
Fauce: Fast and Accurate Deep Ensembles with Uncertainty for
Cardinality Estimation

Jie Liu
†
, Wenqian Dong

†
, Qingqing Zhou

∗
, Dong Li

†
†
University of California, Merced

∗
Tencent

{jliu279,wdong5,dli35}@ucmerced.edu,hewanzhou@tencent.com

ABSTRACT

Cardinality estimation is a fundamental and critical problem in

databases. Recently, many estimators based on deep learning have

been proposed to solve this problem and they have achieved promis-

ing results. However, these estimators struggle to provide accurate

results for complex queries, due to not capturing real inter-column

and inter-table correlations. Furthermore, none of these estimators

contain the uncertainty information about their estimations. In

this paper, we present a join cardinality estimator called Fauce.

Fauce learns the correlations across all columns and all tables in

the database. It also contains the uncertainty information of each

estimation. Among all studied learned estimators, our results are

promising: (1) Fauce is a light-weight estimator, it has 10× faster
inference speed than the state of the art estimator; (2) Fauce is

robust to the complex queries, it provides 1.3×-6.7× smaller esti-

mation errors for complex queries compared with the state of the

art estimator; (3) To the best of our knowledge, Fauce is the first

estimator that incorporates uncertainty information for cardinality

estimation into a deep learning model.

PVLDB Reference Format:

Jie Liu
†
, Wenqian Dong

†
, Qingqing Zhou

∗
, Dong Li

†
. Fauce: Fast and

Accurate Deep Ensembles with Uncertainty for Cardinality Estimation.

PVLDB, 14(11): 1950-1963, 2021.

doi:10.14778/3476249.3476254

1 INTRODUCTION

Cardinality estimation is fundamental and critical in databases. It is

widely applied to query optimization, query processing approxima-

tion, database tuning, etc. For example, the query optimizer uses

the results of the cardinality estimation to determine the best execu-

tion plans. However, the cardinality estimation can be challenging.

In some cases with complex queries where there are correlated

columns or large number of joins, the accuracy of the cardinality

estimation drops dramatically.

Recently, the researchers have been actively using the machine

learning technique to estimate the cardinality [11, 17–19, 21, 24, 56–

58]. These approaches can be mainly classified as two types: data-
driven and query-driven estimators. Both of them have limitation.

The data-driven estimators such as Naru [57], NeuroCard [56],

and MADE [18] leverage the deep autoregressive (AR) models [9, 14]

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476254

to approximate the data distribution of a table or joint tables. Deep

AR models capture the data distribution of a table by multiplying

the estimated data distribution of each column, based on an implicit

assumption that each column is dependent on all the previous

columns. However, such an assumption is oversimplified. In DBMS,

the dependent relationship between columns can be complex. For

example, some columns are independent from each other, while

others have correlation. As a result, the deep AR models result in

large errors for those queries on correlated columns. Furthermore,

recent study [52] reveals that the data-driven estimators tend to

output large errors when the data are skewed.

The query-driven estimators [10, 11, 17, 24, 25, 39] rely on some

regression models to properly learn function mapping between

queries and cardinalities. Since the input of the regression models

are real-valued vectors, the query-driven estimator must use a query
featurization method to convert the queries into feature vectors.

Those vectors should contain informative features of the queries. A

good query featurization method is critical, because it can generate

highly informative feature vectors, which are useful to improve the

accuracy of the regression models. The existing query featurization

methods [11, 18, 24, 46] apply techniques like one-hot encoding, bi-

nary encoding [43], basic statistics, or bitmap [5] to convert queries

into feature vectors. While those methods are simple to use, they

cannot capture the fine-grained correlations between columns and

between tables. As a result, the feature vectors generated by the

existing query featurization methods are not informative enough,

and using such feature vectors for cardinality estimation can be

erroneous. Furthermore, the existing query featurization methods

focus on static data [52]. However, in a dynamic scenario where

the data are dynamically updated, the existing methods cannot

adapt to the new data, hence degrading the accuracy of cardinality

estimation significantly.

