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ABSTRACT
Automated machine learning (AutoML) promises to democratize

machine learning by automatically generating machine learning

pipelines with little to no user intervention. Typically, a search

procedure is used to repeatedly generate and validate candidate

pipelines, maximizing a predictive performance metric, subject to

a limited execution time budget. While this approach to generating

candidatesworkswell for small tabular datasets, the same procedure

does not directly scale to larger tabular datasets with 100,000s

of observations, often producing fewer candidate pipelines and

yielding lower performance, given the same execution time budget.

We carry out an extensive empirical evaluation of the impact that

downsampling – reducing the number of rows in the input tabular

dataset – has on the pipelines produced by a genetic-programming-

based AutoML search for classification tasks.
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1 INTRODUCTION
Building and tuning well performing machine learning systems

is a difficult task that benefits from domain and specialized data

science knowledge [11, 14, 29, 61]. Developing a machine learning

pipeline requires users to identify the relevant algorithms, decide

how to compose these, choose the key hyperparameters and their

values for each algorithm, and then implement this pipeline (typi-

cally) using a third-party library [15, 49]. To further increase the
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complexity of the task at hand, the user will likely need to change

their choices depending on the dataset they are working with, and
empirically validate the performance of their pipeline candidates.

The complexity of this task has motivated the use of automated

systems which can generate pipelines, validate them, and identify

the best performing pipeline within a given execution time bud-

get. These systems have been broadly termed automated machine

learning (AutoML) [27].

Due to the size of the pipeline search space, many AutoML

search procedures traditionally require significant computational

resources and time, up to the order of days [25, 32]. These require-

ments increase further when AutoML is applied to a dataset with

more than a few thousand observations. The difficulty of scaling

existing AutoML search procedures to large datasets has been doc-

umented in both the literature [35, 45] and user reports [3–5].

Many popular machine learning algorithms display high run-

time complexity as a function of the number of observations in the

dataset. For example, the training time complexity of decision trees

in scikit-learn [46], the popular Python machine learning library, is

𝑂 (𝑛 log(𝑛)𝑚) [1] in the number of observations (𝑛) and the number

of features (𝑚), while the time complexity for support vector ma-

chines (with non-linear kernels) is 𝑂 (𝑛3𝑚) (or 𝑂 (𝑛2𝑚) if efficient

caching is used) [2]. While such complexities may not be onerous

when training a single model, in the context of AutoML we are

interested in training (and evaluating) 1,000s to 10,000s of models,

which becomes increasingly difficult with a growing number of

observations.

1.1 Impact of Downsampling on GP-Based
AutoML for Classification

We empirically investigate the use of a preprocessing step to im-

prove the scalability of genetic programming-based AutoML to

large classification datasets: downsampling the training data. By

executing the main search loop on a substantially smaller amount of

data, the search procedure can generate and evaluatemore pipelines,

and explore the use of more computationally expensive operators,

given the same execution time budget. Importantly, downsampling

is a conceptually simple and non-intrusive strategy, which is com-

patible with existing AutoML systems.
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To motivate the use of downsampling, we focus our study on

the impact that downsampling has on TPOT [43], a popular GP-

based AutoML tool. We carry out this study by collecting a bench-

mark set of 20 datasets from OpenML [55], DARPA D3M [18], and

Criteo [34]. We focus our data collection on medium to large clas-

sification datasets, a subset of dataset sizes that has traditionally

been missing from AutoML benchmarking suites [12] due to the

associated computational burden. Medium to larger datasets are

particularly important as they more closely reflect the increasingly

large amounts of data in industry [42], and they are a challenge for

existing AutoML systems. We use these 20 datasets to explore the

impact of varying downsampling ratios and execution time budgets,

the two main hyperparameters associated with downsampling.

Our results show that, for genetic programming-based AutoML,

downsampling provided significant benefits for large classification

datasets. In particular, we found that for 18 of 20, the search proce-

dure produced a higher scoring pipeline when we downsampled

the training data. For 14 out of 16 of the larger datasets, the op-

timal downsampling ratio in our evaluation ranged between 0.01

and 0.2, a significant reduction in the number of observations used

during the search for candidate pipelines. Our results show that

when executing the search with the dataset-optimal downsampling

ratio, the search procedure evaluated up to 4.5 times more pipelines

than when the procedure is carried out on the original dataset. We

also evaluated the impact that longer execution time budgets (up

to 10 hours) can have on the four datasets where downsampling

provided the largest performance improvement. We found that for

these datasets running up to 10 hours provided some performance

improvements when we downsampled, and larger improvements

for the setting where we use the full dataset. However, for all four

datasets we found better performing pipelines when searching for

5 minutes on the optimally downsampled dataset compared to 240

minutes on the full dataset. This still holds true for three out of four

datasets when extending the execution time budget to 600 minutes.

We carried out a qualitative analysis of the pipelines produced

when downsampling and compared these to those produced when

executing the search on the original dataset. Our analysis considers

480,000 pipelines generated, which consist of over 920,000 individ-

ual operators. We found that 8 different API components constitute

the top 5 most frequently occurring operators across all our sam-

pling ratios. Interestingly, the relative frequency of these operators

varies substantially (by up to 10.1 percentage points) for lower

sampling ratios, while these same components appear with a more

similar relative frequency (differing by only 1.8 percentage points)

when we consider the full dataset. We believe this shift in relative

frequency indicates that for smaller sampling ratios pipeline per-

formance is particularly dependent on operator choice, and the

higher number of pipelines generated when downsampling allows

the search procedure to cover more such choices. As the dataset size

scales back up, the choice of operators seems to become increas-

ingly less important (in terms of predictive performance) during

the search process, potentially reflecting the benefit of larger data

over particular algorithm properties.

We evaluated the extent towhich downsampling impacts pipelines

that contain gradient boosting classifiers. To do so, we restricted the

classifier search space to two gradient boosting classifiers: scikit-

learn’s GradientBoostingClassifier and xgboost’s XGBClassifier.

We found that when carrying out the search on the original datasets,

the AutoML search failed to produce a pipeline successfully, for

both a 5 minute and 60 minute search budget. In contrast, downsam-

pling allowed the search to evaluate substantially more candidates

and successfully generated candidate pipelines even in the case of

a 5 minute execution budget.

We also carried out experiments to compare the impact of the

search space explored by the downsampled search versus the search

space explored by the original search. We generated candidate

pipelines using a downsampled search and then ranked these using

the original dataset. Analogously, we generated candidate pipelines

using the original dataset and then ranked them using a downsam-

ple of the data. We find that ranking pipelines using a downsampled

dataset and ranking pipelines using the original dataset produces

top candidates that perform similarly. In contrast, the way the

pipelines were generated plays a bigger role. Pipelines generated by

a search on the optimally downsampled datasets displayed higher

predictive performance than pipelines generated by a search on the

full dataset. This observation, combined with the observed ranking

effects, lends support to our hypothesis that downsampling allows

the AutoML search to explore a fundamentally different part of the

pipeline search space for large datasets.

Carrying out our full set of experiments represented a signifi-

cant computational cost, totaling approximately 8 weeks of wall

clock time on a well resourced server. To enable others to carry

out additional analyses on our dataset, we have released a repro-

ducibility package. The package contains the raw outputs of our

experiments, including pipelines generated, in a queryable form.

The package includes the code used in our experimental framework,

which runs our experiments from scratch, as well as utilities for

data consumers, including functions to compute common summary

statistics and compare visualizations across sampling ratios and

datasets.

