Towards Plug-and-Play Visual Graph Query Interfaces:
Data-driven Selection of Canned Patterns for Large Networks

Zifeng Yuan Huey Eng Chua Sourav S Bhowmick
Fudan University & NTU Nanyang Technological University Nanyang Technological University
zfyuanl6@fudan.edu.cn hechua@ntu.edu.sg assourav@ntu.edu.sg
Zekun Ye Wook-Shin Han Byron Choi
Fudan University & NTU POSTECH Hong Kong Baptist University
zkyel6@fudan.edu.cn wshan@dblab.postech.ac.kr bchoi@comp.hkbu.edu.hk
ABSTRACT o—m @abel\ 2vendor
Canned patterns (i.e., small subgraph patterns) in visual graph query P Bc??gM © Q
interfaces (a.k.a Gui) facilitate efficient query formulation by en- Pzg%z @ vendor Veq“; Vendothomepage T
abling pattern-at-a-time construction mode. However, existing GUIs “vatiquntil_ >) B
for querying large networks either do not expose any canned pat-) proauet
| . deliveryDays offerURL
terns or if they do then they are typically selected manually based PSM produciiabel _price OfferWebpage
on domain knowledge. Unfortunately, manual generation of canned Canned ‘ \
patterns is not only labor intensive but may also lack diversity for Patterns @

supporting efficient visual formulation of a wide range of subgraph
queries. In this paper, we present a novel, generic, and extensi-
ble framework called TaTTOO that takes a data-driven approach
to automatically select canned patterns for a Gur from large net-
works. Specifically, it first decomposes the underlying network into
truss-infested and truss-oblivious regions. Then candidate canned
patterns capturing different real-world query topologies are gener-
ated from these regions. Canned patterns based on a user-specified
plug are then selected for the gul from these candidates by maxi-
mizing coverage and diversity, and by minimizing the cognitive load
of the pattern set. Experimental studies with real-world datasets
demonstrate the benefits of TATTOO. Importantly, this work takes a
concrete step towards realizing plug-and-play visual graph query
interfaces for large networks.

PVLDB Reference Format:

Zifeng Yuan, Huey Eng Chua, Sourav S Bhowmick, Zekun Ye, Wook-Shin
Han, and Byron Choi. Towards Plug-and-Play Visual Graph Query
Interfaces: Data-driven Selection of Canned Patterns for Large Networks.
PVLDB, 14(11): 1979 - 1991, 2021.

doi:10.14778/3476249.3476256

1 INTRODUCTION

A recent survey [34] revealed that graph query languages and us-
ability are considered as some of the top challenges for graph pro-
cessing. A common starting point for addressing these challenges is
the deployment of a visual query interface (a.k.a Gur) that can enable
an end user to draw a graph query interactively by utilizing direct-
manipulation [36] and visualize the result matches effectively [1, 31].
A useful component of such a GuI is a panel containing a set of

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476256

1979

Figure 1: Q12 in BSBM and canned patterns.

canned patterns (i.e., small subgraphs) which is beneficial to visual
querying in at least three possible ways [9, 23, 24]. First, it can
potentially decrease the time taken to visually construct a query by
facilitating pattern-at-a-time query mode (i.e., construct multiple
nodes and edges by performing a single click-and-drag action) in
lieu of edge-at-a-time mode. Second, it can facilitate “bottom-up”
search when a user does not have upfront knowledge of what to
search for. Third, canned patterns (patterns for brevity) may alle-
viate user frustration of repeated edge construction especially for
larger queries.

Example 1.1. Consider the subgraph query in Figure 1 from
BsBM [2] (Query Q12). Suppose Wei, a non-programmer, wishes
to formulate it using a GUI containing a set of canned patterns (a
subset of them is shown). Specifically, he may drag and drop pz and
p3 on the Query Canvas, merge the yellow vertex of p3 with the
center vertex of pz, add a vertex and connect it with the grey vertex
of py. Finally, Wei can assign appropriate vertex labels. Observe
that it requires five steps to construct the topology. On the other
hand, if Wei takes an edge-at-a-time approach, it would require 23
steps to construct it. Clearly, canned patterns enable more efficient
(i.e., fewer number of steps or lesser time) formulation of the query.

It is worth noting that Wei may not necessarily have the complete
query structure “in his head” during query formulation. He may find
p3 interesting while browsing the pattern set, which may initiate
his bottom-up search leading to the query. Clearly, without the
existence of a pattern set, such bottom-up search would be infeasible
in practice. |

Data-driven selection of relevant canned patterns for a Gur (e.g.,
p1, p2, p3 in Fig. 1.1) is important to facilitate efficient query formu-
lation [9, 23]. In particular, data-driven selection paves the way for
plug-and-play visual graph query interfaces, which are like a plug-
and-play device that can be plugged into any kind of socket (i.e.,

Canned
Patterns

Candidate

Canned
Patterns

Pattern
Selector

Candidate
Pattern
Generator

Networks

Figure 2: Overview of TATTOO.

graph data) and used. A plug-and-play Gur is dynamically built from
a high-level specification of canned pattern properties known as
the plug (detailed in Section 3). Specifically, given a network G and
a plug b, the Gur is automatically constructed by populating its vari-
ous components (e.g., node/edge attributes, canned patterns) from G
without the need for manual Gur coding. This enhances portability
and maintainability of Guis across different data sources [9].

In this paper, we present a novel framework called TarToO (daTa-
driven cAnned paTtern selecTiOn from netwOrks) that takes a
data-driven approach to the canned pattern selection (cps) problem
for large networks. Given a network G, a user-specified plug specifi-
cation b which is the number of canned patterns to display and their
minimum and maximum permissible sizes, TATTOO automatically
selects canned patterns from G that satisty b.

The cps problem is technically challenging. First, it is a NP-hard
problem [23]. Second, the availability of query logs can facilitate
the selection of relevant patterns as they provide rich information
of past queries. In practice, however, such information is often
publicly unavailable (e.g., none of the networks in sNap [5] reveal
query logs) due to privacy and legal reasons. Hence, we cannot
realistically assume the availability of query logs to select patterns.
Furthermore, users may demand a Gu1 prior to querying a network.
Hence, there may not exist any query log prior to the creation of
a visual query interface. Third, it is paramount to find unlabeled
patterns (e.g., Example 1.1) that are potentially useful for query
formulation (detailed in Sec. 4). However, the selection of such
patterns is challenging as there is an exponential number of them
in a large network. Fourth, these selected patterns should not only
be topologically diverse so that they are useful for a wide variety of
queries but they should also impose low cognitive load (i.e., mental
load to visually interpret a pattern’s edge relationships to determine
if it is useful for a query) on users. In particular, large graphs over-
load the human perception and cognitive systems, resulting in poor
performance of tasks such as identifying edge relationships [22, 42].

At this point, a keen reader may wonder why building blocks of
real-world networks (e.g., paths of length k, triangle patterns) [29,
40] cannot be simply utilized as canned patterns since they have
high coverage and low cognitive load. Unfortunately, it may take a
larger number of steps to formulate a variety of queries using these
patterns due to their small size. For instance, reconsider Example 1.1.
Suppose the pattern set consists of an edge, a path of length 2 (i.e., 2-
path), a triangle, and a rectangle. In this case, Q12 may be formulated
by dragging and dropping the rectangle once, the 2-path three times,
construction of a single node and two edges, along with three node
mergers. That is, it takes 10 steps altogether, which is more than
using the patterns in Figure 1. Furthermore, these patterns do not
expose “interesting” substructures to facilitate bottom-up search as
they occur in almost all large real-world networks.

1980

TatTOO addresses the aforementioned challenges as follows. It
exploits a recent analysis of real-world query logs [12] to classify
topologies of canned patterns into categories that are consistent
with the topologies of real-world queries (detailed in Section 5).
This enables us to reach a middle ground where TaTTOO does not
need to be restricted by the availability of query logs but yet ex-
ploit topological characteristics of real-world queries to guide the
selection process. Next, it realizes a novel and efficient candidate
canned pattern generation technique based on the classified topolo-
gies to identify potentially useful patterns. Lastly, canned patterns
are selected from these candidates for display on the Gu1 based on
a novel pattern set score that is sensitive to coverage, diversity, and
cognitive load of patterns. Specifically, we leverage recent progress
in the algorithm community to propose a selection algorithm that
guarantees %—approximation [13]. Figure 2 depicts an overview of
the TaTTOO framework. Experiments with several real-world large
networks and users reveal that TATTOO can select canned patterns
within few minutes. Importantly, these patterns can reduce the
number of steps taken to formulate a subgraph query and query
formulation time by up to 9.7X and 18X, respectively, compared to
several baseline strategies.

In summary, this paper makes the following contributions: (1)
We describe TATTOO, an end-to-end canned pattern selection frame-
work for any plug-and-play visual graph query interface for large
networks independent of domains and data sources. A video of a
plug-and-play interface that incorporates TATTOO can be viewed
at https://youtu.be/sLOyHV1eEPw. (2) We formally introduce the
cps problem for large networks (Section 4) and present a novel cat-
egorization of potentially useful canned patterns in Section 5. (3)
We present an efficient solution to select canned patterns for a cul
(Sections 6 - 7). Specifically, we present a novel candidate pattern
generation framework that is grounded on topologies of real-world
subgraph queries. Furthermore, for the first time in graph querying
literature, we utilize the recent technique in [13] from the algorithm
community to select canned patterns with good theoretical quality
guarantees. (4) Using real-world networks, we show the superiority
of TATTOO to several baselines (Section 8).

Formal algorithms and selected proofs of theorems and lemmas
are provided in [41].

2 RELATED WORK

Most germane to our work is our prior efforts on data-driven con-
struction of visual graph query interfaces in [10, 23, 44]. The work
in [24] focuses on the maintenance of canned patterns for evolving
data graphs. Our work differs from these efforts in the following
ways. First, we focus on selecting unlabelled canned patterns from
large networks in contrast to labelled patterns from a collection of
small- or medium-sized data graphs in [10, 23, 24, 44]. Specifically,
existing efforts such as CatapuLT [23] first partitions a collection
of data graphs into a set of clusters and summarizes each cluster to
a cluster summary graph (csG). Then, it selects the canned patterns
with the aforementioned characteristics from these csGs using a
weighted random walk approach. This clustering-based approach is
prohibitively expensive for large networks as detailed in Section 8.
Second, these approaches do not exploit characteristics of real-
world subgraph queries for selecting canned patterns. In contrast,

we utilize topological characteristics of real-world queries to guide
our solution design. Third, we present a novel real-world query
topology-aware candidate pattern generation technique and a se-
lection technique that provides quality guarantee. No theoretical
guarantee is provided in [10, 23, 44] for selecting canned patterns.
Lastly, as detailed in Section 7, the computation of pattern score to
assess the quality of canned patterns is different as the computation
of cognitive load and diversity is different from [23] due to the
nature of large networks. Furthermore, in this work we provide a
theoretical analysis of the pattern score.

