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ABSTRACT

One of the fundamental problems of machine ethics is to avoid the

perpetuation and amplification of discrimination through machine

learning applications. In particular, it is desired to exclude the in-

fluence of attributes with sensitive information, such as gender or

race, and other causally related attributes on the machine learning

task. The state-of-the-art bias reduction algorithm Capuchin breaks

the causality chain of such attributes by adding and removing tu-

ples. However, this horizontal approach can be considered invasive

because it changes the data distribution. A vertical approach would

be to prune sensitive features entirely. While this would ensure fair-

ness without tampering with the data, it could also hurt themachine

learning accuracy. Therefore, we propose a novel multi-objective

feature selection strategy that leverages feature construction to

generate more features that lead to both high accuracy and fairness.

On three well-known datasets, our system achieves higher accuracy

than other fairness-aware approaches while maintaining similar or

higher fairness.
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1 INTRODUCTION

Algorithms might reinforce biases against groups of people that

have been historically discriminated against [45, 46]. Examples

include gender bias in machine learning (ML) applications on online

advertising [10] and Google image search for occupations [27].

There are twomain approaches to address data bias: associational

and causal. Associational approaches link the sensitive feature,

such as nationality, religion, or race, and the algorithm’s outcomes

through statistical measures [4, 14, 21]. This approach neglects the

influence of sensitive features on other features, leading to paradox-

ical conclusions [36]. Causal approaches consider a causal structure

on the data that allows for causal links between sensitive features,

nonsensitive features, the target, and the predictions. Nonetheless,

causal approaches typically assume knowledge of the underlying

causal structure, which is unrealistic in practice [42]. Therefore,
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Salimi et al. [42] proposed to let the user categorize features as

sensitive, admissible, or inadmissible. The admissible set contains

features throughwhich the user allows the influence of the sensitive

feature on the classifier’s predictions. Conversely, the inadmissible

set is composed of features that potentially leak the bias of the

sensitive attribute through a mapping. They further propose the

system Capuchin (CA), which repairs the data that does not match

the user’s feature categorization by adding or removing tuples.

Although CA outperforms state-of-the-art (SOA) associational

and causal approaches, it has three drawbacks. First, CA overfits

fairness. It modifies the training set probability distribution by

deleting and inserting tuples and then learns an unbiased classi-

fier to predict unseen instances. The dissimilarities between the

probability distributions of the “repaired” dataset used for training

and unseen data lead to fairness overfitting. Second, CA’s logic

requires the binning of numerical features. Depending on the sizes

and number of bins, CA might delete more or fewer tuples provok-

ing a loss in classification accuracy. Third, the binning strategy is

dataset-dependent, requiring previous knowledge of the problem

and the data by the user. Instead of addressing fairness repair with

a tuple-wise, i.e., horizontal, approach as CA does, we propose a

new approach that addresses the same problem with a feature-wise,

i.e., vertical, strategy. A naive solution would drop sensitive and

inadmissible features. This approach would successfully remove

bias and avoid fairness overfitting, but might hurt the classification

accuracy because of potential information loss.

To achieve both high accuracy and fairness, we propose to ex-

tract as much unbiased information as possible from inadmissible

features using feature construction (FC) methods that apply non-

linear transformations. Thus one can use FC first to generate more

possible candidate features and then to drop inadmissible features

and optimize for fairness and accuracy. Adapting existing feature

generation frameworks [22, 26], we propose a two-phase multi-

objective feature selection (FS) strategy that generates a feature set

that simultaneously leads to high accuracy and fairness.

Finding a unique feature set that optimizes the trade-off between

fairness and accuracy is challenging. By constructing new features,

the search space rapidly grows depending on the number of original

features. Thus, an exhaustive search, evaluating all objectives on

the possible feature combinations, is infeasible. Therefore, a search

strategy must consider two potentially competing objectives, and

the selection strategy must optimize the trade-off between these

objectives. In this paper, we demonstrate a greedy search strategy

that fulfills this goal and outperforms SOA preprocessing methods

for fairness optimization.

• We show that we can extract unbiased information from bi-

ased features by applying human-understandable transforma-

tions (Section 3.1). We found that FC through multiplication and

group by aggregations are successful for this task.
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• We propose a mixed-initiative approach [23] where our system

and the user collaborate to balance the trade-off between accuracy

and fairness to the user’s needs (Section 3.4).

• We present a series of experiments on known datasets (Section 4)

showing how different feature transformations, classification

models, feature search space pruning, and weights for fairness

and accuracy influence the performance of our approach.

2 FOUNDATION

First, we review general families of bias reduction algorithms. These

methods address bias at different stages of the ML pipeline and

measure it differently. Finally, we formally define the problem of

multi-objective bias reduction.

2.1 Bias Reduction Algorithms

To address algorithmic discrimination, different bias reduction

strategies have been discussed and categorized in pre-processing

methods, in-processing methods, and post-processing methods.

Pre-processing methods remove the bias by modifying the train-

ing data. Since pre-processing methods rely on the training data,

they are independent of the ML model. This means that any ML

model trained with the resulting training set should show unbi-

ased predictions according to certain fairness criteria. Strategies

in this category include cell-mapping of the nonsensitive features

by randomized distortions [12], data-augmentation [42], and ad-

versarial learning of feature representations [6, 49]. In-processing

methods introduce constraints and regularization terms into the

classifier’s loss function. Usually, these terms try to moderate the

link between the sensitive feature and the algorithm outcomes. For

instance, one can add a regularization term to the logistic regres-

sion objective’s function, penalizing mutual information between

the sensitive feature and the predictions [25]. In-processing ap-

proaches are model dependent requiring to adjust the constraints

and regularization terms depending on the classification model.

Post-processing methods modify the outcomes of the classifiers.

Strategies include prediction flipping [21] and threshold selection

depending on the values of the sensitive attributes [8].

