering protocol _Ell:‘}» # Core &

o Ao > batching

(high-affinity)

(same partition) conversion

£k Core @

client streams

triaged streams

Figure 3: Conceptual view of our triaging techniques. Transactions with the same shape target the same partition. Transactions
with a similar color execute in sequence will likely improve performance. The transactions arrive randomly at the switch and
are triaged to generate batches of high-affinity, reordered transactions, delivered to a chosen core on the server using the

fastest protocol available.

Another bypass method is called Remote Direct Memory Ac-
cess (RDMA). It is a different protocol stack than TCP/IP alto-
gether although one variant can run on an Ethernet network [30].
RDMA replaces the socket interface with an API called Infiniband
“verbs” [17]. The verbs allow an application to point to the data
it wishes to transmit. The NIC’s hardware peforms all the work
necessary to move data in and out of the network.

We compare the three APIs in Figure 2a, showing that a different
component can take responsibility for the transmission in each of
the stacks. Our techniques work with all three types of APIs.

Programmable networks. This term loosely refers to the flexibil-
ity that networking equipment offers to adapt to different scenarios.
For instance, programmability can refer to the ability to configure
and operate network equipment via Software-Defined Networks
(SDN) [20, 40]. Simply put, SDN is an architecture in which switches
are divided into two layers: a control plane that defines the network-
ing policies (e.g., routing tables), and a data plane that forwards
packets accordingly. The control plane talks to the data plane via
standardized protocols [47].

Network programmability can also refer to data planes that can
execute software [5]. Programmable data planes (PDP) appear in
a new generation of chips (ASICs) for switches [11, 74, 80] and
on FPGA-based NICs [1, 86]. They each implement slightly differ-
ent programming models that try to balance expressive power vs.
execution speed. The Protocol Independent Switch Architecture
(PISA) [67] is arguably the most widely adopted PDP model. PISA
provides a generic high-speed packet processing pipeline based on
a sequence of stages called Match-Action Units (MAUs), as Figure 2b
shows. Each stage processes one packet at a time by executing
one or more Match-Action Tables (MATs) in parallel. We describe
MATs in more detail in Section 4, but it suffices for now to note that
packets flow in only one direction in the pipeline of MATSs, giving
the programming model its feed-forward characteristic.

A PISA device can be programmed to accumulate state related to
packets (e.g., counters, histograms, or even payload portions). There
are, however, numerous limitations [23]. For instance, variables
(application state) are placed in different MATs and can only be
accessed by instructions that run in that MAT-like in a shared-
nothing machine. The instructions themselves are limited in terms
of the number of cycles they may take. There are several hardware
implementations of PISA pipelines. The switch we use in this work
is based on Reconfigurable Match-Action Table (RMT) [9].

1628

NIC protocol offload. The packet handoff between the network
and an application is a sophisticated process mediated by the NIC
and the OS. Modern NICs can perform several operations in hard-
ware on behalf of the OS [48]. Of particular interest is a mechanism
called Receive-Side Scaling (RSS) [46]. When a multi-core server
receives a packet, the NIC generates an interrupt against a random
core. In a fast network, this task can easily overwhelm one (or more)
cores. RSS addresses the problem by distributing the interrupts ran-
domly across the cores, as Figure 2c depicts. The NIC decides which
core to interrupt based on a hash over some of the packet’s fields.
In Section 3 we describe how to couple a programmable data plane
with a NIC to perform semantic RSS. This form of RSS can deliver
the packet to the core that is more likely to process it.

3 TRANSACTION TRIAGING

Triaging aims to produce streams of transactions carefully designed
to improve server efficiency. We identify four basic triaging tech-
niques: batching, re-ordering, steering, and protocol conversion. Fig-
ure 3 illustrates how the individual techniques interact.

The batching technique bundles several single-packet transac-
tion requests into a larger network packet. Batching amortizes the
packet-receiving overhead across multiple transaction requests.

Transaction re-ordering manipulates the sequence in which the
transactions arrive at the server. It attempts to place similar trans-
actions close to one another using an affinity metric. For example,
transactions with similar access patterns may reuse instructions or
data caches [3, 77].

The steering technique influences how a multi-core database
interacts with the network. The network may elect a single core to
receive an incoming packet or use RSS to load balance the related
overhead across the cores. In-memory databases often choose to
partition the data horizontally and map partitions to cores (e.g.,
partitioning TPC-C by warehouseID) [53, 71, 72]. RSS is bound to
deliver transactions to a “wrong” partition if it does not take that
mapping into consideration. Our steering technique allows RSS to
use partitioning information to guide the NIC’s RSS algorithm.

Lastly, protocol conversion translates between networking proto-
cols so as to use the most efficient network stack available between
the switch and the server. Quite often, a top-of-rack switch has a
fast connection with the servers in that rack. We assume this is the
case and allow the switch to use techniques such as RDMA in the
last hop of the communication, even if the client-to-switch portion
of that stream cannot benefit from RDMA.

Combining the four techniques produces the following result:
our pipeline generates streams that carry multi-transaction packets,
each containing transactions for a given database partition/core,
while all transactions within a batch have a high degree of affinity.
The batch is delivered directly to the core most involved with the
execution, and the delivery utilizes low overhead protocols. The
set of triaging techniques we present is portable across database
systems, complement each other, and can be expressed together in
the programming model we use. As we discuss next, conformance
to the model is key to leveraging in-network computing.

4 IN-NETWORK ALGORITHMS

The TT techniques described in the previous section can be im-
plemented on an x86 CPU using standard data structures and pro-
gramming languages. However, our goal is to execute such logic
on high-speed network devices. We must create algorithms that
respect the logical constraints of the computing model and the
physical limitations of the current generation of such equipment.

There are at least two design challenges that need to be addressed
in today’s networking environment. First, we must divide our al-
gorithms’ logic into a control plane component—which does not
need to see every individual packet—and a data plane component—
which does. An example of a control plane task is the initialization
and maintenance of TT’s control tables. We talk about them in de-
tail in Section 6. The core of the TT logic runs on the data plane,
manipulating packets while they are in transit.

The second design challenge is to express the data plane com-
ponent in the feed-forward style the switch imposes. This model
enforces strict restrictions designed to prevent any pipeline stalls
in the data plane. Each stage can perform a limited number of steps,
and all logic must fit into the switch’s fixed number of stages. By
design, there are no loops because network devices are designed to
process packets in a single pass. However, iteration can be achieved
by re-circulating a packet through the pipeline, at the cost of reduc-
ing the throughput of the device.

We introduce a simple example of a feed-forward logic next and
describe our algorithms in detail afterward.

Switch Programs. A data plane program running on the switch
consists of a sequence of MATs that each packet traverses. Each
MAT encodes a lookup on a hash-table-like structure and a corre-
sponding action (side-effect) in case of a match. The action may
alter the packet, its metadata, or the match-action table itself. Fig-
ure 4 shows how a sequence of MATs modifies a packet carrying a
transaction. This program is a preamble to our batching algorithm,
which would proceed to insert the transaction the packet is carrying
into the designated batch (queue).

Algorithm Notation. We use pseudo-code that captures common
feed-forward restrictions without using the syntax of any particular
programming language. The data plane logic is separated into a
sequence of stages, indicated by the Stage: keyword, where each
stage corresponds to one match-action unit in the pipeline. The
logic at each stage is triggered when a request packet (to the server)
or response one (from the server) is received, which is indicated
by the upon ... do code block. We use the notation with var
as lookup key in table id to indicate that we perform a lookup
operation on the table named id with a specified key. The result

1629

partiD batches queueSizes

N =] PN L

_ 0 @ ©Ilal ®
= txn data 2 [partiD] - ® s B4

txn metadata
packet header

/ N qf N+
packet after
stage N

hacket before

txn request layout
stage N

Figure 4: Processing a packet on the switch. (1-2) The pro-
gram uses a numeric field, partID, as an index into the
batches MAT. That MAT keeps a queue ID, q;, per entry. (3)
The selected queue ID is added to the packet’s metadata. (4-
5) The program then starts a new match-action cycle by us-
ing q; as an index into the queueSizes MAT. (6) The selected
entry’s counter gets incremented from 2 to 3.

Algorithm 1: The steps are numbered as in Figure 4
Stage: N
Table: batches

1 upon request pkt, metadata m do

2 with row as lookup (pkt.partID) in table batches

L m.qid « row.qid

3

Stage: N+1

Table: queueSizes

upon request pkt, metadata m do

with row as lookup (m.qid) in table queueSizes
L row.qsize « row.qsize + 1

of a lookup is bound to the variable name var, in the lexical scope
indicated by the indented text.

As an example, Algorithm 1 encodes the logic depicted by Fig-
ure 4. Note how the pseudo-code captures the two tables’ placement:
the batches table resides in stage N, and the queueSizes in N+1.N
does not need to start at 0. This means that a particular algorithm
may be placed in the middle of the pipeline, either because of a
dependency (a value produced by a previous algorithm) or because
of resource allocation constraints (the previous stages were occu-
pied). Note also that all the stages execute in parallel in a pipelined
fashion. Stage N could be operating on a packet while stage N+1
could be handling the packet that the former just processed. The
actions in all the stages are designed to take the same time, and a
compiler for feed-forward languages verifies this.