Furthermore, both query-driven and data-driven estimators do

not give any quantification of uncertainty or confidence level of the

estimation. The estimation is used in database based on an implicit

assumption that the estimation is always safe to be used. However,

this assumption is not always valid, and using error estimation

can be problematic. For example, an erroneous estimation, when

used by the query optimizer, can lead to bad execution plans. A

better estimation approach is to output the estimated cardinality

together with the corresponding uncertainty. Based on the uncer-

tainty, DBMS can determine when to actually trust the estimator

and use its estimations. However, how to quantify an estimator’s

uncertainties for various queries and leverage the uncertainties to

boost model accuracy remains to be studied.

To address the above limitation, we propose a new cardinality

estimator, Fauce. Fauce includes a new query featurization method

1950

https://doi.org/10.14778/3476249.3476254
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476254

(§3) that leverages semantic information contained in the database

and captures real dependent relationships between table columns to

encode the queries into more informative feature vectors. Further-

more, we mathematically define the uncertainty of the estimator

and introduce a new model that incorporates the uncertainty esti-

mation into Fauce (§5). Fauce also includes a new learning paradigm

that leverages the uncertainties to boost the estimation results and

make Fauce robust to be applied in dynamic databases (§5.3).

A query consists of four components, tables, joins, columns, and

predicate values. We leverage the semantic information contained

in the database (e.g., the relationships between two tables) to fea-

turize the tables and joins of a query (§3.1). Fauce captures the

join relationships among database tables. Those relationships are

represented as join graphs, where vertices are tables and each edge

connects two joinable tables. We make the representations of the

tables and joins of a query contain more informative features by

analyzing this graph.

To capture the real correlations across all the table columns in

a database (§3.2), we introduce dependency graphs to capture de-

pendent relationships across columns, and based on the graphs

we embed the columns into a vector to boost the estimation accu-

racy. Using a data structure to capture dependency requires the

capture of implicit dependency relationships in columns across

tables. We introduce a hierarchical dependency graph. In particular,

we first build a local columns-dependency graph for each table.

Then we build the global columns-dependency graph for all the

columns in the database based on the local columns-dependency

graphs developed in the first step. Finally, we use an embedding

technique [16] to represent each column into a vector based on the

global columns-dependency graph. Such vectors can convey real

correlations among the columns.

To include the uncertainties of the cardinality estimator into

Fauce, we design a model based on deep ensembles (§5.3) to compre-

hensively quantify the uncertainty. The uncertainty of the cardinal-

ity estimator comes from multiple sources. First, we are uncertain

about whether the learned model parameters can best describe the

distribution of the queries in the query space. This is referred to

as model uncertainty. Second, the query-based estimators train the

model based on the generated training dataset. But the training

dataset can not well reflect the features for all the queries. That

is to say, there is always a data shift between the training dataset

and the inference queries. This data shift can be large especially for

dynamic databases. Thus, we are also uncertain about whether the

data used to train model can well represent the features for infer-

ence queries, this is referred as data uncertainty. These two types

of uncertainty consist the uncertainty of the learned estimator.

The two types of uncertainty are difficult to quantify. To address

the above problems, we design a model called deep ensembles with
uncertainty to estimate the cardinality and the corresponding un-

certainty. We use the ensemble technique, because it generally pro-

duces the best results among all neural network-based approaches.

Furthermore, it provides the benefit of being able to separately

determine model and data uncertainties.

We conducted an extensive set of experiments over IMDB, a real-

world dataset that exhibits complex correlation and conditional

independence between table columns and have been extensively

used in prior work [21, 24, 56–58]. On the created JOB-base bench-

mark, a schema that contains 6 tables and correlated filters. Fauce

achieves 1.16-4.5× higher accuracy over the state of the art estima-

tor. To check whether Fauce is robust to complicated queries with

large number of filters, we create a more difficult benchmark, JOB-

more-filters. On this benchmark, Fauce achieves 1.31-45.9× higher

accuracy than previous estimators, including IBJS [30], MSCN [24],

DeepDB [21],and NeuroCard [56]. Lastly, to test Fauce ’s ability to

handle queries with more complex join relations, we created JOB-

complex-joins which has 15 tables and complex joins. Experimental

results show that Fauce scales well to this benchmark, it has at

least 1.28× higher accuracy than baselines. The contributions in

the paper are summarized as below:

• We design and implement Fauce, the first learned cardinality

estimator that contains the uncertainties for its results. It

is also light weight with fastest inference time and leading

accuracy among the learnedmethods we studied in the paper.

• Fauce includes a new query featurization (§3) method that

can encode the queries into more informative feature vectors

by leveraging the join schema of the database and capturing

the real correlations across the table columns.

