
LES3: Learning-based Exact Set Similarity Search
Yifan Li

York University

yifanli@eecs.yorku.ca

Xiaohui Yu

York University

xhyu@yorku.ca

Nick Koudas

University of Toronto

koudas@cs.toronto.edu

ABSTRACT
Set similarity search is a problem of central interest to a wide va-

riety of applications such as data cleaning and web search. Past

approaches on set similarity search utilize either heavy indexing

structures, incurring large search costs or indexes that produce

large candidate sets. In this paper, we design a learning-based exact

set similarity search approach, LES3. Our approach first partitions

sets into groups, and then utilizes a light-weight bitmap-like index-

ing structure, called token-group matrix (TGM), to organize groups

and prune out candidates given a query set. In order to optimize

pruning using the TGM, we analytically investigate the optimal par-

titioning strategy under certain distributional assumptions. Using

these results, we then design a learning-based partitioning approach

called L2P and an associated data representation encoding, PTR,

to identify the partitions. We conduct extensive experiments on

real and synthetic datasets to fully study LES3, establishing the

effectiveness and superiority over other applicable approaches.

PVLDB Reference Format:
Yifan Li, Xiaohui Yu, and Nick Koudas. LES

3
: Learning-based Exact Set

Similarity Search. PVLDB, 14(11): 2073 - 2086, 2021.

doi:10.14778/3476249.3476263

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at

https://github.com/AwesomeYifan/learning-based-set-sim-search.

1 INTRODUCTION
Given a database D of sets each comprised of tokens (a token can

be an arbitrary string from a given alphabet Σ, a unique identifier
from a known domain, etc.), a single query set 𝑄 (consisting of

tokens from the same domain), and a similarity measure 𝑆𝑖𝑚(∗),
the problem of set similarity search is to identify from D those sets

that are within a user defined similarity threshold to the query 𝑄

(range query) or 𝑘 sets that are the most similar to 𝑄 (𝑘NN query).

This operation is essential to a wide spectrum of applications, such

as data cleaning [27, 66], data integration [18, 23], query refine-

ment [57], and digital trace analysis [44]. For example, a common

task in data cleaning is to perform approximate string matching

to identify near duplicates of a given query string. When strings

are tokenized, the task of approximate string matching becomes

a set similarity search problem. Given its prevalent use, efficient

set similarity search is of paramount importance. A brute-force

approach to supporting set similarity search is to scan all the sets

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476263

in D and evaluate 𝑆𝑖𝑚(∗) between 𝑄 and each set in D to obtain

the results. When D is large or such operations are carried out

repeatedly, however, its efficiency becomes a major concern.

Existing proposals to improve the search performance adopt a

filter-and-verify framework: in the filter step, candidate sets are

generated based on indexes onD, and the candidate sets are further

examined, computing the similarity between 𝑄 and each candidate

set in the verify step. Depending on the indexes used in the filter

step, existing methods can be categorized into two groups: inverted

index-based and tree-based. Inverted index-based methods build

inverted index on tokens and only fetch those sets containing (a

subset of) tokens present in the query set as candidates. Tree-based

methods [72, 73] transform sets to scalars [72] or vectors [73] and

insert them into B+-trees or R-trees, which are then used at query

processing time to quickly identify the candidate sets. As verifica-

tion of a candidate set can be done very efficiently under almost

all well-known set similarity measures (e.g., Jaccard, Dice, Cosine

similarity) incurring a cost linear in the size of the set, optimiza-

tion of the filter step is critical. Unfortunately, existing methods

either utilize heavy-weight indexes that incur expensive storage

consumption and excessive scanning cost during filtering [73], or

employ indexes that are light-weight but with very limited pruning

efficiency leading to an overly large candidate set [72]. Therefore,

existing approaches mostly do not solve the set similarity search

problem effectively. In fact for realistically low similarity thresholds

or large result sizes, as we demonstrate in our experiments, the

brute-force approach may perform much better.

In this paper, we study the problem of set similarity search, and

propose a new approach named LES3 (short for Learning-based

Exact Set Similarity Search) that strives to reduce the time needed

for filtering and increase the pruning efficiency of the index struc-

ture at the same time. At a high level, our approach also adopts a

filter-and-verify framework; however we advocate the partitioning

of the sets in D into non-overlapping groups for filtering. What

differentiates our approach from existing methods is that instead of

building complex index structures that could become too expensive

to utilize at run-time, we introduce a light-weight index structure

called token-group matrix (TGM); this structure is essentially a col-

lection of bit-maps, to organize all groups, yielding comparable or

higher pruning efficiency with only a fraction of storage cost and

thus highly scalable. The TGM captures the association between to-

kens and groups, and allows us to quickly compute an upper bound

on the similarity between the query set 𝑄 and any set in a given

group. Such upper bounds can then be used for pruning unrelated
groups and directing search to the most promising groups.

As the search efficiency relies on the pruning efficiency of the

TGM which in turn depends on how well the sets are partitioned,

we formulate the construction of TGM as an optimization problem,

that aims to identify the partitioning of sets that yields the highest

pruning efficiency. We first analytically model the base case in

2073

https://doi.org/10.14778/3476249.3476263
https://github.com/AwesomeYifan/learning-based-set-sim-search
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476263

which every token has the same probability of appearing in any

set. Our developments reveal that the optimal partitioning has two

properties: balance and intra-group coherence. We then design a

general partitioning objective (𝐺𝑃𝑂) that strives to maximize the

pruning efficiency, taking both properties into consideration.

We showcase that the optimal partitioning is NP-Hard and ex-

plore the use of algorithmic andmachine learning-based methods to

solve the optimization problem. Recent works [22, 38] have demon-

strated that machine learning techniques have solid performance

in learning the cumulative distribution function (CDF) of real data

sets and this property can be used in important data management

tasks such as indexing [43] and sorting [39]. We establish that ma-

chine learning techniques can also be utilized to produce superior

solutions to hard optimization problems, central to other important

indexing tasks such as those in support of set similarity search.

Complementary to existing works [22, 43] that utilize models

such as piece-wise linear regression to learn a CDF, we explore

models that are much better a fit, proposing a unique ensemble

learning method suitable for progressive partitioning in our set-

ting. The main difficulty in solving the optimization problem is

that depending on D, the number of groups needed for effective

pruning can be large, so it is highly challenging to train a single

network that would place any given set into one of these groups. As

such, we propose a new learning framework named L2P (short for

Learning to Partition) to address this challenge. L2P trains a cascade

of Siamese networks to hierarchically partition the databaseD into

increasingly finer groups until the desired number of groups is

reached, resulting in 2
𝑖
groups at level 𝑖 . The loss function for the

Siamese network is specifically designed to minimize the distances

between sets in the same group. As the input of a Siamese network

has to be a vector, we devise a novel and efficient set representation

method, path-table representation (PTR), that specifically caters to

the needs of our optimization problem and proves to be a better fit

than applicable embedding techniques. Although training ML mod-

els is known to be time-consuming, as will be shown in Section 7,

L2P yields better partitioning results with much shorter processing

time and only a small fraction of memory usage compared with

other widely-adopted partitioning methods.

We fully develop the query processing algorithms for both range

search and 𝑘NN search based on the TGM, and conduct extensive

experiments on synthetic and real data sets to study the properties

of our proposal and compare it against other applicable approaches.

Our results demonstrate that both the proposed set representation

method and the learning framework lead to much stronger pruning

efficiency than competing methods. Overall, the proposed LES3

method significantly outperforms the baseline methods in both

memory-based and disk-based settings.

In summary, we make the following main contributions.

• We propose a learning-based approach, LES3, for exact set
similarity search, which partitions the database into groups

to facilitate filtering. Central to LES3 is TGM, a light-weight

yet highly effective index that provides stronger pruning

efficiency with less cost than state-of-the-art indexes.

• We formally analyze the partitioning of the database into

groups, casting it as an optimization problem and discussing

its distinction from well-studied clustering problems.

• We devise a novel learning framework, L2P, to solve the par-

titioning optimization problem, which yields significantly

better partitioning results while incurring a small fraction

of processing time and space cost compared with traditional

algorithmic methods. L2P consists of a cascade of Siamese

networks, an architecture that is able to effectively learn a

partition of the dataset at different granularities, with up to

thousands of groups at the finest level.

• We develop a carefully designed method for set representa-

tion, PTR, taking group separation into consideration. PTR

theoretically and experimentally facilitates the training of

L2P. Compared with other embedding techniques, PTR is

orders of magnitude faster in computing set representations,

and thus is more suitable for the target application where

millions or billions of sets are involved (see Section 7).

• We experimentally study the performance of LES3, L2P, and
PTR, varying parameters of interest, including the network

structure, number of groups and result size. We also examine

the scalability of LES3 utilizing real world large datasets in

addition to previously used set similarity benchmarks. The

proposed methods significantly and consistently outperform

competing methods across a large variety of settings, pro-

viding up to 5 times faster query processing and requiring

up to 90% less space in typical scenarios.