2.2 Measuring Fairness

Several fairness measures have been proposed to capture two legal

definitions of discrimination [3]. First, disparate treatment, refers to
discrimination based on the membership of individuals in a partic-

ular group, for instance, neglecting someone’s medical treatment

because of race. Second, disparate impact refers to discrimination

in contexts where decisions are not based on sensitive features, and

yet they have a larger impact on one or more groups of minorities.

Measures to quantify disparate treatment and disparate impact
can be associational or causal. Associational measures aim to dis-

cover unfair situations through statistical inequalities of the out-

comes between the different groups of the sensitive feature. De-
mographic Parity (DP), Conditional Statistical Parity, and Equalized
Odds (EO) [21] are themost representativemeasures in this category.

Causality approaches analyze whether the classifier’s predictions

are influenced by the sensitive feature through nonsensitive fea-
tures [2]. In contrast to causal approaches, associational approaches

are inaccurate in identifying unfair situations in certain cases [42].

According to Salimi et al. [42], justifiable fairness is the strongest
causal notion of fairness that is testable on data. For a classification

task with the features V, the target O, and the sensitive feature S, one

can classify the remaining features𝑉 \ {𝑆} as admissible or inadmis-

sible. Through admissible features, the user allows an influence of

the sensitive feature on the outcomes. Unlike other causality-based

approaches that assume a fixed causal structure to prohibit paths

from the sensitive feature to the outcomes [33], the feature catego-

rization proposed by Salimi et al. allows for flexibility regarding the

causal structure and it imposes the conditions for an ML model to

be justifiable fair for these categories. To measure justifiable fairness,
one can use the Ratio of Observational Discrimination (ROD) [42]:

𝛿 (𝑆 ;𝑂 |𝑎𝑏 ) =
𝑃 (𝑂 = 1 |𝑆 = 0, 𝐴𝑏 = 𝑎𝑏 )𝑃 (𝑂 = 0 |𝑆 = 1, 𝐴𝑏 = 𝑎𝑏 )
𝑃 (𝑂 = 0 |𝑆 = 0, 𝐴𝑏 = 𝑎𝑏 )𝑃 (𝑂 = 1 |𝑆 = 1, 𝐴𝑏 = 𝑎𝑏 )

(1)

where 𝑆 represents the membership to the protected group in the

sensitive feature,𝑂 the outcomes of the model, and𝐴 the admissible

set of features. 𝐴𝑏 refers to the subset composed by admissible

features influencing the outcomes of the classifier. Formally, 𝐴𝑏 =

𝑀𝐵(𝑂) − 𝐼 , where𝑀𝐵(𝑂) is the Markov blanket of the outcomes,

and 𝐼 is the inadmissible set. Modeling the causal relationship of

attributes as a direct acyclic graph, the Markov blanket comprises

the parents, children, and the co-parents of an attribute node. The

Markov blanket of a node is the minimal set of nodes that isolates

the node from the graph - theMarkov blanket shields the node from
the influence of other variables. If 𝛿 (𝑆 ;𝑂 |𝑎𝑏 ) = 1 then there is no

observational evidence that the algorithm discriminates subjects

with similar characteristics 𝑎𝑏 . If 𝛿 (𝑆 ;𝑂 |𝑎𝑏 )>1 the model potentially

discriminates against the sensitive group.

2.3 Problem

We aim to minimize prediction error and algorithmic bias for clas-

sification tasks. Given a biased dataset 𝐷 = (𝑆,𝐴, 𝐼 ), where 𝑆 is the

sensitive or protected attribute, 𝐴 is the set of admissible features

and 𝐼 is the set of inadmissible features, we aim to enrich the fea-

ture vector in a way that a subset 𝑋 ⊆ 𝑉 , where 𝑉 is the set of

constructed features from𝐴∪ 𝐼 ∪𝑆 , minimizes algorithmic bias and

prediction error for an algorithm mapping 𝑋 to an outcome 𝑂 .

We adopt the causal perspective of justifiable fairness and use

the Ratio of Observational Discrimination (ROD) 𝛿 (𝑆 ;𝑂 |𝑎𝑏 ) as the
objective function 𝑔1 = |1 − 𝛿 (𝑆 ;𝑂 |𝑎𝑏 ) | to minimize algorithmic

bias. Moreover, we use the F1 score as the objective function 𝑔2 to

minimize prediction error. The F1 score is defined as 𝐹1 = 2× (𝑃×𝑅)(𝑃+𝑅) ,
where precision (P) is the fraction of correctly positive classified

instances and recall (R) is the fraction of the truly positive classified

instances that are discovered. Given the objective functions 𝑔1 (𝑋 )
and 𝑔2 (𝑋 ), the optimization problem can be written as:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐺 ( [−𝑔1 (𝑋 ), 𝑔2 (𝑋 ) ]) . (2)

3 AUTOMATED FAIR FEATURE

ENGINEERING

Figure 1 illustrates the workflow of FairExp (FAIRness EXPlorer),

which transforms a biased dataset 𝐷 into a bias-reduced dataset 𝐷 ′.
First, the user provides 𝐷 and specifies the sensitive and inadmis-

sible features. Optionally, the user can provide weights for the
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Inadmissible: ZIP
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Figure 1: SystemWorkflow.

Table 1: Std(workclass = Local-gov) GroupyBymarital-status

Class Sex Std(workclass == "Local-gov") GroupBy marital-status

<=50K

Female 0.24 ± 0.03
Male 0.24 ± 0.02

>50K

Female 0.25 ± 0.02
Male 0.25 ± 0.01

objectives accuracy and fairness. The workflow consists of three

main steps: FC, feature set exploration, and feature set selection.

FairExp constructs new features from the original features by re-

cursively applying transformations. FC enables the extraction of

unbiased information even from biased features as we describe in

Section 3.1. Note that we do not prune any biased features in the

construction phase.

In contrast to existing work, which applies simultaneous opti-

mization of accuracy and fairness [11] and can run into a local

minimum, we propose a two-phase exploration strategy. Having in

mind that smaller and less complex feature sets generalize better,

we first try to find the minimal set of features that maximizes ac-

curacy. For this purpose, we propose a definition of feature set DL

that serves our purpose. In the second phase, we trim the feature

set to fulfill the fairness requirement, as we explain in Section 3.2.