Motif discovery techniques [19, 29] do not consider diversity
and cognitive load. Sizes of these motifs are generally bounded in
the range of [3-7] [19, 29]. For the same reason, it is difficult to
use graphlets [7, 20, 33] as patterns. Also, frequent subgraphs [16]
may not constitute good canned patterns [9] and are prohibitively
expensive to compute for large networks (detailed in Section 8).

3 BACKGROUND

We first introduce several graph terminologies that we shall be
using subsequently. Next, we formally define the notion of plugs.
Finally, we briefly describe the desirable characteristics of canned
patterns as introduced in [23].

3.1 Terminology

We denote a graph or network as G = (V, E), where V is a set of
nodes/vertices and E C V X V is a set of edges. Vertices and edges
can have labels as attributes. The size of G is defined as |G| = |E|.
The degree of a vertex v € V is denoted as deg(v). In this paper,
we assume that G is an undirected, unweighted graph with labeled
vertices.

A triangle is a cycle of length 3 in G. The support of an edge
e = (u,v) € E (denoted by sup(e)) is the number of triangles in G
containing u and v [38)]. Gs = (Vs, Es) is a subgraph of G (denoted
by Gs C G) if Vs C V and Es C E. Consider another graph G' =
(V',E") where |V| = |V’|. G and G’ are isomorphic if there exists
a bijection f : V — V' such that (u,v) € E iff (f(u), f(v)) € E’.
Further, there exists a subgraph isomorphism from G to a graph Q
if G contains a subgraph Gg that is isomorphic to Q. We refer to
Ggs as the embedding of Q in G.

Given G, the k-truss of G is the largest subgraph G’ = (V', E’)
of G in which every edge e € E’ is contained in at least k — 2
triangles within the subgraph. A 2-truss is simply G itself. We
define the trussness of an edge e as t(e) = max{k|e € E7; } where
Ty = (Vq.,E7,) is the k-truss in G. Further, kpqx denotes the
maximum trussness.

3.2 Plugs

Recall that data-driven selection of canned patterns facilitates the
construction of a plug-and-play visual query interface. A plugisa
high-level specification of the patterns in a GUIL Given the specifica-
tion, TATTOO dynamically generates the canned patterns satisfying
it from the underlying network. Formally, it is defined as follows.

Definition 3.1. [Plug] Given a network G and a cur L, a plug
b = (nmin>Nmax->y) where nmin > 2 (resp. Nmax) is the minimum
(resp. maximum) size of a pattern, y > 0 is the number of patterns to
be displayed on L.

1981

Essentially a plug' is a collection of attribute-value pairs that
specifies the high-level content of a canned pattern panel in a cUL
For example, b = (3, 15, 30) is a plug. Accordingly, the minimum
and maximum sizes of patterns in I are 3 and 15, respectively, and
the total number of patterns to be displayed is 30. Observe that
there can be multiple plugs for G as well. Similarly, the same plug
can be used for different G. Hence, different Guis can be constructed
by different plug specifications.

A plug should possess the following properties. (a) Data inde-
pendence - A plug should not depend upon a specific network (i.e,
socket). The specification of plug enables this by not admitting
any network-specific information. Observe that this property is
important for plug-and-play interfaces as a plug can be used on dif-
ferent network data across different application domains. (b) Able to
select canned patterns with the required specifications - The resulting
canned pattern selection mechanism should select patterns exactly

as specified by the plug.

3.3 Characteristics of Canned Patterns

Since it is impractical to display a large number of patterns in [, the
number of patterns should be small and satisfy certain desirable
characteristics as introduced in [23].

High coverage. A pattern p € P covers G if G contains a subgraph
s that is isomorphic to p. Since p may have many embeddings in
G, the pattern set P should ideally cover as large portion of G as
possible. Then a large number of subgraph queries on G can be
constructed by utilizing P.

High diversity. High coverage of patterns is insufficient to fa-
cilitate efficient visual query formulation [23]. In order to make
efficient use of the limited display space on [, # should be struc-
turally diverse to serve a variety of queries. This also facilitates
bottom-up search where a user gets a bird’s-eye view of the diverse
substructures in G.

Low cognitive load. Cognitive load refers to the memory demand
or mental effort required to perform a given task [22]. A topologi-
cally complex pattern may demand substantial cognitive effort from
an end user to decide if it can aid in her query formulation [23].
Hence, it is desirable for the canned patterns in # to impose low cog-
nitive load on an end user to make browsing and selecting relevant
patterns cognitively efficient during visual query formulation.

4 THE CPS PROBLEM

Given a data graph or network G = (V, E), a visual graph query
interface I and a user-specified plug b, the goal of the canned pattern
selection (cps) problem is to select a set of unlabelled patterns # for
display on I, which satisfies the specifications in b and optimizes
coverage, diversity and cognitive load of P.

Observe that our cps problem differs from [23] in two key ways.
First, we focus on a single large network instead of a large col-
lection of small- or medium-sized data graphs. Second, we select
unlabelled patterns instead of labelled ones. In large networks, a
subgraph query may not always contain labels on its vertices or
edges. Specifically, unlabelled query graphs are formulated in the
subgraph enumeration problem [6] whereas query graphs are la-
belled in the subgraph matching problem [37]. Hence, by selecting

! Additional application-specific constraints (e.g., pattern distribution) can be included in a plug.

unlabelled patterns TaTTOO facilitates visual formulation of both
these categories of queries. In particular, one may simply drag-and-
drop specific vertex/edge labels from the Attribute panel of a gur
to add labels to the vertices/edges of a pattern (e.g., Example 1).
We now formally define the cps problem addressed in this pa-
per. We begin by introducing coverage, diversity, and cognitive
load of canned patterns. Let 5(p) = {sy,--- ,sp} be a bag of sub-
graphs in G isomorphic to p (i.e., embeddings of p) where vertex
labels in G = (V,E) and p = (Vp, Ep) are assumed to be the same
and s;i = (Vj, Ei). We say an edge e € Ej is covered by p. The
coverage of p is given as cov(p) = [U;c|s(py Eil/|E|. Similarly,
cov(P) = |ET|/|E| (ie., frou(P)) where every e € E' is covered by
at least one p € P. Since |E| is constant for a given G, coverage
can be rewritten as cov(p) = | Uj¢|s(p)| Eil and cov(P) = |ET|. The
diversity of p w.r.t to P is the inverse of similarity of p. In par-
ticular, the similarity of a set of canned patterns # is denoted as
fsim(P) = Xp,, pj)epxp sim(pi, pj) where sim(p;, pj) is the simi-
larity between patterns p; and p; (detailed in Section 7). Finally,
we measure cognitive load of p (denoted by cog(p)) based on the
size, density, and edge crossings in p (detailed in Section 7) as a
user tends to spend more time identifying relationships between
vertices in denser graphs with more edge crossings [21, 22, 42]. The
cognitive load of P (i.e, feog(P)) is given as ¥, p cog(p).

Definition 4.1. [CPS Problem] Given a network G, a cur L, and
a plug b = (nmin, Ymax,y), the goal of canned pattern selection
(CPS) problem is to find a set of unlabelled canned patterns ¥ from
G that satisfies

max feow(P), — fsim(P), _fcog(?))

subject to |P| =y, P eU @
where P is the solution; U is the feasible set of canned pattern sets in
G; feov(P), fsim(P) and feoq(P) are the coverage, similarity, and
cognitive load of P, respectively.

Remark. Observe that cps is a multi-objective optimization
problem as our goal is to maximize coverage and diversity (i.e.,
minimize similarity) of canned patterns while minimizing their
cognitive load. Hence, we address it by converting cps into a single-
objective optimization problem using a pattern score (detailed in
Section 7). Also, observe that we aim to find patterns of size greater
than 2 (i.e, nmin > 2). Small-size patterns that are basic building
blocks of networks [29, 40] (e.g., edge, 2-path, triangle) are provided
by default for all datasets (i.e., referred to as default patterns).

The cps problem is shown to be NP-hard in [23, 41] by reducing
it from the classical maximum coverage problem.

5 CATEGORIES OF CANNED PATTERNS

In theory, numerous different patterns can be selected from a given
network. Which of these are “useful” for subgraph query formu-
lation in practice? In this section, we provide an answer to this
question.

5.1 Topologies of Real-world Queries

Although basic building blocks of networks [29, 40] are presented as
default patterns in our GUI, as remarked earlier, they are insufficient
as they do not expose to a user more domain-specific and larger
patterns in the underlying data. Such larger substructures not only

1982

*—0—0
Path (a) BigRDFBench S1 (b) BlgRDFBench S4
V=3, [E|=2 IVI=6, [ER5
Tree BigRDFBench C2 BigRDFBench C3
© "iveo, 18 (@ " ics, Eizs
Star-like Cycle-like || Flower-like
BigRDFBench CT
@ PR || mema || O SHED,
() BSMaz (h) RAPDMG1s ||(j) DBpedamost
[V|=14, |Ej=13 [V|=13, |Ej=13 |V|-Iit|thls

Figure 3: Examples of real-world query topologies.

facilitate more efficient construction of subgraph queries but also
guide users for bottom-up search by exposing substructures that are
network-specific. However, which topologies of these substructures
should be considered for canned patterns?

Ideally, real-world subgraph query logs can provide guidance
to resolve this challenge. However, as remarked in Section 1, such
data may be unavailable. Hence, we exploit results from a recent
study [12] that analysed a large volume of real-world sPARQL query
logs. It revealed that topologies of many real-world subgraph queries
map to chains, trees, stars, cycles, petals, and flowers? [12]. Fig-
ure 3 depicts examples of these topologies in real-world subgraph
queries extracted from BigRDFBench [35], BSBM [2], Rapid [4], and
DBPedia [17]. Consequently, canned patterns in any Gul should
facilitate efficient construction of these topologies.