The rest of the paper is organized as follows. In Section 2, we

define the terminologies to be used throughout the paper. Section

3 introduces the index structure, TGM. In Section 4, we discuss

how the partitioning problem can be formulated as an optimization

problem. In Section 5, we propose a machine learning framework

to solve the optimization problem. Section 6 presents the query

processing algorithms for set similarity search. The experimental

evaluation is presented in Section 7. Section 8 discusses related

work, and Section 9 concludes this paper.

2 PRELIMINARIES
A set is an unordered collection of elements called tokens (we also
consider multiset which may contain duplicate tokens in the paper).

We use 𝑆 to denote an arbitrary set and 𝑡 an arbitrary token. The

database D is a collection of sets, and all tokens form the token

universe T . Two sets are considered similar if the overlap in their

tokens exceeds a user-defined threshold. Usually, such overlap is

normalized to account for the size difference between sets. Exam-

ples of such similarity measures include Jaccard, Dice, and Cosine

similarity. To make our discussion more concrete, we focus on Jac-

card similarity, and discuss how our approach can be applied to

other similarity measures in Section 3.2. Next we give the formal

problem definitions.

Definition 2.1. kNN Search. Given the database of sets D, a set

similarity measure 𝑆𝑖𝑚(∗), a query set
1 𝑄 , and a result size 𝑘 , find

a collection R𝑘
𝑄

⊆ D s.t. |R𝑘
𝑄
| = 𝑘 and ∀𝑆 ∈ R𝑘

𝑄
, ∀𝑆 ′ ∈ D − R𝑘

𝑄
,

𝑆𝑖𝑚(𝑄, 𝑆) ≥ 𝑆𝑖𝑚(𝑄, 𝑆 ′).

1
Without loss of generality, we assume throughout the paper that a query set consists

of tokens existing in T only. The case of query sets containing tokens not in T can be

handled similarly and is discussed in Section 3.1.

2074

Definition 2.2. Range Search. Given the database of setsD, a set

similarity measure 𝑆𝑖𝑚(∗), a query set 𝑄 , and a threshold 𝛿 , find a

collection R𝛿
𝑄

⊆ D s.t. ∀𝑆 ∈ R𝛿
𝑄
, 𝑆𝑖𝑚(𝑄, 𝑆) ≥ 𝛿 , and ∀𝑆 ′ ∈ D−R𝛿

𝑄
,

𝑆𝑖𝑚(𝑄, 𝑆 ′) < 𝛿 .

Our goal is to accelerate the process of identifying the result

collection R𝑘
𝑄

or R𝛿
𝑄

for the given 𝑘 or 𝛿 . In general, the query

answering process consists of a filtering step (choosing candidate

sets) and a verification step (comparing candidate sets with the

query set). The cost of the verification step depends directly on

the pruning efficiency of the search process, which measures the

proportion of sets in D being pruned in the filtering step.

Definition 2.3. Pruning Efficiency (PE). Let S𝑄 be the collec-

tion of candidate sets for which the similarities to 𝑄 must be com-

puted in the process of identifying R𝑘
𝑄
or R𝛿

𝑄
. Then the pruning

efficiency of query processing, denoted as 𝑃𝐸, is
|D |−(|S𝑄 |−𝑘)

|D | for

𝑘NN query, or

|D |−(|S𝑄 |− |R𝛿
𝑄
|)

|D | for range query.

Clearly 𝑃𝐸 falls in the range [0, 1]. All other things being equal,

a higher 𝑃𝐸 leads to a lower verification cost. Our focus in this

paper is therefore to design an approach for set similarity search

that enjoys high PE and low filtering and verification cost.

3 TOKEN-GROUP MATRIX
The basic idea of our approach is to partition the sets in D into

non-overlapping groups and index them properly, so that the search

space can be pruned (i.e., certain groups can be quickly eliminated

from further consideration) to speed up query processing. At the

heart of our proposal is the token-group matrix (TGM), the index

that records the relationship between tokens and the groups result-

ing from partitioning. In this section, we present the index structure

and discuss its applicability across different similarity measures.

3.1 Index Structure
Assume for now, thatD is already partitioned into𝑛 non-overlapping

groups, G1, · · · G𝑛 ; we defer the discussion of the strategies for par-

titioning to the next section. The goals of the index are simplicity

(so that it incurs little computational and storage overhead) and

effectiveness (providing high pruning efficiency). To this end, the

TGM,𝑀 , with size 𝑛 ∗ |T |, is constructed in the following way:

𝑀 [𝑔, 𝑡] =

1, if ∃𝑆 ∈ G𝑔 s.t. 𝑡 ∈ 𝑆

0, otherwise

(1)

where 𝑡 ∈ [1, |T |] and 𝑔 ∈ [1, 𝑛].
An example of TGM is given in Figure 1, where T = {𝐴, 𝐵,𝐶, 𝐷}

and six sets are partitioned into two groups G0 and G1.

Figure 1: An example of TGM

The design of the TGM is based on the observation that when

deciding whether a group of sets is a candidate for a query set or

not, the only information needed is the number of common tokens

they share. Such information can be easily obtained by visiting

some elements in𝑀 , and thus we can compute a similarity upper
bound between a query set 𝑄 and a group of sets G𝑔 , which are

useful in pruning the search space, as follows:

𝑈𝐵 (𝑄, G𝑔) =


𝑡∈𝑄 𝑀 [𝑔, 𝑡]
|𝑄 | (2)

Continuing the example above, we assume that the query set is

{𝐴} and G0 and G1 in Figure 1 are candidates. Then the similarity

bound between the query set and G0 is
𝑀 [G0,𝐴]
| {𝐴} | = 1, and the upper

bound for G1 is
𝑀 [G1,𝐴]
| {𝐴} | = 0.

Althoughwe assume𝑄 contains tokens inT only, the case where

this does not hold can be handled by letting𝑀 [∗, 𝑡 ′] = 0 for 𝑡 ′ ∉ T
in Equation (2). No further changes are required.

In the query processing step, if the upper bound of group G𝑔
exceeds a threshold (can be 𝛿 in range query, or the minimal 𝑘NN

similarity found so far), we compare all sets in G𝑔 with the query set.

The time complexity of computing the similarity bounds between

the query set and all groups of sets is 𝑂 (𝑛 |𝑄 |). It in general costs

much less than computing the similarity between the query set

and each set in D, as the number of groups is usually orders of

magnitude smaller than |D|.
In terms of space consumption, each element in TGM is repre-

sented by a bit, and TGM is essentially a bitmap index. It is evident

that𝑀 is usually a very sparse matrix as each set usually contains a

very small portion of the tokens from the universe. When necessary,

many existing compression techniques [58, 59] can be employed to

reduce the size of𝑀 .

3.2 Applicability
Although Equation (2) is computed assuming Jaccard index as the

similarity metric, TGM works with many other set similarity mea-

sures as well, including measures that do not follow the triangle

inequality, such as cosine similarity.

Theorem 3.1. For ∀𝑄, 𝑆 ⊆ T , let 𝑅 = 𝑄 ∩ 𝑆 . TGM is applicable to
set similarity search tasks with measure 𝑆𝑖𝑚(∗) if

(1) 𝑆𝑖𝑚(𝑄, 𝑅) ≥ 𝑆𝑖𝑚(𝑄, 𝑆), and
(2) ∀𝑅′ ⊂ 𝑅, 𝑆𝑖𝑚(𝑄, 𝑅) ≥ 𝑆𝑖𝑚(𝑄, 𝑅′)

Proof. We prove that for an arbitrary query set 𝑄 and an arbi-

trary groupG𝑔 , we can compute a similarity upper bound𝑈𝐵(𝑄,G𝑔)
with TGM using Equation (2) such that ∀𝑆 ∈ G𝑔 , 𝑈𝐵(𝑄,G𝑔) ≥
𝑆𝑖𝑚(𝑄, 𝑆). Let 𝑅 = {𝑡 |𝑡 ∈ 𝑄 ∧ ∃𝑆 ∈ G𝑔 , 𝑡 ∈ 𝑆}, then we know

∀𝑆 ∈ G𝑔 ,𝑄∩𝑆 ⊆ 𝑅. If𝑄∩𝑆 = 𝑅, then clearly 𝑆𝑖𝑚(𝑄, 𝑅) ≥ 𝑆𝑖𝑚(𝑄, 𝑆);
if 𝑄 ∩ 𝑆 = 𝑅′ ⊂ 𝑅, then 𝑆𝑖𝑚(𝑄, 𝑅) ≥ 𝑆𝑖𝑚(𝑄, 𝑅′) ≥ 𝑆𝑖𝑚(𝑄, 𝑆). In
either case, 𝑆𝑖𝑚(𝑄, 𝑅) upper bounds 𝑆𝑖𝑚(𝑄, 𝑆), and thus we can use
𝑆𝑖𝑚(𝑄, 𝑅) as 𝑈𝐵(𝑄,G𝑔). Since it is possible that 𝑅 = 𝑆 , in which

case 𝑆𝑖𝑚(𝑄, 𝑅) = 𝑆𝑖𝑚(𝑄, 𝑆), the bound𝑈𝐵(𝑄,G𝑔) is tight, even in

multiset settings. □

For example, let 𝑄 = {𝑡1, 𝑡2, 𝑡3} and 𝑄 ∩ 𝑆 = {𝑡1, 𝑡2}. Then with

Jaccard similarity, the set with the maximal similarity to𝑄 is {𝑡1, 𝑡2}
and the upper bound is

2

3
; with cosine similarity, the set with the

maximal similarity to 𝑄 is also {𝑡1, 𝑡2}, but the upper bound is

2√
3∗2 ≈ 0.82. Note that although most similarity measures satisfy

the TGM Applicability Property, some exceptions do exist. One

2075

such example is the learned metric [37] which takes two samples

(e.g., images) as the input and predicts their similarity.