• Fauce mathematically defines the uncertainty of the estima-

tor and designs a model called deep ensembles with uncer-
tainty (§5.3) to estimate the cardinality.

• Fauce includes an uncertainty management module (§5.3).

We also show that how the uncertainty management can be

leveraged to further boost Fauce’s accuracy.

2 PROBLEM DESCRIPTION

In this section, we introduce some notations and describe why the

cardinality estimation can be solved as a regression problem.

2.1 Notations

Consider a database D contains 𝑚 tables, D = {𝑇𝑖 }𝑚𝑖=1. Each ta-

ble 𝑇𝑖 has a number of numeric columns, represented as 𝑇𝑖 =

{𝐶𝑜𝑙1
𝑖
, ...,𝐶𝑜𝑙

𝑐𝑘
𝑖
}, where 𝑐𝑘 is the total number of columns in Ta-

ble 𝑇𝑖 . The total number of columns in D is denoted as 𝐶 , where

𝐶 =
∑𝑚
𝑘=1

𝑐𝑘 . We define the actual cardinality of a query 𝑞 as the

number of rows in joint tables that satisfy all predicates in 𝑞, and

denote it as 𝐴𝑐𝑡 (𝑞). Similarly, we use 𝐶𝑎𝑟𝑑 (𝑞) to represent the esti-

mated cardinality for the query 𝑞. Each query 𝑞 can be represented

as a collection of four sets: ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩, ⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩,
and each set is defined as below.

• ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩: the set of the tables in 𝑞’s FROM clause.

• ⟨𝐽𝑜𝑖𝑛𝑠⟩: the set of the join relations in 𝑞’s WHERE clause.

• ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩: the set of the columns involved in 𝑞’s WHERE clause.

• ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩: the set of the predicates values in 𝑞’s WHERE clause.

These four sets together depict the features of a query.

2.2 Formulation as a Regression Problem

As the cardinality of a query is a real-valued number, we develop

a regression modelM, such that for any range query 𝑞 on joint

tables, the estimated cardinality 𝐶𝑎𝑟𝑑 (𝑞) produced byM matches

or closes to the actual cardinality 𝐴𝑐𝑡 (𝑞).

1951

Join
Schema

Tables

T1 Tn
...

Query Featurization

Tables
Encoding

Joins
Encoding

Columns
Encoding

Statistical
Information

Query Encoding Predicates
Representation

Model
Design

Training
Dataset

Model
Training

Model
Inference

Training Data Generation

Prepare Base Tuples Parsing

Figure 1: Overview of Fauce. The Query Featurization (§3)

transforms the queries into vectors, it includes Tables En-

coding (§3.1), Joins Encoding(§3.1), Columns Encoding (§3.2),

and basic statistical information (§3.3). The generated train-

ing dataset (§4.2) is used to train the appropriately designed

regression model (§5). At last, the trained model is used to

estimate the query cardinalities (§5.2).

The input of the modelM must be a real-valued vector. There-

fore, we must transform the query 𝑞 into a real-valued vector which

represents the features of 𝑞. This transformation is called query fea-
turization. For a query 𝑞 = ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩, ⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩,
we transform 𝑞 into a query feature vector

®𝑓 = ⟨𝑓𝑇 , 𝑓𝐽 , 𝑓𝐶 , 𝑓𝑉 ⟩,
where 𝑓𝑇 , 𝑓𝐽 , 𝑓𝐶 , and 𝑓𝑉 are the features extracted from ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩,
⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, and ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ respectively. The vector ®𝑓 serves
as the input to the regression model M. The actual cardinality,

𝐴𝑐𝑡 (𝑞), serves as the labels, which guides the model training. Given

a training set of labeled queries S, the modelM trained on S is

expected to produce accurate cardinalities for unseen queries.

2.3 Overview of Fauce

Figure 1 shows the architecture of Fauce at a high level. Fauce con-

sists of two stages. First, Fauce transforms input queries into feature

vectors through a new query featurization method (§3), including

tables encoding and joins encoding). Tables encoding (§3.1) is based

on a graph embedding method that can capture semantic informa-

tion of the database tables and achieve more accurate encoding

results than widely used one-hot encoding and binary encoding

methods. Joins encoding (§3.1) is based on our proposed joins2vec
algorithm to featurize joins into vectors. Without any assumption

on the independence of columns, our column encoding (§3.2) can

capture real dependency information among the columns. Besides

the encoding information, Fauce also collects statistics of the data-

base tables (e.g., row counts and domain bounds) to represent the

point predicate and/or range predicate of a query (§3.3).