1.2 Contribution
To summarize, the contributions of this work are:

• We propose and perform a rigorous empirical investigation

into the use of downsampling as a non-intrusive way to

scale genetic-programming-based AutoML to larger classi-

fication datasets.

• We collected a benchmark suite of 20 primarily medium to

large datasets, and evaluated the impact of downsampling

on TPOT, a popular genetic programming-based AutoML

tool. We focus our investigation on two key hyperparam-

eters in a downsampling algorithm: downsampling ratio

and execution time budget.

• We packaged and released our code and experimental out-

puts to enable future analysis by others, while mitigating

the high computational cost.

The remaining sections are structured as follows. Section 2 provides

an overview of machine learning pipelines in our context, as well

as a formal description of AutoML. Section 3 presents the use of

downsampling and introduces it into the standard formulation of

AutoML. Section 4 presents the details of our experimental method-

ology, including dataset criteria and evaluation setup. We present

the results of these experiments and their implications in detail in
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pipeline = Pipeline(steps=[

('simpleImputer ',

SimpleImputer(strategy=median)),

('bernoullinb ',

BernoulliNB(binarizer =0.5, alpha =3.7, fit_prior=True))

])

Figure 1: An example pipeline generated using TPOT. The
pipeline first imputes values and then learns classification
labels using a naive bayes classifier. In addition to choosing
components, the user must choose hyperparameter values
for each.

Section 5. Section 6 provides an overview of the publicly-shared

experimental results data. In Section 7 we present possible threats

to validity and mitigants. Section 8 presents existing literature and

its relation to our contribution. Finally, Section 9 provides closing

remarks.

2 BACKGROUND
We now present background topics referenced within the paper.

2.1 Machine Learning Pipelines
We define a machine learning pipeline to be a composition of zero

or more data preparation algorithms, for example feature prepro-

cessing, extraction, and transformation, and a final estimator, such

as one of various regression or classification algorithms. Typically

such a pipeline is implemented by composing operators in a do-

main specific library, such as scikit-learn [46], a popular Python

machine learning library. To fully define the pipeline, a developer

must choose values for hyperparameters (or opt to use defaults)

for each component in the pipeline. This process grows in com-

plexity as the developer must empirically validate many pipelines,

often tuning choices and revisiting prior experiments [56]. Figure 1

presents an example ML pipeline. Despite having just two com-

ponents, this pipeline requires that the developer appropriately

set 4 hyperparameters, and doing so requires that the developer

empirically evaluate different choices. The core goal of AutoML is

to automatically generate a fully configured pipeline, reducing (or

when possible, eliminating) the need for this developer to manually

explore the space of pipelines.

2.2 AutoML for Classification
To formalize the AutoML problem, we follow the formulation pre-

sented in [15]. While a similar formulation is possible for regression

tasks, we focus this work on classification as it has been a popular

task for AutoML research to date [20, 22, 43, 58].

Let 𝑑 ∈ D be a dataset consisting of 𝑛 observations, where each

observation consists of a set of covariates and an output value (i.e.

string, integer, or boolean label). We denote the training and test

splits with 𝑑train and 𝑑test, respectively. Let 𝑝 ∈ P be a pipeline,

drawn from the space of possible pipelines, and 𝑝 (𝑑train) be short-
hand for training (i.e. fitting parameter values) on a dataset 𝑑 . Let

S ⊂ P be the subset of pipelines in the AutoML tool’s search space.

Let 𝑒 be a scoring function that measures the predictive perfor-

mance of a pipeline, such as cross-validated macro-averaged F1

score. Let 𝑐 : P × D × D → R be a cost function that evaluates

the time it takes to construct a pipeline, fit it on training data, and

evaluate it on test data. Let 𝑏 ∈ R be the search time budget, which

limits how long the AutoML system can spend searching for an

optimal pipeline. The AutoML problem can be defined as

argmax

𝑝∈S
𝑒 (𝑝 (𝑑train), 𝑑test) s.t.

∑︁
𝑝∈S

𝑐 (𝑝, 𝑑train, 𝑑test) ≤ 𝑏 (1)

Given that the search space P grows exponentially with the

number of available operations and their hyperparameter choices

the procedure cannot simply evaluate all pipelines and instead must

rely on pruning or prioritization techniques (manually defined or

learned) to efficiently navigate the space of possible pipelines [27,

60].

2.3 TPOT and Genetic Programming
TPOT is a popular AutoML system that generates tree-shaped

pipelines by carrying out a genetic programming-based search.

Genetic programming (GP) refers to a general evolutionary frame-

work for searching/optimizing in a space where individuals are

represented as structured programs [31]. In particular, TPOT’s in-

dividuals correspond to pipeline definitions. Like traditional evolu-

tionary methods, individuals in the population are evolved to maxi-

mize some metric – termed the fitness of an individual. Fitness for

pipelines, for example, can be defined as their cross-validated per-

formance on the data provided to the search procedure. The search

initializes with a randomly generated population of individuals, and

at each generation it produces new individuals through mutation

and cross-over operations. Mutation operations can extend, shrink,

or modify pipeline definitions, while cross-over operations combine

two pipelines to produce a new variant. Finally, like many evolu-

tionary methods, there is a stochastic selection procedure to choose

the subset of individuals that move on to the next generation. We

point the interested reader to the original TPOT paper for further

details on the exact GP configuration used [43].

2.4 Scope and Audience
We focus our experiments on a popular search procedure for Au-

toML: genetic programming (GP). In our implementation, we use

TPOT, a popular open-source GP-based AutoML system, with over

8,000 stars on GitHub
1
and over 1,400 forks. The goal of our experi-

ments is to provide empirical evidence of the impact that downsam-

plingmay have on GP-based AutoML.We investigate key properties

such as predictive performance, runtime performance, fundamental

pipeline properties such as their length and distribution of opera-

tors, as well as the impact of different search spaces. To the best

of our knowledge, this is the first extensive evaluation of the im-

pact of downsampling in this setting. Insights gained from these

experiments are useful to two key groups: AutoML designers, who

may be interested in incorporating downsampling into their own

tools in a principled fashion, and AutoML users, who may already
be employing downsampling and would like a clear understanding

of the potential implications of their downsampling.

1
As of April 2021
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3 DOWNSAMPLING AUTOML
Large datasets pose a particular challenge for AutoML, as the time

complexity of many key operators grows with the number of ob-

servations in a dataset. We systematically evaluate one approach

to alleviate this challenge: downsampling the dataset prior to exe-

cuting the AutoML search. We formalize this approach by making

a slight modification to Equation (1). Let 𝑠 : D × R → D be a

sampling function, which takes a dataset 𝑑 , a real-valued sampling

ratio 𝑟 ∈ R, and returns a dataset 𝑑 ′ ⊂ 𝑑 , such that
|𝑑′ |
|𝑑 | ≈ 𝑟 , where

|𝑥 | is the number of rows in a table 𝑥 .

The downsampled AutoML problem is now:

argmax

𝑝∈S,𝑟 ∈(0,1)
𝑒 (𝑝 (𝑠 (𝑑train, 𝑟 )), 𝑑test) s.t.

∑︁
𝑝∈S

𝑐 (𝑝, 𝑠 (𝑑train, 𝑟 ), 𝑑test) ≤ 𝑏

(2)

The main search loop operates on the downsampled dataset to

identify the most promising candidate pipeline within the subset

S of the pipeline search space P. This pipeline is then fit on the

entire training dataset, prior to returning to the user, making the

downsampling process transparent. Algorithm 1 illustrates this

process.

