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ABSTRACT

Deep Learning (DL) has created a growing demand for simpler
ways to develop complex models and efficient ways to execute
them. Thus, a significant effort has gone into frameworks like Py-
Torch or TensorFlow to support a variety of DL models and run ef-
ficiently and seamlessly over heterogeneous and distributed hard-
ware. Since these frameworks will continue improving given the
predominance of DL workloads, it is natural to ask what else can
be done with them. This is not a trivial question since these frame-
works are based on the efficient implementation of tensors, which
are well adapted to DL but, in principle, to nothing else. In this
paper we explore to what extent Tensor Computation Runtimes
(TCRs) can support non-ML data processing applications, so that
other use cases can take advantage of the investments made on
TCRs. In particular, we are interested in graph processing and re-
lational operators, two use cases very different from ML, in high de-
mand, and complement quite well what TCRs can do today. Build-
ing on HUMMINGBIRD, a recent platform converting traditional
machine learning algorithms to tensor computations, we explore
how to map selected graph processing and relational operator al-
gorithms into tensor computations. Our vision is supported by the
results: our code often outperforms custom-built C++ and CUDA
kernels, while massively reducing the development effort, taking
advantage of the cross-platform compilation capabilities of TCRs.
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1 INTRODUCTION

Applications such as large-scale data analytics and machine learn-
ing (ML) are driving an unprecedented demand for computing ca-
pacity. ML model training alone is responsible for a 10x yearly
increase in demand for computing capacity [35]. Informal data sug-
gest that it costs as much as several millions of dollars to train a
complex model from scratch [11]. This huge compute demand has
been partially met by distributed computing, leveraging data cen-
ter and cloud infrastructures to speed up data processing [4, 70].
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To further boost processing efficiency, but to also reduce the
number of machines required [58], specialized hardware and hard-
ware acceleration are gaining momentum. The former refers to
hardware tailored to the task at hand (typically tensor computa-
tions), while the latter to the use of standard components such
as GPUs or FPGAs to replace CPUs, as their architecture is more
suitable to tensor computations. However, specialized hardware
increases the complexity for the programmer and often requires
careful optimizations to improve performance. Thus, in parallel
to these developments, a significant effort and investment is be-
ing made on software frameworks such as PyTorch [64], Tensor-
flow [4], or TVM [38] that simplify the development, management,
deployment, and optimization of Deep Learning (DL) models. In
such tools, DL models are created as a composition of tensor oper-
ations. This tensor abstraction is the basis for automatic optimiza-
tions [28, 39, 48, 53, 73, 79] and enables the compilation of the same
code over heterogeneous hardware, e.g., CPUs, GPUs, TPUs [49],
IPUs [15], FPGAs [29, 60], etc.

The investments in Tensor Computing Runtimes (TCRs) is likely
to continue and specialized hardware tailored to tensor compu-
tations will evolve accordingly. It thus makes sense to consider
whether TCRs can be used to support computations other than just
DL—this would allow additional classes of computation to benefit
from the continuous advances in TCRs. The challenge behind the
vision of making tensors a general purpose abstraction for data
processing lies in the tensor abstraction itself: the close relation
between tensors and DL algorithms is what has made these frame-
works so efficient. But is this abstraction, which is so far dedicated
to DL, a good match for other use cases too?

Recent work has mapped traditional ML algorithms (e.g., deci-
sion trees) to the tensor model [61]. The resulting system, Hum-
MINGBIRD, is the starting point for the overarching vision we
present in this paper: to investigate whether such mappings ex-
ist and can be beneficial for conventional data processing tasks as
well. In particular, we explore how to map selected graph process-
ing and relational operator algorithms to tensor computations. We
use PyTorch and TVM to compile these implementations into code
executable on CPUs and GPUs. Despite leveraging a high-level
abstraction and using the same source code regardless of the un-
derlying hardware, the resulting machine code often outperforms
custom-built C++ and CUDA kernels.