In what follows, we call the two properties listed in Theorem

3.1 the TGM Applicability Property. Note that the token universe T
does not need to be static. We will discuss how to adapt TGM to

deal with cases where T is dynamically changing in Section 6.

4 OPTIMIZING PARTITIONING
We analyze how to optimize partitioning to provide higher pruning

efficiency. We discuss desired properties of the partitioning, and

develop the objective function for the partitioning optimization

problem that will guide the development of effective partition-

ing strategies. To make our formal analysis tractable, we make

assumptions regarding the token distribution; nonetheless, as will

be demonstrated by our experimental results in Section 7, the opti-

mization objectives and strategies thus developed are also expected

to perform well when the assumptions do not hold.

4.1 The Case of Uniform Token Distribution
We formally analyze the effect of partitioning on pruning efficiency

when the following assumption on token distribution holds.

Definition 4.1. UniformTokenDistributionAssumption. The
probabilities that different tokens belong to an arbitrary set are

identical and independent. More specifically, ∀𝑡𝑖 , 𝑡 𝑗 ∈ T , ∀𝑆 ∈ D,

𝑃 (𝑡𝑖 ∈ 𝑠) = 𝑃 (𝑡 𝑗 ∈ 𝑆), and 𝑃 (𝑡𝑖 ∈ 𝑆 |𝑡 𝑗 ∈ 𝑠) = 𝑃 (𝑡𝑖 ∈ 𝑆 |𝑡 𝑗 ∉ 𝑆).

For an arbitrary query𝑄 , the expected pruning efficiency can be

computed as follows:

𝐸 [𝑃𝐸] =
𝑛

𝑔=1

|G𝑔 | (1 −𝑈𝐵 (𝑄, G𝑔)) (3)

Given the way the TGM is constructed, we rewrite Equation (2)

in the following way to ease subsequent discussion:

𝑈𝐵 (𝑄, G𝑔) =


𝑡∈𝑄 𝑀 [𝑡, 𝑔]
|𝑄 | =

|𝐺𝑆𝑔 ∩𝑄 |
|𝑄 | , 𝐺𝑆𝑔 =


𝑆∈G𝑔

𝑆 (4)

Accordingly, we rewrite Equation (3) as follows:

𝐸 [𝑃𝐸] =
𝑛

𝑔=1

|G𝑔 | (1 −
|𝐺𝑆𝑔 ∩𝑄 |

|𝑄 |) (5)

As we assume𝑄 follows the same distribution as D, 𝐸 [𝑃𝐸] over
all possible 𝑄 can be estimated by the following equation:

𝑄∈D
𝑛

𝑔=1 |G𝑔 | (1 −
|𝐺𝑆𝑔∩𝑄 |

|𝑄 |)
|D | (6)

Since |D| is a constant, we keep the nominator of Equation (6)

only, and adjust the order as follows:

𝑛
𝑔=1

|G𝑔 |

𝑄∈D

(1 −
|𝐺𝑆𝑔 ∩𝑄 |

|𝑄 |) (7)

To ease following analysis, we define term 𝐹 in Equation (8),

and claim that maximizing Equation (7) (and thus maximizing the

pruning efficiency) is equivalent to minimizing 𝐹 :

𝐹 =

𝑛
𝑔=1

|G𝑔 |

𝑄∈D

|𝐺𝑆𝑔 ∩𝑄 |
|𝑄 | (8)

We derive several properties regarding the partitioning from

Equation (8) so as to design practical partitioning algorithms.

Theorem 4.2. In a database that satisfies the uniform token dis-
tribution assumption, the partitioning that minimizes Equation (8)
produces groups with equal size (or differ by at most 1).

Proof. We consider the special case whereD is partitioned into

two groups G1 and G2, and |G1 | ≤ |G2 |. The 𝐹 value of such a

partitioning is:

𝐹 = 𝐹1 + 𝐹2 = |G1 |

𝑄∈D

|𝐺𝑆1 ∩𝑄 |
|𝑄 | + |G2 |


𝑄∈D

|𝐺𝑆2 ∩𝑄 |
|𝑄 | (9)

Next we move a set 𝑆 from G1 to G2 and prove that such move-

ment increases the 𝐹 value. We know that if 𝑆 is moved from G1 to

G2, 𝐹1 would decrease and 𝐹2 would increase. And since |G1 | ≤ |G2 |,
equivalently we can prove that |G𝑖 |


𝑄 ∈D

|𝐺𝑆𝑖∩𝑄 |
|𝑄 | grows super-

linearly with respect to |G𝑖 |, or

𝑄 ∈D

|𝐺𝑆𝑖∩𝑄 |
|𝑄 | grows with |G𝑖 |.

Given the construction of𝐺𝑆𝑖 in Equation (4), this is evidently true.

Therefore, the 𝐹 value increases after the movement of 𝑆 .

The above discussion can be naturally extended to multi-groups

by moving one set from a small group to a large group each time,

with the 𝐹 value increasing and the pruning efficiency decreasing

during the process. In conclusion, balanced partitioning results

yield the highest pruning efficiency. □

Even though the optimal partitioning is expected to produce

groups with almost equal sizes, evidently balance is not the only

desired property, according to Equation (8). We temporarily omit

the |G𝑔 | in Equation (8) and discuss other properties the partitioning
must satisfy in order to provide higher pruning efficiency.

Theorem 4.3. In a database that satisfies the uniform token dis-
tribution assumption, the partitioning that minimizes the following
objective provides the highest pruning efficiency:

𝑛
𝑔=1

|

𝑆∈G𝑔

𝑆 | (10)

Proof. Given the assumption that all groups are balanced, min-

imizing Equation (8) is equivalent to minimizing

𝑛
𝑔=1


𝑄∈D

|𝐺𝑆𝑔 ∩𝑄 |
|𝑄 | (11)

Since 𝑄 follows the uniform token distribution as well, which

means that all tokens appear in 𝑄 with the same probability, Equa-

tion (11) is proportional to the following equation:

𝑛
𝑔=1

|𝐺𝑆𝑔 ∩ T | =
𝑛

𝑔=1

|𝐺𝑆𝑔 | =
𝑛

𝑔=1

|

𝑆∈G𝑔

𝑆 |, (12)

where T denotes the token universe.

Thus, we can maximize PE by minimizing Equation (10). □

In summary, we have the following two desired properties re-

garding the partitioning of database D.

• Property 1: Groups are balanced;

• Property 2:𝑈 =
𝑛
𝑔=1 |


𝑆 ∈G𝑔

𝑆 | is minimized.

2076

(a) Groups produced by𝐺𝑃𝑂

(b) Groups produced by 𝑘-medians
Figure 2: Comparison of different partitioning results

4.2 The General Case
The analysis in the preceding section depends on the uniform token

distribution assumption. In real-life datasets, this assumption does

not hold. However, following the same methodology to derive a

formal treatment of an arbitrary set/token distribution would be

challenging as a realistic mathematical model of arbitrary set/token

distributions would be hard to justify. Although the two proper-

ties identified above may not be true for optimal partitioning in

the general case, we draw inspirations from them and propose a

heuristic objective function that strives to maximize PE.

In essence Property 2 directs that the more similar (in terms of

token composition) the sets are within a group, the better. We thus

design a general partitioning objective (𝐺𝑃𝑂) we wish to minimize

reflecting this property:

𝐺𝑃𝑂 =

𝑛
𝑔=1


𝑆𝑥 ∈G𝑔


𝑆𝑦∈G𝑔

(1 − 𝑆𝑖𝑚 (𝑆𝑥 , 𝑆𝑦)), (13)

where 𝑆𝑖𝑚(∗) can be any measures discussed in Section 3.2.