We present more detailed algorithms for each of our four TT
techniques using this feed-forward notation. The notation allows
us to easily translate them into P4, arguably the most adopted pro-
gramming language for in-network computing applications [8]. The
notation also translates naturally to other similar languages such
as Broadcom’s NPL [51], Huawei’s POF [69], or Xilinx’s PX [10].
Moreover, we note that by using pseudo-code, the algorithms here
could be adapted to run on smart network cards, e.g., via PA—FPGA
program synthesis [29]. However, targeting switches guarantees
that our algorithms can run on the fastest devices available. Usually,
faster switches appear before faster NICs, e.g., 400 Gbps switches
are available at the time of this writing, but the fastest NIC only
reaches 200 Gbps.

Describing each TT technique separately in feed-forward logic
is only part of our solution. We also show that the four techniques
can act as an ensemble and can all be executed simultaneously in
the current generation of PDPs. Figure 5 shows the layout of a data
plane running our techniques together.

4.1 Batching

Conceptually, the logic for creating batches is straightforward. The
main idea is to combine transactions from multiple request pack-
ets into a single batched packet. However, to implement this in
the network, we must address several non-trivial issues. First, we
must manage several queues (batches) in a pipeline architecture.
Second, we must determine which transactions to place within the
same batch. Third, we must keep track of where transaction re-
quests came from, in order to forward the corresponding individual
response when splitting the batched response packets.

Algorithm 2 gives an outline of our feed-forward implementation
of batching. At a high level, as requests arrive, the transactions are
put in one of many possible queues. When a queue is full, it is
drained, and the transactions are combined into a single request.
There are three main steps in the algorithm: (i) choosing the queue
(batch) for a transaction; (ii) updating the state (size) of the chosen
queue; and (iii) either enqueueing a transaction or draining the
queue when it is full. When the queue is drained, the transactions
in the queue are appended to the current packet.

In stage 1, the algorithm picks a queue for the transaction by
performing a lookup on table batches (line 2). The table contains a
mapping from the transaction’s partition (pkt . partID) into a queue
ID (qid); this ensures that each batch contains transactions for the
same partition and is steered to the appropriate database thread.
We discuss in Section 5 how the table batches can be generated,
potentially considering more information than simply the transac-
tion’s partition, and in Section 6, how the table can be updated to
reflect dynamic changes in partitioning.

In stage 2, the algorithm loads the current queue size (m.qsize)
for the chosen queue (line 5). The queue size is then incremented
and stored. If the queue size has reached the batch size, then it
wraps around to 0.

The packet then passes through the stages 3 to 3 + BATCH SIZE,
each of which holds one index entry of all queues. The head of
the queue is in stage 3, and the tail moves down the pipeline as
transactions are enqueued. Depending on whether the queue is full
or not, the stages perform different actions. If the queue is not full,
the transaction in the packet is stored when the packet reaches the
stage corresponding to the tail of the queue (line 14). If the queue
is full, the transaction stored in each stage is loaded into the packet
(line 16); once the packet reaches the end of the pipeline, it will
contain all the transactions from the queue, and the batch is sent.
Figure 6 (2-4) depicts the phases a packet goes through while being
processed by Algorithm 2.

To guarantee that batches do not stay incomplete indefinitely,
the control plane injects special, per-queue timeout requests. Such
packets trigger a batch-send in case the batch has not increased for a
given time. For simplicity, we omit this mechanism in Algorithm 2.

Splitting. After executing the transactions, the database responds
with a batched response packet. This packet contains the result for

1630

Algorithm 2: Batching Transactions

Stage: 1
Table: batches
1 upon request pkt, metadata m do
with row as lookup (pkt.partID) in table batches
L m.qid « row.qid

> Maps transactions to queue IDs

2
3

Stage: 2
Table: queueSizes > Stores the current size of each queue
4 upon request pkt, metadata m do
with row as lookup (m.qid) in table queueSizes
m.gsize < row.qsize + 1
if m.gsize = BATCH_SIZE then
L row.gsize < 0

> Queue is full

else
L row.gsize < m.gsize

Stage: N: 3...3+BATCH_SIZE
Table: slotN > Stores txn at position N-3 in the queue
pon request pkt, metadatam do
with row as lookup (m.qid) in table slotN
if N-2 = m.qsize then
L row.txn « get txn from pkt

else if m.qsize = BATCH_SIZE then
L append row.txn to pkt

u
12
13 > Tail of queue

14

15 > Queue full

16

Algorithm 3: Splitting Batched Transaction Responses

Stage: 1
1 upon response pkt do
if pkt contains multiple txns then
pkt’ « copy pkt
remove first txn from pkt’
truncatate all but first txn from pkt
send pkt’ to stage 0 > recirculation; must always send to 0

Stage: 2
Table: clientAddrs
pon response pkt do
with row as lookup (pkt.clientID) in table clientAddrs
L pkt.dstAddr « row.addr

> Stores each client’s address
7 u
8
9

transactions submitted by different clients. The switch is responsi-
ble for splitting this packet into multiple packets, each addressed
to the originating client.

Our response splitting algorithm relies on making copies of the
packet as it iterates over the transactions within it, as shown in
Algorithm 3. Programmable switches usually provide very efficient
mechanisms to support such packet copy operations. In stage 1, the
algorithm checks whether the packet contains multiple transactions
(line 2). If there are indeed multiple transactions, the packet is split
into two packets: a copy which contains all but the first transaction;
and the original packet, with only the first transaction. The original
packet continues to the next stage, while the copy is sent back to the
beginning of the pipeline (line 6). Note that recirculating a packet
always makes it start again from Stage 0.

< ey 27\ <°
5 KON o R
o >N XS N
Match-Action) @&Q 6&@2&0 @”Ooo"&) @o“?;aox %\.@@%
Tables o < \q . OV\O&‘ N & & &
q! & & & S
J . -
qi @ [2 Jag [& A -
G| - T o e
max " -
single txn high-affinity
client request steering batch queue enqueue enqueue enqueue txn batCh server
— logic lookup increment dequeue dequeue dequeue
atche smgle txn
txn responses restore splitting restore respons:
server \i> port Ioglc Ioglc addrloglc ﬁ> client

stages

3 4 M

Figure 5: Placement of TT-related match-action tables across the switch’s stages. Note that a stage can host more than one
MAT, e.g., stages 0 and 2, and that some tables are not updated as a diret result of processing packets, i.e., the control tables.

Stage 2 receives the original packet from stage 1. In this stage,
the packet must be addressed to the client that originally sent the
transaction. The client’s address is looked-up in the clientAddrs
table (line 8), which contains a mapping of clientIDs to addresses.
This mapping can be established during the initialization of each
client’s connection. For simplicity, we omit such logic and assume
that the clientAddrs table is static.

Note that this scheme also works for multi-packet responses.
We expect each packet to carry metadata about the client so the
process above can be applied.

4.2 Reordering

As described above, Algorithm 2 picks a queue for each transaction
based solely on the transaction’s target (or main) partition. This
constitutes a coarse-grained mechanism to reorder transactions.
The ordering can be further manipulated in several ways. For exam-
ple, we can also classify transactions by their type (e.g., NewOrder
or Payment in TPC-C), in addition to their target partition. The
table batches in Algorithm 2, line 2 would then map a packet’s
partID, txnType (instead of just partID) into a qid, effectively
enforcing an affinity policy: if certain transaction types should be
delivered together to the server, the batches table would map them
to the same qid. Conversely, transaction types that interfere with
one another could be assigned to different queues. The number of
queues is limited only by the memory available on the switch, but
programmable switches can have memory for thousands of such
queues (as the batch sizes are usually small).

Having a finer control over the transaction ordering within the
same batch is also possible. With slightly different logic in Stages N
(lines 11 to 16), Algorithm 2 could perform an insertion sort and
place a transaction anywhere within the batch. Lines 13 to 14 would
instead swap a transaction in the first position when the incoming
transaction’s priority is higher than the existing one. If a transaction
gets displaced this way, it becomes the current transaction—and
the insertion process repeats, starting at the stage the displacement
occurred. When draining, the algorithm preserves the order in
which the transactions appear on a queue, therefore inducing the
same order onto the server, upon the receipt of a new batch.

In summary, the algorithms described here are flexible with
respect to the order in which transactions are placed within a batch.

1631

The layout and contents of the table batches and the matches
performed by Algorithm 2 can be further tailored to specific cases.
We discuss some suitable alternatives in more detail in Section 5.

4.3 Steering

When the server’s NIC receives a packet, its RSS algorithm com-
putes a hash over five of the header fields—the source/destination
addresses and ports, and the IP protocol—and uses the hash to select
a CPU core to interrupt. RSS simply load balances packets across
cores (e.g., with N cores, RSS selects core number hash%N).

To steer a packet to a specific database core, we influence the
NIC’s RSS algorithm by changing the values of some of the five
header fields. Note that we cannot change the source and destina-
tion address, as that would interfere with routing in the network.
Nor can we change the destination port, because the database server
is already expecting packets on certain ports. This leaves a single
candidate to modify: the UDP source port.