The exploration yields a broad candidate set of possible feature sets

in the Pareto front trading off accuracy and fairness. As detailed

in Section 3.4, we apply a geometric solution similar to the “elbow

method” [5] to pick the optimal feature set while considering the

objective weighting if specified. Finally, we return the preprocessed,

bias-reduced dataset to the user.

3.1 Feature Construction

To reduce bias one has to avoid inadmissible features. However,

if we drop all inadmissible features, we lose too much informa-

tion. So, the idea is to use some information about inadmissible

features by leveraging information from unbiased relationships

with other features. Salimi et al. [41] showed that the Adult dataset

is inconsistent because it reports household incomes for married

individuals, and there are more male married individuals in the

sample. Thus, the categorical feature marital-status is considered
inadmissible because it could bias the outcomes in favor of married

males. However, as observed from Table 1, the feature Std(workclass

== "Local-gov") GroupyBy marital-status is not biased towards a spe-
cific sex and benefits the classification accuracy. To obtain features,

such as Std(workclass == "Local-gov") GroupyBy marital-status, we
apply transformations to the original features recursively.

FairExp constructs new features to increase the classification

accuracy by applying transformations on the original features.

We leverage the same set of transformations as proposed by Katz

et al. [26]. The standard operations +, ∗, 1/,−1∗, and 𝑙𝑜𝑔 model

arithmetic relationships among features. The encoding transfor-

mations equal-range discretization, min-max scaling, and one-hot

encoding facilitate learning for ML models. The partial aggregates

GroupyByThen{Min,Max,Mean, Standard Deviation} allow Fair-

Exp to model conditional relationships among features.

Theoretically, we can apply infinitely many transformations re-

cursively. However, we stop once a feature reaches a certain descrip-

tion length (DL). Inspired by theMinimumDescription Length (MDL)

principle [39], we recursively define the DL of a feature:

DL( {𝑓𝑚 }) = 1, 𝑓𝑚 ∈ 𝐹0, (3)

DL(𝐹𝑎) =
𝑓𝑚∈𝐹𝑎

DL(𝑓𝑚), (4)

DL( {𝐹𝑎, 𝐹𝑏 }) = DL(𝐹𝑎) + DL(𝐹𝑏 ), (5)

DL( {𝑡 (𝐹𝑎) }) = DL(𝐹𝑎) + 1, 𝑡 ∈ 𝑇, (6)

where 𝐹𝑎, 𝐹𝑏 are any feature set. (7)

For instance, we would consider a raw feature 𝐴 to have DL 1.

For every transformation that we apply, we increment the DL ac-

cordingly. E.g. 𝑙𝑜𝑔(𝐴) has DL 2 and Max(A) GroupBy B has DL 3.

Instead of generating all possible combinations of features

(brute force) and transformations for the specified DL level, we

leverage a linear algebra solver [32] to avoid generating alge-

braically equivalent features, such as the commutative property

𝑎 + 𝑏 = 𝑏 + 𝑎, distributive property, e.g., (𝑎 · 𝑏) + (𝑎 × 𝑐) =

𝑎 · (𝑏 + 𝑐), associative property, e.g., (𝑎 + 𝑏) + 𝑐 = (𝑏 + 𝑐) +
𝑎, idempotent property, e.g., MinMaxScaling(MinMaxScaling(𝑎))
= MinMaxScaling(𝑎), input-dependent idempotent property, e.g,

max(max(𝑎) Group By 𝑏) Group By 𝑏 = max(𝑎) Group By 𝑏, and

invertibility property, e.g. 𝑎/𝑏 · 𝑏 = 𝑎. Additionally, we prune all

constant features, e.g. 𝑎/𝑎 = 1. Despite these optimizations, there is

still an exponential growth of the feature space. For instance, in the

German Credit dataset with 21 raw features (DL 1), we would still

face 1k features of DL 2, 1.8k features of DL 3, and 7.5k features of

DL 4. In Section 3.5, we describe how we parallelize our algorithm

to quickly cover thousands of constructed features.

3.2 Two-Phase Feature Set Exploration

Algorithm 1 describes in detail how we gather the most promising

candidate feature sets in a two-phase approach. We search for

feature sets that contain few and simple features. First, we add

features that benefit accuracy to find the least complex model that

maximizes accuracy and then we remove biased features.

Algorithm 1 takes a dataset 𝐷 , the user-specified feature catego-

rization, the model, and the constructed features 𝐶 as input. In the

first phase (Lines 4 - 11), the algorithm iteratively adds constructed

features to an initially empty feature set 𝐹 as long as they improve

accuracy on a validation set. Note that the constructed features are

sorted by increasing DL - starting with the raw features and ending
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Figure 2: The Pareto front after feature set exploration. Se-

lecting feature set with fairness weight of 0.25, 0.5, and 0.75.

with the features that are the result of more complex transforma-

tions. This way our system prefers simple features, which are easier

to understand by users, over complex ones. We further enforce

this principle by applying the floating procedure [38] (Lines 8 -

11) to further reduce the size of the resulting feature sets. Floating

removes redundant features from the current feature set if possible

without harming the accuracy. After evaluating all constructed

features, phase 1 yields one large feature set with the highest vali-

dation accuracy. The complexity of the first phase is theoretically

exponential but capped by the specified description lengths. Given

𝑛 raw features and𝑚 operations and a cap of 𝑙 as the maximum

description length. The number of possible feature combinations

are all the combinations of single raw features and permutations of

raw features and operations of higher ranks: 𝑂 (𝑛 + 𝑙̋
𝑖=2 (𝑛 +𝑚)𝑖 ).