5.2 Topologies of Canned Patterns

We consider the following types of topological structures of canned
patterns in order to facilitate construction of the above query sub-
structures.

Path and cycle patterns. A subgraph query may contain paths
of different lengths (i.e., chain) and/or cycles. Figure 3 depicts some
examples. Hence, our canned patterns should expose representative
k-paths and k-cycles in the underlying data. Given a graph G =
(V,E), a k-path, denoted as P, = (Vi,Eg), is a walk of length k
containing a sequence of vertices vy, vz, -+ , Uk, Ur,1 Where Ej. C
E, Vi C V such that all vertices in V. are distinct. A k-cycle is
simply a closed (k — 1)-path where k > 3.

Star and asterism patterns. Intuitively, a star is a connected
subgraph containing a vertex r where the remaining vertices are
connected only to r (i.e, neighbors of). A k-star is a single-level,
rooted tree S; = (V,E) where V = {r}|JL, r is the root vertex
and L is the set of leaves such that Ve = {u,v} €e EEu=r,vel
and |V| = k + 1. We refer to the root as the center vertex. Note that
k = e where € is the minimum value of k for which the single-level
rooted tree is considered a star.

Real-world queries may contain multiple k-stars that are com-
bined together. For instance, the query topology in Figure 3(e)
is a combination of 6-star and 7-star by merging on a pair of

2A petal is a graph consisting of a source node s, target node ¢ and a set of at least 2 node-disjoint
paths from s to . A flower is a graph consisting of a node x with three types of attachments: chains
(stamens), trees that are not chains (the stems), and petals. A flower sef is a graph in which every
connected component is a flower.

truss edge (Cs) combines
with non-truss adge (Cs)

truss edge (C;) combines
with non-truss edge (Cs)

non-truss edge (C;) combines
with non-truss edge (Cs)
having overlapping truss node

non-truss edge (C;) combines
with non-truss edge (Cs) having
non-overdapping truss node

Figure 4: k-chord and composite chord patterns. Grey nodes
are truss nodes and oval-shaped nodes are combined nodes.

Table 1: No. of steps for constructing queries.

ID | Edge-at- | Default patterns Canned patterns
a-time
) [17 6 [2 2-path + 1 square - 1 5 [4-path + 2 2-path + 2 merge]
edge + 1 edge + 1 merge] 5 [4-star + 1 2-path + 1 node + 2 edge]
CRES 1[52path+Inode+2 | 1[Ag7]
edge + 3 merge] 3 [5-star + 6-star + 1 edge]
(g | 18 &[42-path + 1 edge + 3 3 [5-cycle + 4-star + 1 merge]
merge] 4 [6-path + 2-path + 1 edge + 1 merge]
M | 23 10 [square + 3 2-path + 1 5 [4-CP + 6-star + 1 node + 1 edge + 1 merge]
node + 2 edge + 3 merge] | 5[CCPpo(44) - 2 edge + 5-star + 1 merge]

edges. Hence, our canned pattern topology also involves stars that
form an asterism pattern by merging them on a pair of edges. For-
mally, given n stars § = {Sg,,---,S¢,_} and n — 1 merged edges
Em = {em;» " »em,_, } where Sy = (V;,E;) and ep, € Ej, let
R ={ry, -+ ,rp} be the center vertices such that r; € V;. The aster-
ism pattern of S is defined as Ag = (V, E) where e; = (ri,vi), €j4+1 =
(ris1, viv1), E = Ur<i<n({(risriv)} U(Ei \ {ei) U(Ei1 \ {eis1})),
V = Ui<i<a((Vi \ {vi})) U(Vit1 \ {vi+1})), ki > € and |E| < fmax.

k-chord and composite chord patterns. Observe that tree-
structured queries can be constructed by combining chains and stars
(e.g., Figure 3(c)-(d)). However, they are insufficient to construct
more complex petal and flower queries efficiently. In particular,
petal and flower queries may often contain triangle-like structures.
For example, the query in Figure 3(i) contains two triangles. Hence,
at first glance it may seem that we can simply select different k-
trusses (k > 2) of sizes within the plug specification b as canned
patterns. However, a subgraph query may not necessarily always
contain k-trusses. For instance, the query in Figure 3(j) contains
multiple “triangle-like” structures as some common edges of trian-
gles are missing. Consequently, the use of only k-truss as a canned
pattern may make query formulation inefficient as it demands dele-
tion of multiple edges in order to construct a triangle-like query
topology. This increases the number of steps required to formulate
a query, thereby increase the formulation time. Hence, it is desirable
to have “k-truss-like” substructures as patterns.

To this end, we extract two types of k-truss-based structures as
canned patterns, namely, k-chord patterns (k-c?) and composite chord
patterns (ccp). Intuitively, a k-CP is a connected graph containing
a truss edge e (i.e., edge belonging to a k-truss) and k-2 triangles
of e. Formally, given a k-truss G = (Vi,E) for k > 2, the k-
chord pattern (k-cp) Cy. = (Vii,Ecp) associated with every edge
e = (u,v) € Ex where u,v € Vi is defined as Vot = {u, 0} UV,
and E;p = {(u,v)} UE,, whereV/ = {wi:0<i<k-2}and

1983

Table 2: TIR and TOR graphs in real networks.

Data | Name V] ET % (Gt) | %(Go)
BK loc-Brightkite 58K 214K 67.3 327
GO loc-Gowalla 197K 950K 78.2 218
DB com-DBLP JITK 1.05M 93 7
AM com-Amazon 335K 926K 77.2 228
RP RoadNet-PA 1.09M 1.54M 12.7 873
YT com-Youtube 1.13M 2.99M 46.8 53.2
RT RoadNet-TX 1.38M 1.92M 125 875
5K as-Skitter 1L.TM 11IM 79.1 209
RC RoadNet-CA 1.97TM 27T™M 126 874
L] com-LiveJournal | 4M 34TM | 832 16.8

E', = {(w,wi),(wi,v) : 0 < i <k — 2}. k-cP can be considered
as a building block of k-trusses since it is found with respect to
each edge in a given k-truss. Examples of k-cps (4-cp and 5-cp) are
illustrated in Figure 4. We refer to the edge in a k-chord pattern that
is involved in (k-2) triangles as a truss edge and the remaining edges
as non-truss edges. For example, in Figure 4, edges (A, By) and
(Az, Bz) are truss edges whereas (A1, C1) and (Bz, Dz) are non-truss
edges. Correspondingly, vertices of a truss edge (e.g., A1, B1, Az,
By) are referred to as truss vertices. Observe that we can formulate
a simple petal query in two steps by selecting the 4-cp pattern and
deleting the truss edge.

To select larger canned patterns with greater structural diversity,
we combine k-cPps to yield additional composite chord patterns (ccp)
that occur in the underlying network. Observe that combining a
set of k-cPs in different ways results in different patterns as demon-
strated in Figure 4. However, this is an overkill as they are not only
expensive to compute but also may generate patterns with higher
density (higher cognitive load) or are larger than 7, 4x. Hence, we
focus on the ccp generated by merging a single edge of two k-cps
as it not only reduces the complexity of ccp generation, but also
produces ccps with lower density.

Unique small graph patterns. Lastly, we find small connected
subgraphs that do not fall under above categories but occur multiple
times in the underlying network.

Table 1 reports the number of steps taken by various modes
of query construction of selected query topologies in Figure 3.
Observe that query construction using canned patterns often takes
fewer number of steps compared to construction using only default
patterns, emphasizing the need for patterns beyond the default
ones. One can also formulate a specific query following multiple
alternatives, i.e.,, using multiple sets of patterns (canned and default).
This gives users the flexibility to formulate a query using these
patterns in many ways, all of which often take fewer steps compared
to the edge-at-a-time or default pattern-based modes.

6 CANDIDATE PATTERNS GENERATION

In the preceding section, we classified the topologies of canned
patterns broadly into “k-truss-like” and “non-k-truss-like” struc-
tures. In this section, we describe how candidate canned patterns
conforming to these topological categories are extracted from the
underlying network G. To this end, we first decompose G into truss-
infested and truss-oblivious regions and then generate “k-truss-like”
and “non-k-truss-like” candidate patterns from these regions, re-
spectively. We discuss these two steps in turn.

6.1 Truss-based Graph Decomposition

In order to extract “non-k-truss-like” and “k-truss-like” structures
as candidate patterns, we first decompose a network G into sparse
(containing non-k-trusses) and dense (containing k-trusses) regions.
The latter region is referred to as truss-infested region (TIR graph)
and the former truss-oblivious region (TOR graph), and are denoted
by Gt and G, respectively. Table 2 reports the sizes of Gt and Go
in several real-world networks measured as the percentage of the to-
tal number of edges. We observe Gt basically consists of relatively
large connected subgraphs that comprise multiple k-trusses. On the
other hand, Gp mainly consists of chains (i.e., paths), stars, cycles,
and small connected components. Furthermore, although some net-
works have small Gg (e.g., com-DBLP), there are networks where
Go is large (e.g., RoadNet-CA), encompassing up to 87.5% of the to-
tal number of edges. Consequently, by decomposing a network into
Gt and Gg, we can improve efficiency [41] by limiting the search
for k-truss-like patterns in Gt instead of the entire network and
extract non-truss-like patterns from Gp. Additionally, generating
candidate patterns of aforementioned topological categories from
both TIR and TOR graphs enables us to select a holistic collection of
patterns having higher coverage and diversity. Cognitive load of
the pattern set is often reduced when patterns from both regions
are considered due to the sparse structure of Tor [41].

TaTToO utilizes the state-of-the-art truss decomposition approach
in [39] to decompose G into Gt and Go. Briefly, this approach iden-
tifies k-trusses (k € [2 — kmax]) in G iteratively by removing edges
with support less than k — 2 from G. Hence, our graph decomposi-
tion algorithm adapts it to assign 2-truss as G and the remaining
k-trusses as Gt.

We keep track of the edge trussness (denoted as t(e)) in Gt. Since
the goal is to select canned patterns with maximum size 4y, the
upper bound of edge trussness is set to this value. The algorithm
first identifies the support of each edge. Then, regions of the data
graph are iteratively extracted by removing edges with the lowest
support, starting from the sparsest (i.e., sup(e) = 0) to the densest.
In particular, TATTOO considers all edges with sup(e) = 0 as sparse
regions and these edges form the Tor graph Gg. The remaining
edges form the TIR graph G7.