Finding the UDP source port for steering a transaction can be
done offline if the client addresses are known upfront or on-the-
fly if each new client’s address is sent to the switch during the
connection handshake between the client and the database server.
Finding the port that tips the hash results to the right core is done
via an exhaustive search. The search space is limited because the
number of CPUs on a modern server is low. For brevity, we omit a
formal algorithm description and present the following intuition
instead. The algorithm tries UDP port numbers incrementally until
the hashing one of them with the other four RSS fields induces
the NIC to send the packet to the desired partition/core [39]. This
algorithm produces the steering table, which maps a client address
srcAddr and a partID to a srcPort (for the RSS) and dstPort
(where the partition/core is). This table can either be used at the
client or directly in a network switch.

Algorithm 4 shows how the switch uses the steering table to
steer a transaction packet to a specific database thread. The logic
can fit in a single stage of the switch pipeline. Upon receiving
a transaction request packet, the switch first stores the packet’s
original source port. It does so by looking up the client (identified
by pkt.clientID) in the clientPorts table and updating the row
with the port (line 2). The switch loads the ports associated with the
partition the transaction wishes to access (lines 4-5). It looks up the

IP (or RoCE RDMA) <I:|
transaction packet N TTTmToooos
s i T — txn metadata queues
\\ \ payload (Dswap network for partition i
metadata header (for RSS ® 3
network header () @ triage | e

partition

for partition j

txn metadata queues

RX Interface

@ triage

affinity

txn buffers
@ batch complete -1] core / partition j ® execute
or buffer payload > #
&
txn buffers

Figure 6: Packet manipulation inside the switch. (1) The network header is adjusted so that RSS can deliver it to the right
database partition; (2/3) the transaction metadata determines the desired partition/queue (in yellow) to insert the packet; (4)
the payload is sent to a server buffer (in green) if the batch is not full, otherwise the full metadata batch plus the transaction
packet is delivered to a designated core; (5) the core accesses the buffered batch and executes the transactions.

Algorithm 4: Steering Transactions and Responses

Stage: 0
Table: steering
Table: clientPorts

1 upon request pkt do

> Stores ports that steer client requests
> Stores the original srcPort for clients

2 with row as lookup (pkt.clientID) in table clientPorts

3 L row.port «— pkt.srcPort

4 with row as lookup (pkt.srcAddr, pkt.partID) in table
steering

5 L pkt.srcPort «— row.srcPort

6 upon response pkt do
7 with row as lookup (pkt.clientID) in table clientPorts
8 L pkt.dstPort « row.port

client’s address (pkt.srcAddr) and the partition (pkt.partID). It
then substitutes the source port (srcPort) in the packet, effectively
causing the packet to go to that destination instead. Figure 6 (1)
illustrates this substitution.

Upon receiving a response (line 6), the switch must restore
the pkt.srcPort from the original request packet. Otherwise, the
client will receive a packet for an unknown port (the client is not
aware of the translation). The switch loads the previously stored
source port, pkt.srcPort, which is now the destination port of the
packet, pkt.dstPort (line 8).

4.4 Protocol Conversion

This technique has both a strategic and a practical purpose. The
strategic one is to take advantage of RDMA as a low-overhead
protocol between the switch and the database server. We can do
so even if RDMA is not available for part of the client-server inter-
connect. The practical purpose is related to the current generation
of programmable switches. They can buffer a handful of packet
fields: the transaction’s ID, type, and originating client. However,
buffering the entire transaction payload would require full packet
manipulation involving an area of the switch that is not (yet) fully
programmable: the traffic manager. There have been attempts to
address this issue [65, 67], but we took an alternative approach
instead. To overcome what we believe is a temporary limitation, we

1632

buffer the transaction directly on the database server via one-side
RDMA initiated by the switch.

Figure 6 (4) provides an overview of the two channels we use to
send transactions to the server. When the switch receives a trans-
action, it assigns the transaction to a queue as described above, as
well as a memory address in a ring buffer on the server. It stores the
transaction metadata, along with the memory address in the queue
in switch memory. It then transforms the transaction packet into an
RDMA WRITE request and forwards it to the server (Figure 6 (4),
bottom packet). The server’s NIC receives the WRITE and stores
the transaction in the ring buffer at the address specified by the
switch. Note that this does not involve the server’s CPU.

When a batch is full, the switch pops all the transactions from
the queue forming a single packet that includes the memory address
of the server’s ring buffer. This batched packet reaches the server
through an RDMA SEND operation. The database process receives
the batched packet, reading the transactions’ full details from the
ring buffer (Figure 6 (4), top packet).

Our protocol conversion technique has another advantage. It
minimizes the changes to the networking subsystem of a data-
base that wishes to integrate Transaction Triaging. The transaction
metadata (steered, batched, and reordered) reach the switch via
the normal client connection, as we discuss in Section 6. The only
necessary change is for the system to read the transaction payload
from the designated queues.

5 TRANSACTION AFFINITY

The reordering algorithm described in Section 4.2 can effectively
program the switch to carry out the following mapping:
partID[, af finity] — queuelD], priority]

Given a transaction’s target partition and optionally an affinity
value, the mapping determines the queue to which the transaction
should be batched and optionally where to position the transaction
within the batch. A DBA that incorporates TT in the database can
use this scheme to express many different policies.

The simplest policy is to use the transaction type as the affinity
criterion and not use priorities. In practice, the table batches in
Algorithm 2 line 2 would be keyed by partID and txnType, instead
of just the former. This places transactions in the same batch in the

order in which they arrive at the switch if their partition and type
are the same.

The number of queues required corresponds then to the product
of the number of different transaction types by the number of
partitions in which the database is divided. For instance, running
TPC-C (5 transaction types) on a 12-core machine would call for 60
queues on the switch. We show how TPC-C can benefit from this
technique in Section 7.

In some other scenarios, however, we expect much more elabo-
rate transaction sets and clustering techniques. One way to triage
transactions is through micro-benchmarking them offline and iden-
tifying opportunities. For instance, STREX [3] and ADDICT [77]
are techniques based on static analysis of query plans. They find
transaction types that share instruction patterns and can thus ben-
efit from instruction cache reuse if executed together (on the same
core, within a short amount of time). The affinity concept used
here is topological similarity: transactions that access the same ta-
bles/indices and share a common portion of the query plan get the
same affinity number.

Another technique to obtain a mapping could be exhaustive
evaluation. A starting point is the combination of the number of
transaction types per size of batch (the size of a batch is an imple-
mentation detail that depends on the flavor of the queue used on
the switch and structural properties of the switch). This number
can be aggressively pruned by reducing the number of different
transaction types in a batch. We envision a calibration tool that
performs such tests automatically.

6 INTEGRATION WITH EXISTING SYSTEMS

Integrating TT into an existing database system requires a few
changes to the database’s control and data paths. On the control
path, the database must perform three additional tasks, as Figure 7
depicts. At initialization, it has to fill the batches table with the
partition and affinity TT policies it wishes the switch to apply.
It has to inform the switch about clients via the steering and
clientAddrs tables, either in bulk or on a per-connection basis.
Lastly, the database can change the TT policies during runtime by
changing the above tables.

The changes to the data path are mainly related to the network-
ing subsystem. These changes involve creating a staging area for
transaction requests, as Figure 6 depicted, and adapting to the new
packet formats. The impact falls mainly in three areas.

Transaction buffer. The server continues to read transaction re-
quest packets as before, although the latter will only contain the
transactions’ metadata. To receive the transactions’ contents, the
server must create a transaction buffer. The switch is responsible
for delivering transaction payloads into that area. The server in-
forms the switch of the location of this area at initialization time.
When the server receives a metadata batch to execute, it fetches
the corresponding payloads from the buffer.

Reliability. The switch performs triaging on transactions carried
by UDP/IP or RDMA UD. These protocols are easier to manipulate
in part because they lack reliability. To account for packet loss, we
assume that a client would re-send a transaction request if it does
not receive a response within a certain time. The client would also

1633

Switch Server
Client TT policies
e initialization
Client Connection ClientlD and

RSS information

TT policies
modifications

Figure 7: Control interactions: the database server initializes
the batches table at startup, the ClientAddrs and steering
ones at initialization or at every client connection. The data-
base can change batching policies at any time.

periodically inform the server of the most recent response it has
received.

The server maintains a transaction response cache. If it received
a transaction request whose response is in the cache, it re-sends
those results rather than re-execute the transaction. The cache is
cleared using the clients’ acknowledgement messages or after a
timeout. This scheme assumes that both clients and transactions
can be uniquely identified.

Packet format. We assume that network packets have a standard
transaction metadata header that allows the switch to manipulate
arbitrary transactions uniformly. The header carries metadata infor-
mation about the client and the transaction. An example of metadata
is the partition to which a transaction is directed. Another example
is the affinity criteria, if any, used for TT. As we mentioned before,
a common affinity criteria is the transaction type. The client and
the server may negotiate some parameters at connection time, such
as the database partitioning criteria. We assume that a transaction
is an instance of a stored procedure initiated by an OLTP applica-
tion [36]. Moreover, the application can fill all the transaction’s
input parameters at the same time, when issuing the transaction’s
execution request. The database client’s library is responsible for
filling the transaction metadata fields.