These initial results are very encouraging and support the idea
that the tensor abstraction and existing TCRs can be a good fit
for data processing tasks well beyond ML. However, the results in
this paper are just a promising first step and more work is needed
to map the wealth of existing data processing algorithms to tensor



computations in a way that the result is more efficient than state-of-
the-art. To facilitate further exploration of this exciting direction,
we plan to open-source the code used in this paper and contribute
it to HUMMINGBIRD,! which is part of the PyTorch ecosystem.?

2 BACKGROUND

We first provide background on tensors and common tensor oper-
ations. Then we present HUMMINGBIRD [61], an initial attempt at
exploiting the tensor abstraction for traditional ML algorithms.

2.1 The Tensor Abstraction

DL models are a family of ML models based on artificial neu-
rons [43]. Frameworks used to implement DL models include Ten-
sorFlow [4], PyTorch [64], CNTK [2], MXNet [3], and ONNX [20].
DL models are expressed in terms of operations over tensors. DL
frameworks such as TensorFlow and PyTorch provide hundreds of
tensor operators. A new class of compilers for tensor programs
has recently emerged. Systems like Halide [67], XLA [28] and
TVM [38] employ the tensor abstraction to generate highly opti-
mized code targeting heterogeneous hardware. While such frame-
works and compilers have been mostly used in the computer vision
and DL domains, in this paper we explore their potential to serve
as generic compilers and runtimes for hardware accelerators. In
the remainder of the paper we refer to compilers (e.g., TVM) and
DL frameworks as Tensor Computing Runtimes (TCRs).

2.2 Tensor Operators

TCRs offer a rich set of operators over tensors. To help less familiar
readers, we provide a quick overview of the operators commonly
found in TCRs and the categories that they belong to (for the sake
of explanation, we will use the PyTorch API here and in the follow-
ing sections, but similar operators can be found in other TCRs).

Transformation operators. This category involves operations
for selecting one or more elements of a tensor (using the square
bracket notation), slicing a row/column (slice, index_select), con-
catenating two tensors (cat), sorting (sort), and reorganizing the
elements of a tensor (gather, scatter).

Reduction operators. This category contains operations for
calculating aggregates such as sum or mean, as well as the size of
a tensor. It also includes more complex operations like scatter_add
and histograms (bincount, histc).

Arithmetic operators. These operators implement basic arith-
metic operations between tensors or between scalars and tensors
(add, mul, div, sub), matrix-vector (mv) or matrix-matrix (mm)
multiplications, and cross product (cross).

Logical operators. Finally, logical operations contain element-
wise comparisons between tensors (=, >, <), as well as operations
such as where implementing conditional statements.

2.3 Hummingbird: Traditional ML to Tensors

The first step in shaping the vision outlined in this paper was
HuMMINGBIRD [61], which enables inference of traditional ML al-
gorithms (i.e., non-DL ML algorithms, such as linear regression,
decision tree, one-hot encoding) on TCRs. Unlike DL, traditional

Uhttps://github.com/microsoft/hummingbird
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(b) Neural Network conversion.

(a) Decision tree.

Figure 1: Translation of a decision tree (left) to an equivalent
Neural Network (right) using HUMMINGBIRD.

ML algorithms and featurizers do not follow a common pattern as
the tensor abstraction. Instead, they are often implemented using
imperative programming in Python (e.g., scikit-learn [65]), NET
(ML.NET [31]) or Java (eg., H20 [1]). Expressing them efficiently
using tensor computations is not trivial. We briefly explain the key
intuition behind HUMMINGBIRD with an example [61].

Decision tree inference involves traversing a tree by comparing
input features to the inner nodes to define the path from the root
to a leaf node. This are sparse computations as only a small part
of the tree is activated each time. For example, the decision tree of
Figure 1ais composed of four inner nodes over three input features.
Starting from the root node n1, feature x3 is compared with 5.1,
and based on the result, either the left (n2) or the right (n4) child
are selected. The process continues until a leaf node is reached.