In phase 2, we start with this accurate feature set and incrementally

remove one feature at a time if it improves fairness. Each time that

we remove a feature, we apply floating. Here, floating means that

we verify whether adding one of the removed accurate features

benefits fairness of the current feature set. If that is the case, we add

it to the feature set again. Floating is necessary because fairness

is a non-monotonic measure and therefore removing one feature

might significantly affect the properties of the underlying feature

set. The second phase terminates once every feature in the set 𝐹 has

been considered for removal. The complexity of the second phase

is 𝑂 ( |𝐹 |2) where |𝐹 | is the number of the features that were found

in the first phase. Therefore, the complexity of the entire algorithm

is dominated by the first phase because usually |𝐹 | << |𝐶 |.
From all explored feature sets, we select those on the Pareto

front. In the next section, we discuss how to choose one feature set

from the candidates in this Pareto front.

3.3 Fairness Guarantee

The feature subset obtained after the first phase of Algorithm 1

might contain biased features. Improving ROD in the second phase

of Algorithm 1, removes features with a direct influence on the

outcomes but not necessarily provides a fairness guarantee. To

guarantee that there are no hidden correlations between the sensi-

tive features and the target, in addition to the condition in Line 14,

we check whether the given features have any violating correla-

tion. We apply the SeqSel [19] algorithm proposed by which uses

conditional independence tests [47] to remove features that leak

sensitive information and are not blocked by the admissible feature

set. Ghalotra et al. also prove that SeqSel ensures causal fairness

Algorithm 1 Two-Phase Feature Set Exploration

Input: dataset 𝐷, feature categorization,model, constructed features𝐶.

Output: evaluated feature subsets𝑂.

1: 𝐶 ← the list of all constructed features sorted by increasing DL

2: 𝐹 ← ∅ ⊲ the current feature subset

3: 𝑂 ← ∅
Phase 1: Exploration for accurate feature sets

4: for 𝑐 𝑖𝑛 𝐶 do

5: if 𝐹1(𝐹 ∪ 𝑐) > 𝐹1(𝐹 ) then
6: 𝐹 ← 𝐹 ∪ 𝑐
7: 𝑂 ← 𝑂 ∪ (𝐹, 𝐹1(𝐹 ), 𝑅𝑂𝐷 (𝐹 ))
8: for 𝑓 𝑖𝑛 𝐹 do ⊲ floating

9: if 𝐹1(𝐹 \ 𝑓 ) > 𝐹1(𝐹 ) then
10: 𝐹 ← 𝐹 \ 𝑓
11: 𝑂 ← 𝑂 ∪ (𝐹, 𝐹1(𝐹 ), 𝑅𝑂𝐷 (𝐹 ))
Phase 2: Exploration for fair feature sets

12: 𝐵 ← ∅ ⊲ the set of potentially biased features

13: for 𝑓 𝑖𝑛 𝐹 do

14: if 𝑅𝑂𝐷 (𝐹 \ 𝑓 ) > 𝑅𝑂𝐷 (𝐹 ) then
15: 𝐹 ← 𝐹 \ 𝑓
16: 𝑂 ← 𝑂 ∪ (𝐹, 𝐹1(𝐹 ), 𝑅𝑂𝐷 (𝐹 ))
17: 𝐵 ← 𝐵 ∪ 𝑓

18: for 𝑏 𝑖𝑛 𝐵 do ⊲ floating

19: if 𝑅𝑂𝐷 (𝐹 ∪ 𝑏) > 𝑅𝑂𝐷 (𝐹 ) then
20: 𝐹 ← 𝐹 ∪ 𝑏
21: 𝑂 ← 𝑂 ∪ (𝐹, 𝐹1(𝐹 ), 𝑅𝑂𝐷 (𝐹 ))
22: 𝑂 ← Pareto Front(𝑂)

even if some features in the subset capture information about sen-

sitive features [19].

3.4 Mixed-Initiative Feature Set Selection

Accuracy and fairness are two competing objectives. Therefore, all

explored feature sets in the Pareto front are potential solutions for

the ML application. Following the mixed-initiative approach [23]

where our system and the user collaborate to achieve the user’s

goal, we propose three increasing levels of autonomy - supervised,

semi-supervised, and unsupervised.

Supervised. The user has a clear understanding of which degree

of fairness is required for the given ML application. Therefore, the

user can pick the feature set from the Pareto front by choosing the

most accurate feature set that still satisfies the fairness constraint.

Semi-Supervised. The user specifies the trade-off between accu-

racy and fairness by specifying weights for each objective. Based

on the weights, FairExp automatically chooses the feature set that

fits the user-specified trade-off best. FairExp chooses the feature

set with the maximal weighted sum of both objectives:

𝑧 = argmax

𝑥∈P
𝑤
fair
∗ 𝑅𝑂𝐷 + (1 − 𝑤

fair
) ∗ F1 score, (8)

where P contains all feature sets in the Pareto front and𝑤
fair

is

the weight for the fairness objective. This approach resembles the

“elbowmethod” [5] that was proposed to find the optimal number of

clusters for unsupervised learning problems. For instance, Figure 2

illustrates how FairExp selects the feature set from the Pareto

front for the Adult dataset based on the fairness weights 0.25, 0.5

(equal weights), and 0.75. In Section 4.5.2, we show the impact of

considering different weighting schemes in the selected feature set.

Unsupervised. FairExp chooses the feature set automatically based

on the assumption that both objectives are equal and the weights

of both objectives are set to 0.5.
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Table 2: Experimental datasets.

Dataset Columns Rows Sensitive Inadmissible

Traffic 17 1M Race -

Adult 10 48k Gender Marital status

COMPAS 5 7k Race -

German Credit 21 1k Age -

3.5 Scalability

Feature engineering consists of FC and FS. To scale feature engi-

neering, one has to optimize both stages. The bottleneck of feature

engineering is the exponentially growing number of constructed

features. To reduce this exponential growth, multiple strategies

have been proposed. First, our approach prunes all algebraically

equivalent features, such as 𝑎 + 𝑏 = 𝑏 + 𝑎. Second, one can always

parallelize parallelizable parts of the algorithm. For instance, we

currently compute the features of the FC phase in parallel. Fur-

thermore, we also parallelize the evaluation of one feature set. For

instance, for some models, such as logistic regression, we can dis-

tribute the training to multiple cores (training parallelism). As we

apply 5-fold cross-validation (CV), one can also compute each fold

in parallel (CV parallelism). However, for CV parallelism the upper

bound is the number of folds. Besides these trivial approaches to

parallelize Algorithm 1, we analyzed the algorithmmore closely and

found two further parallelization opportunities. First, one approach

is to parallelize the for loop of the floating procedure in Line 8.