In summary, the above approach makes the following two simple
modifications to the truss decomposition technique in [39]: (1)
instead of storing each k-truss as a separate graph, it stores 2-truss
as Go and the remaining k-trusses are combined as a single graph
Gr;(2) it assigns a trussness value #(e) to every edge in Gt and Gg.
The worst-case time and space complexities of this algorithm are
O(|E[*-?) and O(|V| + |E|), respectively [39].

6.2 Patterns from a TIR Graph

Next, we generate k-cps and ccPs as candidate patterns from a TIR
graph. For each pattern we also compute its frequency as it will
be used subsequently to measure its coverage. We discuss them in
turn.

Generation of k-chord patterns. We can find k-cps with re-
spect to each edge in a given k-truss. For instance, every edge in a
4-truss and a 5-truss is part of at least 2 and 3 triangles, respectively.
Observe that the 2-chord pattern of an edge e is simply the edge
itself. Hence, TATTOO generates k-cps for k > 3. The frequency of a

1984

NBcc(4.e)={vs}

@ Given: t(e)=4
NBcc(3,e)={vs,va}

AW
m EBcc(4.e)={(v1,vs),(v2,vs)}

0“
e EBcc(3.e)={(v1,vsh(v2,vs),(va,Va)s(v2,va)}
Figure 5: k-CCP node and edge neighbourhoods.

k-cP is measured by the frequency of the pattern occurring in G,
which is essentially the number of edges having trussness greater
than or equals to k. Formally, given a TIR graph Gt = (V1, ET) and
a k-chord pattern Cp. = (Vi, Ec), the frequency of Cy. is defined
as freq(C) = |{e € E|t(e) = k}|. Then, the set of k-cps of a Gt
is simply the set of patterns C;. whose frequency is greater than 0.
We first generate k-chord patterns in G and then compute their
frequencies using edge trussness.

LEmMMA 6.1. The worst-case time and space complexities of k-cp
generation are O(kmax |ET|'®) and O(|Vr| + |ET|), respectively.

Generation of composite chord patterns. Next, we generate
the ccps. Specifically, we generate the following categories of ccps
based on different ways of merging truss and non-truss edges.

Definition 6.2. Let C, = (Veg,. Eck,) and C, = (Vegy, Eci,) be
two k-chord patterns where s,t € Vo and u,v € Vg, are truss
vertices. Then, we can generate the following categories of composite
chord patterns of Cy, and Cy, by merging Cy, and Cy, as follows:

(1) CCPtn(ky,kz): merge the truss edge of Cy, with a non-truss

edge of Cy.,.

(2) CCPpt(ky,kz): merge the truss edge of Cy, with a non-truss

edge of Cy, .

(3) CCPpolky,kz): merge a non-truss edge of Cy,, with a non-truss

edge of Cy, such that there is an overlapping truss vertex.

(4) CCPrp(k1,kz): merge a non-truss edge of Cy, with a non-truss

edge of Cy., such that there is no overlapping truss vertex.

Figure 4 depicts examples of these four categories of ccps. When
the context is clear, we shall simply refer to a ccp as CCP;. A keen
reader may observe that it is possible to create another ccp by
merging the truss edge of Cy, with the truss edge of Cy,. However,
this ccp is in fact a k-cp where k = k1 + k2 — 2. For instance, when
C4 and Cs in Figure 4 are merged on their truss edges, the resultant
pattern is a 7-cp. Also, combining two 3-cps always yields a 4-cp
(Lemma 6.3). Since k-cps have already been handled earlier, these
combinations are ignored.

LEMMA 6.3. Two 3-cps always yield a ccp that is 4-cp.

ProoF. (Sketch.) The 3-truss pattern C3 = (V3, E¢3) is a triangle.
Then, Ve = (u,v) € E.3, there is a vertex w that is adjacent to both u
and v. Hence, all different types of single edge merger between two
C3 produces a pattern with a merged edge em = (x, y) and vertices
x and y have two common adjacent vertices wy and wy. This is
essentially C4 where its truss edge corresponds to the merged edge
of the two Cs. O

We now elaborate on how the ccps and their frequencies are com-
puted in TaTToO efficiently. We shall introduce two terminologies
related to node and edge neighbourhoods of a ccp to facilitate exposi-
tion. Given an edge e = (u, v) in a k-truss, the k’-ccp node neighbour-
hood (denoted as N Bcc(k’, €)) of e is a set of vertices W adjacent to

@y merges
) with ez
o e tmslgsr 1)
(b)

Figure 6: (a) A Gr; (b) Skeleton structure of CCPpp; (c) Skele-
ton structure of CCPp,. €1 and e; are truss edges.

u and v such that Yw € W, #((u, w)) = k’ and t((w,v)) = k’ where
k' < k. The k"-ccp edge neighbourhood (denoted as EB..(k’, €)) of
e is the set of edges S adjacent to e such that ¥(u, x1),(xz,v) € S,
x1,x2 € NBcc(k’,e) where k' < k. Figure 5 illustrates examples
of k’-ccp node and edge neighborhoods. For instance, NB¢.(4, €)
consists of vs since t(vy,v3) = 4 and t(vz,v3) > 4.

LEMMA 6.4. Given a truss edge e, there is at least a k-chord pattern
Cy one if |INBge(k,e)| = (k — 2).

ProoF. (Sketch). Observe that k-chord pattern on an edge e =
(u, v) implies that k-2 triangles in the graph contain e. Since NB..(k, €)
is the set of nodes W adjacent to u and v such that Yw € W,
t((u,w)) = k and t((w,v)) = k, |[NBgc(k, €)| is equivalent to the
number of triangles around e. Hence, when |NB..(k,e)| = (k — 2),
a k-chord pattern must exist on e. m}

Frequencies of CCPyp(ky,kz) and CCPpt(kq,k2). Consider two dif-
ferent k-cps. CCP¢,, and CCPp; involve merger of a truss edge be-
longing to one k-cp with a non-truss edge belonging to another k-cp.
Given two k-cps Cy, and Cy, let edges e and e; be the truss edges
of Cy, and Cy,,, respectively. Intuitively, a pattern isa CCPin(k1,k2)
if it contains an embedding of Cy, and of Cy, whereby there is an
edge ey in the pattern that belongs to the two embeddings such
that ey, is a truss edge of Cy, s embedding and is a non-truss edge
of Cy,’s embedding, respectively. In other words, Cg, and Cy, can
form a ccp (CCP¢n(k1, kz)) by merging a truss edge e; from Cy,
with a non-truss edge from Cy,, if the following conditions are sat-
isfied: (a) Condition 1: There is a Cy, pattern on e; containing e;.
(b) Condition 2: There is a Cy., pattern on e; where ez # e;.

Note that due to Lemma 6.4, Condition 1 holds if
INBcc(kz,e2) \ {u,v}| = (kz — 2) where e1 = (u,v). Further, if
INBcc(k1, e1) UNBcc(kz, e2) \ {u,v}| = (k1 - 2) + (kz — 2)), then
the pattern CCP¢p(ky, k2) must exist. Hence, TATT0O checks the
conditions iteratively on decreasing k; and skips checks for k), < k;
if the conditions are satisfied for k». The frequency of CCP;p(k1,k2)
is simply the number of such e; edges. For CCPy;(kq, k2), the ap-
proach is the same by swapping Cy., with Cy,.

Frequencies of CCPyp(kq,k2) and CCPpp(ky,kz). Recall that
(Def. 6.2) a single-edge merge can also involve the merger of two
non-truss edges, each from a different k-cp. Each non-truss edge
contains a truss vertex. There are two ways in which two non-truss
edges can merge as shown in Figures 6(b) and (c). In the former
(resp. latter), vertex pairs (w1, wz) (resp. (wz,u1)) and (u1,uz) (resp.
(w1,uz)) are merged. Hence, a pattern is a CCPp,, if it contains at
least one embedding of a structure shown in Figure 6(b) which we
refer to as the skeleton structure of CCPpp, (denoted as Sp,). Hence,
we can search for the S, of a CCPpp, in a TIR graph to compute its
occurrence and frequency. Specifically, a CCPp, can be obtained if
the followings are satisfied: (a) Condition 1: There is a Cy, pattern on

its truss edge e; = (ujuz, v) which contains e; = (ujuz, wywz). (b)
Condition 2: There is a Cy, pattern on its truss edge e3 = (w;wz, x)
which contains e;.

Note that Condition 1 holds if |[NBcc(ki,e1) \ {uiuz, wiwz}| =
(ky — 3) (Lemma 6.4). Similarly, Condition 2 holds if
INBee(kz,e3) \ {uiuz,wiwz}l = (kz — 3). Further, if
INBcc(ky, en)\{uruz, wiwz} | NBcc(kz, e3)\ {uruz, wiwz }| = (k1—
3) + (k2 — 3), then the pattern CCP,,; must exist. The frequency of
a CCPyp, is simply the number of skeleton structures S, in a TIR
graph.

CCPpy is very similar to CCP,, except that the truss vertices of
the merged edges are not combined during the merger. Figure 6(c)
illustrates the skeleton structure of a CCPpgq (S50), which occurs in
all CCPpq. The frequency of a CCPy, is the number of skeleton
structures §;,,.

Observe that freq(CCPnn(ki,kz)) = freq(CCPno(kz, k1)) since
ki and k; can be swapped. The same is true for CCP;p and CCPp;.
Hence, when combining two k-cps, we only consider the case when
ki = ks.

Algorithm. Putting the above strategies together, the ccps are
computed as follows. For each edge in Gr, compute the ki-ccp
node and edge neighbourhoods. Next, it computes the four types
of ccrs based on the above strategies. Note that the smallest ccp
generated is a ccP(3,4) due to Lemma 6.3. Also, we only compute
CCPtn{kl, kz) instead of both CCP;n(kl, kz) and CCPﬂf{kl ,kz) as
CCPp¢(k1, kz2) is covered when k; and ky are swapped.

THEOREM 6.5. The worst-case time and space complexities of the
ccp generation technique are O(k%, 4. |ET||[EBmax |?) and O(kmax | ET|+
|VT|), respectively.