7 EVALUATION

To evaluate Transaction Triaging, we carried out five sets of experi-
ments. The first set establishes a baseline comparison by quantifying
the overhead attributed to the network (Section 7.1). The second
set evaluates the impact of each optimization in isolation under
various system parameters (Sections 7.2, 7.3, and 7.5). The third set
evaluates the optimizations using different network transport lay-
ers (Section 7.4). The fourth set compares the performance of the
TT techniques under different workloads (Section 7.6). Lastly, we
evaluate the benefits of running TT in network hardware, compared
to a software implementation on the server (Section 7.7).

Experimental Setup and Environment. As a representative in-
memory transactional database, we used Silo [78]. Silo is open-
source and capable of executing hundreds of thousands to millions
of transactions per second. For this reason, Silo is often used as
a benchmark for new concurrency control algorithms [19, 50, 82].

We extended Silo with a network component for each of the pro-
tocol stacks we use, as the open-source version does not support
networking. We refer to this extended version of Silo as NetSilo.

We ran all experiments on servers connected to a 32-port 100
Gbps programmable switch based on the Tofino ASIC [74]. We pro-
grammed the switch with our TT techniques using the P4 language.
One server acted as the database server, the others as multiple
clients. The servers had dual-socket Intel Xeon E5-2603v3 CPUs @
1.6GHz with a total of 12 cores and 16GB of 1600MHz DDR4 mem-
ory (32GB for the database server). Each server had both an Intel
82599ES 10 Gb/s (DPDK compatible) and a Mellanox ConnectX-5
100 Gb/s (RDMA) Ethernet controller.

7.1 Networking Overhead

Transmitting and handling transaction requests accounts for a por-
tion of the perceived transaction response time. As we mentioned,
this overhead can be substantial. To quantify this impact, we pre-
generated entire workloads made of synthetic transactions and
placed them in memory on our Silo server (Silo). By reading the
transaction requests straight from memory, we eliminate the work
of generating and sending them to the server. For each workload,
we use a single transaction type that is parameterized to read a
certain number of rows from the database. We tested workloads
that access either 10, 100, or 1000 rows per transaction. We then
compared the time to execute the workload locally versus sending
the same workload through remote clients (NetSilo). We attribute
the difference in performance to network-related overhead. For this
experiment, we used a UDP/IP stack.

0

@

£ 600 sio

~ 9 NetSilo
= aook| 0% :
£ 21% 14%
(o)}

=)

o

Ky

<

10 100 1000
Transaction size (rows accessed)

Figure 8: Overhead of network communication on in-
memory database.

Figure 8 shows the throughput of the locally- and remotely-
generated workload executions. With networking, executing rela-
tively small transactions adds about 70% overhead compared to ex-
ecuting the transaction locally. As the transaction size increases, the
overhead decreases, which suggests that the absolute per-transaction
overhead is constant. To put things into perspective, when running
a local vs. a remote TPC-C workload, we obtained a 53% overhead,
as we discuss in Section 7.4. The percentage was much higher for
YCSB. These numbers indicate that OLTP workloads tend to present
high networking overhead.

7.2 Batching Experiments

To test the idea that the batch size affects throughput, we configured
the switch to send increasingly larger batches. Our implementation
holds as many as 12 transactions’ metadata on the switch and
unloads them at the 13t% packet. Figure 9a shows the throughput
for increasing batch sizes with the TPC-C benchmark.

1634

10—
= o p99.9
300K m A p50
0 £ 100
Z &
R 250K § 10
@
-
1071
200K 4 8 13 1 4 8 13
Batch Size Batch Size
() (b)

Figure 9: (a) Throughput and (b) latency due to batching.

Batching can improve the throughput by as much as 36%. This
is expected; as the batch size increases, the networking overhead is
amortized across a larger number of transactions. There are dimin-
ishing benefits for larger batch sizes. As the batch size increases,
the overhead of packet processing becomes smaller, relative to
transaction execution.

Creating batches on the switch requires queuing transactions as
they arrive. As expected, batching increases the average latency,
as Figure 9b shows for the 50" and 99.9'" percentiles. At the 50!
percentile, batching increases the average latency from 0.044 ms
without batching, to 0.741 ms with the full batch size. The effect is
more attenuated at the 99.9th, from 40 ms to 133 ms. We assume in
the experiments that batches do not need to time out. In practice,
the switch control plane would send regular packets into the switch
to unload partial batches that reach a given latency threshold.

7.3 Steering Experiments

To evaluate how steering contributes to performance, we run Net-
Silo in three modes: with RSS disabled, with standard RSS, and
with our semantic RSS. In each mode, a different core (or set thereof)
receives an interrupt from the NIC to indicate that a new packet
arrived. Without RSS, a single core is interrupted. With RSS, the
cores are selected via hashing some fields of the packet’s IP headers.
Semantic RSS delivers each packet to the primary database partition
to which the transaction refers.

Figure 10 shows the effect of varying the number of cores on
transaction throughput. The results indicate that RSS becomes
necessary when 6 or more cores are used. At 12 cores, there is
a substantial improvement in terms of throughput, from 132 Ktps
without RSS to 182 Ktps with normal RSS. The difference reflects
how using several cores to spread the interrupt load is more efficient.
The figure also shows that using semantic RSS can further improve
the throughput to 201 Ktps.

Curiously, semantic RSS does not help until the core count in-
creases, as Figure 10 shows. The reason is that Silo’s performance
scales almost linearly with the number of CPUs. For instance, at 2
CPUsg, Silo can process roughly half the transaction rate it can at
4 CPUs, and so on. The experiment shows that at low transaction
rates, the CPU cores are not busy enough that they cannot handle
the level of interrupts generated by the network. As we increase the
number of cores allocated to Silo, the transaction rate increases, and
so does the network traffic. Beginning at 6 cores, the interrupt level
generated by that traffic starts seeing benefits from RSS techniques.

@ 200K

: /54;

<

(=

= P

3100K

< o NoRSS

3 Normal RSS

‘E o Semantic RSS
02 4 6 8 10 12

Number of cores

Figure 10: RSS throughput increases with the number of
cores.

With respect to latency, we see similar results. In Figure 11a we
show that with 6 cores, using normal RSS instead of semantic RSS
may be more advantageous. Without RSS, there is some increase
in latency due to context switches. In Figure 11b we show that
semantic RSS benefits become more pronounced with 12 cores.
At higher transaction rates, saving context switches leaves more
resources available to actual transaction execution.

1.00
ﬁ_f—No RSS
0.95 —Normal RSS
w Semantic RSS w
0 0. 0 0.
U090 u090 TNo RSS
0.85 0.85 —Normal RSS
Semantic RSS
0'800 10 20 30 0'800 10 20 30

Latency (ms) Latency (ms)

@) (b)
Figure 11: RSS latency CDF (a) for 6 cores, and (b) for 12
cores.

7.4 Comparing UDP/IP and RDMA stacks

To understand the techniques’ compound benefits, we run the TPC-
C workload adding one TT technique at a time. As discussed before,
our techniques are based on a UDP stack in order to allow the switch
to manipulate the number and order of the network packets. How-
ever, we are also interested in evaluating whether a low-overhead
stack such as RDMA could benefit from TT.

Figure 12a compares the throughput improvements on both
network stacks. We use LocalSilo, i.e., the non-networked, pre-
generated workload loaded into the server’s memory, as a baseline.
It achieves 386 Ktps. We then start adding TT techniques, one at
a time, to both network stacks. The simple UDP stack (NetSilo)
reaches 182 Ktps. Incidentally, this represents a networking over-
head of 53% when compared with the baseline, LocalSilo. By the
time we are running all TT techniques, the throughput increases to
373 Ktps, which represents a 2.05x improvement over NetSilo-and
97% of LocalSilo. Hence, our triaging techniques almost entirely
compensate for the network overhead on a UDP/IP stack.

We implemented a different networking module for NetSilo
that uses two-sided RDMA SEND over Unreliable Datagrams (UD).
We allocate one QueuePair (QP) per core. This setting best approxi-
mates the implementation decisions we took for the UDP/IP stack.
We test the RDMA stack, which reaches 383 Ktps, as Figure 12a
shows. The numbers reflect how efficient that stack already is; the
networking overhead amounts to less than 1%. Because RDMA is

1635

1.0

400K
0.8
m300K NetSilo
EZOOK L 06 Steering
= 8 Batching
100K 0.4 Reordering
0 0.2 RDMA
AN 0. 000 PO O .
NS xc)\;(%geo& %’oeo(0 RDMA+RO
N 9o 25 s0 75 100
‘?‘Q\O Latency (ms)
(a) (b)

Figure 12: TPC-C throughput (a) and latency (b) at 80% of the
maximum throughput.

so efficient, Silo is the performance bottleneck in this scenario as
opposed to the network.

We add triaging techniques to the RDMA stack, one by one as
before. Note that RDMA QueuePairs already provide the equiva-
lent mechanism of steering, so we skip that technique. The final
throughput is 414 Ktps. To put things into perspective, our tech-
niques bring the performance of a UDP stack quite close to an
RDMA one. Nevertheless, they improve RDMA in this scenario by
8% only. In other scenarios, transaction reordering can bring much
better improvements. We present one such scenario in Section 7.5,
but we first discuss the latency implications of our TT techniques.