Second, we train the modelM based on the generated training

dataset (§4.2). Once the training is finished, the model is ready to

estimate the cardinalities for a given query. For each input query,

we use a query featurization method to transform the query into a

feature vector. This vector is plugged into the modelM, and the

output ofM is the estimated cardinality together with the corre-

sponding uncertainty. The trained modelM can handle queries

joining any subset of tables, with arbitrary range selection.

3 QUERY FEATURIZATION

Before using the modelM to estimate the cardinality, we must

convert input queries into vectors. A query 𝑞 can be represented

as: ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩, ⟨𝐽𝑜𝑖𝑛𝑠⟩, ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩, and ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩. Each of them is

represented by a vector. These four vectors combined together is

the outcome of the query featurization for 𝑞. The result is directly

plugged into the model for both training and inference. Section 3.1

introduces how to encode ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩ and ⟨𝐽𝑜𝑖𝑛𝑠⟩ into vectors; Sec-

tion 3.2 introduces themethod to encode ⟨𝐶𝑜𝑙𝑢𝑚𝑛𝑠⟩; and Section 3.3
introduces how to represent ⟨𝑉𝑎𝑙𝑢𝑒𝑠⟩ of a query.

Algorithm 1: Joins2Vec (𝐽𝑆, 𝐷, 𝜆, 𝜖)
Input: 𝐽𝑆 = (𝑉 , 𝐸): The join schema of a database

𝐷 : Maximal number of allowed joins in a query

𝜆: Encoding size of each join relationship

𝜖 : Number of the epochs

Output:Matrix of vector representations of joins: Θ
1 𝐽𝐺𝑠 = {}; // Initialize an empty join graph set

2 foreach 𝑡 ∈ 𝑉 do

3 for 𝑑 = 0 to 𝐷 do

4 𝐽𝐺𝑠∪ =GetJoinGraphs(𝐽𝑆, 𝑡, 𝑑); // Algorithm 2

5 Initialize Θ ∈ R | 𝐽𝐺𝑠 |×𝜆 ; // Uniform initialization

6 for 𝑒 = 0 to 𝜖 do
7 foreach 𝑡 ∈ 𝑉 do

8 for 𝑑 = 0 to 𝐷 do

9 𝑗𝑔
(𝑑)
𝑡 := GetJoinGraphs(𝐽𝑆, 𝑡, 𝑑);

10 𝑐𝑜𝑛𝑡𝑒𝑥𝑡
(𝑑)
𝑡 = {};

11 foreach 𝑡
′ ∈ Neighbours(𝐽𝑆 , 𝑡) do

12 foreach 𝜙 ∈ {𝑑 − 1, 𝑑, 𝑑 + 1} do
13 if 𝜙 ≥ 0 and 𝜙 ≤ 𝐷 then

14 𝑐𝑜𝑛𝑡𝑒𝑥𝑡
(𝑑)
𝑡 ∪ =

GetJoinGraphs(𝐽𝑆, 𝑡 ′, 𝜙);
15 foreach 𝑗𝑔𝑐𝑜𝑛𝑡 ∈ 𝑐𝑜𝑛𝑡𝑒𝑥𝑡 (𝑑)𝑡 do

16 𝐿𝑜𝑠𝑠 (Θ) = -log Pr(𝑗𝑔𝑐𝑜𝑛𝑡 |Θ(𝑗𝑔 (𝑑)𝑡));
17 Θ = Θ − 𝛼 𝜕𝐿𝑜𝑠𝑠 (Θ)

𝜕Θ ;

18 return Θ

3.1 Tables and Joins Encoding

Tables encoding. Instead of using one-hot and binary encoding

methods, we use a graph embedding method [36] to encode the

database tables. The join schema of a database is considered as

an undirected graph 𝐺 , where vertices are tables and each edge

connects two joinable tables. We use 𝐺 as the input for the graph

emebedding method, and the output is a group of vectors. Each

vector is the encoding result for a corresponding table. In a database

D = {𝑇𝑖 }𝑚𝑖=1, if a table is not involved in a query, we use a vector

with all zeros to represent this table. Similar to the binary encoding,

our tables encoding method represents each table as a ⌈log(𝑚 + 1)⌉
dimensional vector, where𝑚 is the number of tables in a database.