Intuitively, 𝐺𝑃𝑂 aims to minimize the sum of the intra-group

pair-wise distances, where distance is defined as 1 − 𝑆𝑖𝑚(∗). This
is similar to Property 2. As an example, consider two groups G𝑖

and G𝑗 with |G𝑖 | = |G𝑗 |. Assume that 𝑆𝑖𝑚(∗) is Jaccard similarity,

and we are to place a new set 𝑆 into one of the two groups. Then,

if


𝑆𝑖 ∈G𝑖

(1 − 𝑆𝑖𝑚(𝑆, 𝑆𝑖)) <

𝑆 𝑗 ∈G𝑗

(1 − 𝑆𝑖𝑚(𝑆, 𝑆 𝑗)), that would
mean 𝑆 shares more common tokens with sets in group G𝑖 , and

thus inserting 𝑆 into group G𝑖 helps to minimize𝑈 .

However, considering only Property 2 results in highly skewed

partitioning results, as placing all sets in the same group provides

the minimal𝑈 (which equals to |T |). Evidently, Property 1 is used to
prevent such skewed partitioning in the uniform case. Luckily,𝐺𝑃𝑂

enjoys a similar functionality: placing all sets in the same group

provides𝐺𝑃𝑂 =

𝑆𝑥 ,𝑆𝑦 ∈D (1−𝑆𝑖𝑚(𝑆𝑥 , 𝑆𝑦)), which is the maximal

possible 𝐺𝑃𝑂 , and thus such a partitioning is never the optimal

in terms of 𝐺𝑃𝑂 . Thus, the design of 𝐺𝑃𝑂 implicitly incorporates

both Property 1 and Property 2.

In order to better appreciate the distinctive value of the proposed

partitioning objective, we compare𝐺𝑃𝑂 with 𝑘-medians, perhaps

the most popular clustering technique, and show by an example

how optimizing 𝐺𝑃𝑂 leads to better results. We use a database of

21 sets, and the partitioning results based on different clustering

objectives are given in Figure 2. Each set is represented by a point in

the plot, and to better visualize the results we replace (1 − 𝑆𝑖𝑚(∗))
with Euclidean distance.

Assume that the query is to identify the nearest neighbors of

all 21 points. According to the search strategy of LES3 given in

Section 3.1, all points in the same group are candidates of each

other. Therefore, with the clustering results given in Figure 2(b),

the total number of distance calculations is 20 ∗ 20 + 1 ∗ 1 = 401,

while with the partitioning results in Figure 2(a) the number is

13 ∗ 13 + 8 ∗ 8 = 233. Clearly, the results based on Equation (13)

have better pruning efficiency.

Theorem 4.4. Given a database of sets D minimizing𝐺𝑃𝑂 on D
is NP-complete.

Proof. We give a brief proof by showing that minimizing 𝐺𝑃𝑂

is essentially a 0-1 integer linear programming problem, which has

been shown to be NP-complete [10]. More specifically, minimizing

𝐺𝑃𝑂 is equivalent to solving the following optimization problem:

maximize e |D | · [A · A⊺ ⊙ D] · e⊺|D |
subject to e𝑛 · A⊺ = e |D |

(14)

where A is a |D| × 𝑛 matrix and A[𝑥,𝑔] = 1 if set 𝑆𝑥 belongs

to group G𝑔 and A[𝑥,𝑔] = 0 otherwise, and D of size |D| × |D|
denotes the distance matrix where D[𝑥,𝑦] = 1 − 𝑆𝑖𝑚(𝑆𝑥 , 𝑆𝑦), and
e𝑖 is a row vector of length 𝑖 filled with ones. The goal is to find the

A which satisfies the constraint and maximizes the objective.

The intuition behind Equation (14) can be described as follows:

A · A⊺ is a |D| × |D| matrix such that the value at position [𝑥,𝑦]
is 1 if 𝑆𝑥 and 𝑆𝑦 belong to the same group, and 0 otherwise. The

element-wise product between A · A⊺ and D masks out those pair-

wise distances between sets belonging to different groups, and e |D | ·
[A ·A⊺ ⊙D] ·e⊺|D | sums the remaining distances, which is the same

objective as 𝐺𝑃𝑂 . The constraint e𝑛 · A⊺ = e |D | guarantees that
each set belongs to one and only one group. Therefore, minimizing

𝐺𝑃𝑂 is equivalent to solving Equation (14), which completes the

proof. □

4.3 Algorithmic Approaches
In this section we propose several algorithmic approaches based on

existing applicable clustering methods, which are expected to yield

groups with low 𝐺𝑃𝑂 values. More specifically, we design a graph

cut-based approach (PAR-G), a centroid-based approach (PAR-C),

and a hierarchical approach (PAR-H).

4.3.1 Graph cut-based method (PAR-G). When 𝑘 or 𝛿 is fixed, it

is possible to build an index structure specifically optimized for

the workload. Dong et al. [19] propose a graph cut-based solution

for (approximate) nearest neighbor search in R𝑑 space by linking

each point to its neighbors and partitioning the resulting graph into

balanced subgraphs with the number of edges crossing different

subgraphs minimized. Such a partitioning is shown to yield high

pruning efficiency. Inspired by their approach, we design PAR-G,

which takes 𝑘 or 𝛿 as one of its inputs, as follows:

(1) Similarity graph construction. For a given𝑘 in𝑘NNquery,

construct the similarity graph,𝐺D , ofD, such that ∀𝑆𝑥 ∈ D,

there exists a corresponding vertex 𝑉𝑥 in𝐺D , and ∀𝑆𝑦 ∈ D,

if 𝑆𝑦 is one of the 𝑘 nearest neighbors of 𝑆𝑥 , there is an edge

between 𝑉𝑥 and 𝑉𝑦 in 𝐺D . For a given 𝛿 in range query,

there is an edge between 𝑉𝑥 and 𝑉𝑦 if 𝑆𝑖𝑚(𝑆𝑥 , 𝑆𝑦) ≥ 𝛿 .

(2) Graph cut. Partition 𝐺D into 𝑛 balanced subgraphs while

minimizing the number of edges crossing different subgraphs.

This can be done with existing graph partitioners [24, 34].

2077

4.3.2 Centroid-based method (PAR-C). Centroid-based methods

[29] are iterative algorithms which at each iteration relocate an

elements into a different cluster if such relocation improves the

overall objective function. For our case, let 𝜙 (G) = 
𝑆𝑥 ,𝑆𝑦 ∈G (1 −

𝑆𝑖𝑚(𝑆𝑥 , 𝑆𝑦)) be the sum of all pair-wise distances
2
in group G,

𝑆 ∈ G𝑖 an arbitrary set, and Δ(𝑆,G𝑖 ,G𝑗) = 𝜙 (G𝑖 \ 𝑆) +𝜙 (G𝑗 ∪ 𝑆) −
𝜙 (G𝑖) − 𝜙 (G𝑗) the decrease of 𝐺𝑃𝑂 after moving 𝑆 from G𝑖 to G𝑗

(𝑖, 𝑗 ∈ [1, 𝑛]). To be more specific, our method works as follows:

(1) Initialization. Randomly partition D into 𝑛 groups;

(2) Relocation. For each 𝑆 ∈ D, suppose 𝑆 ∈ G𝑖 . Find group G∗
𝑗

such that Δ(𝑆,G𝑖 ,G∗
𝑗
) = max𝑆,G𝑖 ,G𝑗

Δ(𝑆,G𝑖 ,G𝑗) (denoted as
“the best group”). If Δ(𝑆,G𝑖 ,G∗

𝑗
) > 0, relocate 𝑆 from G𝑖 to

G∗
𝑗
. Repeat this step until no sets are relocated in an iteration.

(3) Simplification. Considering the data size we deal with (see

Section 7), finding “the best group” at each iteration would be

too expensive. Therefore, we adopt the “first-improvement”

variant [63] of the algorithm, i.e., pick the first group G𝑗

with Δ(𝑆,G𝑖 ,G𝑗) > 0 rather than the best group.

4.3.3 Divisive clustering method (PAR-D). Divisive clustering meth-

ods [35] start from the single cluster containing all elements and

repeatedly split clusters until a desired number of clusters is reached.

We reuse 𝜙 (G) introduced in Section 4.3.2 and use 𝑖𝑑𝑣_𝑑 (𝑆) to de-

note the sum of distances between 𝑆 and all other sets in the same

group as 𝑆 . PAR-D works as follows:

(1) Initialization. Take D as the initial group.

(2) Splitting. Find group G∗ = argmaxG𝑖 ∈{G1,G2, · · · } 𝜙 (G𝑖),
where {G1,G2, · · · } denotes all current groups. Find set

𝑆∗ = argmax𝑆 ∈G∗ 𝑖𝑑𝑣_𝑑 (𝑆). Create a new group G𝑛𝑒𝑤 =

{𝑆∗}. For all other sets 𝑆 ′ ∈ G∗
, move 𝑆 ′ to G𝑛𝑒𝑤

if such

movement reduces the overall 𝐺𝑃𝑂 . Repeat this step until

there are 𝑛 groups.

(3) Simplification. Considering the data size we deal with, in-

stead of finding 𝑆∗, we choose a random set in G∗
to initialize

G𝑛𝑒𝑤
, which is commonly adopted for group splitting [26].