Second, we can also accelerate the forward pass of Algorithm 1

by leveraging additional compute resources. Inspired by branch

prediction [44], we can speculatively evaluate additional potential

feature sets to utilize all resources. As FC generates a large number

of features and most of these features do not yield a gain in model

accuracy, we can assume that the condition in Line 5 yields 𝐹𝑎𝑙𝑠𝑒

in most cases and we can already evaluate the feature sets of the

next k iterations where 𝑘 is the number of cores. In the best case,

we can evaluate the feature sets of 𝑘 iterations in one cycle. In the

worst case, we have no parallelism gain.

4 EXPERIMENTS

Weperformed several experiments to compare our approach against

the SOA. We compare our approach in terms of prediction quality,

fairness, and runtime. Also, we explore the impact of different fea-

ture evaluation methods, objective weighting, including features

with longer DL, increasing number of instances, inadmissible fea-

tures. Finally, we analyze our parallelization strategy.

4.1 Experimental Setup

4.1.1 Datasets. We conducted our experiments on three commonly

studied datasets in algorithmic fairness literature [7, 12, 17, 42].

Moreover, we use the Traffic dataset [9] to analyze the runtime

performance of our approach for an increasing number of instances.

Table 2 summarizes the datasets along with the number of columns,

rows, sensitive features, and inadmissible features if present.

The Adult dataset [13] contains information from the 1994 census

in the United States. The prediction task is to determine whether a

person makes over 50K dollars a year. Similar to prior work [42], we

consider the sex (male, female) as the sensitive feature and marital

status as an inadmissible feature because as pointed out in prior

literature marital status is highly biased towards males. To compare

with prior work [12, 42], we remove the features that contain other

sensitive information such as race, native-country, and relationship.

The COMPAS dataset [30] contains records of offenders. The

prediction task is to determine if an offender will relapse before

trial. The dataset displays 1.5 times more African-Americans than

Caucasians. Following prior work [42], we consider race as the

sensitive feature, and the remaining features (age, number of prior

convictions, and severity of charge degree) as admissible.

The German Credit dataset [13] contains financial information

of credits granted to individuals in Germany. The prediction task

is to classify whether a person will pay back the credit or not. We

consider age as the sensitive feature (below average, above average).

The Montgomery County Traffic violations dataset [9], contains

electronic traffic violations. The classification task is to predict

whether the traffic violation corresponds to a warning or a citation.

Moreover, the data shows that citations are issued in a significantly

larger proportion to Hispanics when compared to other races.

4.1.2 Methods. We compare our method to the following methods.

Original. We leverage the original complete feature set.

Dropped. This baseline corresponds to the original feature set

without the sensitive and inadmissible features, which are dropped.

CA [42].We bin the numerical features as proposed by the authors.

Kamiran. We use the sample reweighting method proposed by

Kamiran et al. [24]. Calmon. We use the same binning, feature

subset, and distortion function as reported for the Adult and COM-

PAS datasets [12]. For the German credit dataset, we only consider

numerical and ordinal features as it is required for this method.

Feldman. We use the same binning and feature subset reported

by Calmon et al. [12] for the adult dataset. For the German credit

dataset, we only consider numerical and ordinal features as it is

required for this method.

FC-NSGA-II. To evaluate a SOA multi-objective FS, we use the

Non-dominated Sorting Genetic Algorithm (NSGA-II) [11] on the

constructed features. Khan et al. [28] proposed to use feature set

size and accuracy as objectives for selecting features using NSGAII.

FairExp. For our system, we use by default a maximum feature

DL of 4. Moreover, we assign equal weights (0.5) to fairness and

accuracy objectives. For our feature evaluation component, we use

logistic regression with 3-fold cross-validation on the training set

to compute a validation score.

4.2 Evaluation Methodology

We measure the effectiveness of our methods by comparing the

F1 score (as defined in Section 2.3) and the discrimination reduc-

tion using the Ratio of Discrimination (ROD) and all other fairness

metrics reported by Salimi et al. [42] of the downstream classifica-

tion task. F1 score is suitable in cases of class imbalance and ROD

represents the strongest notion of fairness that is testable from

data [42]. Following prior work [42], we normalize the distance

to the best possible ROD score (𝑑 = |1 − 𝑅𝑂𝐷 |) between 0 and 1,

where 1 represents the best possible fairness. Accordingly, we also

use the Grow-shrink algorithm [31] to learn the Markov blanket of
the outcomes to compute the ROD score. We report the aggregated

result of 5-fold cross-validation.
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Table 3: Comparing FairExp to state-of-the-art and baselines with regard to downstream F1 score and fairness measures

Dataset Method F1 ROD DP TNB TPB CSP CTNB CTPB Runtime

Adult

Capuchin 61 ± 1 82 ± 5 84 ± 5 84 ± 3 70 ± 13 96 ± 3 94 ± 5 96 ± 3 69.89 ± 20

Dropped 61 ± 1 87 ± 4 75 ± 5 77 ± 6 72 ± 5 87 ± 1 88 ± 2 57 ± 6 9.43 ± 54

FairExp 64 ± 3 81 ± 29 76 ± 32 82 ± 36 86 ± 21 66 ± 30 66 ± 30 40 ± 11 163𝑘 ± 51𝑘
FairExp-guaranteed 62 ± 2 85 ± 4 74 ± 6 78 ± 6 66 ± 6 86 ± 1 87 ± 2 54 ± 5 96𝑘 ± 31𝑘
FC-NSGAII 70 ± 1 16 ± 8 12 ± 4 42 ± 6 14 ± 3 10 ± 4 11 ± 7 13 ± 3 61𝑘 ± 38