HuMMINGBIRD supports three different strategies for translat-
ing a decision tree to tensor computations, and it picks the most
promising one using a mix of heuristics and structural information
of the input tree. Figure 1b depicts one of these strategies, whereby
the decision tree of Figure 1a is translated into a neural network
composed of two hidden layers: the first containing all the internal
nodes, and the second containing all the leaf nodes. At inference
time, the input features are multiplied with an adjacency matrix
that encodes which feature is used by each internal node. The out-
put is then compared against the thresholds, thereby returning the
active internal nodes. Finally, another matrix multiplication and
comparison are used to check which (unique) leaf node is active
and to return the final leaf value.

A characteristic of the translation is that all internal and leaf
nodes are evaluated at inference time. In other words, the com-
putation becomes dense. Despite the redundancy introduced, the
approach is implemented using two matrix multiplication opera-
tions that can be efficiently executed by TCRs both on CPU (e.g.,
using BLAS libraries such as MKL [16]) and GPU. This strategy is
able to deliver state-of-the-art performance when the input trees
are not too deep. For example, in [61] we show up to 3X better per-
formance than the XGBoost [37] custom implementation both on
CPU and GPU, as well as better performance than RAPIDS FIL [5]
just by using PyTorch, without having to implement any of the cus-
tom operations that these systems implement on CPU and GPU.

2.4 Hardware Setup

For the experiments we use an Azure NC6 v2 machine with 112
GB of RAM, an Intel Xeon CPU E5-2690 v4 @ 2.6GHz (6 virtual
cores), and an NVIDIA P100 GPU. The machine runs Ubuntu 18.04



with PyTorch 1.7.0, TVM 0.8-dev, and CUDA 10.2. We run TVM
with opt_level 3. TVM models are compiled automatically from
the PyTorch models. We report averages of 5 runs.

3 GRAPHS TO TENSORS

Existing efforts such as GraphBLAS [14] have already studied how
to express graph algorithms using linear algebra. These approaches
rely on the fact that graphs can be represented using adjacency or
incidence matrices. Therefore, one could use such linear-algebra
implementations to directly execute graph algorithms over TCRs.
However, such implementations turn out to be suboptimal when
executed over TCRs, because they rely on sparse representations
of the graph, while TCRs are not efficient for sparse computations.
Hence, novel implementations are required.

As an example, below we show how to efficiently execute
PageRank [63], one of the most common graph algorithms, over
TCRs. Several other graph algorithms (e.g., affinity propagation,
all-pairs shortest paths, connected components) perform opera-
tions similar to PageRank, i.e., iterations and aggregations over
sparse graphs. Therefore, we believe that TCRs can also be used for
such algorithms, yielding similar performance benefits. Addition-
ally, one can also express graph algorithms using more traditional
approaches, such as BFS and DFS, over TCRs. Although the neces-
sary data structures (e.g. queues, stacks) may not exist directly in
TCRs, they can be implemented using TCRs’ available operations.

3.1 PageRank

PageRank is used to rank web pages or, in general, influential
nodes on a graph. It is based on the idea that the important nodes
are more likely to receive links from other nodes. The algorithm
receives as inputs a matrix M with dimensions N X N, where N
is the number of nodes that need to be ranked. Each entry M(; ;
contains a number, specifying a probability transition from j to i,
such that for all j, >}; M(; jy = 1. A damping factor d represents
the probability that a person will continue clicking on links. The
output of the algorithm is a vector v with dimensions N X 1, which
contains the rank v; of each page. The vector v is normalized and
its entries sum up to 1.

The algorithm consists of two initialization steps and a loop that
runs for a specific number of iterations n;e, or until the ranks v in
two consecutive iterations change less than a predefined threshold.
In the initialization steps the vector v is filled with random values
and a matrix M is calculated using the following equation for each
element: ]\;I(i,j) =d- Mg  + % -A(l — d). The core step of the
algorithm is to multiply the matrix M with the vector v and assign
the result to v for the next iteration.