4.3.4 Agglomerative clustering method (PAR-A). Agglomerative

clustering [55] works in a bottom-up fashion by initially treating

each element as a cluster and repeatedly merging clusters until a

desired number of clusters is reached. We reuse 𝜙 (G) introduced in
Section 4.3.2 to denote the sum of all pair-wise distances in group

G. PAR-A works as follows:

(1) Initialization. Create group G𝑖 = {𝑆𝑖 } for each 𝑆𝑖 ∈ D.

(2) Merging. Find groups G∗
1
,G∗

2
= argminG𝑖 ,G𝑗 ∈{G1,G2, · · · }

𝜙 (G𝑖 ∪ G𝑗), where {G1,G2, · · · } denotes all current groups
and 𝑖 ≠ 𝑗 . Create a new group G𝑛𝑒𝑤 = G∗

1
∪ G∗

2
and remove

groups G∗
1
and G∗

2
. Repeat this step until there are 𝑛 groups.

(3) Simplification. Considering the data size we deal with, we

adopt the heuristic that merging smaller groups (groups with

smaller number of sets) usually results in smaller values of

𝜙 (G𝑖 ∪ G𝑗) and restrict that G∗
1
is the smallest group (break-

ing ties randomly), and thus only G∗
2
needs to be identified

in each iteration.

2
Note that repetitively calculating 𝜙 (G) during the partitioning process is computa-

tional prohibitive, and thus we approximate 𝜙 (G) with randomly selected sets in G
in the experiment (Section 7.4).

As we will demonstrate in our experimental study in Section 7,

these heuristic approaches do not provide satisfactory performance.

The structure of the 𝐺𝑃𝑂 problem objective does not resemble

those targeted by well-studied clustering algorithms. In the next

section, we explore the use of ML to perform such a partitioning.

5 L2P: LEARN TO PARTITION SETS INTO
GROUPS

As pointed out by Bengio et al. [5], a machine learning approach to

combinatorial optimization problems with well-defined objective

functions, such as the Travelling Salesman Problem, has proven to

be more promising than classical optimization methods with hand-

wired rules in many scenarios, for the reason that it adapts solutions

to the data and thus can uncover patterns in the specific problem

instance as opposed to solving a general problem for every instance.

It is widely agreed [4, 64] that ML-based methods are especially

valuable in cases where expert knowledge of the problem domain

may not be sufficient and some algorithmic decisions may not give

satisfactory results. Our goal in this section, therefore, is to develop

a machine learning method to optimize 𝐺𝑃𝑂 .

5.1 Siamese Networks
Considering that the goal of optimizing 𝐺𝑃𝑂 is to maximize the

overall intra-group similarity, we adopt Siamese networks [8, 20]

to solve the partitioning task. Siamese networks have been suc-

cessfully utilized in deep metric learning tasks [50, 52] in computer

vision, capturing both intra-class similarity and inter-class discrim-

ination in many challenging tasks including face recognition.

We design a Siamese network as shown in Figure 3 to learn the

optimal partitioning. It consists of a pair of twin networks sharing

the same set of parameters working in tandem on two inputs and

generate two comparable outputs.

Figure 3: Siamese network

We use 𝑅𝑒𝑝 (𝑆𝑥) and 𝑅𝑒𝑝 (𝑆𝑦) to denote the vector representa-

tions of two sets 𝑆𝑥 and 𝑆𝑦 , a pair of inputs to the twin networks,

and use 𝐺 (𝑆𝑥) and 𝐺 (𝑆𝑦) to represent their respective group as-

signment indicted by the outputs of the twin networks respectively.

Following Equation (13) we define the loss function of the Siamese

network as follows:

𝑙𝑜𝑠𝑠 (𝑆𝑥 , 𝑆𝑦) =

(1 − 𝑆𝑖𝑚 (𝑆𝑥 , 𝑆𝑦)), if𝐺 (𝑆𝑥) = 𝐺 (𝑆𝑦)
0, otherwise

(15)

Equation (15) minimizes the intra-group dissimilarities by sum-

ming (1 − 𝑠𝑖𝑚(𝑆𝑥 , 𝑆𝑦)) as the losses, and penalizes imbalanced

groups by counting pairwise dissimilarities only between sets in

the same group. We use an example to illustrate how Equation (15)

penalizes imbalanced partitioning. Suppose there are 𝑁 sets and

dissimilarity between any pair of sets is the same at 𝑑 . The task

2078

is to partition these sets into 2 groups, containing 𝑁1 and 𝑁2 sets

respectively (𝑁1 + 𝑁2 = 𝑁). Then the overall loss is
𝑁1 (𝑁1−1)𝑑

2
+

𝑁2 (𝑁2−1)𝑑
2

= 𝑑
2
[𝑁1 (𝑁1 − 1) + 𝑁2 (𝑁2 − 1)] = 𝑑

2
(𝑁 2

1
+ 𝑁 2

2
− 𝑁) ≥

𝑑
2
((𝑁1+𝑁2)2

2
− 𝑁) = 𝑑

2
(𝑁 2

2
− 𝑁), and the bound is tight when

𝑁1 = 𝑁2. Therefore, Equation (15) favors balanced partitioning.

By training the Siamese network with sufficient samples drawn

from D, theoretically we can minimize the overall distances be-

tween all pairs of sets which belong to the same group, and thus

the Siamese network is expected to give the partitioning result

in which 𝐺𝑃𝑂 is minimized. Practically, however, we expect to

achieve near-optimal partitioning only as the network is essentially

performing local search.

5.2 Framework
Although using Siamese networks to solve the optimization problem

is a promising approach, training such networks turns out to be

difficult for the following reasons:

(1) When dealing with real world data, we may need to partition

sets into thousands of groups. Therefore, for an input set 𝑆𝑥 ,

the network needs to make prediction on which group 𝑆𝑥
belongs to, among a collection of thousands of groups. It is

well known [25] that training networks to tackle prediction

problems involving thousands or more labels is challenging.

(2) What makes this task even more difficult is that unlike a clas-

sification problem, the label for each input (i.e., the optimal

group) in this optimization problem is unknown, i.e., there is

no ground truth regarding the labels/groups available. The

only information we have is the loss if the two input sets are

assigned into the same group. This makes the problem even

more challenging than typical classification problems.

The inherent difficulty of utilizing Siamese networks for this

problem is the dimensionality (i.e., degrees of freedom) of the out-

put space. In response to this challenge, we propose a learning

framework consisting of a cascade of Siamese models, which parti-

tions the database in a hierarchical fashion. Each Siamese network

in the framework is responsible for partitioning a group of sets into

two sub-groups. The framework is illustrated in Figure 4.

Figure 4: Cascade framework

At Level 0 of the framework, we train a Siamese network which

takes each set in the entire databaseD and assigns it into one of two

groups, G1 and G2, based on the loss function given in Equation (15).

Then at Level 1, we train two Siamese networks working on G1

and G2 respectively in the same fashion. Thus, they partition the

entire database into four groups. We continue adding more levels

to the cascade framework until all groups are small enough or a

pre-defined threshold on the number of levels is reached. Since

each model in the cascade is specialized to partition a group of sets

into only two sub-groups the resulting classification problem can

be solved effectively.

The architecture of the cascade models motivates the use of a

hierarchical indexing structure, which we call Hierarchical TGM (or

HTGM). More specifically, assuming the level of the cascade frame-

work is 𝑙 , and 0 ≤ 𝑖 < 𝑗 < 𝑙 , we construct TGM𝑖 and TGM𝑗 based on

the partitioning results at level 𝑖 and level 𝑗 respectively. Suppose

a group at level 𝑖 , say G𝑔 , is partitioned into several sub-groups

at level 𝑗 , say SG
1
, · · · ,SG𝑚 . If for a query 𝑄 , group G𝑔 can be

pruned by checking TGM𝑖 , then all verification operations involv-

ing groupsSG
1
, · · · ,SG𝑚 can be eliminated. The construction can

be easily generalized to HTGM with ℎ (ℎ > 1) levels.

5.3 PTR: a Set Representation Method
A Siamese network accepts vectors as input and thus the sets in D
cannot be directly fed into the network. As a result we have to build

a vector representation for each set. Considering the time and space

complexity of existing embedding methods such as Principal Com-

ponent Analysis (PCA) or Multidimensional Scaling (MDS), they

can hardly be applied to the target setting introduced in Section

7 where millions or billions of sets are involved (see comparison

regarding embedding cost in Section 7.3). Besides, different from

the objectives of these general-purpose embedding methods such

as maximizing variance or preserving distance, our concern is to

make sets containing different tokens more separable to benefit

the training of the Siamese network. Intuitively, the representa-

tions that ease the training of the models are expected to bear the

following property:

Definition 5.1. Set Separation-Friendly Property. ∀𝑡 ∈ T , let

G𝑡 be the collection of sets containing 𝑡 , and G¬𝑡 be the collection
sets not containing 𝑡 , then G𝑡 and G¬𝑡 should to be easily separable
in the representation space.