Algorithm 1 Downsampled AutoML

INPUT: A training dataset 𝑑train, an AutoML search procedure Search, a

sampling function 𝑠 , a sampling ratio 𝑟 , and an execution time budget 𝑏

OUTPUT: An output pipeline

procedure DownsampleAndSearch

𝑑′
train
← 𝑠 (𝑑train, 𝑟 ) ⊲ Sample down to ratio 𝑟

𝑝 ← Search(𝑑′
train

, 𝑏) ⊲ Generate best pipeline

return 𝑝 (𝑑train) ⊲ Fit best on full training set

Downsampling raises the following key questions:

How does sampling affect predictive performance? Given that the

AutoML system is trying to maximize performance on the original

dataset, we naturally want to understand the impact that the choice

of sampling ratio 𝑟 may have on the optimal pipeline’s performance.

In particular, will varying values of 𝑟 result in different output

pipelines with different performances?

How does sampling affect runtime performance? A keymotivation

for introducing 𝑟 was to enable AutoML use with larger datasets,

which typically require significantly larger execution time budgets.

A lower 𝑟 produces a smaller dataset for the search, which should

intuitively result in faster pipeline evaluation.

Does sampling impact the traditional relationship between longer
execution budgets and better predictive performance? Traditionally,

AutoML systems have been evaluated (and used) with large ex-

ecution budgets. Given that we have introduced another search

hyperparameter (𝑟 ), we ask whether the traditional relationship

between execution budget and predictive performance (i.e. longer

budgets lead to better predictive performance) still holds.

Does sampling impact pipeline characteristics? When using Au-

toML across different datasets, we often obtain pipelines with vary-

ing components, lengths, and architectures. With the introduction

of downsampling, we ask whether fundamental properties of the

pipeline, such as its length and the operators included, vary as a

function of the downsampling ratio 𝑟 .

How does downsampling impact popular gradient boosting classi-
fiers? Gradient boosting classifiers, in particular XGBoost [17], are

popular due to their high performance and ease of use. We restrict

the space of classifiers explored by the AutoML system to gradient

boosting classifiers and evaluate the impact of downsampling on

this class of popular classifiers.

What is the impact of the pipeline search space? We consider the

set of pipelines that are generated and evaluated during a search

with downsampled data versus the original dataset. We distinguish

between the task of generating versus ranking pipelines and use

this distinction to disentangle the impact of varying search spaces.

In particular, we compare the candidates generated during a down-

sampled search and a search on the original dataset.

4 METHODOLOGY
We now provide a detailed description of our experimental method-

ology including dataset selection and implementation.

4.1 Large Classification Datasets
A first challenge in evaluating the impact of downsampling on

the effectiveness of AutoML is the dataset collection task. Existing

benchmark suites, such as OpenML100 and OpenML-CC18
2
focus

on small to medium sized datasets (up to 100,000 observations). To

address the need for larger tabular classification datasets, we nar-

rowed our search to datasets that: have a varied number of features

(i.e. columns); small, medium, and large numbers of observations;

have a varied number of target classes; are not easily solved bench-

marks; do not require sophisticated preprocessing or cleaning, a

standard criteria in AutoML benchmark collection; and belong to

different domains, to avoid domain-specific effects.

During our benchmark dataset collection task we noted that

there is a scarcity of datasets with 1 million rows or more that

satisfy the criteria outlined above. We now provide a summary of

the sources and types of datasets that we were able to collect.

OpenML. We collected 16 datasets from OpenML – which has

previously been used for AutoML benchmarking datasets [6, 22, 64]

– aiming to cover the criteria outlined previously.

DARPAD3M:. We collected 3 additional datasets available through

the DARPA Data-Driven Discovery of Models (D3M) publicly re-

leased datasets [18]. D3M is a program focused on developing new

AutoML methods, and has participants from a wide range of aca-

demic and industrial organizations. The downloaded datasets are

also available through OpenML, and we note that in total 7 of the

OpenML datasets are also cross-listed as DARPA D3M datasets.

Criteo. We collected a large sample from the popular Criteo

dataset. We sampled 1,144,307 rows (approximately 2.5%) of the

original 1 TB (uncompressed) advertising dataset. This sample size

is in line with that used in other benchmarking work on model

selection [41] and was compatible with our single-server evaluation

hardware setup and our computation time budgets.

2
For more information about OpenML100 and OpenML-CC18, see: https://openml.

github.io/OpenML/benchmark
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Table 1: A summary of our benchmark suite of classification
datasets. Numerical IDs are available through OpenML [55].

ID Name #Classes #Features/Columns #Instances/Rows

1468 cnae-9 9 857 1080

12 mfeat-factors 10 217 2000

3 kr-vs-kp 2 37 3196

1489 phoneme 2 6 5404

40668 connect-4 3 43 67557

41138 APSFailure 2 171 76000

41168 jannis 4 55 83733

23517 numerai28.6 2 22 96320

23512 higgs 2 29 98050

41150 MiniBooNE 2 51 130064

1483 ldpa 11 8 164860

1503 spoken-arabic-digit 10 15 263256

1219 Click-prediction-small 2 12 399482

1113 KDDCup99 23 42 494020

1169 airlines 2 8 539383

1596 covertype 7 55 581012

23397 COMET-MC-SAMPLE 2 6 761940

42468 hls4ml-lhc-jets-hlf 5 17 830000

354 poker 2 11 1025010

criteo Criteo-sample 2 40 1144307

Table 1 presents a summary of the datasets used, ranging from

small (1,000s of rows) to large (over a million rows).

4.2 Downsampling, Splitting, and Fitting
During preliminary analysis, we evaluated the impact of uniformly

downsampling the training data with 𝑟 ranging from 0.1 to 0.9

in 0.1 increments. We found that classification performance, as

measured by macro-averaged F1 score, underwent the largest

changes when 𝑟 was drawn from a smaller range of [0.1, 0.3],
and conversely that sampling ratios between [0.5, 1.0] did not in-

duce significant variation. Based on these observations, we eval-

uated the following set of sampling ratios in our experiments:

𝑟 ∈ (0.0001, 0.001, 0.01, 0.05, 0.15, 0.2, 0.3, 0.5, 1.0).
We used k-fold cross-validation (CV) [30] to carry out our eval-

uation. When splitting the dataset to produce different folds, we

performed a stratified splitting
3
to preserve target label ratios (i.e. if

a dataset has an imbalanced set of labels, that imbalance is preserved

in the splits). We set 𝑘 = 5 for all datasets to balance the desire for

lower-variance performance estimation and computational burden.

Figure 2 illustrates how we use data folds during evaluation.

Namely, for a given iteration of k-fold cross-validation, we down-

sample the training fold, run the AutoML search on the downsam-

pled fold to obtain a final candidate pipeline, fit the final candidate

pipeline on the original training fold (without downsampling) to

estimate any free parameters, and then evaluate the fitted pipeline

on the full test fold. This process is repeated for each of the 𝑘 folds.

For example, with 𝑘 = 5 and 𝑟 = 0.1, for a given fold iteration the

AutoML search is carried out on 0.8 ∗ 0.1 of the original dataset (0.8
constitutes the fraction of the dataset in the training fold, and 0.1

reflects the downsampling), the pipeline produced is then fit on the

full training fold (0.8 of the original dataset), and evaluated on the

remaining (disjoint) 0.2 of the original dataset.