3.2 Tensor Implementation

Implementing the algorithm on the tensor abstraction may look
straightforward. Since its core is a matrix-vector multiplication,
an operation that is heavily used and optimized in TCRs, PageR-
ank should run efficiently on them. However, web or social graphs
are extremely sparse and the number of connections is signifi-
cantly smaller than the quadratic number of connections that a
full graph would have. Therefore, by naively implementing the al-
gorithm over dense tensors, we cannot execute PageRank even for
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a graph with 100K nodes (orders of magnitude smaller than real
world examples) because it will require the allocation of terabytes
of main memory. A first solution to this problem is to use the sparse
modules that TCRs frameworks offer. Nevertheless, as the major-
ity of calculations in DL models involves dense operations, these
modules are highly experimental and not optimized. This is con-
firmed by our experimental results in Section 3.3.

In this algorithm, the matrix-vector multiplication is the bottle-
neck. To see why, let’s assume that d = 1 and therefore M = M. We
also assume that M is an adjacency matrix, i.e. it contains only 0s
and 1s. Without these assumptions, M is an affine transformation
of our simplified matrix and we will re-introduce them after we
have explained how the algorithm works. Note that M cannot be
represented explicitly for very large inputs because it is a sparse
matrix. Therefore we represent M as two 1-dimensional tensors
which contain the source and target nodes for every edge.

Since M contains only 0s and 1s, its multiplication with vector v
consists of the following steps: (1) for every node i gather the val-
ues of v for the target nodes to which i is connected (that’s where
M(i, %)=1); (2) sum them and store the result in a copy of v that
contains the ranks of the next iteration, as follows:

Unew[i] += Vo14[M[i, 7] != 0]

The steps of gathering indices and adding values together is im-
plemented in TCRs as a single scatter_add(dim, Index, Input) op-
erator, where Input is the input tensor (v,;4[target] in our case)
and Index contains the indexes to gather (source). We have dim=0,
since our input tensors (source and v) are 1-d. How scatter_add
works within a single PageRank iteration is shown in Figure 2, il-
lustrating how the scatter_add operation “hides” the loop over ev-
ery node i, by executing all the steps in one single operation. Since
we used two 1-d tensors that contain the source and target nodes
for every edge, and the M contains an affine transformation of the
adjacency matrix, the final form of the function is:

Unew -scatter_add (@, source, d- v,gltarget] + %~(1—d))

To keep the semantics of the algorithm intact and because M
is a probability matrix where for all j, 3}; M(; j) = 1, we have to
normalize vpeqy at the end of every iteration by dividing each en-
try with the number of ingoing connections. Although the scatter-
gather approach is well-known in distributed frameworks [56], to
the best of our knowledge we are the first to apply it to PageRank
with the tensor abstraction.

" IITT

input [0.05]0.07]0.009]0.02] 0.006 J0.3] 0.1 0.005] v,;4[target]

(add) Cadd Cadd) Cadd

output [0.14][0.009]0.036[0.015] vnew

Figure 2: Schematic representation of one iteration of PageR-
ank using scatter_add (before normalization). The source
nodes are used to index the values contained in v, ;[target].
The resulting sums are stored into vy .
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Figure 3: PageRank runtime comparison on CPU and GPU.
For the GPU we report the computation time as well as the
total time including data transfer (stacked gray boxes). For
cugraph, the data transfer time includes the time to read the
data from disk.