6.3 Patterns from a TOR Graph

Generation of candidates from a TOR graph consists of two phases:
star pattern extraction and small pattern extraction. The former ex-
tracts star and asterism patterns. Subsequently, the edges involved
in these patterns are removed from G resulting in further decom-
position of the Tor graph. The resultant graph is referred to as
the remainder graph (Gg). Then, the second phase extracts paths,
cycles, and small connected subgraphs from Gg.

Extraction of star and asterism patterns. The frequencies
of these patterns can be derived directly from their definitions
(Section 5.2). Specifically, freq(Sy) = |[{v|v € Vp,deg(v) = k}|
and freq(As) = freq({Em = {em,,---.€m,_,}) where ey, =
(ri,ris1) € Eo, {k.ki} = €, deg(ri) = ki and deg(ri+1) = kis1.
Briefly, asterism patterns are found using breadth-first search (BFs).
A vector of vertices is used to keep track of star centers in an aster-
ism pattern. We “grow” the pattern by adding a neighbouring vertex
z of the current star center being considered only if deg(z) > € and
when the size of the grown pattern is less than or equals to 1y gy

LEMMA 6.6. The worst-case time and space complexities of star
and asterism pattern extraction are O(|Vp|?) and O(|Eo| + |Vol).
respectively.

Extraction of small patterns. The remainder graph Gp, is pri-
marily composed of small connected components such as paths,
cycles, and subgraphs with unique topology. We refer to small sub-
graph patterns as connected components in Gg that are neither

1985

k-paths nor k-cycles. Note that 1-path, 2-path, 3-cycle and 4-cycle
are basic building blocks of real-world networks [29]. Recall that in
TATTOO, we consider them as default patterns and they are not part
of the candidate canned pattern set. Hence, we extract all k-paths
for k > 2 and k-cycles for k > 4 and their frequencies. After that,
small connected subgraphs and their corresponding frequencies
are extracted.

LEMMA 6.7. Worst-case time and space complexities to find small
patterns are O(Nmax |VR|hmax!) and O(|Eg| + |Vr|), respectively.

Remark. Exponential time complexity of the small pattern ex-
traction phase is due to the isomorphism check. The time cost is
small in practice due to the small size of candidate patterns and
their number is typically small in Gg.

7 SELECTION OF CANNED PATTERNS

In this section, we describe the algorithm to select canned pattern
set P from the generated candidate patterns. We begin by present-
ing the theoretical underpinning that influences the design of our
algorithm.

7.1 Theoretical Analysis

Due to the hardness of the crs problem, we design an approxi-
mation algorithm to address it. We draw on insights from a re-
lated problem, team formation problem (TFp) [11, 14], which aims
to hire a team of individuals T from a group of experts S for a
specific project where T C S. Bhowmik et al. [11] proposed that
several aspects should be considered in TFp, namely, skill coverage
(skill), social compatibility (social), teaming cost (team) and miscel-
laneous aspects such as redundant skills avoidance (red) and inclu-
sion of selected experts (exp). The formulation of TFP is given as
s(T") = askin fskitl(T') — @sociat fsocial(T') — @ream fream(T') —
ared'ﬁ“ed(T’) + aexpﬁzxp(’r’) where agtji1, @socials ®team red
and @exp are non-negative coefficients that represent the relative
importance of each aspect of team formation [11]. The goal is to
find a team T” C S where the non-negative and non-monotone func-
tion s(T’) is maximized. According to [11], this formulation can
be posed as an unconstrained submodular function maximization
problem which is NP-hard for arbitrary submodular functions.

Selecting a set of canned patterns in cPs is akin to hiring a
team of individuals in TFP where fi1i11, freds fteam correspond
to feov, fsim and fcog, respectively. Hence, cps can be formulated
in the form s(P’) = af;wﬁcov(P’) - afsimf:?fm(P’) - afmgfcog(P’)
(Definition 7.1) where P’ is the set of candidate patterns which
yields an optimized s(P’).

Definition 7.1. [Pattern Set Score] Given a pattern set P’, the
seoreof P’ iss(P') = gk (feoo(P')~frim(P")feog(P')+2IP")
where feov, fsim and feog are the coverage, similarity and cognitive

load of P’, respectively.

Definition 7.2. [Good Candidate Pattern] Given a pattern set
P’ and two candidate patterns p; and pz, py is considered a good
candidate pattern if s(P' | p1) > s(P'|Jpz) and is added to P’
instead of pz.

1986

Note that Definition 7.2 can be utilized for determining inclusion
of a candidate pattern in #. Next, we analyze the properties of f;¢,
fsim, feog, and the pattern score.

Lemma 7.3. Coverage of a pattern set P, feou(P), is submodular.

ProOOF. Given a set of n elements (N), a function f{(.) is sub-
modular if for every A C B C N and j ¢ B, f(A|UJ{j}) — f(4) =
f(BIUJ{j})— f(B). Given a graph G and canned pattern sets P4 and
Ppg where Py C Pg, let the coverage of P4 and Pg be frou(Pa)
and feouv(PB), respectively. Observe that Pg consists of P4 and
additional patterns (i.e, P’ = Pg \ P4). For each canned pattern
p € P welet s = min(|feou(p)l, | feow(P4)|) and K denotes the
overlapping set feou(p) () feow(Pa). The coverage of p falls under
one of the four possible scenarios: (1) K = feou(p) if s = | frov(p),
(2) K = feov(Pa) if s = |feou(Pa)l, (3) K is an empty set and (4)
otherwise (i.e., 0 < |feov(p) () feov(Pa)| < s).

In the case where coverage of every p falls under scenario 1,
feov(Pa) = feow(Pp). If any p falls under scenario 2, 3 or 4, then
feov(Pa) € feow(PB)- Hence, frou(Pa) C feou(PB). Consider
a pattern p” ¢ Pg, let t = min(|feoo(p")l. | feov(Pa)l)- Suppose
feov®@) N feov(Pa) = feov(p”) where |feou (')l < |feou(Pa)l
(Scenario 1), then feow(Pa|J{p’}) — feov(Pa) is an empty set.
Note that we use the minus and set minus operator interchange-
ably in this proof. Since feou(Pa) € feov(PB): feou(Pp U{P'}) =
feov(PB)-Hence, feou(Pa U{p D~ feov(Pa) = feoo(PB U{p'}-
feov(PB).

Now, consider feou(p") N feov(Pa) = feov(Pa) where | feou(p”)|
> | feow(Pa)| (Scenario 2). feov(Pa U{p'})—feov(Pa) = feov(p')-
feov(P4) where foou(Pa) C feov(p’)- Let Land M be frou(p’) \
Jeow(Pa) and feou(PB)\ frow (P 4), respectively. Observe that, sim-
ilar to previous observation, it is possible for (1) L to be fully con-
tained in M if |L| < |M], (2) M to be fully contained in L if |[M| < |L|,
(3) LM M to be empty or (4) otherwise (i.e., 0 < |L[| M| < t where
t = min(|L|,|M])). Hence, |[L(M| € [0,t]. When |[L(M]| = 0,
feov(Pa P’ D~ feou(Pa) = feov(Pp U{P'})— feov(Pp)- Other-
wise, there are some common graphs covered by L and M, resulting
in feou(PB U{p’'})—feou(PB) = L\(L (" M). Hence, | feon(Pa U{p’
= feov(Pa)l > |feou(PB ULP'}) — feou(PB)|. Taken together, for
scenario 2, |feou(Pa lU{p'}) — feov(Pa)l = [feon(P U{P'}) -
feov(PB)I-

Scenario 3 is similar to scenario 2 where Lis fzo0(p). feou(PalJ
{£'}) — feov(Pa) = L and feou(PpU{P'}) — feou(PB) = L\
(LN M). Since [LM]| € [0,], |feou(Pa U{p'}) — feou(Pa)l =
| feou(PB U{P’}} — feou(PB)I-

Scenario 4 is the same as scenario 3 except that L = feou(p”) \
(feow(P4) N feov(p”)). Observe that | feou(Pa U{p"H—feov(Pa)l 2
|feou(PB U{P'}) — feou(PB)l as IL M M] € [0,1].

Hence, in all cases, |feoo(Pa U{P'}) — feov(Pa)l 2 |feou(PB
U{p'}) — feou(PB)l and feou(.) is submodular. o

b

LEmMA 7.4. The similarity (resp. cognitive load) of a pattern set
P, fsim(P) (resp. fmg(P}), is supermodular.

ProoF. Given a submodular function f(.), for every P4 C Pg C
D and every p C D st p & P4, PB, the first order difference states

that f(P4 U{p}) — f(Pa) = f(PB U{p}) - f(Pp). Given a graph

G, a canned pattern p ¢ Ppg and canned pattern sets 4 and Pp

where P4 C Pg, let the similarity of P4 and Pg be f5im(P4) and

fsim(PB), respectively. fsim(¥B U{p}) fsim(PB)

Spreps simp.pi) and fsim®Pa Ulp) — fim®a) = Tpyeps

sim(p, p;). Since sim(p;,p;j) = 0 Vp;,pj € G, P4 C Pp and by

definition of the first order difference, fsim(.) is supermodular.
The proof is similar for feog(.).

]

THEOREM 7.5. The pattern set score s(P') in Definition 7.1 is a
non-negative and non-monotone submodular function.

ProOF. (Sketch). Consider a partial pattern set £’ and a can-
didate pattern p. Suppose p does not improve the set coverage
of P’ and adds a high cost in terms of cognitive load and diver-
sity. Then, s(P’) > s(P’ [U{p}). Hence, s(.) is non-monotone. Since
feoo(P), fsim(P’), feog(P’) € [0.1P'[], feoo(P’) = fsim(P') —
ﬁ;og(?”} is in the range [-2|P’|,|P’|]. Hence, ﬁ(ﬁ;ov{?’} —
Sfsim(P")—feog(P’)+2|P’|) is in the range [0, 1] and is non-negative.
Since supermodular functions are negations of submodular func-
tions and non-negative weighted sum of submodular functions
preserve submodular property [18], s(P’) is submodular. Note that
adding a positive constant (i.e., %) does not change the submodular
property [11] and ensures that s(#’) is non-negative. The scaling
factorsof af = af, = a0y = ﬁ further bound s(P’)
within the range [0, 1]. m}

Similar to s(T’) in TFP, (') in CPs is non-negative and non-
monotone. However, unlike TFP, cPs imposes a cardinality con-
straint where |P| is at most y. Thus, cPs can be posed instead as a
maximization of submodular function problem subject to cardinal-
ity constraint [13].