Implementation. We implemented our benchmarking methodol-

ogy by building on the experimental framework used in [15]. We

3
We use Scikit-Learn’s StratifiedKFold.

Evaluate

Test Fold FitTraining Fold

AutoML Search
PipelineGenerate

Figure 2: For a given iteration in our k-fold cross-validation
procedure, we take the training fold (in white, dashed lines),
and downsample to obtain a smaller set of observations (in
green, dashed lines). The AutoML search is run using this
downsampled set of observations. After a final pipeline has
been generated, we fit this pipeline on the entire training
fold, and then evaluate it on the test fold (in grey, solid lines).

used scikit-learn’s implementations of standard utilities such as

k-fold cross validation splitting, F1-score, and yellowbrick’s [8]

learning curve visualization. AutoML systems are known [6, 64] to

occasionally crash or freeze during benchmarking. To mitigate this

issue, we relied on a mixed use of job queuing
4
and intermittent

task monitoring, with associated job restarts when necessary for

benchmarking completion.

Computational Resources. To carry out our experiments, we used

a well-provisioned shared compute server. Our server provided four

14 core Intel Xeon E5-2697 v3 CPUs (2.60 GHz) and 256GB RAM.

This setup reflects the resources that a well provisioned data scien-

tist might have to apply an off-the-shelf AutoML tool on commodity

hardware. For reference, recent AutoML benchmarking research,

such as Gijsbers et al [22] used AWS instances with 32GB RAM

and 8 vCPUs (Intel Xeon Platinum 8000 Skylake up to 3.1 GHz) and

Shang et al [52] used a similar setup to ours: a single-machine with

a 40-core Intel Xeon CPU E5-2660 v2 (2.20 GHz) and 256GB RAM.

During execution of our experiments, attention was placed to mon-

itor CPU usage across the machine and avoid significant changes in

processing power when running across different datasets. Running

all experiments from scratch required approximately 8 weeks of

wall-clock time.

5 RESULTS
We now present our experimental results. We report macro-

averaged F1 test score, averaged over the 𝑘 folds in our cross-

validation. When no pipeline is generated, we report an empty

entry in the corresponding table. A pipeline may fail to be produced

in a variety of cases, for example when the input data provided

to the AutoML search is too small (raising repeated exceptions in

underlying operators), or when the dataset is too large and the

AutoML search fails to produce enough candidate pipelines during

the execution budget given. Unless otherwise specified, we execute

the AutoML search with an execution budget of 5 minutes.

4
We use task-spooler, a simple task management system for single machines.
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Table 2: F1 score under varying sampling ratios. The header
row indicates the sampling ratio, while the ID column indi-
cates the dataset. Datasets are sorted in ascending order of
number of rows, with those above the horizontal line having
at most 10,000 observations. The bolded numbers correspond
to the best performance for that dataset. We find that, with
the exception of dataset 3 and 23517, downsampling resulted
in higher performance.

ID 0.0001 0.001 0.01 0.05 0.1 0.15 0.2 0.3 0.5 1.0

1468 0.945 0.94 0.95 0.947 0.952 0.944

12 0.971 0.793 0.974 0.968 0.974 0.978 0.975

3 0.957 0.993 0.992 0.992 0.993 0.991 0.994 0.995
1489 0.722 0.841 0.858 0.85 0.879 0.884 0.887 0.884

40668 0.476 0.64 0.651 0.69 0.7 0.709 0.674 0.66 0.582

41138 0.74 0.713 0.862 0.864 0.884 0.909 0.905 0.871 0.87 0.854

41168 0.398 0.521 0.552 0.53 0.543 0.533 0.531 0.514 0.487

23517 0.509 0.493 0.514 0.514 0.512 0.517 0.516 0.516 0.518
23512 0.688 0.714 0.71 0.716 0.721 0.717 0.718 0.716 0.699

41150 0.9 0.925 0.929 0.929 0.929 0.925 0.921 0.908 0.895

1483 0.703 0.935 0.917 0.796 0.788 0.675 0.688 0.577

1503 0.108 0.187 0.258 0.259 0.261 0.245 0.213 0.192 0.103

1219 0.494 0.54 0.562 0.582 0.598 0.595 0.568 0.566 0.555 0.536

1113 0.483 0.968 0.965 0.967 0.937 0.839 0.941 0.939

1169 0.439 0.617 0.651 0.653 0.652 0.656 0.653 0.648 0.631 0.626

1596 0.671 0.938 0.941 0.944 0.944 0.944 0.871 0.807 0.64

23397 0.516 0.89 0.879 0.914 0.911 0.914 0.91 0.917 0.878 0.728

42468 0.69 0.76 0.764 0.764 0.762 0.753 0.752 0.746 0.74 0.693

354 0.573 0.868 0.792 0.947 0.833 0.782 0.658 0.613 0.596 0.574

criteo 0.613 0.637 0.655 0.616 0.609 0.609 0.591 0.605 0.586 0.572

5.1 RQ1: Predictive performance
While downsampling allows us to scale search to larger datasets,

there could be a potential trade-off in terms of predictive perfor-

mance. In particular, it may be that the pipeline that is optimal in

the downsampled training data does not generalize to the larger

dataset. This potential bias is an increasingly important concern as

the dataset size decreases. To address this question, we consider the

observed pipeline performance as a function of sampling ratio. Ta-

ble 2 shows the F1 score (averaged over test folds) for each dataset,

across different sampling ratios. For clarity, we have sorted datasets

in increasing order of their original number of observations (with

those above the horizontal line having at most 10,000 observations),

and we bold the best performance for each dataset. Our results show

that downsampling can actually improve performance, with respect

to performing AutoML search on the full dataset size. Only two of

20 datasets obtained their best performance when using the original

full training fold. We see a clear divide between smaller datasets

(less than 10,000 observations) and larger datasets (more than 50,000

observations). For smaller datasets, 3 out of 4 performed better with

a sampling ratio of 0.5. For larger datasets, 14 of 16 datasets ob-

tained their best performance when we downsampled the training

folds to 0.01 to 0.2 of the original size. Note that for extremely

small sampling ratios (e.g. 0.001), the search procedure may fail

to generate a pipeline. It is also important to note that we cannot

immediately compare the performance of the pipelines generated

to those that might be obtained with an exhaustive procedure such

as grid search, as the space TPOT explores is unbounded due to the

abililty to compose (through cross-over and mutation) an arbitrary

number of pipeline operators.

Table 3: Difference in F1 test score, scaled by 100 for clar-
ity, for various sampling ratios when compared to the orig-
inal data for datasets with more than 10,000 observations.
We obtain higher performance for all datasets when using
downsampling, with the exception of dataset 23517, which
performs slightly better using the full dataset.

ID 0.01 0.05 0.1 0.15 0.2 0.3 0.5 Original

40668 5.9 6.9 10.8 11.8 12.7 9.3 7.9 0.582

41138 0.8 1.0 3.0 5.4 5.0 1.6 1.5 0.854

41168 3.5 6.6 4.3 5.6 4.7 4.5 2.7 0.487

23517 -2.5 -0.4 -0.4 -0.6 -0.2 -0.2 -0.3 0.518

23512 1.6 1.1 1.7 2.3 1.8 1.9 1.8 0.699

41150 3.0 3.4 3.5 3.4 3.1 2.6 1.4 0.895

1483 12.7 35.8 34.0 22.0 21.1 9.9 11.1 0.577

1503 8.4 15.5 15.6 15.7 14.2 11.0 8.9 0.103

1219 2.6 4.6 6.2 5.9 3.2 3.0 1.9 0.536

1113 2.9 2.6 2.8 -0.2 -9.9 0.2 0.939

1169 2.5 2.7 2.6 2.9 2.7 2.1 0.5 0.626

1596 29.8 30.0 30.4 30.4 30.4 23.1 16.7 0.64

23397 15.1 18.6 18.4 18.7 18.3 19.0 15.1 0.728

42468 7.1 7.1 6.9 6.0 5.9 5.3 4.7 0.693

354 21.8 37.2 25.9 20.8 8.3 3.9 2.1 0.574

criteo 8.2 4.4 3.7 3.7 1.9 3.2 1.4 0.572

For clarity, Table 3 focuses on the 16 datasets with more than

10,000 observations. The table presents the F1 score obtained when

using the original training fold, along with the score difference

(scaled by 100) when the dataset is downsampled with varying

ratios. We bold the entry that results in the largest increase (or

smallest decrease) in performance. Generally, we see that there

were improvements across downsampling ratios for all datasets but

23517, which performs best when we use the full dataset.