Finally, the ⟨𝑇𝑎𝑏𝑙𝑒𝑠⟩ of a query 𝑞 is represented as a vector 𝑓𝑇 with

length of𝑚⌈log(𝑚 + 1)⌉.
Joins encoding. Using the existing coarse-grained joins encoding

methods [24] for query featurization always causes large errors in

1952

cardinality estimation. We propose a new fine grained algorithm

called Joins2Vec (Algorithm 1) for the joins encoding.

Algorithm 2: GetJoinGraphs (𝐺, 𝑡, 𝑑)
Input: 𝐽𝑆 = (𝑉 , 𝐸): The join schema of a database

𝑡 : Table which is the root of a join relationship

𝑑 : Neighbours considered for extracting join graph

Output: 𝑗𝑔
(𝑑)
𝑡 : rooted join graph of degree 𝑑 around table 𝑡

1 𝑗𝑔
(𝑑)
𝑡 = {};

2 if 𝑑 = 0 then

3 𝑗𝑔
(𝑑)
𝑡 := 𝑡 ;

4 else

5 N𝑡 := 𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠 (𝐺, 𝑡); // Breath First Search

6 𝑀𝑑𝑡 := {GetJoinGraphs(𝐺, 𝑡 ′, 𝑑 − 1) |𝑡 ′ ∈ N𝑡 };
7 𝑗𝑔

(𝑑)
𝑡 := 𝑗𝑔

(𝑑)
𝑡 ∪ GetJoinGraphs(𝐺, 𝑡, 𝑑 − 1) ⊕ 𝑀𝑑𝑡 ;

8 return 𝑗𝑔
(𝑑)
𝑡

The ⟨𝐽𝑜𝑖𝑛𝑠⟩ of a query 𝑞 is based on the join graphs derived from
the join schema 𝐽𝑆 . The algorithm Joins2Vec consists of two main

components; the first component discovers all the possible join
graphs based on the join schema 𝐽𝑆 , and the second component

gets the encodings for all the join graphs. The goal of Algorithm 1

is to learn a 𝜆 dimensional encoding for each join graph. We first

search all the join graphs, 𝐽𝐺𝑠 (Lines 2-4) (extensive details are

depicted in Algorithm 2). Then the encodings for the join graphs in

𝐽𝐺𝑠 are initialized as a matrix: Θ ∈ R | 𝐽𝐺𝑠 |×𝜆 (Line 5) where |𝐽𝐺𝑠 | is
the number of possible join graphs extracted from 𝐽𝑆 . After that, we

learn the encoding result Θ (Lines 6-18). These steps are explained

in detail in the following two paragraphs.

(1) Get all the join graphs. First, we introduce how to use each

table 𝑡 in the databaseD as a root to build the join graphs. The join

graph 𝑗𝑔
(𝑑)
𝑡 rooted at the table 𝑡 with different numbers of joinable

tables 𝑑 in a given join schema 𝐽𝑆 is extracted (Line 9). The join

graphs discovering process is separately explained in Algorithm 2.

The Algorithm 2 takes the join schema 𝐽𝑆 , table 𝑡 , and degree of

the joins 𝑑 as inputs and returns the intended join graph 𝑗𝑔
(𝑑)
𝑡 .

When 𝑑 = 0, no join graphs need to be extracted and the table

𝑡 is returned (Line 3). For the case when 𝑑 > 0, we get all the

(breadth-first) neighbours of 𝑡 inN𝑡 (Line 5), and the neighbours of
𝑡 are those tables that can be joined with the table 𝑡 . Then for each

joinable table, 𝑡
′
, we get its (𝑑−1)-degree join graphs and save them

in 𝑀
(𝑑)
𝑡 (Line 6), where 𝑀

(𝑑)
𝑡 is a list to store the rooted d-degree

join graphs around table 𝑡 . Finally, we get the (𝑑 − 1)-degree join
graph around the table 𝑡 and concatenate these join graphs with

𝑀
(𝑑)
𝑡 to obtain the intended join graphs 𝑗𝑔

(𝑑)
𝑡 (Line 7).