7.2 Coverage, Cognitive Load, and Similarity
Next, we quantify the coverage, cognitive load, and similarity mea-
sures used in the pattern score s(P’).

Coverage. Recall from Section 4, we can compute the cover-
age of a pattern p as covp = |ig|s(p)| Eil- Since the edge sets
of Gt = (Vr.E7) and Go = (Vp,Ep) are mutually exclusive,
we further modify covp to include a weight factor to account for
effects exerted by the sizes of Gt and Go. Specifically, covp, =
[Uic|s) E,-|% where Gy € {G,Ggp} for patterns obtained
from G,. However, exact computation of coverage for each can-
didate pattern is prohibitively expensive. Hence, we approximate
%. Observe that
€OUyp(p) 1s in fact the upper bound of covp when no isomorphic
instances of p in G overlap. Any superior upper bound that can be
computed efficiently can be incorporated. Unlike covp, computa-
tion of covy,p(p) requires only freq(p), which is significantly more
efficient.

covp as follows: covyp(p) = |Ep| X freg(p) X

The order of pattern extraction in Go (e.g., extracting stars and
asterisms before small patterns) may affect the frequency of the
extracted patterns. Hence, normalization of cov,j, is performed for
each class of patterns (k-cp, ccp, star, asterism, and small pattern)
as follows:

cot);b(p) - Mm(cov;b(P‘)+1

Max(cov;bfpf)} - Min(cova(Pt}) +1 @)

COUub(p) =

1987

where t € {k — CP,CCP, star, asterism, small} represents a class
of pattern. Specifically, we compute k-cps and ccps in Gr. Stars,
asterisms and small patterns are computed in Go. The normalized
covyp is in [0-1].

Cognitive Load. [23, 24] measure cognitive load based on size
and density only, ignoring edge crossings. Since it is designed for a
collection of small- or medium-sized data graphs, it is a reasonable
measure as in many applications such data graphs have very few
edge crossings (e.g., chemical compounds), if any. In contrast, edge
crossings occur frequently in large networks and hence cannot be
ignored in our context. In fact, Huang and colleagues examined
the effect of edge crossings on mental load of users and found
that cognitive load displays a relationship with edge crossings that
resembles the logistic curve [21] f(x) = m where L is the
curve’'s maximum value, x¢ is the x value of sigmoid’s midpoint
and k is the logistic growth rate [43].

LEMMA 7.6. The crossing number (ie., number of edge crossings)
of any simple graph G = (V,E) with at least 3 vertices satisfies
cr = |[E| - 3|V| + 6.

ProoF. (Sketch) Consider a graph G = (V, E) with cr crossings.
Since each crossing can be removed by removing an edge from G,
a graph with |E| — ¢r edges and |V| vertices contains no crossings
(i.e., planar graph). Since |E| < 3|V| — 6 for the planar graph (i.e,
Euler’s formula), hence, |E| — cr < 3|V| — 6 for [V| = 3. Rewriting
the inequality, we have cr > |E| — 3|V| + 6. m}

Hence cognitive load of a pattern p is computed based on the
E,
size (szp = |Epl), density (dp = 2ﬁf‘;|lfl)) and edge crossing
plllVp
(crp). crp = 0 if p is planar. Otherwise, it is crp = |Ep| — 3|Vp| + 6.
We modelled the normalized cognitive load function in TaTTOO
according to the logistic curve:

—o.sx(szp+dp+crp—10)}

(3)
Parameters of cogp are set empirically to ensure even distribution
within the range of [0 1].

Similarity. Given a partial pattern set ' and two candidate
patterns p; and p;, TATTOO selects p; preferentially to add to P’
if max, cpr sim(py1, p) < maxycpr sim(pz, p). To this end, we utilize
NetSimile, a size-independent graph similarity approach based on
distance between feature vectors [8]. It is scalable with runtime
complexity linear to the number of edges.

cogp, =1/(1+e

7.3 CPS-Randomized Greedy Algorithm

The canned pattern selection algorithm is as follows. First, it re-
trieves the default pattern set (1-path, 2-path, 3-cycle and 4-cycle).
Next, it prunes candidate patterns whose sizes do not satisfy the
plug specification or are “nearly-unique” (i.e., freq(p) < § where &§
is a pre-defined threshold). Note that the latter patterns have very
low occurrences in G and are unlikely to be as useful for query con-
struction in their entirety?. Then, it selects P from the remaining
candidates.

Recall from Section 7.1, the cps problem can be cast as a max-
imization of submodular function problem subject to cardinality

3In the case, a user is interested in patterns with low coverage, & can be set to 0 along with the
reduction in af,_, . (P) in s(P') (Defn. 7.1).

Default patterns Candidate patterns

D, Patterns Freq
150
100

25

1-path

O O
P O

J-cycle 4 cycle

P2
Ps

Ps 75

Figure 7: Default patterns and candidate patterns.

constraint. Recently, the algorithm community has proposed a tech-
nique with quality guarantee in [13] to address it. We exploit this
approach, referred to as CPS-Randomized Greedy (CPS-R-Greedy),
in our cps problem. To the best of our knowledge, this approach
has not been utilized for graph querying.

In particular, CPS-R-Greedy extends the discrete greedy algo-
rithm [30] using a randomized approach. At every step, a random
candidate pattern is chosen from a set of “reasonably good” can-
didates. Intuitively, these candidates should have very few edge
crossings, good coverage and are different from patterns already
in . These candidates are identified as follows. For every candi-
date pattern p, we compute the pattern set score (Definition 7.1)
assuming p is added to the canned pattern set. A “good” candidate
p improves on the score of the set when it is added (Definition 7.2).
Note that cov,,j, cog, and sim changes as changes. Hence, we re-
compute them at every iteration. Then, we randomly select a “good”
candidate and assign it to 7. The algorithm terminates either when
the set contains the desired number of patterns or when there exists
no more good candidates. The following quality guarantee can be
derived from [13].

. 1 . .
THEOREM 7.7. CPS-R-Greedy achieves ,-approximation of cps.

THEOREM 7.8. CPS-R-Greedy has worst-case time and space com-
plexity of O(|Pcand|y|Vmax||Vmax|!) and O(|Pcandl(|Vmax|+|Emax|
respectively, where |Vmax| and |Emax | are the number of vertices and
edges in the largest candidate pattern.

Example 7.9. Consider a cui [and a plug b = (3,11, 6). Suppose
there are four default patterns and five candidate patterns (i.e.,
P.and) as depicted in Figure 7. Let § = 10. The algorithm first
removes py since freq(ps) < 6. Then, for the remaining patterns
in P.4nd, €ach is considered in turn to be added to P by exploiting
CPS-R-Greedy. It first considers adding p; to ? and computes the
resulting coverage (feopub(® | p,))s cognitive load (feog(® | py))
and similarity (fsim(® | p,))- The pattern set score of P | p1 is then
computed using Definition 7.1. The scores of the other candidate
patterns are computed similarly. Suppose the scores are 0.72, 0.63,
0.54, 0.68 for py, p2, p3, ps, respectively. Then, in the first iteration,
Py is selected (and removed from subsequent iterations) and the
current best score sp,¢; is updated to 0.72. In the next (i.e., final)
iteration, the candidates are again considered in turn to be added
to P and corresponding pattern set scores are computed. However,
unlike the first iteration, only those candidates whose scores are
greater than sp,¢; are considered. Let the scores of ps, p3 and ps be
0.81, 0.7 and 0.77, respectively. Then, a candidate will be randomly
selected from p; or ps. Suppose p; is chosen, then the final pattern
set is {d1,dz2,d3,ds, p1,p2}. [|

))J

1988

E
Random patterns M

fault patterns cmmm
CATAPULT s

Figure 8: Query formulation time in user study.

8 PERFORMANCE STUDY

TaTTOO is implemented in C++ with GCC 4.2.1 compiler. We now
report the key performance results of TaTTOO. Additional results
and a case study are discussed in [41]. All experiments are per-
formed on a 64-bit Windows 10 desktop with Intel(R) Core(TM)
i7-4770K CPU (3.50GHz) and 16GB RAM.

8.1 Experimental Setup

Datasets. We evaluate TATTOO’s performance using 10 large net-
works (Table 2) from snaP (http://snap.stanford.edu/data/index.
html) containing up to 34.7 million edges.

Algorithms. State-of-the-art cuis for large networks [31, 32]
do not support canned patterns. Hence, we compare TATTOO with
the following baselines: (a) CATAPULT [23]: We assign same labels
to all nodes of a network and partition it into a collection of small-
or medium-sized data graphs using METIs [27]. Then the algorithm
in [23] is used to select canned patterns. (b) Use graphlets, frequent
subgraphs, random patterns, default patterns, and edge-at-a-time
(i.e., pattern oblivious): x-node graphlets where x € [2 — 5] are gen-
erated using the approach in [15]. Random patterns are generated
by randomly selecting subgraphs of specific sizes from a network.
The number of candidates per size follows a uniform distribution.
Frequent subgraphs are generated using Peregrine [26] (downloaded
from [3]). These subgraphs are considered as candidates from which
the canned patterns are selected using our algorithm in Section 7.3.

Query sets and GUIL. We use different query sets for the user
study and automated performance study. We shall elaborate on
them in respective sections. The U1 used for user study is viewable
at https://youtu.be/sL0yHV1eEPw.

Parameter settings. Unless specified otherwise, we set nmin =
3, Nmax =15,y =30, =3,and e = 5.

Performance measures. We measure the performance of TaT-
T0O using the followings: (1) Run time: Execution time of TATTOO.
(2) Memory requirement (MR): Peak memory usage when executing
TaTT0O0. (3) Reduction ratio (denoted as u): Given a subgraph query

_ Stepiorai—Stepp

Qn= steprotal
steps required to construct Q when P is used and step; ;47 is the

total number of steps needed when edge-at-a-time approach is used.
Note that the number of steps excludes vertex label assignments
which is a constant for a given Q regardless of the approach. For
simplicity in automated performance study, we follow the same
assumptions in [23]: (1) a canned pattern p € can be used in Q
iff p C Q; (2) when multiple patterns are used to construct Q, their
corresponding isomorphic subgraphs in Q do not overlap. In the
user study, we shall jettison these assumptions by allowing users
to modify the canned patterns and no restrictions are imposed (i.e.,

where stepp is the minimum number of

Edge-at-a-time &KX
Default patterns &=
Random patterns mm

Graphlets £
TATTOO ™
CATAPULT

Peregrine zz1

Figure 9: Query construction steps in user study.