Figure 3 provides a more detailed view of the performance

changes for the 4 datasets where we observed the largest improve-

ment in F1 score when searching on a downsampled dataset. We

present the training F1 score, test F1 score without fitting the final

pipeline on the full training fold, and the test F1 score after fitting

the final pipeline on the full training fold.

Our analysis shows that for three of these datasets, with the

exception of 1483, the training F1 score decreases substantially

as the size of the dataset grows. In particular, note that at low

sampling ratios, the search procedure is able to find a pipeline that

achieves near-perfect training score. A reduction in training score

may indicate that the pipelines produced with the larger set of

observations lack the model capacity to tackle the task. Conversely,

for small datasets, the pipelines considered are able to sufficiently

capture variations in the dataset.

Next, we note that for 3 of the 4 datasets there is a significant

gap in the test F1 score between the setting where we do not fit
the final pipeline on the full training fold and the setting where we

do. This emphasizes a key takeaway: while we can generate the

final candidate pipeline by searching on a downsampled dataset,

we should always re-fit this pipeline on the full training set (a step

noted in Algorithm 1).
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Figure 3: F1 score over different downsampling ratios for the datasets with the largest performance increase when using their
optimal downsampling ratio. We show training F1 score (blue), test F1 score without refitting on the full training fold (green),
and the final test F1 score when refitted on the training fold (red, see Algorithm 1 for details). We show that performance in
these datasets degrades as a function of the dataset size. We also see that for 3 of the 4 dataset refitting the final pipeline on the
full training fold (rather than the downsampled version) is critical to improve performance.

5.2 RQ2: Runtime performance
To evaluate the impact of sampling on runtime performance, we

considered the number of pipelines that the AutoML search proce-

dure is able to generate and evaluate during a fixed amount of time.

We ran the AutoML search using a time-budget of 5 minutes.

Table 4 shows the average (over CV iterations, and rounded to

nearest integer) number of pipelines explored for each of the down-

sampling ratios and the full dataset. We highlight in bold the ratio

which results in the largest number of pipelines evaluated for each

dataset. As expected, we found that downsampling more aggres-

sively allows the search procedure to generate and evaluate more

pipelines, subject to the same execution time budget. This in par-

ticular is a key advantage as the system can explore a substantially

larger portion of the search space. For some datasets this amounts

to 1.3 to 22.6 more pipelines than when the search is carried out on

the full dataset. We also see that this effect is increasingly stark as

we increase the size of the original dataset. For example, for dataset

354 – our second largest dataset with over 1 million observations

– the search procedure generates and validates 95 pipelines when

using the original dataset, while the most extreme downsampling

(𝑟 = 0.0001) results in 1973 pipelines. The best performing sampling

ratio for dataset 354 (𝑟 = 0.05) results in 3 times as many pipelines

when compared to searching on the original dataset.

5.3 RQ3: Time budget and predictive
performance

As discussed earlier, it is traditionally the case that longer AutoML

search procedure runs are more likely to find a better performing

pipeline. A natural question is whether this relationship holds true

when we use a downsampled dataset for searching.

To explore this question, we ran the following experiment. We

took the optimal downsampling ratio, identified from earlier ex-

periments using 5 minutes, and we ran the downsampled search

procedure for 60 minutes. We then took the original dataset (with-

out any form of downsampling) and ran the search procedure for 60

minutes as well. As in prior experiments, we use the same approach

with 𝑘-fold cross validation. We compute the average test F1 score

and the number of pipelines evaluated (averaged over folds, and

rounded to the nearest integer).

Table 5 presents these results. We omit dataset 12, which failed to

complete after multiple execution attempts. We find that when us-

ing the optimal downsampling ratio, running the search procedure

for 60 minutes can improve scores slightly, but with few exceptions

(4 datasets: 41168, 1483, 1219, 354) these improvements are small.

Note that when we run the search procedure for 60 minutes, the

number of pipelines explored increases substantially (up to 14x).
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Table 4: Average number of generated pipelines under dif-
ferent sampling ratios during cross-validation, subject to a
five minute execution time budget. Lower sampling ratios
can result in 1.3 to 22.6 times more pipelines generated when
compared to the full dataset.

ID 0.0001 0.001 0.01 0.05 0.1 0.15 0.2 0.3 0.5 1.0

1468 397 420 399 403 301 323

12 420 359 363 361 341 363 288

3 2584 1438 1420 1220 1143 1096 774 581

1489 2747 1755 1512 1221 1206 1102 855 619

40668 1809 1044 535 481 402 381 383 383 261

41138 186 2058 635 400 363 250 306 227 302 173

41168 1419 525 387 367 269 329 248 245 134

23517 2627 1272 599 481 481 423 384 363 187

23512 1691 917 401 388 382 386 382 285 112

41150 1186 600 403 365 384 349 284 209 170

1483 538 385 382 362 361 306 285 151

1503 942 382 346 324 208 228 169 190 112

1219 2318 1565 691 423 438 364 324 322 280 171

1113 2100 419 206 171 171 169 132 93

1169 3055 1869 919 422 367 288 307 206 228 190

1596 827 386 343 231 169 152 133 94 94

23397 3107 3038 775 483 404 348 250 284 283 165

42468 1299 711 384 325 230 172 188 132 113 113

354 1973 965 429 325 285 243 240 202 164 95

criteo 2032 658 423 250 188 133 131 139 94 95

When using the original dataset, without downsampling, we find

that running for 60 minutes can increase scores slightly as well,

however the best score still underperforms the score obtained after

searching for 5 minutes with the optimal downsampling ratio in 15

of these 19 datasets. Of the remaining 4 datasets, 3 have less than

10,000 samples. Additionally the increase in number of pipelines

explored when running for 60 minutes is on average smaller.

For 15 datasets, we found that executing a 5 minute search at the

optimal downsampling ratio produced a higher performing pipeline

than a 60 minute search using the full dataset. Interestingly, we

find some cases where this is true even when the 60 minute search

on the full dataset results in more candidate pipelines evaluated.

For example, we see that for dataset 1483 a 0.05 downsampling

ratio evaluated 386 pipelines and produced a final pipeline with a

score of 0.935. Meanwhile, a 60 minute search on the full dataset

evaluated 573 pipelines (almost 50% more pipelines) but the final

pipeline achieved a lower score of 0.61. We believe such cases

provide support to a hypothesis that the effects of downsampling

do not only stem from the increased number of explored pipelines,

but are rooted in deeper dataset characteristics. Analyzing such

characteristics remains a question for future work, whichwe believe

will be facilitated by our reproducibility package.