Figure 12b shows the latency CDF curves for each of the scenar-
ios above. Steering improves on the NetSilo baseline because it
reduces the overhead of delivering the transactions. All the other
techniques impact latency to some extent. This is expected, as we
buffer transactions on the switch. As discussed before, reordering
is the technique that changes latency the most. The reason is that
depending on the affinity criterion, some transaction types may sit
in incomplete batches longer—with a high variance, depending on
their type. This is, once again, the reason why some latency curves
have a wider distribution.

H Steering

l Batching

B Reordering
RDMA

§ RDMA+BA

§ RDMA+RO

Normalized to NetSilo

LLC
misses

L1d
misses

Figure 13: TPC-C CPU micro-architecture analysis.

Figure 13 shows micro-architecture measurements for the scenar-
ios above. Each technique improves the instructions per clock (IPC)
value of the previous technique and lowers the rate of L1 cache
misses. This is expected: with fewer context switches (e.g., due to
steering) it is more likely for the instruction and data caches to
have “hot” instructions/data. Context switches would have flushed
these caches. We see, however, an increase in LLC misses. This is
not uncommon: batching/reordering of transactions makes it so
that more data is touched per unit of time, hence yields more last
layer cache misses [66].

7.5 Reordering Experiments

To evaluate the effect of transaction reordering, we used the stan-
dard TPC-C workload but partitioned the data differently: we as-
signed multiple cores to each warehouse. This increases contention
because conflicting transactions that would otherwise execute seri-
ally in one core can now run concurrently in several cores.

Figure 14(left) shows the transaction throughput with an increas-
ing number of cores per warehouse. We contrast the RDMA baseline
execution with two TT techniques: batching (BA) and reordering
(RO). With batching, we simply group transactions at random. With
reordering, we use txnType as the affinity criterion, i.e., batches
are made of a single transaction type.

1.0
8M
0.8
&GM
z 0.6
I3
RaM é Reordering
2M 0.4
RDMA
0
ARSI) 02 ROMALBA
PN ONR OO RDMA+RO
NG AN
(SN xQ’Q.eP PX% 20 0
RO %0 01 02 03 o4
q‘q@ Latency (ms)
(@) (b)

Figure 15: YSCB throughput (a) and
maximum throughput.

latency (b) at 80% of the

RDMA ERDMA+BA ERDMA+RO
400K n
© 300K ¥ 30K
£ 200K 5 20K
= 100K 210K
0 0!
12 3 4 12 3 4

Cores per warehouse

Cores per warehouse

Figure 14: TPC-C workload (left) under varying degrees of
contention and (right) number of aborts in each scenario.

With one core per warehouse, there is minimal contention, so the
biggest improvement in performance comes from batching. At four
cores per warehouse, the contention is much higher. The baseline
RDMA throughput is reduced to 115 Ktps with four cores from 364
Ktps when using just one core. Reordering reduces contention by
separating the reads from the writes: while one core is performing
read-only transaction types on a snapshot, another core can per-
form write-heavy transaction types uncontended. This results in
a throughput of 162 Ktps with 4 cores, a 1.4X improvement over
the baseline RDMA scenario. We observe that this improvement is
consistent when increasing the contention level.

The main source of speedup from reordering based on txnType
comes from reducing contention. This is evident from the abort rate
shown in Figure 14(right). With a single core, the abort rate is close
to zero. With two cores per warehouse, reordering reduces the abort
rate from 30K to 23K aborts/s. This reduces the number of abort
responses that have to be sent back to the client, thus increasing
the “goodput.” Batching, on the other hand, slightly increases the
abort rate, because it delivers transactions to the database at an
overall higher throughput.

7.6 Comparing TPC-C and YCSB

To evaluate if the benefits of TT extend to different workloads, we
repeated the experiments from Section 7.4, this time using the YSCB
“A” benchmark with a 80/20 R/W transaction mix. YCSB transactions
are notably smaller than TPC-C’s in that they read fewer rows and
make fewer changes, on average.

Figure 15a shows the throughput obtained by applying our triag-
ing techniques to a YCSB workload. As before, we cumulatively
apply one technique at a time. As expected, YSCB transactions
are heavily impacted by networking overhead. In our experiments,
the throughput of LocalSilo is 17.5 Mtps, whereas the UDP/IP
NetSilo delivers 377 Ktps, a 98% networking overhead. Although
the combined techniques over UDP/IP do not match the throughput

of LocalSilo, batching and reordering have the most substantial
speedup: they deliver 3 Mtps, an increase in throughput of 7.95x
compared to NetSilo. This is a markedly better improvement com-
pared to TPC-C benefits. The reason is that the more the networking
overhead slows down transaction rates, the more opportunities to

recover this overhead when applying TT techniques.

The baseline RDMA further reduces networking overhead, de-

livering 4.5 Mtps. By using our batching technique, we increase
the RDMA throughput by 1.9x to 8.56 Mtps. Since the YCSB has

small transactions with little contention, the reordering technique

provides little improvement over batching; the main benefit to this
workload comes from reducing the time spent handling network

requests. Furthermore, we surpass the RDMA rates at a negligible
latency cost, as we discuss next.
Figure 15b shows the latency CDF for the various techniques.

As before, the impact on the UDP/IP stack is small. We see in this

scenario that, as before, our techniques add more latency with the

RDMA stack. This reflects how very small transactions can be more

sensitive to latency. Note, however, that the x-axis in Figure 15b is
measured in tens of milliseconds. With a mere 0.1 ms of additional
latency, TT can almost double the RDMA transaction rate.

7.7 Software-Based TT

The question may arise as to whether network hardware is really

necessary for executing TT techniques. To evaluate this question,

we implemented TT on the RDMA-enabled NetSilo server by hav-

ing it perform reordering using txnType as the affinity criterion.

We then compared this server-based TT to the baseline RDMA-

1636

enabled Netsilo and the switch-based TT. Figure 16 shows the
throughput and latency of the three scenarios.

1.0 =
8M;
s 5
am §os
0" 0.0
> O o0 01 02 03
?\0“\ r,e‘“e(2@&0“?\ Latency (ms)

Figure 16: YCSB throughput (a) and latency (b) of different
TT/reordering (RO) implementation sites.

Reordering transactions on the server increases the throughput
compared to the baseline RDMA from 4.5 to 6.06Mtps, an improve-
ment of 1.35X. Server-based TT optimizes the execution of the
transactions to some extent, but it simply cannot alleviate the server
from the network processing. Switch based TT delivers 8.56Mtps,
an improvement of 1.41X over the server-based TT implementation.
Although they have similar tail latencies, the switch-based TT has
a lower mean latency.

Applying TT techniques in software after the network forgoes
several opportunities for optimization. The transaction requests are
not batched until after they arrive at the server, with all the network-
ing overhead that this entails. Furthermore, the server-based TT
cannot benefit from batching responses. Since the standard network
does not provide the functionality for splitting response packets,
the server is forced to send transaction responses individually to
their respective clients.

8 RELATED WORK

We divide the related work into three categories. First, we con-
sider other transaction management techniques that do not execute
in-nework. Second, we examine work that leverages in-network
computing for applications other than transaction management.
Lastly, we compare systems that also benefit from the low-overhead
networking that RDMA technology introduced.

Transaction Management Techniques. Partitioning databases
is a common way to optimize transaction management and achieve
scalability in multi-core systems [37, 38, 45, 71, 78]. These systems
schedule transactions immediately upon arrival and can benefit
from having the network deliver transactions to a core respecting
the database partitioning.

Steering techniques that go beyond RSS have been proposed in
the context of OS support for low-latency transactions [35, 52, 57,
58]. One project even leverages a programmable NIC [60]. These
techniques try re-assigning cores to applications when some cores
find themselves with more work than others. Our techniques also
move computations onto specific cores, but we do so without re-
quiring any changes to the OS.

Transaction batching is a widespread technique that databases
use in different execution stages: during transaction execution [53],
logging of transactions (group commit) [22, 26], and at replication
time [56]. We perform batching in-network, which eliminates the
cost of doing so on the database server.

Transaction reordering is also a known technique. Many systems
seek to minimize concurrency conflicts in such a way [15, 53, 72].
The schedulers in those systems try to select the next transaction
to execute that would cause minimal interference to ongoing trans-
actions. These techniques are complementary to ours. Reordering
has also appeared in the context of maximizing resource sharing
during execution [3, 77] or replication [54]. We have shown similar
improvements, although by resorting to in-network mechanisms
instead of consuming server resources that could otherwise be
dedicated to processing additional transactions.

In-Network Computing Applications. Some work has shown
that engaging the network can also be useful in transaction exe-
cution [32, 42] or replication scalability [85]. They try to identify
or eliminate conflicts that can cause transaction aborts. Naturally,

1637

these techniques are dependent on the kind of concurrency control
a given database uses. Our techniques are complementary to those.

Other database subsystems—such as query execution—have also
leveraged INC capabilities. For instance, a number of relational
operators can be processed in-network, such as selection, join, and
aggregation [28, 41, 73], as well as other data analysis operators
such as map-reduce [7, 63].

Other applications of in-network computing include aggregation
in machine learning contexts [64], caching [34, 76], consensus [14,
43], and some limited version of data streaming applications [2,
33, 68]. We should note that streaming computations [49] and in-
network computing bear only some superficial resemblance. The
differences in programming models cause algorithms formulated
for one model not to translate naturally—or at all—into the second.