3.3 Performance Analysis

To evaluate our algorithm we use the LiveJournal Social Network,?
consisting of 4,847,571 nodes and 68,993,773 edges. This dataset
is often used to benchmark libraries performing graph computa-
tions [72, 76]. We compare the scatter_add approach implemented
on PyTorch and TVM (denoted hb-torch, and hb-tvm, respec-
tively), both on CPU and GPU. For the CPU experiments, we use
the following baselines: 2 specialized libraries able to efficiently
handle sparse linear algebra operations (scipy [25] and taco [53]);
a PyTorch implementation using sparse matrix-vector multipli-
cations (denoted torch-sparse); pygraphblas (a Python wrap-
per around GraphBLAS [14], a specialized library that expresses
graph operations as linear algebra blocks on top of BLAS [6]); and
neo4j [17] (a graph database). Besides Neo4j that is implemented
in Java, all other CPU baselines are implemented in C/C++ with
Python bindings. For the GPU experiments we further compare
against graphblast [76] (a GPU implementation of GraphBlas);
and cugraph [12] (a library developed by NVIDIA and implement-
ing GPU accelerated graph algorithms).

We run 50 iterations of PageRank, which are enough for the al-
gorithm to converge across all frameworks. The running time does
not include the construction of the prerequisites of the algorithm
(e.g. the construction of the sparse adjacency matrix M from the
original indices), because this procedure and the optimal format
for the sparse matrix are different across frameworks.

CPU Results. As shown in Figure 2, our PyTorch implementation
is on par with scipy and taco. By adding TVM on top of our Py-
Torch implementation, we gain an additional 45% performance, as
TVM unrolls the loops and fuses the different operators into one,
and we outperform the aforementioned baselines by almost 30%.
The Pytorch and TVM implementations are more than 2 and 3x
faster, respectively, than pygraphblas. Finally, if we compare our
implementations with neo4j and torch-sparse, we outperform
both by orders of magnitude.

GPU Results. In this setting, if we take into account only the
computation time, our PyTorch implementation is 2X slower than

3https://snap.stanford.edu/data/soc-LiveJournal1.html
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graphblast and 2.3x faster than cugraph. However, TVM im-
proves the performance and it is 5X faster than the PyTorch imple-
mentation, making the overall runtime 3.2X faster than graphblast
and 15X faster than cugraph. If we take into account both the
transfer and the computation time, PyTorch is 10% slower than
graphblast and 3x faster than cugraph. With TVM, HUMMING-
BIRD is 2X faster than graphblast and 10x faster than cugraph.
The scatter_add operation is non-deterministic in GPUs for float-
ing point numbers due to the use of atomic add instructions which
do not enforce a deterministic ordering. However this problem
does not arise for integers (i.e., in our PageRank implementation).

4 RELATIONAL TO TENSORS

Among the operators composing relational database engines, selec-
tions, projections, and simple aggregates (e.g., COUNT(*) but also
SUM, AVG, MAX, MIN) are already naively expressible in TCRs op-
erators. As an example of a non-trivial relational operation over
tensors, below we describe the implementation of cardinality cal-
culation. Beyond this, we also have initial implementations of pro-
jection, selection, primary-foreign key join, aggregation (with and
without group by clauses), cASE and IN statements. With these op-
erators, we can currently run a handful of the TPC-H queries and
we are working towards supporting the whole TPC-H benchmark.

4.1 Cardinality Calculation

Knowing the cardinality of operators is crucial in query optimiza-
tion [8] and to answer DISTINCT queries. TCRs can also calculate
histograms on the input data, which can be used by the query op-
timizer to decide the right type of scan or join operators [27] or to
distribute the data evenly across nodes on a distributed join [34].
We thus show how to calculate the output cardinality of relational
operators like DISTINCT or JOIN using tensor computations.

4.2 Tensor Implementation

Our cardinality estimation implementation is based on the bin-
count(T) operator, which counts the frequency of each value in the
input one-dimensional tensor T, with the assumption that T con-
tains only non-negative integers. The result of this operation is a
frequency histogram over the input values. Specifically, the result
is another 1-d tensor O of length equal to the maximum element
present in T, where O[i] contains the number of times the number
i appears in T. Using bincount, we can calculate the output cardi-
nality of a DISTINCT operator by counting the number of elements
that have a value > 1 in O. In case the input has negative numbers,
we can apply tuple renaming, e.g., map the negative numbers to
positive ones by using hashing or by adding a positive constant.
To estimate the output cardinality of a join if the keys are unique,
we simply concatenate the inner and outer relation keys and call
directly the function in the concatenated 1-d tensor. Every element
> 1 is a match, therefore we only need to count the number of
elements satisfying this condition. If the keys are not unique, we
slightly modify the algorithm. We first call bincount function on
the keys of the individual relations S, R. For the result of these
calls, namely Bg, Bgr, we calculate |,i, = min(size(Bgs), size(Bg)),
since the matching keys are only in this range. We truncate Bg, Bg
to length l,y,i,. Finally, to cover all the possible pairs of keys with
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Figure 4: Cardinality estimation comparison.