5.3.1 Extended execution times. We repeated the experiments pre-

sented in Table 5 for the four datasets with the largest performance

improvement under their best downsampling ratio. And we con-

sidered an even longer execution time budget: 10 hours, based on

the methodology presented in [22]. Table 6 shows the average F1

test score and number of pipelines explored when the search runs

for 5, 60, 240 and 600 minutes. For the 600 minute experiments we

increase the per pipeline evaluation budget to 5 minutes instead of 1

minute. We find that extending execution time to 600 minutes in the

Table 5: Average F1 test score and number of pipelines ex-
plored (#PL), when running for 5 and 60minutes.We compare
the case where we use the optimal downsampling ratio (Best
Ratio), and the case where we run on the originally-sized
dataset (Full Data). Datasets that performed best with the
full data were run with their respective second best ratio
(marked with a star *). We find that when downsampling
we can obtain slightly higher performance when increasing
the execution time budget, but these improvements are mod-
est in all but 4 datasets (41168, 1483, 1219, and 354). For 15
datasets the performance of a 5 minute downsampled search
outperformed carrying out the search on the full dataset for
60 minutes.

Best Ratio Full Data

ID Ratio 5min #PL 60min #PL Ratio 5min #PL 60min #PL

1468 0.50 0.952 301 0.955 2761 1.0 0.944 324 0.957 2639

3 0.50* 0.994 774 0.993 5574 1.0 0.995 581 0.996 4898

1489 0.50 0.887 855 0.889 7736 1.0 0.884 619 0.896 5930

40668 0.20 0.709 382 0.715 2931 1.0 0.582 262 0.645 1874

41138 0.15 0.909 250 0.902 1834 1.0 0.854 173 0.849 696

41168 0.05 0.552 388 0.577 2931 1.0 0.487 134 0.496 598

23517 0.20* 0.517 423 0.516 4652 1.0 0.518 187 0.520 1621

23512 0.15 0.721 383 0.721 3163 1.0 0.699 113 0.699 770

41150 0.10 0.929 365 0.931 3307 1.0 0.895 170 0.903 1066

1483 0.05 0.935 386 0.976 3075 1.0 0.577 151 0.610 573

1503 0.15 0.261 208 0.266 2865 1.0 0.103 113 0.106 457

1219 0.10 0.598 439 0.634 3232 1.0 0.536 172 0.565 792

1113 0.01 0.968 419 0.968 4637 1.0 0.939 93 0.938 418

1169 0.15 0.656 289 0.649 2716 1.0 0.626 190 0.632 558

1596 0.15 0.944 170 0.940 1307 1.0 0.640 95 0.603 220

23397 0.30 0.917 285 0.924 2255 1.0 0.728 165 0.841 867

42468 0.01 0.764 384 0.760 3343 1.0 0.693 114 0.686 269

354 0.05 0.947 326 0.991 3104 1.0 0.574 95 0.582 704

criteo 0.01 0.655 424 0.653 3966 1.0 0.572 96 0.595 269

downsampled datasets marginally improves performance compared

to a search using a budget of 60 minutes. In contrast, when using

the full dataset, we observed improvements across the board when

using the longer execution time budget. For all four datasets we find

that the pipeline produced by a downsampled search executed for

5 minutes outperformed that produced by a 240 minute search on

the full dataset. For three out of four datasets we similarly observe

that a downsampled 5 minute search outperformed a 600 minute

search on the full dataset.

5.4 RQ4: Pipeline characteristics
As we have seen so far, data downsampling can impact the number

of pipelines generated, as well as their predictive performance. In

this section we investigate the extent to which pipeline definitions

change as a result of downsampling, in particular we investigate

pipeline length and operator choices. To do this, we analyzed over

480,000 pipelines with more than 920,000 operators, the result of

searches carried out under a 5 minute execution time budget. For

purposes of our analysis, we define an operator to be a single step

in the pipeline, which can correspond to a data transformer or a

predictor (a distinction presented in [49]).

We calculate the amount of operators per pipeline for different

sampling ratios, analyzing all the pipelines evaluated during the

search procedure to account for changes during evolutions. Our
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Table 6: Average F1 test score and number of pipelines explored (#PL), when running for 5, 60 240 and 600 minutes on the
4 datasets that saw the biggest improvements from sampling. Searching for 5 minutes on the ideally-downsampled dataset
produced higher performance than a 240 minute search on the original dataset. Underlined experiments were executed with a
per pipeline evaluation budget of 5 minutes instead of 1 minute. We note two scores for entry (1483, Best Ratio, 240 min) and
(1483, Best Ratio, 600 min), with and without CV fold outlier performances of 0.045.

Best Ratio Full Data

ID Ratio 5min #PL 60min #PL 240min #PL 600min #PL Ratio 5min #PL 60min #PL 240min #PL 600min #PL

1483 0.05 0.935 386 0.976 3075 0.800/0.988 8246 0.797/0.985 9743 1.0 0.577 151 0.610 573 0.774 2600 0.746 5462

1503 0.15 0.261 208 0.266 2865 0.265 9484 0.267 9679 1.0 0.103 113 0.106 457 0.145 1416 0.265 2766

1596 0.15 0.944 170 0.940 1307 0.942 2160 0.959 9680 1.0 0.640 95 0.603 220 0.691 909 0.738 5263

354 0.05 0.947 326 0.991 3104 0.956 9502 0.996 9851 1.0 0.574 95 0.582 704 0.622 4880 0.662 4286

results indicate that in addition to exploring more pipelines, down-

sampling allows the search procedure to consider more complex

pipeline architectures, as indicated by average pipeline length. In

particular, we find that on average, smaller sampling ratios result

in pipelines with more operators. For example, when we use a

downsampling ratio of 0.0001 the average pipeline has 1.85 (0.30 sd)

operators, while a full dataset results in an average pipeline with

1.60 (0.12 sd) operators. For context, a recent large scale pipeline

analysis by Psallidas et al [49] found that most user-implemented

scikit-learn (TPOT’s target API) pipelines consist of 1 – 4 operators.

To evaluate the frequency of operator components, we consider

the top five most frequent predictor components in the pipelines

produced. This is done over all pipelines generated and evaluated

during the search procedure’s execution. We then take the union of

these API components and plot their frequency across all downsam-

pling ratios. Figure 4 shows the relative frequency of a correspond-

ing API component as the count of that component normalized

by the total number of pipelines produced for that downsampling

ratio. Relative frequencies are computed within each dataset, and

then averaged across datasets for each sampling ratio.

First, we note that the union of top five components corresponds

to only 8 operators: decision trees, extra trees classifier, random

forests, extreme gradient boosting classifier, multilayer perceptrons,

gradient boosting classifier, stochastic gradient descent classifier

and bernoulli naive bayes classifier.
5
Interestingly, our results show

that the relative frequency for these operators ranges more widely

when we use more aggressive downsampling ratios, while at higher

sampling ratios, components appear with more similar frequency.

For example, at a sampling ratio of 0.0001 relative frequencies range

from 3.8–12.2%, while at a full dataset we have a relative frequency

range of 6.5–8.3%. This may suggest that the choice of predictor

becomes increasingly less important as the dataset size grows.

That fundamental properties of a pipeline, such as its length

and its final predictor component, vary between extreme down-

sampling and full data regimes is a key insight provided by these

experimental results. AutoML system developers who opt to incor-

porate downsampling as a step to scaling to larger datasets will

need to be aware of these properties. To the best of our knowledge,

this is the first detailed study that characterizes these important

changes in AutoML pipelines as a result of downsampling.