(2) Get the context for each join graph. Then, we introduce

how to get the context for each join graph based on the results

of Algorithm 2. Once the join graphs 𝑗𝑔
(𝑑)
𝑡 of table 𝑡 is extracted,

we learn the encoding of a target join graph using its surrounding

context in a given join schema 𝐽𝑆 (Lines 10-17). We define the

context of a 𝑑-degree join graph 𝑗𝑔
(𝑑)
𝑡 of the table 𝑡 as the set of

join graphs of (𝑑 − 1), 𝑑 and (𝑑 + 1)-degree rooted at each of the

neighbours of 𝑡 (Lines 10-14 in Algorithm 1). Note that we consider

2
Get the context of each Join

Graph (use JG1 as an example)

A B C A B C
A

B

B

C A

B C1

Get Join Graphs

(a) Join Schema (b) Join Graphs

JG1 JG2 JG3

JG4 JG5 JG6

(1) Get neighbors: B

(2) Get context of JG1:

B A

B

B

C

B C

A

(c) Context of JG1

JG1 1.23 1.12 0.44

JG2 0.32 0.70 1.23

JG3 0.21 0.36 0.24

JG4 0.23 0.45 0.35

JG5 3.20 0.32 0.25

JG6 1.22 1.10 0.58

(d) Joins encoding results

3

Encodings
optimization

Figure 2: An example of Joins2Vec. (a) A join schema with

three tables. (b) Get all the possible join graphs based on (a)

using Algorithm 2. (c) Get the context of each join graph. (d)

Use Algorithm 1 to encode the join graphs into vectors.

join graphs of (𝑑 − 1), 𝑑 and (𝑑 + 1)-degree to be in the context of

a join graph of 𝑑-degree, because a 𝑑-degree join graph is likely to

be rather similar to the join graphs of degrees that are closer to 𝑑

(e.g., 𝑑 − 1 and 𝑑 + 1) and not just the 𝑑-degree join graphs only.

(3) Optimize the encodings for the join graphs. The encoding

of a target join graph, 𝑗𝑔
(𝑑)
𝑡 , with the context 𝑐𝑜𝑛𝑡𝑒𝑥𝑡

(𝑑)
𝑡 is learnt

using the process at Lines 15-17 in Algorithm 1. Given the cur-

rent representation of the target join graph Θ(𝑗𝑔 (𝑑)𝑡), we want to
maximize the probability of every join graph in its context 𝑗𝑔𝑐𝑜𝑛𝑡
(Line 16). Here, we learn such posterior distribution using logistic

regression classifier. Finally, the encodings of all the join graphs

are optimized by gradient descent (Line 17).

Using Algorithms 1 and 2, we get the encoding result for ⟨𝐽𝑜𝑖𝑛𝑠⟩
of a query. Assume there are 𝑛 possible join graphs in a database

and the encoding size 𝜆 is equal to 𝑛, the representation of ⟨𝐽𝑜𝑖𝑛𝑠⟩
of the query 𝑞 is a 𝑛 dimensional vector. Figure 2 shows an example

of applying Joins2Vec on a join schema with three tables, A, B, and
C. All the join graphs derived from this join schema are encoded

into vectors (see (d) in Figure 2).

3.2 Columns Encoding

The correlations of table columns can be utilized as useful informa-

tion to facilitate the columns encoding. We propose a method called

Columns2Vec, which encodes the columns by using real correlations

among the columns. This method includes three steps.

(1) Build local columns-dependency graphs.We calculate the

RandomizedDependence Coefficient [32] (RDC) values for each pair

of columns in each table 𝑇𝑖 from the database D. If the RDC value

for two columns exceeds a threshold 𝜏 , then those two columns are

dependent with each other; otherwise, they are independent. Using

a small value of 𝜏 overestimates the columns-dependency, while

using a large value of 𝜏 underestimates the columns-dependency.

Here, we set 𝜏 as 0.4. Based on the RDC values of each pair of

columns, we can build a local columns-dependency graph 𝑔𝑖 for

each table𝑇𝑖 . The graph 𝑔𝑖 is a DAG. Once there exists a connection

(i.e., an edge) between two columns (i.e., vertices), the graph shows

those two columns are correlated. We get dependency information

between any pair of columns in 𝑔𝑖 by using depth first search to

find whether a path exists between their corresponding vertices.

1953