more than one match in case the keys are not unique, we multiply
Bs, Bg and sum the entries in the resulting one-dimensional tensor.
Although our algorithm is very simple, it is sub-optimal when the
keys do not come from a dense domain. We can overcome this
obstacle similar to the DISTINCT case, e.g. by tuple renaming.

4.3 Performance Analysis

To evaluate the performance of our cardinality calculation, we com-
pare against an handwritten C++ program that calculates the car-
dinality of DISTINCT using an optimized hashmap (denoted with
distinct-hash in Figure 4a). We choose this baseline as hashing
is one of the main techniques used to calculate the distinct num-
ber of elements in DBMSs [13]. We additionally preallocate the
memory for the hashmap and we do not report this as part of the
runtime. Finally, we also compare against an instance of the lat-
est edition of SQLServer to qualify our performance against a real-
world DBMS. For SQLServer, we create a table that we fill with
unique keys with the desired cardinality and we run the query sk-
LECT COUNT(DISTINCT(ID)) FROM TABLE.

For the joIN output cardinality, we compare against CPU and
GPU baselines that compute the full join. In order to have a fair
comparison, we modify these latter baselines such that they re-
turn only the number of matching tuples (e.g., the cardinalities)
instead of performing materialization. For the CPU baseline, we
use the hash-join implementations provided by Balkesen et. al [33]
that, to our knowledge, are the state-of-the-art on CPU. We run all
of the algorithms contained in the paper (hardware oblivious join,
hardware conscious join, parallel-radix hash join histogram-based,
parallel-radix hash join histogram-based optimized), but for the
sake of conciseness, we report only the numbers for the hardware
oblivious join (denoted by npo) that is the fastest among all im-
plementations, and the hardware conscious join (denoted by rpo)
which is the fastest of all the parallel-radix implementations. Fi-
nally, for the GPU experiments, we compare against crystal [71], a
recent library specifically tailored for relational operators on GPU.
DISTINCT Results. For the p1sTINCT cardinality estimation the
input consists of a vector of integers where each element occurs
only once. We run the C++ baseline and the PyTorch implementa-
tion on a single thread, while we let the SQLServer query run over
all the available virtual cores (6). We report the results in Figure 4a.
As we observe, our implementation (denoted with hb-pytorch) is
2-4x faster than the C++ implementation, because of the vector-
ized processing that PyTorch offers, compared to the scan loop of
the C++ program. Compared to SQLServer, our implemenation is
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almost 2-20x faster. The difference is larger for small inputs, as a
DBMS has a larger overhead to distribute and parallelize the plan.

JOIN Results. For the join cardinality estimation, we use as input
{key, value} tuples where each field is a 32-bit integer. We gener-
ate the inner and the outer relation such as all the keys are distinct
and there is a 1-on-1 match for the inner and the outer side.

We use 6 threads both for the PyTorch implementation and the
baselines. For small inputs, the hardware-oblivious implementa-
tion outperforms our implementation (denoted hb-pytorch-cpu),
but the difference gets smaller as we increase the number of ele-
ments. On the other hand, the PyTorch implementation is from 50%
to 5% faster than the hardware-conscious implementation, but the
runtime is almost the same when the input is more or equal than
10 million elements for each relation. However, we observe that
our implementation does not fully utilize the CPU, and therefore
there is plenty of room for improvement.