5
We plot results using the class names from the Scikit-Learn API for clarity.

5.5 RQ5: Gradient Boosting Classifiers
Gradient boosting classifiers, and in particular XGBoost [17], are

popular machine learning models due to their effectiveness and

ease of use for tabular datasets. We evaluated the extent to which

downsampling observations impacts this subset of classifiers.

We restricted the set of classifiers available in TPOT’s

search space to gradient boosting classifiers, particularly scikit-

learn’s GradientBoostingClassifier and xgboost’s XGBClassifier.

Pipelines generated may include additional operators, such as fea-

ture preprocessors, but can only include the two gradient boosting

classifiers specified. We ran the AutoML search with varying down-

sampling rates on the four datasets (1483, 1503, 1596, 354) for which

we observed the largest performance improvement when down-

sampling in our prior experiments. We ran each search using the

methodology described in Section 4.2 and time budgets of 5 minutes.

We present our results in Figure 5. At higher sampling rates, the

AutoML search was unable to successfully produce an optimiza-

tion result. This optimization failure is driven by two factors: (1)

challenges in appropriately combining search parallelization across

individuals in the GP-process and parallelization in the gradient

boosting classifier’s training routine itself, and (2) the time complex-

ity for gradient boosting classifiers. In particular, XGBoost’s time

complexity [17] scales linearly with the number of non-missing

entries, and thus results in long training times for our large datasets.

We increased the time budget to 60 minutes to mitigate these

failures and found the outcome to be the same. In contrast, when

we employ downsampling, the AutoML search concludes success-

fully and produces high performing pipelines even in the case of

a 5 minute search budget. As in previous experiments, we find

that there are (varying) optimal downsampling rates across these

datasets, which range between 0.01 and 0.1.

Separately, we carried out the same experiment but replaced the

GP-based AutoML search with a random search without paralleliza-

tion to mitigate the first failure factor outlined previously. In this

experiment, we find that we can produce trained instances in all

cases.When downsampling, we found that the search evaluated sub-

stantially more candidates and that performance was comparable

to searching on the full dataset.

5.6 RQ6: Pipeline Search Space Impact
As detailed in Section 5.4, downsampling does not only impact

pipeline performance, but also key properties such as pipeline

length and the distribution of operators used. To investigate the
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Figure 4: As we grow the dataset size, the relative frequen-
cies of the top five operators in pipelines generated become
increasingly similar.
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Figure 5: Restricting the subset of classifiers in TPOT’s search
space to gradient boosting classifiers. When using the full
datasets, or a large portion of them, the search fails to pro-
duce a result given a 5 minute budget and a 60 minute budget.
In contrast, the downsampled search concludes successfully
even when given a 5 minute execution budget.

impact of the search space covered by downsampling compared

to searching with the full dataset, we carried out the following ex-

periment. First, we carried out the AutoML search with a 5 minute

budget on a downsampled version of the training fold, collecting

all pipeline candidates generated. We then ranked these candidates

using the full training fold (excluding the portion of data used to

carry out the candidate generation search), refit the best candidate,

and evaluated the best candidate on the test fold. We compared

the performance of this candidate versus the best candidate found

when also using the downsampled data for candidate ranking.

We then carried out a second variant of this experiment, where

pipeline candidate generation is done by running the search on the

original (full) training fold with a 5 minute budget. The candidates

produced are ranked based on a downsample of the fold (this down-

sample is excluded from the data used in candidate generation),

and the best candidate is refit and evaluated on the test fold.

These experiments allow us to simulate a shared search space.

In particular, when we generate candidates from a downsampled

fold and rank using the full fold, we are simulating a setting where

the full fold encountered the same set of pipeline candidates. And

analogously for the second experiment variant. We emphasize that

this is, by design, an artificial setup that allows us to isolate the

impact of the search space.

Figure 6 presents our results. Figure 6a shows the case where

pipelines are generated using downsampled data and Figure 6b

shows the case where pipelines are generated using the full dataset.

In both cases, we find that the best pipeline produced by a re-

ranking of pipelines with the downsampled or full dataset are nearly

the same except for sampling ratio 0.0001. In contrast, there is a

clear performance differential across the two scenarios for gener-

ating pipelines. This provides support to the hypothesis that the

downsampled search is exploring a fundamentally different part of

the search space. We re-ran these experiments using a 60 minute

execution budget and obtained similar results.

5.7 Discussion
Our experiments explored various effects of downsampling in GP-

based AutoML. Our results show that downsampling large datasets

does not reduce predictive performance. In fact, for 15 of 16 datasets

with over 10,000 rows, we found downsampling to actually improve

performance over executing AutoML search on the original dataset.

Next, we showed that downsampling allows the AutoML search

procedure to explore more pipelines, up to 1.3 to 22.6 more pipelines

for some datasets when using aggressive downsampling ratios,

as compared to running the search on the original dataset. We

found that predictive performance does increase slightly when we

run a downsampled search for 60 minutes rather than a shorter

execution time budget of 5 minutes. However, interestingly for 15

of the 16 datasets with over 10,000 observations we found that

the downsampled 5 minute search produced a better performing

pipeline than a 60 minute search on the full dataset. In fact, for

the four datasets with the largest improvement in performance

from downsampling, we found that a 240 minute search on the full

dataset still produced lower performing pipelines than a 5 minute

search on the dataset downsampled at its optimal rate. Even when

we increase the time budget to 600 minutes we observe this same

behavior for three out of these four datasets.

Our results show that when downsampling we produce pipelines

that are (on average) slightly longer than those produced when

using the full dataset. Furthermore, there is more variation in the

type of predictor used at the end of the pipelines produced when

searching with a smaller downsampling ratio.

When using the full dataset, our gradient-boosting focused

search failed to produce a candidate given a 5 minute budget. Ex-

tending it to 60 minutes still resulted in failures. In contrast, using a

downsampled search evaluated multiple candidates and concluded

successfully, under both a 5 minute and 60 minute budget.
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(b) Full-dataset-generated pipelines

Figure 6: Our search space experiments show that ranking pipeline candidates using the downsampled dataset versus the
full dataset produces similar performance, given the same set of candidate pipelines. Meanwhile, generating pipelines with
downsampled searches appears to produce higher performing candidates overall. This provides support to the hypothesis that
the downsampled search is exploring a fundamentally different part of the search space.

Our synthetic search space experiments, where we generate

pipelines using a downsampled/full dataset and then rank candi-

dates with the full/downsampled dataset provided a key insight.

While the ranking of candidates was comparable with both the

downsampled and the full dataset, candidates generated by the

downsampled search had overall higher performance. This sup-

ports our hypothesis that downsampled searches are exploring a

fundamentally different part of the pipeline search space.

Based on these results, we believe downsampling provides an

non-intrusive and easy to implement option for scaling up GP-

based AutoML to larger datasets – however, practitioners need to

be aware of the fact that downsampling can fundamentally impact

the search space explored and the resulting pipeline obtained.

From a practical point of view, downsampling between 0.01 and

0.2 of the original dataset appears to be a range that results in higher

F1 scores, for our datasets. As such, practitioners may want to run

GP-based AutoML searches with ratios in this range, as well as on

the full dataset, and compare the resulting pipelines. In particular,

the pipelines produced using the smaller downsampling rates may

prove helpful in restricting the models and hyperparameter search

spaces considered for future searches on the full dataset.

6 RELEASED EXPERIMENTAL DATASET
We have released our experimental results and configurations as a

packaged dataset through Zenodo
6
[63].