Next we discuss how to construct such representations. As the

first step, we organize all tokens with a balanced binary tree such

that tokens appear in leaf nodes and each leaf contains only one

token. The height of the tree is thus ℎ = ⌈log
2
|T |⌉. We mark the

edge from a node to its left child with 1 and the edge to its right

child with 0. An example of such a tree is depicted in Figure 5.

Figure 5: Tokens organized with a balanced tree

We use 𝑝𝑎𝑡ℎ𝑡 to denote the path from the root to an arbitrary

token 𝑡 . Since each leaf contains only one token, no two tokens

share the same path. We build a path table (PT) of all tokens defined

as follows:

PT[𝑡, 𝑖] =

𝑝𝑎𝑡ℎ𝑡 [𝑖], if 𝑖 ∈ [1, ℎ]
1 − 𝑝𝑎𝑡ℎ𝑡 [𝑖], if 𝑖 ∈ [ℎ + 1, 2ℎ] (16)

An example of PT is provided in Table 1.

We propose a method called PTR (Path Table Representation) to

build a representation for a given set 𝑆 as follows:

𝑅𝑒𝑝 (𝑆) [𝑖] =

𝑡∈𝑆

𝑃𝑇 [𝑡, 𝑖], 𝑖 ∈ [1, 2ℎ] (17)

2079

Table 1: An example of path table (PT)
Position 1 2 3 4

A 1 1 0 0

B 1 0 0 1

C 0 1 1 0

D 0 0 1 1

Figure 6: Separating sets

In the above example, the representation of {𝐴, 𝐵,𝐶} is [2, 2, 1, 1]
and the representation of {𝐵, 𝐷} is [1, 0, 1, 2]. The second half of

the path table (Positions 3 and 4) helps to reduce the chance that

different sets have common representations. For example, if only

the first half is used, then the representations of {𝐴}, {𝐵,𝐶}, {𝐴, 𝐷},
{𝐵,𝐶, 𝐷} would all be [1, 1]. We compare the set representations

constructed on the full vs. half path tables in Section 7.3.

PTR also naturally differentiates multisets containing the same

collection of tokens but with different number of occurrences. For

example, 𝑅𝑒𝑝 ({𝐴}) = [1, 1, 0, 0] while 𝑅𝑒𝑝 ({𝐴,𝐴}) = [2, 2, 0, 0].
The basic idea of the representation is to map the sets into a

new space, in a way that determining collections of sets containing

specific tokens can be easily performed. More specifically, set 𝑆 is

placed in the representation space based on the presence or absence

of all tokens in 𝑆 , and consequently, given a collection of tokens T𝑐 ,
we can quickly locate all sets containing T𝑐 . This evidently yields

the set separation-friendly property. To better illustrate this, we

reuse the path table in Table 1 and show that sets containing 𝐵 can

be separated from other sets. For better visualization, we project

the representation space onto the first two dimensions (Positions

1 and 2), and keep tokens 𝐵, 𝐶 , and 𝐷 only in Figure 6. Clearly all

sets containing token 𝐵 fall into the striped area, defined by the

axis aligned hyper-plane in the representation space passing from

point (1, 0) (corresponding to {𝐵}). Similarly all sets containing

both 𝐵 and 𝐶 are located at the intersection of the axis aligned

hyper-planes passing from (1, 0) and (0, 1) (corresponding to {𝐶}).
That way separating sets in the representation space based on token

membership is conducted by determining hyper-plane intersections.

We will demonstrate that such a representation is easier to learn

and yields effective partitions in Section 7.

6 DEALINGWITH UPDATES
Our discussions so far have assumed that the database D and the

token universe are fixed. In some cases, however, new sets may

be added to the database after the index is built, and previously

unseen tokens may appear. We therefore study how updates can

be handled, with a focus on TGM, as HTGM can be updated level

by level in the same way.

We first discuss the case where new sets are added but the token

universe remains the same. Given a new set 𝑆 , we add 𝑆 into the

group G𝑔 if the similarity upper bound between G𝑔 and 𝑆 is the

highest among all groups. When there exist multiple groups with

the same highest𝑈𝐵, we insert 𝑆 into the group with the minimal

number of sets, in line with the optimization target discussed in

Section 4. After insertion, we update the TGM accordingly, i.e., for

all tokens 𝑡 ∈ 𝑆 , we set𝑀 [𝑔, 𝑡] = 1.

We now demonstrate how our approach naturally handles previ-

ously unseen tokens. This is an important feature of our solution as

it is the first to deal with dynamic tokens. All previous attempts to

a solution of this problem assumed a fixed token universe [72, 73].

Let 𝑆 be a set containing one or more new tokens. We insert 𝑆 into

the database in the following two steps:

(1) Let 𝑃𝑆 = 𝑆 ∩ T be all tokens in 𝑆 that have been seen

previously. We find the group with the highest similarity

upper bound to 𝑃𝑆 , denoted by G𝑔 . If 𝑃𝑆 = ∅, then G𝑔 is

simply the group with the minimal number of sets. 𝑆 is

inserted to G𝑔 .
(2) For any token 𝑡𝑛𝑒𝑤 ∈ 𝑆 \ 𝑃𝑆 , add a row in𝑀 corresponding

to 𝑡𝑛𝑒𝑤 . For all tokens 𝑡 ∈ 𝑆 , set𝑀 [𝑔, 𝑡] = 1.

Although the partitioning in Section 4 is optimized based on existing

sets and tokens, inserting new sets and tokens will not severely

impact the performance of the approach, as we demonstrate in

Section 7.8.

7 EXPERIMENTS
In this section, we present a thorough experimental evaluation of

our approach varying parameters of interest, comparing LES3 and
its important components, L2P and PTR, with competing methods.

7.1 Settings
Environment.We run the experiments on a machine with an In-

tel(R) Core i7-6700 CPU, 16GB memory and a 500GB, 5400 RPM

HDD (roughly 80MB/s data read rate). We use HDD for fair com-

parison as other disk-based methods require no random access of

the data (see Section 7.6). However one could expect better perfor-

mance of LES3 when running on SDD as it incurs random access

of the data by skipping some groups, especially when the number

of groups is large.

Implementation. L2P is implemented with PyTorch, embed-

ding methods in Section 7.3 and partitioning methods in Section

7.4 are implemented with Python, and TGM and the set similar-

ity search baselines are implemented in C++ and compiled using

GCC 9.3 with -O3 flag. TGM is compressed by Roaring [41], a well-

performed bitmap compression technique.

Datasets. KOSARAK [2], LIVEJ [49], DBLP [1], and AOL [53]

are three popular datasets used for set similarity search problems

and we adapt them for this reason. We also include a social network

dataset from Friendster[70] (denoted by FS), where each user is

treated as a set with his/her friends being the tokens; and a dataset

from PubMed Central journal literature [33] (denoted by PMC),

where each sentence is treated as a set with the words being the

tokens
3
. Table 2 presents a summary of the statistics on these

datasets. Considering the size of FS and PMC, we utilize them for

disk-based evaluation in Section 7.6 to examine the scalability of

LES3.

3
with basic data cleaning operations such as stop-words removal.

2080

Table 2: Dataset statistics

Dataset |D| Set size |T |
Max Min Avg

KOSARAK 990,002 2,498 1 8.1 41,270

LIVEJ 3,201,202 300 1 35.1 7,489,073

DBLP 5,875,251 462 2 8.7 3,720,067

AOL 10,154,742 245 1 3.0 3,849,555

FS 65,608,366 3,615 1 27.5 65,608,366

PMC 787,220,474 2,597 1 8.8 22,923,401

Evaluation. Following previous studies [14, 46, 73], we adopt

Jaccard similarity as the metric in our experimental evaluation. We

stress however that any similarity measures satisfying the TGM

applicability property introduced in Section 3.2 can be adopted

in our framework with highly similar results as those reported

below. For each experiment, we randomly select 10K sets in the

corresponding dataset as the queries and report the average search

time. Unless otherwise specified, the indexing structure (TGM) and

the data are memory-resident. We conduct disk-based evaluation

in Section 7.6. We compare TGM with HTGM in Section 7.7. We

select 𝑛 (number of groups) for each dataset which results in the

shortest query latency. The influence of 𝑛 is studied in Section 7.5.

Network and Loss Function. We consider Multi-Layer Per-

ceptron (two hidden layers, each consisting of eight neurons) and

Sigmoid activation function for L2P training in the experiment and

leave the investigation of other networks as future work. Clearly

the network has one neuron at the output layer. Let 𝑂𝑥 be the out-

put on input set 𝑆𝑥 . If 𝑂𝑥 < 0.5, then 𝑆𝑥 belongs to the first group;

if 𝑂𝑥 ≥ 0.5, then 𝑆𝑥 belongs to the second group.