For the GPU experiments, our implementation is 2-16X slower
than crystal, but the difference is decreasing as the input grows.
The difference comes from the fact that crystal leverages its opti-
mized CUDA implementation, while PyTorch show some constant
overhead (due to the Python interpreter) for small sizes.

Remarks. Our join cardinality estimation outperforms or is com-
parable to full join implementations performing counting (i.e., they
do not execute materialization). The observed speedup shows the
promise of TCRs in simple relational calculations. We are actively
working towards supporting full joins with materialization and
other relational operators. Finally, compiling the code with TVM
did not give us additional performance but, as for scatter_add, sup-
port for the bincount function was only recently introduced.

5 RELATED WORK

Much as the MapReduce [40] abstraction helped democratizing
distributed computing, the tensor abstraction could play a similar
role for hardware accelerators. Similarly to how Apache Spark [78]
proved that is possible to run ML [59], graph [42], and rela-
tional [32] workloads end-to-end on the MapReduce abstraction,
in this paper we test the expressivity of the tensor abstraction, as
well as the efficiency of TCRs for different classes of computations.

Hardware-portable languages [21] and compilers [18, 57] allow
targeting both CPU and accelerators. However, they require pro-
grammers to write custom code in low-level languages, whereas
our goal is to leverage already available optimized CPU and acceler-
ator kernels exposed through the tensor abstraction of TCRs. Dan-
delion [69], Hocelot [44], and Voodoo [66] share the same goals,
although they provide custom kernels or they use OpenCL to tar-
get the different hardware with a single implementation. More re-
cently, offload annotations [77] suggests annotating functions im-
plemented in high-level languages (i.e., Python) with a correspond-
ing function from an accelerator library. This approach works well
for specific domains where efficient kernels are already available
(e.g., Numpy), while it is not clear how the approach will work in
the generic case, i.e., how to map a tree-traversal algorithm.

In the database domain, in the past few years several efforts [46,
55, 75] have suggested to map tensor algebra into relational algebra
for leveraging database optimizer over linear algebra expressions.
We deem this approach complimentary, and we plan to explore in



the future the opportunities brought by the unified representation.
Tensor execution of relational operators has natural commonalities
with vectorized execution over columnar data [36]. Indeed tensor
operators are mapped to vectorized instruction sets on CPU (when
available). Interestingly, we find that TCRs (and the tensor abstrac-
tion) is flexible enough to support both vectorized and compiled
execution [62]; the latter implemented through the TVM compila-
tion stack for example. In both cases, no low-level details on vector-
ized execution or LLVM compilation are required, which we think
makes easier the exploration of novel (hybrid) strategies.

It is well known that graph algorithms can be mapped over lin-
ear algebra operations [14]. To our knowledge, we are however
the first showing that graph algorithms can be run efficiently over
TCRs. As for relational operators, TCRs are flexible enough to al-
low switching between a linear algebra-based implementation to
an imperative one, as we describe in Section 4.

Finally, several proposals exist on how to run relational opera-
tors on hardware accelerators (e.g., GPU [71], FPGA [41] and even
TPU [45]). The same applies for graph algorithms and traditional
ML [37, 76]. In this work we claim that similar, or even better, per-
formance can be reached by targeting the tensor abstraction and
using TCRs, rather than using low-level languages and primitives
(e.g., CUDA). In recent years, several companies have proposed to
accelerate specific workloads or systems, e.g., Spark-RAPIDS [26],
BlazingSQL [7], OmnisciDB [19]. Compared to these, we think that
the tensor abstraction will allow us to be hardware and library ag-
nostic, while enabling similar performance.

6 CHALLENGES AND OPPORTUNITIES

In this paper we investigate whether the tensor abstraction can be
used for programming general computations that can be run end-
to-end on hardware accelerators. Our experience [61] and prelim-
inary experiments show that good performance is indeed achiev-
able, thanks to the massive investments poured into TCRs, as well
as the related optimizations [28, 39, 48, 53, 73, 79].