An overview of this dataset can be found in Table 7. We in-

clude different performance scores (at training time, test time, with

and without refitting on the full dataset). For further analysis, the

dataset also contains the amount of explored pipelines, all evaluated

pipelines, the Pareto front of fitted pipelines (produced by TPOT)

and the final pipeline associated with each search.

6
https://zenodo.org/record/4292739, DOI: 10.5281/zenodo.4292739

Table 7: Overview of the experimental dataset that we have
released as part of our study. Here we detail the number
of datasets, pipeline (PL) optimization times, as well as the
number and average length of generated pipelines.

Datasets 20

PL Optimization Time 5 & 60 minutes

Runtime 8 weeks

Analyzed Pipelines 480,000

Analyzed Operators 920,000

Operators per PL (𝜇, 𝜎) 0.0001 (1.85, 0.30) 0.15 (1.74, 0.16)

0.001 (2.07, 0.18) 0.2 (1.73, 0.15)

0.01 (1.94, 0.16) 0.3 (1.72, 0.15)

0.05 (1.82, 0.14) 0.5 (1.67, 0.14)

0.1 (1.78, 0.16) 1.0 (1.60, 0.12)

The dataset released totals 45GB of compressed binary pipeline

data. We also provide a CSV version of the files.
7
Our release also

includes all code
8
necessary to rerun experiments, packaged in the

form of an extendable experiment framework. This framework also

includes utilities for querying and visualizing experimental results.

7 THREATS TO VALIDITY
Our experiments use genetic programming (GP), specifically the

AutoML tool TPOT [43], as a search procedure. Other search tech-

niques can be used for AutoML, including random search, multi-

armed-bandit optimization, and Bayesian optimization, among oth-

ers. We scope our observations to GP-based AutoML. GP represents

7
Given the size of the CSVs files, we recommend the use of specialized editors, such as

Ron’s Editor, be used to view in spreadsheet form.

8
https://github.com/ipa-lab/autoML-sampling-public
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a common AutoML search procedure [23, 43, 51, 65], and it is noto-

riously hard to scale to large datasets [35, 43], thus downsampling

can provide significant benefits.

Our evaluation of downsampling focuses on stratified, uniform

random sampling, as such it does not employ techniques such

as adaptive sampling [24, 38], which might improve performance

further. Our choice of uniform random sampling is motivated by its

simplicity and ubiquity: implementing uniform downsampling prior

to an AutoML search is straightforward and provides observable

benefits. Investigating the impact of adaptive downsampling on

AutoML search remains an open question for future work.

We carried out our evaluation on 20 different datasets, which

we collected to satisfy our “larger dataset” goal. The impact on

performance may vary depending on the datasets. To mitigate this

risk, we considered datasets from varied sources and domains.

In our results and discussion, we identified factors that may

play a role in the performance improvement observed when down-

sampling. In particular, we highlighted the number of pipelines

explored, pipeline length, and the choice of pipeline predictors as

possible factors. Furthermore, it is possible that other aspects of

GP-based searches can interact with downsampled datasets to im-

prove performance. Investigating additional factors at play remains

an open question, and our goal is to encourage such exploration by

releasing our experimental data.

8 RELATEDWORK
A wide range of AutoML systems have been developed based on

different search techniques. Hyperopt [10], one of the earliest hy-

perparameter optimization toolkits, allows users to write struc-

tured search spaces and optimizes these using a combination of

random search and Bayesian optimization. TPOT [43], the tool

that we use in our experiments, is based on genetic programming.

TPOT-SH [45] introduced the use of successive-halving to improve

the scalability of genetic-programming-based AutoML to larger

datasets. Autosklearn [20] applied sequential model-based algo-

rithm configuration [26], a generalization of traditional Bayesian

optimization (BO), and meta-learning to automatically generate

scikit-learn pipelines. H2O AutoML [36] combines randomly gener-

ated pipelines with ensembling. AL [16] uses dynamic program anal-

ysis on existing programs to learn a pipeline completion model that

can be used to generate pipelines for new datasets. Autobazaar [53]

and Alpine Meadow [52] use a combination of multi-armed ban-

dits and Bayesian optimization to produce pipelines. OBOE [58]

and TensorOBOE [59] are AutoML systems that use matrix and

tensor completion techniques, in combination with active learning,

to generate pipelines under limited execution time budgets.

Compared to these systems, we are not proposing a new search

technique or implementing a newAutoML system. Our contribution

is centered on extensively evaluating the impact of downsampling.

Bergstra and Bengio [9] introduced the use of random search for

efficient hyper-parameter optimization in neural networks. Snoek

et al [54] showed that BO could also be efficiently applied to hy-

perparameter tuning. Sequential model-based algorithm configura-

tion [26] generalized BO to tackle core challenges in AutoML such

as sets of hyperparameters with numeric and non-numeric domains.

Karnin et al [28] showed that successive halving, in the context of

multi-armed bandits, can be an effective exploration strategy. Li et

al [37] introduce Hyperband, which formulates hyperparameter op-

timization as infinite-armed bandit problem, where configurations

are randomly sampled and resource allocation is dynamic. Meta-

learning has also been successfully applied to improve the efficiency

of model and hyperparameter searches [47, 48, 52]. Early stopping

of model training has a long history in the machine learning re-

search community [7, 40, 50]. Downsampling the training data for

the search procedure, as we evaluate in this paper, has previously

been deployed in the context of classical machine learning [62].

Existing work [13, 21] has also shown that random projections –

which can be efficiently computed and reduce overall learning cost

– can be used as an effective form of dimensionality reduction for

supervised learning.

Relatedly, there is a long line of work on improving the efficiency

of machine learning from a systems perspective. For example, Elgo-

hary et al [19] introduce the use of database compression techniques

in linear algebra. Weld [44] optimizes data pipelines across indepen-

dent libraries, speeding up data intensive computations. Kunft et

al [33] developed Lara, a language and accompanying intermediate

representation for machine learning pipelines which can be used to

optimize their training. HELIX [57] can cache executions and the

intermediate state of machine learning pipelines across iterations

to improve the efficiency of pipeline development. Cerebero [41]

can accelerate model selection within the context of neural network

architectures by exploiting parallelism.

In contrast, we are not proposing a new search technique or

system, but rather our contribution is a detailed empirical study of

the impact of downsampling on a popular GP-based AutoML tool.

Gijsbers et al [22] identified shortcomings of existing bench-

marking work and developed a benchmarking suite (including code

and datasets) to evaluate AutoML systems. Zöller and Huber [64]

provide an extensive evaluation of AutoML systems and baseline

implementations of various of their underlying search techniques,

including Bayesian optimization, multi-armed bandit search, ran-

dom search, and grid search. Balaji and Allen [6] evaluate a set of

AutoML systems on both regression and classification tasks. Mi-

lutinovic et al [39] present a unified framework for benchmarking

different AutoML systems – simplifying the use of shared operators

and standardizing pipeline definitions – along with their bench-

marking results on a collection of existing AutoML systems. In

contrast to these studies, we focus on the impact of downsampling

large datasets prior to GP-based AutoML search, rather than evalu-

ating AutoML systems in general.

9 CONCLUSION
We present an extensive evaluation of the impact of downsampling

on genetic programming-based automated machine learning for

classification tasks. Large datasets pose a scalability challenge for

AutoML systems, which often require long optimization times for

even moderately sized datasets. We evaluate varying downsam-

pling ratios for 20 classification datasets and analyze predictive

performance, runtime performance, and pipeline characteristics.

We release the raw data collected during our experiments and the

experimental framework used to carry them out to facilitate future

research into the role of downsampling in AutoML.
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