RDMA and fast networking. Before the advent of fast network-
ing, databases were designed to make as minimal and optimal use
of communication as possible. RDMA networks ultimately revert
this trend, as they drastically lowered transmission costs. Moreover,
it is no longer sensible to tradeoff CPU cycles to save networking
time. CPU performance (in terms of clock speed) is believed to have
plateaued [27], whereas network performance is still improving at
a fast pace. Network cards that operate at 200 Gbps and switches
with 400 Gbps ports are already commercial off-the-shelf equip-
ment. Moreover, the 800 Gbps Ethernet standard has already been
ratified, and the 1.6 Tbps one is already being discussed [18].
Many database subsystems have been redesigned to leverage
fast networking and kernel bypass in light of these changes. There
are works that redesign distributed query execution [6, 44, 59, 62],
distributed transaction processing [81, 83], and replication [79, 84].
Our work falls into this category but it leverages network pro-
grammability on top of low-overhead, high-speed networking. More-
over, we are in a unique position because we formulate our algo-
rithms in the feed-forward style. This allows us to keep benefiting
from faster-speed equipment when it becomes available without
changing our algorithms, e.g., 400G programmable switches [75].

9 CONCLUSION

In this paper, we introduced Transaction Triaging, a set of tech-
niques that can be executed in-network and shape the streams of
transactions before their delivery to a database server. We showed
that performing Transaction Triaging can reverse the network over-
head by providing server performance improvements.

As programmable networks become off-the-shelf technology, we
see our techniques as one more step towards revisiting the tradi-
tional separation of concerns between networking and database
systems, allowing a new generation of systems to emerge.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments, and Paolo
Costa, Rana Hussein, André Ryser, Yanfang Le, and Daniel Cason
for discussions on early drafts of this paper. This work was partly
supported by DARPA Contract No. HR001120C0107, the European
Research Council (ERC) under the Horizon 2020 Program (grant
agreements 683253/Graphint) and the Swiss National Science Foun-
dation (SNSF), projects #175717 and #166132.

REFERENCES

(1]

[2

[

(3

=

=

[9

=

[10]

[11

[12

[13

[14]

[15]

[16]
[17]

[18

[19]

[20]

[21]

[22]

[23

[24]

Alveo [n.d.]. ALVEO Adaptable Accelerator Cards for Data Center Work-
loads. https://www.xilinx.com/content/xilinx/en/products/boards-and-kits/alveo.
html.

Arvind Arasu, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2004. Linear Road: A Stream Data Management Benchmark. In
Proceedings of the Thirtieth International Conference on Very Large Data Bases -
Volume 30 (Toronto, Canada) (VLDB ’04). VLDB Endowment, 480-491.

Islam Atta, Pinar Toziin, Xin Tong, Anastasia Ailamaki, and Andreas Moshovos.
2013. STREX: Boosting Instruction Cache Reuse in OLTP Workloads through
Stratified Transaction Execution. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (Tel-Aviv, Israel) (ISCA ’13). Association for
Computing Machinery, 273-284. https://doi.org/10.1145/2485922.2485946
Philip A. Bernstein, Vassco Hadzilacos, and Nathan Goodman. 1987. Concurrency
Control and Recovery in Database Systems. Addison-Wesley Longman Publishing
Co., Inc.

Roberto Bifulco and Gabor Rétvari. 2018. A Survey on the Programmable Data
Plane: Abstractions, Architectures, and Open Problems. In 2018 IEEE 19th In-
ternational Conference on High Performance Switching and Routing (HPSR). 1-7.
https://doi.org/10.1109/HPSR.2018.8850761

Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian.
2016. The End of Slow Networks: It’s Time for a Redesign. Proc. VLDB Endow. 9,
7 (March 2016), 528-539. https://doi.org/10.14778/2904483.2904485

Marcel Blocher, Tobias Ziegler, Carsten Binnig, and Patrick Eugster. 2018. Boost-
ing Scalable Data Analytics with Modern Programmable Networks. In Proceed-
ings of the 14th International Workshop on Data Management on New Hard-
ware (Houston, Texas) (DAMON ’18). Association for Computing Machinery.
https://doi.org/10.1145/3211922.3211923

Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. 2014. P4: Programming Protocol-Independent Packet Processors.
ACM SIGCOMM Computer Communication Review 44, 3 (July 2014), 87-95.

Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin
Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding Metamorpho-
sis: Fast Programmable Match-Action Processing in Hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4, 99-110.

Gordon Brebner and Weirong Jiang. 2014. High-Speed Packet Processing using
Reconfigurable Computing. IEEE Micro 34, 1 (Jan. 2014), 8-18.

Broadcom Trident 4 [n.d.]. Broadcom Trident 4. https://www.broadcom.com/
products/ethernet-connectivity/switching/strataxgs/bcm56880- series.

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell
Sears. 2010. Benchmarking Cloud Serving Systems with YCSB. In Proceedings of
the 1st ACM Symposium on Cloud Computing (Indianapolis, Indiana, USA). ACM,
143-154.

Transaction Processing Performance Council. 2010. TPC-C Benchmark Revision
5.11.0. http://www.tpc.org/tpcc/.

Huynh Tu Dang, Daniele Sciascia, Marco Canini, Fernando Pedone, and Robert
Soulé. 2015. NetPaxos: Consensus at Network Speed. In Proceedings of the 1st
ACM SIGCOMM Symposium on Software Defined Networking Research (Santa
Clara, California) (SOSR ’15). Association for Computing Machinery. https:
//doi.org/10.1145/2774993.2774999

Bailu Ding, Lucja Kot, and Johannes Gehrke. 2018. Improving Optimistic Con-
currency Control through Transaction Batching and Operation Reordering.
Proc. VLDB Endow. 12, 2 (Oct. 2018), 169-182. https://doi.org/10.14778/3282495.
3282502

DPDK [n.d.]. Data Plane Developemnt Kit. https://dpdk.org/.

Aleksandar Dragojevic, Dushyanth Narayanan, and Miguel Castro. 2017. RDMA
Reads: To Use or Not to Use? IEEE Data Eng. Bull. 40, 1 (2017), 3-14.

Ethernet [n.d.]. Ethernet Technology Consortium - 800G Specifi-
catin. https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/
800G-Specification_r1.0.pdf.

Jose M. Faleiro and Daniel J. Abadi. 2015. Rethinking Serializable Multiversion
Concurrency Control. Proc. VLDB Endow. 8, 11 (July 2015), 1190-1201.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The Road to SDN: An
Intellectual History of Programmable Networks. SIGCOMM Comput. Commun.
Rev. 44, 2 (April 2014), 87-98. https://doi.org/10.1145/2602204.2602219

Annie P. Foong, Thomas R. Huff, Herbert H. Hum, Jaidev R. Patwardhan, and
Greg J. Regnier. 2003. TCP Performance Re-Visited. In Proceedings of the 2003
IEEE International Symposium on Performance Analysis of Systems and Software
(ISPASS °03). IEEE Computer Society, 70-79.

Dieter Gawlick and David Kinkade. 1985. Varieties of concurrency control in
IMS/VS fast path. IEEE Database Eng. Bull. 8, 2 (1985), 3-10.

Nadeen Gebara, Alberto Lerner, Mingran Yang, Minlan Yu, Paolo Costa, and
Manya Ghobadi. 2020. Challenging the Stateless Quo of Programmable Switches.

In Proceedings of the 19th ACM Workshop on Hot Topics in Networks (HotNets "20).
Jim Gray and Andreas Reuter. 1992. Transaction Processing: Concepts and Tech-

niques (1st ed.). Morgan Kaufmann Publishers Inc.

1638

[25

[26

[27]

[29

[30

[31

(33

[34

[35

@
2

(37]

(38]

(39]

[40]

[41

[42

"~
&

(44

Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012.
MegaPipe: A New Programming Interface for Scalable Network I/O. In Proceedings
of the 10th USENIX Conference on Operating Systems Design and Implementation
(Hollywood, CA, USA) (OSDI’'12). USENIX Association, 135-148.

Pat Helland, Harald Sammer, Jim Lyon, Richard Carr, Phil Garrett, and Andreas
Reuter. 1989. Group commit timers and high volume transaction systems. In High
Performance Transaction Systems, Dieter Gawlick, Mark Haynie, and Andreas
Reuter (Eds.). Springer Berlin Heidelberg, 301-329.

John L. Hennessy and David A. Patterson. 2019. A New Golden Age for Computer
Architecture. Commun. ACM 62, 2 (Jan. 2019), 48—60. https://doi.org/10.1145/
3282307

Jaco Hofmann, Lasse Thostrup, Tobias Ziegler, Carsten Binnig, and Andreas Koch.
2019. High-Performance In-Network Data Processing. In International Workshop
on Accelerating Analytics and Data Management Systems Using Modern Processor
and Storage Architectures (ADMS’19).

Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. 2019. The
P4->NetFPGA Workflow for Line-Rate Packet Processing. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA ’19). 1-9.

Infiniband Architecture Specification Annex A16 [n.d.]. Infiniband Archi-
tecture Specification-Annex A16: RoCE. https://www.infinibandta.org/ibta-
specifications-download/.