TCR coverage landscape. TCRs have an excellent coverage of
dense arithmetic operations as well as operations manipulating
statically sized tensors. Additionally, sorting and simple aggrega-
tion is very efficient, and we therefore expect sort-based grouping
and sort-merge joins to have good performance. However, there
are also “pain points” that hinder TCRs from executing efficiently
and easily operations common in other classes of algorithms. For
example, as we saw in the experimental evaluation of PageRank,
sparse operations are very inefficient compared to other libraries
(e.g. scipy). However, the current trend towards Graph Neural Net-
works (GNNs) and sparsity in DNNs in general [30] has increased
the interest of the community towards this important topic. As
GNNs are getting more popular, we expect better TCR coverage
of sparse data operations in the near future. Additionally, there is
limited coverage of group aggregates (except for very basic cases
such as scatter_add, but the community is trying to fix this limi-
tation [23]) and pipelining operators to avoid intermediate materi-
alization of results (although TVM is improving this thanks to its
ability to do operation fusion). There is almost no support in re-
gards to other data structures (e.g., hash maps), non-numeric data
types (e.g., strings), and inputs of irregular shape and size. These
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features are specifically required for supporting, for example, com-
pression or text data types. Finally, we find that the tensor abstrac-
tion shines when one needs to do bulk data transformations, while
it lacks flexibility and performance for fine-grained operations. For
example, predication [68] is hard to express using the tensor API.

Challenges. While our initial results are promising, there are sev-
eral limitations that need to be addressed. The two bigger chal-
lenges are (1) compilation time, (2) data movement between CPU
and memory. The database community is actively working on im-
proving compilation performance for SQL queries [54], and simi-
larly the systems community is working on Just-In-Time compi-
lation approaches for DL models [47]. Driven by these ideas, we
could devise a scheme where interpreted code is executed first
while generating machine code on-the-fly. Regarding data move-
ments, our goal is to compile computations end-to-end such that
data movement is minimized. Other techniques such as pipelining
data access with compute, paging, and batching can be used both at
conversion and runtime to improve data movement performance.

Hardware trends. In this paper, we focused on hardware acceler-
ation over GPUs, given their widespread adoption and availability.
An emerging trend in hardware acceleration is dataflow-based ar-
chitectures both in academia [74] and in industry by companies
such as SambaNova [24], Graphcore [15], or Cerebras [9]. Inter-
estingly, those approaches also expose TCRs as a programming
interface [10, 22, 60]. We are planning to test our approach on this
hardware for relational and graph workloads.

Compiled vs vectorized execution. Main memory query roces-
sors [78] and databases [36, 62] are increasingly getting compute-
bound rather than memory-bound. This is because compilation [62]
and vectorization [36] approaches achieve even better hardware
utilization. TCRs are built from the ground up for compute-bound
workloads (i.e., DL). Additionally, the high-level tensor abstraction
on top of TCRs considerably simplifies the process of implement-
ing new algorithms, since there is no need to understand LLVM
internals, or to write GPU kernels. We therefore believe that us-
ing TCRs as a component of main memory query processors will
enable a new wave of systems and innovative algorithms. For in-
stance, any vectorized algorithm (or in general any algorithm over
columnar data) can be implemented on top of TCRs. Since TCRs
also allow compilation and operator fusion, an exciting direction
is the exploration of vectorized vs compiled implementations [51],
and when to pick one or the other based on, e.g., the hardware.

Cross-optimizations. Apache Spark [78] has shown that Data
Frames can be used to express relational, graph, and ML computa-
tions, although cross-optimizations between them is limited. Sys-
temML [52] and others [75] have considered using relational alge-
bra (and database-style optimizers) for logically (co-) optimizing
linear and relational algebra. For example in Raven [50] we ex-
plored how to cross-optimize relational and traditional ML, beyond
linear algebra (e.g., decision trees). With the approach presented in
this paper, a new level of cross-optimizations will be possible since
all computations are expressed using the same (tensor) abstraction.
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