Kamiran-reweighting 63 ± 0 85 ± 7 96 ± 4 88 ± 3 71 ± 13 60 ± 4 62 ± 4 47 ± 5 9.44 ± 18

Original 68 ± 1 22 ± 5 7 ± 5 4 ± 4 27 ± 8 4 ± 4 4 ± 4 10 ± 7 8.95 ± 15

COMPAS

Capuchin 64 ± 1 98 ± 2 42 ± 9 62 ± 14 42 ± 13 95 ± 10 96 ± 10 95 ± 10 1.82 ± 17

Dropped 66 ± 3 89 ± 2 38 ± 15 61 ± 17 36 ± 15 89 ± 4 85 ± 7 85 ± 5 1.21 ± 11

FairExp 67 ± 2 91 ± 4 46 ± 11 58 ± 16 52 ± 17 88 ± 6 84 ± 7 88 ± 7 95.97 ± 22.85

FairExp-guaranteed 66 ± 3 78 ± 21 33 ± 20 58 ± 18 30 ± 23 74 ± 24 71 ± 21 72 ± 21 149.24 ± 9.04

FC-NSGAII 65 ± 3 68 ± 18 26 ± 22 38 ± 22 33 ± 17 54 ± 35 49 ± 37 62 ± 22 1𝑘 ± 18

Kamiran-reweighting 65 ± 2 4 ± 5 85 ± 13 90 ± 10 87 ± 11 33 ± 10 26 ± 16 36 ± 4 1.27 ± 12

Original 66 ± 3 52 ± 8 19 ± 16 45 ± 19 15 ± 17 56 ± 12 62 ± 16 54 ± 9 1.13 ± 10

German credit

Capuchin 83 ± 3 80 ± 13 49 ± 31 66 ± 30 59 ± 31 0 ± 0 0 ± 0 0 ± 0 13.61 ± 3.08

Dropped 78 ± 4 83 ± 18 59 ± 10 76 ± 31 72 ± 30 0 ± 0 0 ± 0 0 ± 0 1.24 ± 15

FairExp 81 ± 3 1.00 ± 0 91 ± 7 78 ± 20 94 ± 6 0 ± 0 0 ± 0 0 ± 0 1𝑘 ± 391.72

FairExp-guaranteed 78 ± 3 67 ± 29 38 ± 27 64 ± 29 49 ± 30 0 ± 0 0 ± 0 0 ± 0 4𝑘 ± 2665

FC-NSGAII 79 ± 5 57 ± 34 38 ± 26 45 ± 30 66 ± 29 0 ± 0 0 ± 0 0 ± 0 10𝑘 ± 167

Kamiran-reweighting 83 ± 3 80 ± 27 87 ± 10 60 ± 24 80 ± 19 0 ± 0 0 ± 0 0 ± 0 1.33 ± 9

Original 78 ± 3 70 ± 12 32 ± 19 71 ± 20 50 ± 35 0 ± 0 0 ± 0 0 ± 0 1.31 ± 14

4.3 Effectiveness

Table 3 reports for each competing method the mean and standard

deviation of achieved F1 and various fairness scores across different

datasets. We bold the first and second-best results for each score.

The results show that FairExp is competitive compared to all SOA

baselines. Leveraging the original complete feature set yields high

classification accuracy but poor fairness because bias is not con-

sidered. If we remove sensitive and inadmissible features from the

original feature set, we significantly improve fairness but also cause

a significant drop in classification accuracy as can be seen for the

baselineDropped. In addition to removing biased features, the SOA

strategy CA further reduces bias in the data horizontally by adding

and removing instances. However, the disadvantage of CA is that

its horizontal bias repair significantly changes the underlying dis-

tribution of the training set which leads to it overfitting for fairness

and less generalization for the unseen test set. Furthermore, CA

requires discretization of numerical features that might cause an

additional loss in information depending on the degree of binning.

The multi-objective FS strategy NSGA-II achieves high classifica-

tion accuracy and low fairness. We found that NSGA-II often gets

stuck in local optima due to the large number of features. Therefore,

it tends to prefer one objective over the other. Another reason why

FairExp outperforms NSGA-II is that NSGA-II does not consider

the DL of constructed features and, therefore, might overfit.

To better showcase the approach of FairExp, consider the follow-

ing features that were generated and selected. For instance, the fol-

lowing features are constructed and selected for the Adult dataset in-

stead of using the inadmissible featuremarital-status:mean(marital-
status = “Divorced”) GroupBy capital-loss, mean(marital-status =
“Widowed”) GroupBy capital-loss, and std(workclass = “Local-gov”)
GroupBy marital-status. These features show an equal distribution

with regard to the different groups inside the sensitive attribute Sex
and add predictive power for the classification model. By consid-

ering only specific values of marital-status and combining it with

other features, we can extract unbiased information that leads to

higher accuracy. On German Credit, the sensitive feature age was

combined with the feature existing credits to extract additional

information: mean(age = “above average”) GroupBy existing credits.
For COMPAS, our method did not select features that captured

data from the sensitive feature race. Instead, the following features

were considered: (max(age = “Less than 25”) GroupyBy priors count),
age = “Greater than 45” * priors count.

To compare our system to Calmon et al. [12] and Feldman et

al. [17], which are designed for numerical ordinal features, we

removed all non-numerical and non-ordinal features.

Table 4 shows that FairExp performs poorly for this case be-

cause the number of features is very low, e.g. only age and education
for Adult. Therefore, FairExp cannot uncover any meaningful re-

lationships between features using FC. All in all, the experiment

shows that FairExp is a promising alternative to SOA bias reduction

approaches that follows a vertical approach.

4.4 Runtime

Table 3 reports the runtime in seconds for all described methods.

We define runtime as the total elapsed time that a method takes to

complete the pre-processing component (FC, feature exploration,

and feature set selection) of a system, and to train the model with

the selected representation. All strategies that leverage FC, such

as FC-NSGA-II and FairExp, require multiple orders of magnitude

more time than strategies that do not. There is a trade-off between

runtime and effectiveness. However, we accelerate our approach

by parallelizing the algorithm as described in Sec. 3.5.