Infiniband Architecture Specifications [n.d.]. Infiniband Architecture Specifica-
tion. https://www.infinibandta.org/ibta-specifications-download/.

Theo Jepsen, Leandro Pacheco de Sousa, Masoud Moshref, Fernando Pedone, and
Robert Soulé. 2018. Infinite Resources for Optimistic Concurrency Control. In
Proceedings of the 2018 Morning Workshop on In-Network Computing (Budapest,
Hungary) (NetCompute ’18). Association for Computing Machinery, 26-32. https:
//doi.org/10.1145/3229591.3229597

Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and Robert Soulé.
2018. Life in the fast lane: A line-rate linear road. In Proceedings of the 4th ACM
SIGCOMM Symposium on Software Defined Networking Research (SOSR’18).

Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing Key-Value Stores
with Fast In-Network Caching. In Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP’17).

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay, David Maz-
iéres, and Christos Kozyrakis. 2019. Shinjuku: Preemptive Scheduling for
psecond-scale Tail Latency. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, 345-360. https:
//www.usenix.org/conference/nsdi19/presentation/kaffes

Robert Kallman, Mitch Cherniack, Eduardo Galvez, David Maier, Anurag S.
Maskey, Esther Ryvkina, Michael Stonebraker, and Richard Tibbetts. 2008. H-
Store: A High-Performance, Distributed Main Memory Transaction Processing
System. Proc. VLDB Endow. 1, 2 (Aug. 2008), 1496-1499. https://doi.org/10.14778/
1454159.1454211

A. Kemper and T. Neumann. 2011. HyPer: A hybrid OLTP OLAP main memory
database system based on virtual memory snapshots. In 2011 IEEE 27th Interna-
tional Conference on Data Engineering. 195-206. https://doi.org/10.1109/ICDE.
2011.5767867

Kangnyeon Kim, Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2016.
ERMIA: Fast Memory-Optimized Database System for Heterogeneous Workloads.
In Proceedings of the 2016 International Conference on Management of Data (San
Francisco, California, USA) (SIGMOD ’16). Association for Computing Machinery,
1675-1687. https://doi.org/10.1145/2882903.2882905

Hugo Krawczyk. 1994. LFSR-based Hashing and Authentication. In Proceedings
of the 14th Annual International Cryptology Conference on Advances in Cryptology
(CRYPTO °94). Springer-Verlag, 129-139.

Diego Kreutz, Fernando M. V. Ramos, Paulo E. Verissimo, Christian E. Rothenberg,
Siamak Azodolmolky, and Steve Uhlig. 2015. Software-Defined Networking: A
Comprehensive Survey. Proc. IEEE 103, 1 (Jan 2015), 14-76. https://doi.org/10.
1109/JPROC.2014.2371999

Alberto Lerner, Rana Hussein, and Philippe Cudré-Mauroux. 2019. The Case for
Network Accelerated Query Processing. In 9th Biennial Conference on Innovative
Data Systems Research (Asilomar, California) (CIDR ’19).

Jialin Li, Ellis Michael, and Dan R. K. Ports. 2017. Eris: Coordination-Free Con-
sistent Transactions Using In-Network Concurrency Control. In Proceedings of
the 26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP
’17). Association for Computing Machinery, 104-120. https://doi.org/10.1145/
3132747.3132751

Jialin Li, Ellis Michael, Naveen Kr. Sharma, Adriana Szekeres, and Dan R. K. Ports.
2016. Just Say NO to Paxos Overhead: Replacing Consensus with Network Order-
ing. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16). USENIX Association, 467-483. https://www.usenix.org/conference/
osdil6/technical-sessions/presentation/li

Feilong Liu, Lingyan Yin, and Spyros Blanas. 2019. Design and Evaluation of
an RDMA-Aware Data Shuffling Operator for Parallel Database Systems. ACM
Trans. Database Syst. 44, 4 (Dec. 2019). https://doi.org/10.1145/3360900

https://www.xilinx.com/content/xilinx/en/products/boards-and-kits/alveo.html
https://www.xilinx.com/content/xilinx/en/products/boards-and-kits/alveo.html
https://doi.org/10.1145/2485922.2485946
https://doi.org/10.1109/HPSR.2018.8850761
https://doi.org/10.14778/2904483.2904485
https://doi.org/10.1145/3211922.3211923
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
http://www.tpc.org/tpcc/
https://doi.org/10.1145/2774993.2774999
https://doi.org/10.1145/2774993.2774999
https://doi.org/10.14778/3282495.3282502
https://doi.org/10.14778/3282495.3282502
https://dpdk.org/
https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/800G-Specification_r1.0.pdf
https://ethernettechnologyconsortium.org/wp-content/uploads/2020/03/800G-Specification_r1.0.pdf
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/3282307
https://doi.org/10.1145/3282307
https://www.infinibandta.org/ibta-specifications-download/
https://www.infinibandta.org/ibta-specifications-download/
https://www.infinibandta.org/ibta-specifications-download/
https://doi.org/10.1145/3229591.3229597
https://doi.org/10.1145/3229591.3229597
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://www.usenix.org/conference/nsdi19/presentation/kaffes
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.14778/1454159.1454211
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1109/ICDE.2011.5767867
https://doi.org/10.1145/2882903.2882905
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1109/JPROC.2014.2371999
https://doi.org/10.1145/3132747.3132751
https://doi.org/10.1145/3132747.3132751
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/li
https://doi.org/10.1145/3360900

[45

[46

[47]

[49]

[50]

[51

[52]

[53]

[54

[55]

[56]

[57

[58

[59

[60

[61]

(62

[63

x
]

[65

Yi Lu, Xiangyao Yu, and Samuel Madden. 2019. STAR: Scaling Transactions
through Asymmetric Replication. Proc. VLDB Endow. 12, 11 (July 2019), 1316-1329.
https://doi.org/10.14778/3342263.3342270

Srihari Makineni, Ravi Iyer, Partha Sarangam, Donald Newell, Li Zhao, Ramesh
Illikkal, and Jaideep Moses. 2006. Receive Side Coalescing for Accelerating
TCP/IP Processing. In Proceedings of the 13th International Conference on High
Performance Computing (Bangalore, India) (HiPC’06). Springer-Verlag, 289-300.
https://doi.org/10.1007/11945918_31

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. Open-
Flow: Enabling Innovation in Campus Networks. 38, 2 (March 2008), 69-74.
http://doi.acm.org/10.1145/1355734.1355746

Jeffrey C. Mogul. 2003. TCP Offload is a Dumb Idea Whose Time Has Come. In
Proceedings of the 9th Conference on Hot Topics in Operating Systems - Volume 9
(Lihue, Hawaii) (HOTOS’ 03). USENIX Association, 5.

S. Muthukrishnan. 2005. Data Streams: Algorithms and Applications. Now Pub-
lishers Inc. https://ieeexplore.ieee.org/document/8186985

Neha Narula, Cody Cutler, Eddie Kohler, and Robert Morris. 2014. Phase
Reconciliation for Contended In-Memory Transactions. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 14). USENIX
Association, 511-524. https://www.usenix.org/conference/osdi14/technical-
sessions/presentation/narula

Network Programming Language [n.d.]. Network Programming Language. https:
//nplang.org/.

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Bal-
akrishnan. 2019. Shenango: Achieving High CPU Efficiency for Latency-
sensitive Datacenter Workloads. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association, 361-378.
https://www.usenix.org/conference/nsdi19/presentation/ousterhout

Ippokratis Pandis, Ryan Johnson, Nikos Hardavellas, and Anastasia Ailamaki.
2010. Data-Oriented Transaction Execution. Proc. VLDB Endow. 3, 1-2 (Sept.
2010), 928-939. https://doi.org/10.14778/1920841.1920959

Fernando Pedone, Rachid Guerraoui, and André Schiper. 2003. The Database
State Machine Approach. Distributed Parallel Databases 14, 1 (2003), 71-98.
https://doi.org/10.1023/A:1022887812188

Aleksey Pesterev, Jacob Strauss, Nickolai Zeldovich, and Robert T. Morris. 2012.
Improving Network Connection Locality on Multicore Systems. In Proceedings
of the 7th ACM European Conference on Computer Systems (Bern, Switzerland)
(EuroSys ’12). Association for Computing Machinery, 337-350. https://doi.org/
10.1145/2168836.2168870

Frank M. Pittelli and Hector Garcia-Molina. 1989. Reliable Scheduling in a TMR
Database System. ACM Trans. Comput. Syst. 7, 1 (Jan. 1989), 25-60. https:
//doi.org/10.1145/58564.59294

George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-Scale Networked Tasks. In Proceedings of the
26th Symposium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, 325-341. https://doi.org/10.1145/3132747.
3132780

Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John Ousterhout. 2018.
Arachne: Core-Aware Thread Management. In 13th USENIX Symposium on Oper-
ating Systems Design and Implementation (OSDI 18). USENIX Association, 145-160.
https://www.usenix.org/conference/osdi18/presentation/qin

Wolf Rodiger, Tobias Miihlbauer, Alfons Kemper, and Thomas Neumann. 2015.
High-Speed Query Processing over High-Speed Networks. Proc. VLDB Endow. 9,
4 (Dec. 2015), 228-239. https://doi.org/10.14778/2856318.2856319

Alexander Rucker, Muhammad Shahbaz, Tushar Swamy, and Kunle Olukotun.
2019. Elastic RSS: Co-Scheduling Packets and Cores Using Programmable NICs. In
Proceedings of the 3rd Asia-Pacific Workshop on Networking 2019 (Beijing, China)
(APNet ’19). Association for Computing Machinery, 71-77. https://doi.org/10.
1145/3343180.3343184

Mohammad Sadoghi, Spyros Blanas, and H. V. Jagadish. 2019. Transaction Pro-
cessing on Modern Hardware. Morgan & Claypool Publishers.