30
Z 20
= 10

30
Zoof
= 10

Q2 Q4 Q5
Random patterns
Graphlets =xxx3

Figure 10: Visual mapping time of canned patterns.

Q1

Q2 Q3 Q4
TATTOO C—
Peregrine e=z==m

Q5

AM (TATTOO) ' YT (Graphlet) YT (Peregfine)

0 1(10) Q4(21) Q5(26)
P|=30 m—

0 Q1(10) Q2(15) Q4(21)
|P|=15 ——=

Q1(11) Q3(19) Q5(26)

IPI=5 ===
Figure 11: Effect of varying |P| on QFT and steps. Query size
is indicated in round brackets.

stepp does not need to be minimum). Smaller values of div imply
better pattern diversity. For ease of comparison, the diversity plots
are based on the inverse of div.

8.2 User Study

We undertake a user study to demonstrate the benefits of using
our framework from a user’s perspective. 27 unpaid volunteers
(ages from 20 to 35), who were students of, or, researchers within
different majors took part in the user study. None of them has used
our GUI prior to the study. First, we presented a 10-min scripted
tutorial of our Gur describing how to visually formulate queries.
Then, we allowed the subjects to play with the tool for 15 min.

For each dataset, 5 subgraph queries with size in the range [10-
28] are selected. These queries mimic topology of real-world queries
containing various structures described in Section 5.2. To describe
the queries to the participants, we provided printed visual subgraph
queries. A subject then draws the given query using a mouse in our
GUIL The users are asked to make maximum use of the patterns to
this end. Each query was formulated 5 times by different partici-
pants. We ensure the same query set is constructed in a random
order (the order of the query and the approach are randomized) to
counterbalance learning effects (see [41] for details).

The canned patterns on the Gur are grouped by size and dis-
played using ForceAtlas2 layout [25] in different pages according
to their sizes. This multi-page-based organization yields faster av-
erage query formulation time and fewer steps compared to other
alternatives (see [41] for details).

Visual mapping time. In order to use canned patterns for query

formulation, a user needs to browse the pattern set and visually
map them to her query. We refer to this as visual mapping time
(vmT). For each pattern used, we record the pattern mapping time
(pMmT) as the duration when the mouse cursor is in the Pattern Panel
to the time a user selects and drags it to the Query Canvas. The

1989

indicates <0.01s

Generation time(s)

Runtime(s)

£
B
2
=

%

Bl

%

X

X

Figure 12: Run time. GD, CG and PS represent truss-based
graph decomposition, candidate generation and pattern se-
lection, respectively.

1

Diversity 08

0.9
0.7
0.8
0.7 0.6
YT AM GO YT AM GO YT AM GO
Graphlets 3 TATTOO ==

Figure 13: TATTOO vs graphlet patterns.

vMT of a query is its average PMT. Intuitively, a longer vmT implies
greater cognitive load on a user. Figure 10 shows the vMT of TATTOO
patterns, graphlets, frequent subgraphs, and random patterns on
AM and YT datasets. On average, TATTOO patterns consume the least
VMT.

Query formulation time (QFT) and number of steps. Figures 8 and
9 plot the average QFT and the average number of steps taken,
respectively, for Am and vT. Note that a QFT includes the vmT
and the steps include addition/deletion of nodes and edges and
merger of nodes. As expected, the edge-at-a-time approach took
the most steps. Paired t-test shows that the superior performance
of TATTOO is statistically significant (p < 0.05) for 79.4% of the
comparisons (see [41] for details). In particular, it takes up to 18X,
9.3X, 6.7X, 8X, 9X, and 9X fewer steps compared to edge-at-a-time,
default pattern, random patterns, graphlet, frequent patterns, and
CAtaPULT-generated patterns, respectively. For QFT, TATTOO is
up to 9.7X, 8.6X, 9X, 6.6X, 7.1X, and 7.4X faster, respectively. The
results are qualitatively similar in other datasets. Note that we can
run CATAPULT only on AM for reasons discussed later.

Effect of |P|. The number of patterns on a Gul may also impact

a user cognitively as larger || means a user needs to browse more
patterns to select relevant ones. Hence, we investigate the effect
of || on QFT and the number of steps (Figure 11). Interestingly,
QFT and steps are reduced by average of 12% and 22% (maximum
reduction of 77% and 80%), respectively, when |P| is increased
from 5 to 30. Increase in || exposes more patterns that could
be leveraged for query formulation, reducing query formulation
steps. Further, it results in two opposing effects: (1) longer time
needed to browse and select appropriate patterns (longer vMmT)
and (2) potentially more and larger patterns available for query
construction resulting in fewer construction steps and shorter QFT.
The latter effect dominates.

8.3 Automated Performance Study

In this section, we evaluate TaTTOO from the following perspectives.
First, we compare the runtime and quality of patterns of TaTTOO
with the baseline approaches (Exp 1, 2). Second, we present results
that support some of our design decisions (Exp 3, 4). To this end,
we generate 1000 queries (size [4-30]) for each dataset where 500

are randomly generated and remaining ones (evenly distributed)
are path-like, tree, star-like, cycle-like and flower-like queries.

Exp 1: Run time. First, we evaluate the generation time of dif-
ferent patterns types in canned pattern sets. Figure 12 (top) shows
the results. In particular, generation of chord-like patterns requires
significantly more time (up to 146% more for 1j) than other pattern
types. This is primarily due to checks for different types of edge
merger required for ccps. Figure 12 (bottom) reports the time taken
by various phases of TATTOO as well as runtime of CATAPULT. TaT-
100 selects canned patterns efficiently within a few minutes. Observe
that the time cost for the small pattern extraction phase is small in
practice. In general, pattern selection is the most expensive phase
and requires a couple of minutes or less. Results are qualitatively
similar for other datasets. Memory usage is reported in [41].

Lastly, observe that TaTTo0 is 735X faster than CATAPULT, which
is not designed for large networks. Except AM, other datasets either
cannot be processed by METIs or fail to generate patterns in a
reasonable time (within 12 hrs) due to too many possible matches
of unlabelled graphs that require expensive graph edit distance
computation. In the sequel, we shall omit discussions on CATAPULT.

Exp 2: Comparison with graphlets and frequent subgraphs.
Next, we compare TATTOO’s patterns with those of graphlets (30
patterns derived from graphlets). Figure 13 reports the results. Ob-
serve that TATTOO’s patterns are superior to graphlets in all aspects.
The results are qualitatively similar for other datasets. Note that
coverage is not examined since it is 100% in all cases as all queries
can be constructed using a 2-node graphlet.

We compare the canned pattern set derived from frequent sub-
graphs generated by Peregrine (denoted as Pp) to those generated
by TaTT0O. We observe that Peregrine failed to extract larger size
patterns (i.e., |V| = 8) within 12 hrs for all networks. Specifically,
for Rp, RC, and RT (resp. AM), it was able to extract frequent pat-
terns of size |V| < 7 (resp. |V| < 6) within 2.5 hrs. For BK and
DB (resp. YT, 1], SK, and GO) it can extract up to size |V| < 5 (resp.
|V| < 4) within 2.5hrs. However, it took around 39 hrs on AM to
yield a meaningful number of candidate patterns (994 patterns with
|V| < 7 and |E| < 21) when the minimum threshold is set to 100.
Hence, TATTOO is orders of magnitude faster than frequent pattern-
based solution. Consequently, we restrict the canned pattern sets
of both TaATTOO and Pp to 30 patterns with |V| < 7 and |E| < 21
for AM in our experiments for fair comparison. Consistent with our
user study, TATTOO’s pattern set is superior to Pp in most aspects.
The average coverage, cognitive load, diversity and p for TATTOO
(resp. Peregrine) are 0.3 (resp. 0.27), 0.15 (resp. 0.14), 0.64 (resp. 0.59)
and 0.23 (resp. 0.24), respectively. In summary, TATTOO generates
better quality canned patterns.

Exp 3: Measuring cognitive load. We now justify the choice
of our proposed cognitive load measure. Specifically, we compare
several ways of measuring cognitive load of a pattern p, namely,

ﬁ:ogl = %er{szp,dp,crp}(l_e_x);ﬁ:ogz = u{l+e—0.5x(szp+dp+crp—10])

feogs = szp + dp + crp; froga = szp X dp (used in [23]); and
feogs = crp (recall szp, dp, crp from Section 7.2). 20 volunteers were
asked to rank the visual representations of six graphs (Figure 14) of
varying sizes and topology, in terms of cognitive effort required to
interpret these graphs. A “ground truth” ranking for these graphs

is obtained based on the average ranks assigned by the volunteers.

Qa4 (IV|=8, |[E|=13)
YT

Qs (VI=8, |[El=19)

Q6 (|V|=8, |E|=23)

Figure 14: Graphs used for assessing cognitive load.

g i 07 = 084 —
2 osf {= o8 g 0%
8 0 |-|. |_|- |_|.- 05 8 09

L) AM SK Ll AM SK

LI AM SK
Defaulis+k—fruss patterns mm Defaults+chord-like patterns

Figure 15: Chord-like patterns vs k-trusses.

Then, the graphs are ranked according to the five cognitive load
measures and compared against the ground truth using Kendall’s
7 [28]. frogz and frogs achieve the highest = 1. We select frog2
as the cognitive load measure since it is in the range of [0, 1] and
facilitates easy formulation of a non-negative and non-monotone
submodular pattern score function (Theorem 7.5).

Exp 4: Chord patterns vs k-trusses. Lastly, we show the ben-
efits of using k-cp/ccps (i.e, k-truss-like structures) compared to
simply utilizing k-trusses as topology for canned patterns (recall
from Section 5.2). We generate 100 random queries of size [4-30]
from Gt and these yielded 11 k-cp/ccps and 3 k-trusses. Observe
that k-cp/ccps improve both p and diversity but have poorer cog-
nitive load (Figure 15). Here the cognitive load and diversity of a
pattern set is the average value for respective measures. Importantly,
more k-cP/ccPs than k-trusses satisfying the plug are generated
due to relaxed structure of the former. For instance, the rp dataset
produces 266.67% more k-cp/ccPs due to the small size of Gt (see
Table 2). That is, k-trusses may not result in sufficient number
of canned patterns on a cul. Hence, chord patterns improve the
quality of canned patterns in terms of y and diversity compared to
k-trusses and yield more candidate patterns.