4.5 Micro-Benchmark Results

We present an analysis of the influence of different FC parameters

and representation selection components on accuracy, fairness, and

runtime. Moreover, we conduct an experiment to show which FC

transformations are most likely to remove bias from input features.

4.5.1 Feature Construction. Theoretically, we can apply transfor-

mations arbitrarily many times recursively. To reduce the runtime

of FC, we have to limit the number of constructed features. Ta-

ble 5 shows how choosing different degrees of DL, as defined in
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Table 4: Comparison on datasets with numerical and ordinal features only

Dataset Method F1 ROD DP TNB TPB CSP CTNB CTPB Runtime

Adult

Calmon 49 ± 01 70 ± 02 92 ± 03 79 ± 07 86 ± 13 1.00 ± 00 94 ± 03 71 ± 07 725.21 ± 19.57

Capuchin 41 ± 01 90 ± 12 92 ± 06 95 ± 07 87 ± 10 1.00 ± 00 1.00 ± 01 99 ± 01 5.38 ± 1.70

FairExp 57 ± 01 32 ± 19 25 ± 23 47 ± 40 57 ± 32 25 ± 22 29 ± 24 29 ± 19 744.90 ± 295.40

Feldman 45 ± 01 1.00 ± 00 81 ± 03 86 ± 06 87 ± 11 1.00 ± 00 1.00 ± 00 90 ± 18 3.58 ± 07

COMPAS

Calmon 66 ± 01 38 ± 34 55 ± 31 54 ± 32 49 ± 27 80 ± 45 80 ± 45 80 ± 45 116 ± 1.14

Capuchin 64 ± 01 78 ± 10 53 ± 15 64 ± 24 35 ± 22 92 ± 17 92 ± 17 92 ± 17 1.82 ± 17

FairExp 68 ± 02 48 ± 29 56 ± 13 59 ± 17 44 ± 23 78 ± 17 67 ± 18 77 ± 12 102.83 ± 17.32

Feldman 65 ± 01 1.00 ± 01 91 ± 06 85 ± 11 82 ± 13 85 ± 13 80 ± 09 78 ± 12 2.60 ± 07

German credit

Calmon 82 ± 02 61 ± 50 89 ± 09 85 ± 13 92 ± 09 96 ± 07 92 ± 11 66 ± 24 1536 ± 1.93

Capuchin 82 ± 04 39 ± 28 39 ± 30 40 ± 35 59 ± 42 53 ± 36 41 ± 31 51 ± 35 8.17 ± 1.47

FairExp 76 ± 06 97 ± 02 86 ± 15 85 ± 13 84 ± 14 98 ± 04 93 ± 07 88 ± 08 604.68 ± 28.10

Feldman 82 ± 02 90 ± 09 86 ± 07 74 ± 21 90 ± 04 99 ± 03 1.00 ± 00 79 ± 12 3.28 ± 1.44

Table 5: Impact of DL on accuracy, fairness, and runtime.

Dataset DL Const. features F1 ROD Runtime

Adult

1 0 44 ± 1 98 ± 1 29 ± 1
2 432 56 ± 1 95 ± 2 1.2𝑘 ± 178
3 647 60 ± 1 93 ± 2 5.9𝑘 ± 931
4 3.4k 62 ± 3 91 ± 3 50.5𝑘 ± 4.2𝑘

COMPAS

1 0 46 ± 3 92 ± 4 6 ± 1
2 21 46 ± 3 93 ± 4 18 ± 3
3 61 46 ± 3 93 ± 4 76 ± 15
4 199 55 ± 2 78 ± 10 5.6𝑘 ± 2.2𝑘

German

Credit

1 0 55 ± 31 96 ± 3 15 ± 2
2 1k 77 ± 5 97 ± 4 190 ± 11
3 1.8k 83 ± 3 91 ± 5 7.7𝑘 ± 109
4 7.5k 80 ± 2 89 ± 8 8.5𝑘 ± 526
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Figure 3: Impact of weighting on fairness and accuracy.

Section 3.1, affects accuracy and fairness. With increasing DL, the

number of constructed features grows exponentially because new

features can be combined with old and new features to create even

more features. This exponential growth also affects the runtime sig-

nificantly. However, with increasing DL, the classification accuracy

improves because we can extract more and more information from

the original features. At the same time, fairness slightly decreases

but maintains a high level. Therefore, we construct features until a

DL of 4 because, this way, we achieve high accuracy while main-

taining competitive fairness. Constructing features with DL higher

than 4 is not feasible because the runtime increases exponentially.

To generate features of DL 5, more than a week of computation

time can be expected for each dataset.

4.5.2 Objective Weighting . Depending on the use case, fairness

might be more important than accuracy and vice-versa. Therefore,

in our system, users can specify this trade-off. In this experiment,

we evaluate the impact of different weighting schemes. Figure 3

Table 6: Comparison of different classification models.

Adult COMPAS German Credit

Model F1 ROD F1 ROD F1 ROD

LR 62 ± 3 91 ± 3 55 ± 2 78 ± 10 80 ± 2 89 ± 8
SVM 55 ± 9 70 ± 21 37 ± 7 79 ± 8 82 ± 2 85 ± 11
GB 55 ± 9 64 ± 20 41 ± 5 41 ± 10 80 ± 2 58 ± 20

Table 7: Scaling the number of rows for the Traffic dataset.

Number Rows 1k 10k 100k 1M

Runtime (seconds) 168 ± 12 463 ± 70 2984 ± 1098 20670 ± 2293

shows the impact of different weighting schemes for our strategy

FairExp on the evaluated datasets.

As observed in Figure 3, the fairness score improves as the weight

for the fairness objective increases. However, for German Credit and

COMPAS, the accuracy stays relatively stable even with increasing

weight for fairness. The reason is that, for these two datasets, there

are very few important and unbiased features. Therefore, removing

additional features does not significantly affect the classification

accuracy. The opposite is true for Adult where many features are

required to achieve high accuracy. Therefore, we see a decline in

accuracy when increasing the fairness weight because more and

more features will be removed.