The loss function given in Equation (15) clearly describes the

learning objective. However, it is difficult to train the network with

that loss function as its gradient is 0 for most outputs (to be exact,

the gradient is (1 − 𝑠𝑖𝑚(𝑆𝑥 , 𝑆𝑦)) when 𝑂𝑥 = 𝑂𝑦 = 0.5, and is 0

elsewhere). For efficient training, we use the following surrogate

loss function, which leads to the same global optimum as Equation

(15) while introducing non-zero gradients:

𝑙𝑜𝑠𝑠′ (𝑆𝑥 , 𝑆𝑦) =

𝑊 (𝑂𝑥 ,𝑂𝑦) (1 − 𝑆𝑖𝑚 (𝑆𝑥 , 𝑆𝑦)), if𝑉 (𝑂𝑥 ,𝑂𝑦) ;
0, otherwise;

(18)

where𝑊 (𝑂𝑥 ,𝑂𝑦) = (0.5 − |𝑂𝑥 −𝑂𝑦 |), and 𝑉 (𝑂𝑥 ,𝑂𝑦) = [(𝑂𝑥 ≥
0.5 ∧𝑂𝑦 ≥ 0.5) ∨ (𝑂𝑥 < 0.5 ∧𝑂𝑦 < 0.5)].

Initialization. Models at the first few levels of the Cascade

framework deal with a large number of sets and incur long training

time. To improve the training efficiency, we first sort all sets based

on the minimal token contained in each set, and then partition all

sets into 128 groups such that each group contains consecutive

|D|/128 sets, inspired by the idea of imposing sequential constraint

to clustering tasks [62]. Since we always build TGM on the parti-

tioning results at level 10 or higher which may contain thousands

of groups, such initialization has minor impact on the performance

but greatly reduces the training time. Note that initialization is not

performed for the sampled dataset used in Section 7.3 due to its

small size.

Training. For the Siamese network partitioning an arbitrary

group, we randomly select 40,000 pairs of sets in the group to

generate training samples, relatively small compared to the data

size. It is observed that further increasing the number of training

samples do not significantly improve the pruning efficiency of the

partitioning results. We stop partitioning a group if it contains less

than 50 sets, and thus the number of groups at level 𝑖 may be less

than 2
𝑖
. The batch size is set to 256, the number of epochs is set to

3 (except for Section 7.2 which reports the learning curves), and

Adam is used as the optimizer. The same sampling-and-training

procedure is repeated for each model in the cascade framework,

starting from level 0.

7.2 Model Convergence and Training Cost
In this section we report the learning curves and the training costs.

We observe that different models in the cascade framework intro-

duced in Section 5.2 yield similar learning curves, and thus we

present the training loss of a random model at level 0 for each

dataset (note that there are 128 models at level 0, see Section 7.1,

paragraph Initialization). The training losses and costs are presented

in Figure 7.

1 2 3 4 5
Epoch

0.25

0.50
(a) Training loss

200 400 600 800 1000
Number of groups (n)

0

200
(b) Training time (min)

KOSARAK LIVEJ DBLP AOL

Figure 7: Training losses and costs

As is clear from Figure 7(a), on all datasets used in the experiment,

the training loss decreases rapidly and the model converges after

approximately two epochs, attesting to the efficiency of the model

training process. Also, as can be observed from Figure 7(b), the

training cost grows linearly with respect to the number of groups,

making LES3 scalable for large datasets. Besides, models at the same

level of the cascade framework can be trained in parallel to further

reduce the training cost, which is an interesting direction for future

investigation.

7.3 PTR vs. Set Representation Techniques
We compare PTR with other applicable set representation tech-

niques. More specifically, we choose PCA [32], a widely-used linear

embedding method, MDS [12], a representative non-linear embed-

ding approach, and Binary Encoding [28], an efficient categorical

data embedding technique. We also include the variant of PTR con-

structed on the first half of the path table (see Section 5.3), denoted

by PTR-half. Considering the complexity of PCA and MDS, we con-

duct experiments on sampled KOSARAK (sample ratio of 5%). We

report the representation construction time of each method and the

query answering time using the resulting partitioning results for

𝑘NN query (𝑘 = 10) and range query (𝛿 = 0.7) in Figure 8; similar

trends are observed on other datasets and queries.

102

104

Embedding time (s)

2

3

4

Search time (ms)
kNN query (k= 10)

1

2

3

Search time (ms)
range query (δ= 0.7)

PTR PTR-half Binary PCA MDS

Figure 8: Comparison of representation techniques

2081

As can be observed from Figure 8, compared with PCA and MDS,

PTR incurs much lower embedding time (10 to 20,000 times faster)

while results in similar search time; comparedwith Binary Encoding

and PTR-half, PTR leads to faster query answering with comparable

embedding cost. Binary Encoding assigns unique representations

to different sets without considering set characteristics (e.g., tokens

contained therein), and thus can hardly achieve any Set Separation-

Friendly Property. PTR-half, as discussed in Section 5.3, suffers from

the risk that different sets may have common representations, and

consequently these (dissimilar) sets are partitioned into the same

group as they are not separable in the representation space, and

the resulting search time thus is slightly longer than that of PTR.

The major advantage of PTR is that it integrates the Set Separation-

Friendly Property introduced in Section 5.3 into set representations

by allowing sets consisting of different tokens to be easily separable

by axis-aligned hyper-planes in the embedding space, and thus

eases the training of the downstream Siamese networks.

7.4 L2P vs. Algorithmic Approaches
We compare the learning-based partitioning approach, L2P, to the

algorithmic methods introduced in Section 4.3, namely the graph

cut-based method (PAR-G), centroid-based method (PAR-C), di-

visive clustering method (PAR-D), and agglomerative clustering

method (PAR-A), in terms of partitioning cost, including time cost

and space cost, and query answering time.

For PAR-G, we adopt PaToH [9], a graph partitioning tool known

to be efficient and performing well, to cut the graph. We report

the cost of different methods in partitioning KOSARAK into 1024

groups and the query answering time for 𝑘NN with 𝑘 = 10 in

Figure 9; similar trends are observed on other datasets and queries.

Note that the partitioning time of L2P includes model training

time and inference time (the time required to assign a set into a

group), and the partitioning time of PAR-G consists of the 𝑘NN

graph construction time and the graph cut time. PAR-G is specially

optimized for 𝑘 = 10 and the construction of its 𝑘NN graph is

accelerated by LES3.

0

5

Partitioning
 time cost (hours)

0

500

1000

Partitioning
 space cost (MB)

20

40

60
Search time (ms)

L2P PAR-G PAR-C PAR-D PAR-A

Figure 9: Comparison of partitioning methods

As depicted in Figure 9, L2P provides the fastest search while

only incurs a small fraction of partitioning time and space cost

compared to competitors (saving 80% partitioning time and 99%

space compared with PAR-G). The reason why L2P incurs less

partitioning time and space overhead is that, as described in Section

5.1 and Section 7.1, by training the models on a small portion of data,

L2P is better positioned to approach the optimal partitioning where

the 𝐺𝑃𝑂 is minimized, while other techniques work on the entire

dataset and require (sometimes repetitively) computing the𝐺𝑃𝑂 of

arbitrary groups (or pairs) of sets. Besides, only model parameters

and the training samples in amini batch have to be saved inmemory

for L2P, with minimal storage overhead, while other techniques

require materializing a large amount of intermediate partitioning

results (and the entire 𝑘NN graph for PAR-G) in memory, incurring

prohibitive space consumption.

By directly optimizing the 𝐺𝑃𝑂 which integrates the two de-

sired properties of a partitioning with higher pruning efficiency,

L2P is able to outperform PAR-G, the objective of which is minimiz-

ing the number of edges in the similarity graph crossing different

sub-graphs rather than 𝐺𝑃𝑂 . PAR-C, PAR-D, and PAR-A, although

also aim to optimize the 𝐺𝑃𝑂 , suffer from severe local optimality

problems: a set is moved to a group only if such movement reduces

the overall 𝐺𝑃𝑂 , while in many cases movements temporarily in-

creasing the 𝐺𝑃𝑂 must be allowed to determine a global optimum.

For example, let 𝑆𝑖 ∈ G𝑖 , 𝑆 𝑗 ∈ G𝑗 be two sets. Assume that moving

𝑆𝑖 to G𝑗 and moving 𝑆 𝑗 to G𝑖 when individually carried out both

increase the 𝐺𝑃𝑂 , and consequently 𝑆𝑖 remains in G𝑗 and 𝑆 𝑗 in

G𝑖 . However, swapping 𝑆𝑖 and 𝑆 𝑗 may reduce the overall 𝐺𝑃𝑂 and

thus leads to better partitioning. Such swapping cannot be achieved

based on the strategy followed by PAR-C and PAR-D. Similarly, the

strategy of PAR-A does not allow the merge of groups temporarily

increasing the overall 𝐺𝑃𝑂 , which however may be necessary in

identifying a global optimum.