9 CONCLUSIONS & FUTURE WORK

Canned patterns play a pivotal role in supporting efficient visual
subgraph query formulation using direct-manipulation interfaces.
We present TaATTOO, which takes a data-driven approach to select-
ing them from the underlying network by exploiting real-world
query characteristics and optimizing coverage, diversity, and cog-
nitive load of the patterns. Our experimental study demonstrates
superiority of our framework to several baselines. As part of future
work, we plan to explore the problem in a distributed settings.
ACKNOWLEDGMENTS

The first four authors are supported by the AcRF Tier-2 Grant
MOE2015-T2-1-040. Wook-Shin Han was supported by Institute of
Information & communications Technology Planning & Evaluation
(ITP) grant funded by the Korea government (MSIT) (No. 2018-0-
01398). Byron Choi is supported by HKBU12201518.

1990

REFERENCES

[9

=

[10

(11

[12]

[13

[14]

(15

[16

[17]

[18

[19]

[20]

[21

[22]

[23

2021. Neo4j Bloom. https://neo4j.com/bloom.

2021. BSBM. http://wifo5-03.informatik.uni-mannheim.de/bizer/
berlinsparqlbenchmark/spec/20080912/index.html#queriesTriple.

2021. Peregrine https://github.com/pdclab/peregrine.

2021. RAPID. https://research.csc.ncsu.edu/coul/RAPID/RAPIDAnalytics/.

2021. Stanford Large Network Dataset Collection. http://snap.stanford.edu/data/
index.html.

Foto N. Afrati, Dimitris Fotakis and Jeffrey D. Ullman. 2013. Enumerating sub-
graph instances using map-reduce. In IEEE 29th International Conference on Data
Engineering. IEEE, 62-73.

Nesreen K. Ahmed, Jennifer Neville, Ryan A. Rossi and Nick Duffield. 2015. Effi-
cient graphlet counting for large networks. In 2015 IEEE International Conference
on Data Engineering. IEEE, 1-10.

Michele Berlingerio, Danai Koutra, Tina Eliassi-Rad and Christos Faloutsos.
2013. Network similarity via multiple social theories. In Proceedings of the 2013
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining. IEEE/ACM, 1439-1440.

Sourav S. Bhowmick, Byron Choi and Curtis E. Dyreson. 2016. Data-driven visual
graph query interface construction and maintenance: challenges and opportuni-
ties. Proceedings of the VLDB Endowment 9, 12 (2016), 984-992.

Sourav S. Bhowmick, Kai Huang, Huey Eng Chua, Zifeng Yuan, Byron Choi
and Shuigeng Zhou. 2020. AURORA: Data-driven construction of visual graph
query interfaces for graph databases. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. ACM, 2689-2692.

Avradeep Bhowmik, Vivek Borkar, Dinesh Garg and Madhavan Pallan. 2014.
Submodularity in team formation problem. In Proceedings of the 2014 SIAM
International Conference on Data Mining. SIAM, 893-901.

Angela Bonifati, Wim Martens and Thomas Timm. 2017. An analytical study of
large sparql query logs. Proceedings of the VLDB Endowment 11, 2 (2017), 149-161.
Niv Buchbinder, Moran Feldman, Joseph Naor and Roy Schwartz. 2014. Submod-
ular maximization with cardinality constraints. In Proceedings of the 2014 Annual
ACM-SIAM Symposium on Discrete Algorithms. SIAM, 1433-1452.

Shi-Jie Chen and Li Lin. 2004. Modeling team member characteristics for the
formation of a multifunctional team in concurrent engineering. IEEE Transactions
on Engineering Management 51, 2 (2004), 111-124.

Xiaowei Chen, Yongkun Li, Pinghui Wang and John C.S. Lui. 2016. A general
framework for estimating graphlet statistics via random walk. Proceedings of the
VLDB Endowment 10, 3 (2016), 253-264.

Aarzoo Dhiman and S.K. Jain. 2016. Frequent subgraph mining algorithms for
single large graphs - A brief survey. In 2016 International Conference on Advances
in Computing, Communication, & Automation. IEEE, 1-6.

Basil Ell, Denny Vrande¢i¢ and Elena Simperl. 2011. Deriving human-readable
labels from SPARQL queries. In Proceedings of the 7th International Conference on
Semantic Systems. ACM, 126-133.

Satoru Fujishige. 2005. Submodular functions and optimization (2nd edition). Else-
vier BV., Amsterdam, The Netherlands.

Saket Gurukar, Sayan Ranu and Balaraman Ravindran. 2015. Commit: A scalable
approach to mining communication motifs from dynamic networks. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data.
ACM, 475-489.

Tomaz Hocevar and Janez Demsar. 2014. A combinatorial approach to graphlet
counting. Bioinformatics 30, 4 (2014), 559-565.

Weidong Huang and Maolin Huang. 2010. Exploring the relative importance
of crossing number and crossing angle. In Proceedings of the 3rd International
Symposium on Visual Information Communication. ACM, 1-8.

Weidong Huang, Peter Eades and Seok-Hee Hong. 2009. Measuring effectiveness
of graph visualizations: A cognitive load perspective. Information Visualization 8,
3(2009), 139-152.

Kai Huang, Huey Eng Chua, Sourav S. Bhowmick, Byron Choi and Shuigeng
Zhou. 2019. CATAPULT: Data-driven selection of canned patterns for efficient
visual graph query formulation. In Proceedings of the 2019 International Conference
on Management of Data. ACM, 900-917.

1991

[24

[25

[26

&
=

28
29

[30

[31

[32

[36

[37

[38

[40

[41

[42

[43

[44]

Kai Huang, Huey Eng Chua, Sourav S. Bhowmick, Byron Choi and Shuigeng Zhou.
2021, MIDAS: towards efficient and effective maintenance of canned patterns in
visual graph query interfaces. In Proceedings of the 2021 International Conference
on Management of Data. ACM, 764-776.

Mathieu Jacomy, Tommaso Venturini, Sebastien Heymann and Mathieu Bas-
tian. 2014. ForceAtlas2, a continuous graph layout algorithm for handy network
visualization designed for the Gephi software. PLOS ONE 9, 6 (2014), €98679.
Kasra Jamshidi, Rakesh Mahadasa and Keval Vora. 2020. Peregrine: a pattern-
aware graph mining system. In Proceedings of the Fifteenth European Conference
on Computer Systems. ACM, 1-6.

George Karypis and Vipin Kumar. 1997. METIS: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing orderings of
sparse matrices. Technical Report. University of Minnesota.

Maurice George Kendall. 1948. Rank correlation methods. Griffin.
Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii

and Uri Alon. 2002. Network motifs: Simple building blocks of complex networks.
Science 298, 5594 (2002), 824-827.

George L. Nemhauser, Laurence A. Wolsey and Marshall L. Fisher. 1978. An anal-
ysis of approximations for maximizing submodular set functions-I. Mathematical
Programming 14, 1 (1978), 265-294.

Robert Pienta, Fred Hohman, Acar Tamersoy, Alex Endert, Shamkant Navathe,
Hanghang Tong and Duen Horng Chau. 2017. Visual graph query construction
and refinement. In Proceedings of the 2017 ACM International Conference on
Management of Data. ACM, 1587-1590.

Robert Pienta, Fred Hohman, Alex Endert, Acar Tamersoy, Kevin Roundy, Chris
Gates, Shamkant Navathe and Duen Horng Chau. 2018. VIGOR: Interactive
visual exploration of graph query results. IEEE Transactions on Visualization and
Computer Graphics 24, 1 (2018), 215-225.

Natasa Przulj, Derek G. Corneil and Igor Jurisica. 2004. Modeling interactome:
Scale-free or geometric? Bioinformatics 20, 18 (2004), 3508-3515.

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin and M. Tamer
Ozsu. 2017. The ubiquity of large graphs and surprising challenges of graph
processing. Proceedings of the VLDB Endowment 11, 4 (2017), 420-431.
Muhammad Saleem, Ali Hasnain and Axel-Cyrille Ngonga Ngomo. 2018. Larg-
eRDFBench: A billion triples benchmark for spargl endpoint federation. Journal
of Web Semantics 48, 85-125.

Ben Shneiderman and Catherine Plaisant. 2010. Designing the user interface:
Strategies for effective human-computer interaction (5th edition). Addison-Wesley,
Boston, M.A.

Shixuan Sun and Qiong Luo. 2020. In-memory subgraph matching: An in-depth
study. In Proceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data. ACM, 1083-1098.

Chad Voegele, Yi-Shan Lu, Sreepathi Pai and Keshav Pingali. 2017. Parallel triangle
counting and k-truss identification using graph-centric methods. In 2017 IEEE
High Performance Extreme Computing Conference. IEEE, 1-7.

Jia Wang and James Cheng. 2012. Truss decomposition in massive networks.
Proceedings of the VLDB Endowment 5, 9 (2012), 812-823.

Xiao Fan Wang and Guanrong Chen. 2003. Complex networks: Small-world,
scale-free and beyond. IEEE Circuits and Systems Magazine 3, 1 (2003), 6-20.
Zifeng Yuan, Huey Eng Chua, Sourav S. Bhowmick, Zekun Ye, Wook-Shin Han
and Byron Choi. 2021. Towards plug-and-play visual graph query interfaces: data-
driven canned pattern selection for large networks. Technical Report. Nanyang
Technological University. Available at: http://arxiv.org/abs/2107.09952

Vahan Yoghourdjian, Daniel Archambault, Stephan Diehl, Tim Dwyer, Karsten
Klein, Helen C. Purchase and Hsiang-Yun Wu. 2018. Exploring the limits of com-
plexity: a survey of empirical studies on graph visualization. Visual Informatics 2,
4(2018), 264-282.

Boris Zeide. 1993. Analysis of growth equations. Forest Science 39, 3 (1993), 594-
616.

Jinbo Zhang, Sourav S. Bhowmick, Hong H. Nguyen, Byron Choi and Feida Zhu.
2015. DaVinci: Data-driven visual interface construction for subgraph search in
graph databases. In 2015 IEEE 31st International Conference on Data Engineering.
IEEE, 1500-1503.