4.5.3 Model Selection. We analyze the influence of the classifica-

tion model on the optimization problem. We experimented with 3

different models: gradient boosting (GB), logistic regression (LR),

and support vector machines (SVM). Table 6 shows the accuracy

and fairness for three models across the three benchmark datasets.

In general, the scores vary across models. For instance, GB achieves

a lower ROD score compared to the other two models. The reason

is that GB on its own also selects features in its training phase to

optimize accuracy. This focus on accuracy affects the fairness score

negatively. Generally, it is well-known that different ML models

fit different datasets differently well, which motivates the field of

algorithm selection [18].

4.5.4 Scalability. In Section 4.5.1, we already analyzed the scalabil-

ity across the number of constructed features. We now evaluate the

scalability of our approach with respect to the number of instances

and the number of inadmissible features. Table 7 shows that our

approach scales linearly for an increasing number of instances.

Second, we experimented on a randomly generated dataset with

2000 rows and 198 boolean features, one target, and one sensitive
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Table 8: Scaling the number of inadmissible features.

# Inadmissible Features 1 10 25 50

Runtime (s) 365 ± 41 376 ± 61 393 ± 36 340 ± 11

Table 9: Impact of Parallelization Strategies

Training CV Speculative Runtime (s)

Parallelism Parallelism Parallelism German Credit Traffic

1 1 1 6359 391

27 1 1 6703 389

1 5 1 7082 339

1 1 27 1228 175

Table 10: Different ranking strategies on Adult

Ranking Strategies F1 ROD

MDL 0.61 -0.707

reverse MDL 0.62 -0.716

Random 0.61 -1.456

Table 11: Capuchin and FairExp

Adult COMPAS

Method F1 ROD F1 ROD

Original 68 ± 1 17 ± 14 66 ± 1 7 ± 10

CA 62 ± 1 77 ± 3 64 ± 1 94 ± 3

CA-FairExp 53 ± 5 92 ± 6 65 ± 2 79 ± 15
CA-FairExp-Dropped 56 ± 1 93 ± 5 66 ± 2 83 ± 20

FairExp 60 ± 2 92 ± 5 67 ± 2 80 ± 7

feature. Then, we randomly pick an increasing number of inadmis-

sible features. Table 8 contains the results of this experiment. It

shows that the number of inadmissible features only marginally

affects runtime because we have to conduct the same number of

conditional independence tests. Computationally, we treat sensitive

features and inadmissible features the same. Therefore, increasing

the number of sensitive features behaves the sameway as increasing

the number of inadmissible features.

4.5.5 Parallelization. Table 9 compares training, CV, and specula-

tive parallelism. For German Credit, training and CV parallelism

introduce too much overhead and therefore require even more run-

time than running without parallelism. Only the parallelization

approach that speculatively evaluates feature sets is 5 times faster

than without parallelization by leveraging 27 CPU cores. However,

when running on a larger dataset, e.g. Traffic with 10k examples,

training and CV parallelization improve the runtime compared to

no parallelization.

4.5.6 Ranking Strategies. In the forward pass of Algorithm 1, we

rank the features first based on their DL. Table 10 compares the

ranking strategies MDL, reverse MDL, and random. All of them

achieve similar results. Therefore, we choseMDL as it prefers simple

features over complex ones.

4.5.7 Combining horizontal and vertical bias reduction. We first

bin the data, repair it using CA. Then, we apply FairExp on the

repaired data (use the original data points as opposed to the binned

ones for those that are retained by the repair algorithm). Table 11

shows the result of this experiment. FairExp improves the fairness

because CA guarantees fairness on training but overfits. FairExp

achieves higher fairness by optimizing for the cross-validation score.

The results are similar when we additionally drop sensitive and

inadmissible attributes (CA-FairExp-Dropped).

5 RELATEDWORK

Our work is strongly related to research on algorithmic bias reduc-

tion and feature engineering.

Algorithmic Bias Reduction. Recent work for reducing bias in-

cludes pre-processing [1, 12, 17, 50], in-processing[29, 33, 37, 40, 43]

and post-processing[21, 48] strategies. Pre-processing methods aim

to remove the bias in the training data either by modifying the prob-

ability distributions [12, 17, 50], selecting a subset of features [19], or

defining different feature weight strategies [1]. In-processing meth-

ods impose constraints on the algorithm’s loss function [25] and

optimize fairness by tuning the classifier’s hyperparameters [37].

Post-processing methods aim to remove the bias via some trans-

formation of the predictions [8, 21]. Our algorithm follows the

pre-processing approach but does not only optimize for accuracy

but also fairness.

Furthermore, bias reduction algorithms either follow an asso-

ciational or a causal approach to measure fairness. Associational

approaches check for inequalities in the algorithm’s outcomes be-

tween groups of the sensitive feature, while causal strategies aim

to identify, quantify, and remove the influence of the sensitive

feature on the outcomes. Approaches based on causality frame-

works [12, 42] have shown to avoid paradoxical conclusions and

provide more principled reasoning to understand the influence of

the sensitive features on an algorithm’s outcome [42]. Our solu-

tion follows the spirit of the described causal algorithmic fairness

frameworks but none of them employs FS and FC simultaneously

to address the problem with a multi-objective approach.

Feature Engineering. Feature engineering has been used to im-

prove prediction performance, provide faster andmore cost-effective

predictors, and provide a better understanding of the underlying

process generating the data [15, 16, 20, 26, 34]. Feature engineering

approaches have been lately proposed for algorithmic fairness [35].

6 CONCLUSION

We proposed a novel pre-processing bias reduction algorithm based

on automatic FC and selection that does not only optimize for

accuracy but also fairness. Our system generates a large number

of new features from the original feature set by applying human-

understandable transformations. Our experiments show that our

system achieves competitive results compared to SOA strategies.

Unlike SOA, our method does not require the deletion of tuples and,

therefore, it generalizes better to unseen data. Further research is

needed to efficiently restrain the large number of feature candidates

and explanation of constructed features.
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