Abdallah Salama, Carsten Binnig, Tim Kraska, Ansgar Scherp, and Tobias Ziegler.
2017. Rethinking Distributed Query Execution on High-Speed Networks. IEEE
Data Engineering Bulletin 40, 1 (2017), 27-37.

Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-Network Computation is a Dumb Idea Whose Time Has Come.
In Proceedings of the 16th ACM Workshop on Hot Topics in Networks (Palo Alto,
CA, USA) (HotNets ’17). Association for Computing Machinery, 150-156. https:
//doi.org/10.1145/3152434.3152461

Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports, and Peter
Richtarik. 2021. Scaling distributed machine learning with in-network aggrega-
tion. In 18th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 21). USENIX Association, 785-808. https://www.usenix.org/conference/
nsdi21/presentation/sapio

Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon
Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. 2020. Programmable

1639

[66

(67

e
&,

[69

[70

[71

3
&,

(73]

(77

[78

[79

%
=

[81

[82

[83

[84

(85

(86

Calendar Queues for High-speed Packet Scheduling. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Association,
685-699. https://www.usenix.org/conference/nsdi20/presentation/sharma
Utku Sirin, Pinar Té6ziin, Danica Porobic, and Anastasia Ailamaki. 2016. Micro-
Architectural Analysis of In-Memory OLTP. In Proceedings of the 2016 Inter-
national Conference on Management of Data (San Francisco, California, USA)
(SIGMOD 16). Association for Computing Machinery, 387-402. https://doi.org/
10.1145/2882903.2882916

Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In
Proceedings of the 2016 ACM SIGCOMM Conference.

Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Proceedings of the Symposium on SDN Research (Santa Clara, CA, USA)
(SOSR ’17). ACM, 164-176. https://doi.org/10.1145/3050220.3063772

Haoyu Song. 2013. Protocol-oblivious Forwarding: Unleash the Power of SDN
Through a Future-proof Forwarding Plane. In Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking. 127-132.

W. Richard Stevens and Thomas Narten. 1990. Unix Network Programming.
SIGCOMM Comput. Commun. Rev. 20, 2 (April 1990), 8-9. https://doi.org/10.
1145/378570.378600

Michael Stonebraker, Samuel Madden, Daniel J. Abadi, Stavros Harizopoulos,
Nabil Hachem, and Pat Helland. 2007. The End of an Architectural Era (It’s Time
for a Complete Rewrite). In Proceedings of the 33rd International Conference on
Very Large Data Bases, Austria, September 23-27, 2007. ACM, 1150-1160.
Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao,
and Daniel J. Abadi. 2012. Calvin: Fast Distributed Transactions for Partitioned
Database Systems. In Proceedings of the 2012 ACM SIGMOD International Confer-
ence on Management of Data (Scottsdale, Arizona, USA) (SIGMOD ’12). Association
for Computing Machinery, 1-12. https://doi.org/10.1145/2213836.2213838
Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2019. Cheetah:
Accelerating Database Queries with Switch Pruning. In Proceedings of the ACM
SIGCOMM 2019 Conference Posters and Demos (Beijing, China) (SIGCOMM Posters
and Demos ’19). Association for Computing Machinery, 72-74. https://doi.org/
10.1145/3342280.3342311

Tofino [n.d.]. Barefoot Tofino. https://www.barefootnetworks.com/technology/.
Tofino 2 [n.d.]. Intel Tofino 2. https://www.intel.com/content/www/us/en/
products/network-io/programmable-ethernet-switch/tofino- 2- series.html.

Yuta Tokusashi, Hiroki Matsutani, and Noa Zilberman. 2018. LaKe: The Power
of In-Network Computing. In 2018 International Conference on ReConFigurable
Computing and FPGAs (ReConFig). 1-8. https://doi.org/10.1109/RECONFIG.2018.
8641696

Pinar To6ziin, Islam Atta, Anastasia Ailamaki, and Andreas Moshovos. 2014.
ADDICT: Advanced Instruction Chasing for Transactions. Proc. VLDB Endow. 7,
14 (Oct. 2014), 1893-1904. https://doi.org/10.14778/2733085.2733095

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel Madden.
2013. Speedy Transactions in Multicore In-memory Databases. In Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles (Farmington,
Pennsylvania). ACM, 18-32.

Tianzheng Wang, Ryan Johnson, and Ippokratis Pandis. 2017. Query Fresh: Log
Shipping on Steroids. Proc. VLDB Endow. 11, 4 (Dec. 2017), 406-419. https:
//doi.org/10.1145/3186728.3164137

xpliant [n.d.]. XPliant Ethernet Switch Product Family. www.cavium.com/
XPliant-Ethernet- Switch-Product-Family.html.

Dong Young Yoon, Mosharaf Chowdhury, and Barzan Mozafari. 2018. Distributed
Lock Management with RDMA: Decentralization without Starvation. In Pro-
ceedings of the 2018 International Conference on Management of Data (Hous-
ton, TX, USA) (SIGMOD ’18). Association for Computing Machinery, 1571-1586.
https://doi.org/10.1145/3183713.3196890

Xiangyao Yu, Andrew Pavlo, Daniel Sanchez, and Srinivas Devadas. 2016. Tic-
Toc: Time Traveling Optimistic Concurrency Control. In Proceedings of the
2016 International Conference on Management of Data (San Francisco, Califor-
nia, USA) (SIGMOD ’16). Association for Computing Machinery, 1629-1642.
https://doi.org/10.1145/2882903.2882935

Erfan Zamanian, Carsten Binnig, Tim Harris, and Tim Kraska. 2017. The End of
a Myth: Distributed Transactions Can Scale. Proc. VLDB Endow. 10, 6 (Feb. 2017),
685-696. https://doi.org/10.14778/3055330.3055335

Erfan Zamanian, Xiangyao Yu, Michael Stonebraker, and Tim Kraska. 2019. Re-
thinking Database High Availability with RDMA Networks. Proc. VLDB Endow.
12, 11 (July 2019), 1637-1650. https://doi.org/10.14778/3342263.3342639

Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. 2019. Harmonia: Near-Linear Scalability for Replicated Storage with
in-Network Conflict Detection. Proc. VLDB Endow. 13, 3 (Nov. 2019), 376-389.
https://doi.org/10.14778/3368289.3368301

Noa Zilberman, Yury Audzevich, G. Adam Covington, and Andrew W. Moore.
2014. NetFPGA SUME: Toward 100 Gbps as Research Commodity. IEEE Micro 34,
5 (Sep. 2014), 32-41. https://doi.org/10.1109/MM.2014.61

https://doi.org/10.14778/3342263.3342270
https://doi.org/10.1007/11945918_31
http://doi.acm.org/10.1145/1355734.1355746
https://ieeexplore.ieee.org/document/8186985
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/narula
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/narula
https://nplang.org/
https://nplang.org/
https://www.usenix.org/conference/nsdi19/presentation/ousterhout
https://doi.org/10.14778/1920841.1920959
https://doi.org/10.1023/A:1022887812188
https://doi.org/10.1145/2168836.2168870
https://doi.org/10.1145/2168836.2168870
https://doi.org/10.1145/58564.59294
https://doi.org/10.1145/58564.59294
https://doi.org/10.1145/3132747.3132780
https://doi.org/10.1145/3132747.3132780
https://www.usenix.org/conference/osdi18/presentation/qin
https://doi.org/10.14778/2856318.2856319
https://doi.org/10.1145/3343180.3343184
https://doi.org/10.1145/3343180.3343184
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/3152434.3152461
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi21/presentation/sapio
https://www.usenix.org/conference/nsdi20/presentation/sharma
https://doi.org/10.1145/2882903.2882916
https://doi.org/10.1145/2882903.2882916
https://doi.org/10.1145/3050220.3063772
https://doi.org/10.1145/378570.378600
https://doi.org/10.1145/378570.378600
https://doi.org/10.1145/2213836.2213838
https://doi.org/10.1145/3342280.3342311
https://doi.org/10.1145/3342280.3342311
https://www.barefootnetworks.com/technology/
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-2-series.html
https://doi.org/10.1109/RECONFIG.2018.8641696
https://doi.org/10.1109/RECONFIG.2018.8641696
https://doi.org/10.14778/2733085.2733095
https://doi.org/10.1145/3186728.3164137
https://doi.org/10.1145/3186728.3164137
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html
https://doi.org/10.1145/3183713.3196890
https://doi.org/10.1145/2882903.2882935
https://doi.org/10.14778/3055330.3055335
https://doi.org/10.14778/3342263.3342639
https://doi.org/10.14778/3368289.3368301
https://doi.org/10.1109/MM.2014.61