7.5 Sensitivity to Number of Groups and 𝑘

We test the performance of LES3 in terms of query processing time

on 𝑘NN queries, varying the number of groups 𝑛 and the result size

𝑘 . The results are presented in Figure 10.

0 20000 40000
Number of groups (n)

2.5

5.0

7.5

se
ar

ch
 ti

m
e

(m
s) 1e1 KOSARAK

0 100000
Number of groups (n)

1.2

1.4

1e3 LIVEJ

0 100000200000
Number of groups (n)

0.5

1.0
1e2 AOL

k= 1 k= 10 k= 50 k= 100

Figure 10: Sensitivity to the number of groups and result size

Increasing𝑛 accelerates query answering, regardless of the result

size. This is because withmore groups, as indicated by Equation (13),

the overall pruning efficiency of LES3 can be improved, meaning

fewer candidates have to be checked. Increasing 𝑛 benefits search

time up to a point. In particular we observe a diminishing return

behavior with respect to search performance as 𝑛 increases fur-

ther. The reason is that, with a sufficiently large number of groups,

sets are already well-separated, and further increasing 𝑛 brings

no significant change to the pruning efficiency but incurs higher

index (TGM) scan cost. Moreover, search time increases for larger 𝑘 ,

which is consistent with our analysis in Equation (??), as in general

a larger 𝑘 in 𝑘NN search is analogous to a smaller 𝛿 in range search

and thus the pruning efficiency is lower.

While determining the optimal number of groups for partitioning

is a known NP-hard problem [31], we empirically observe from the

experiments that setting the number of groups at approximately

0.5%|D| leads to the lowest search time, where |D| is the number

of sets in the corresponding dataset.

7.6 LES3 vs. Set Similarity Search Baselines
In this section, we compare LES3 with existing set similarity search

approaches to answering 𝑘NN and range queries in memory-based

2082

102
104

In
de
x

 si
ze

 (M
B)

KOSARAK LIVEJ DBLP AOL FS PMC

101

103

Co
ns
tru

ct
io
n

 ti
m

e
(m

in
)

LES3 DualTrans InvIdx

Figure 11: Index size and construction time

and disk-based settings respectively. Among tree-based set similar-

ity search approaches to date, DualTrans [73] provides the fastest

query processing. For inverted index-based methods, we adopt

the method proposed in [67] (denoted by InvIdx), which yields the

state-of-the-art performance for set similarity join tasks. Note that

we exclude methods requiring index construction during query

time [13, 14, 69] as the index construction cost is much higher than

the query cost. Since inverted index-based methods are designed

for range queries and do not naturally support 𝑘NN queries, we

modify the query answering algorithm of InvIdx for 𝑘NN queries

as follows. (1) Given a query set 𝑄 and a result size 𝑘 , start with

threshold 𝛿 = 1.0 and use InvIdx to find candidate sets from D
whose similarity with 𝑄 exceeds 𝛿 , denoted by C. (2) Identify the

temporary 𝑘NN results from C, denoted by R𝑘 . If the minimal simi-

larity between any set in R𝑘 and𝑄 exceeds 𝛿 , terminate. Otherwise,

decrease 𝛿 by 𝑧, use InvIdx to find candidates sets with the new 𝛿 ,

update C accordingly, and repeat the step. (3) Upon termination,

R𝑘 is guaranteed to be the 𝑘NN to𝑄 , as the similarity between any

sets in D \ C and 𝑄 does not exceed the current 𝛿 . The value of 𝑧

is tuned for faster query answering.

In addition, we also include a brute-force approach, i.e., comput-

ing the similarity between the query set and all other sets to derive

the results, for completeness of comparison.

In Figure 11, we show the index size and index construction

time for all methods. It is clear that the indexing structure of LES3,
namely TGM, is much more lightweight, requiring up to 90% less

space than DualTrans and InvIdx. The major time cost of con-

structing TGM comes from the model training, which however is

a preprocessing step incurring only a one-time cost and can be

further reduced as discussed in Section 7.2.

In Figure 12 we compare the performance of the four methods in

a memory-based setting. We observe that LES3 outperforms com-

petitors for both 𝑘NN queries and range queries, accelerating the

query answering by 2 to 20 times. DualTrans incurs longer search

time as it uses an R-tree to organize all sets, with each set being

represented with a 𝑑-dimensional vector (𝑑 can be tuned for faster

pruning). When the value of 𝑑 is small, sets containing different

tokens cannot be clearly separated based on their representations,

while when the value of 𝑑 is large, using R-tree to organize the

vectors incurs high overlap between the bounding boxes of nodes

on the R-tree, as previous research indicates [30]. Besides, scan-

ning the R-tree is expensive, which is not worthwhile considering

that set similarity (e.g., Jaccard similarity) can usually be computed

efficiently. While InvIdx provides comparable performance with

LES3 for range queries with large 𝛿 , it incurs greater search latency

for 𝑘NN queries, especially when the average set size is large (e.g.,

on KOSARAK and LIVEJ). The reason is that, with InvIdx filtering

operations need to be repeated for each candidate set (or multiple

candidates with some common characteristics), and larger set size

and 𝑘NN queries both enlarge the number of candidates, leading to

sub-par query performance.

In contrast, we use TGM to compute the upper bounds between

a query set and a group of sets; obtaining all bounds requires only

𝑂 (|𝑆 | ∗ |G|) time, which is relatively cheap. Although the search

time of LES3 increases for range query as 𝛿 decreases, LES3 provide
much faster query answering under a wide range of 𝛿 .

We compare the performance of the four methods in the disk-

based setting in Figure 13. Note that for DualTrans and InvIdx,

only the part of the index that is necessary to the query answering,

such as R-nodes on the search path and inverted indexes related

to the query set, is retrieved into memory to reduce I/O cost. We

observe that LES3 generally provides faster search compared with

competitors, accelerating the query answering by 2 to 10 times. The

reasons why LES3 incurs lower search time are: (1) Sets sharing

no or very few common tokens with the query set can be easily

pruned without being retrieved into memory; and (2) Since sets in

the same group are checked jointly during the searching process;

materializing a group of sets continuously on disk minimizes the

data transfer delay. DualTrans and InvIdx, on the contrary, incur

longer search latency and are outperformed by the Brute-force

method for a wide range of 𝑘 and 𝛿 . Besides the drawbacks dis-

cussed above in the memory-based setting, the search strategies of

DualTrans and InvIdx incur repetitive retrieval of data with random

disk access, which results in higher I/O cost (more pages retrieved,

higher seek and rotation overhead, etc.), making them less efficient

in the disk-based setting.

7.7 TGM vs. HTGM
We evaluate the performance of TGM and HTGM to determine

whether building a hierarchical index pays off. Intuitively, whether

it benefits the query processing largely depends on the similarity

distribution. For example, in cases where very few sets share com-

mon tokens, one can prune a large number of candidates using the

matrices at the first few levels of HTGM, avoiding scanning the

larger matrices at finer levels. However, in cases where most sets

are similar, the small matrices at the first few levels of HTGM may

provide no pruning efficiency at all. We assume that the similarity

between sets in D can be modeled by a power-law distribution

𝑃 [𝑠𝑖𝑚 = 𝑣] ∼ 𝑣−𝛼 , where 𝑃 [𝑠𝑖𝑚 = 𝑣] denotes the probability that

the similarity between any two sets is 𝑣 , 𝑣 ∈ [0, 1], 𝛼 ∈ [1,∞). We

generate multiple synthetic databases consisting of 20,000 sets and

20,000 tokens each, by varying the value of 𝛼 . We train a cascade

model with 9 levels (including level 0). We use the partitioning

results at level 8 (256 groups) to build the TGM, and use the parti-

tioning results at level 5 (32 groups) and level 8 to build the HTGM.

We compare HTGM and TGM from two aspects. First, the index

access cost, measured by the number of columns in the HTGM

or TGM that are checked when processing the query. Second, the

computational cost, measured by the number of similarity calcu-

lations. We measure the ratio of cost between HTGM and TGM,

and the results are shown in Figure 14. It is evident that HTGM

outperforms TGM when the value of 𝛼 is large, i.e., most sets are

dissimilar. This is in line with the discussions in Section 7.7.

2083

0.9 0.7 0.5 0.3
Value of δ

0

100

se
ar

ch
 ti

m
e

(m
s) KOSARAK

0.90.70.50.30.1
Value of δ

0.0

2.5

1e3 LIVEJ

0.9 0.7 0.5 0.3
Value of δ

0

2
1e3 DBLP

0.90.70.50.30.1
Value of δ

0

2
1e3 AOL

1 10 50 100
Result size (k)

50
100
150

KOSARAK

1 10 50 100
Result size (k)

1
2
3

1e3 LIVEJ

1 10 50 100
Result size (k)

2

4
1e3 DBLP

1 10 50 100
Result size (k)

0

2 1e3 AOL
LES3

Brute-force
DualTrans
InvIdx

Figure 12: Comparison to baselines in memory-based settings for range queries (left) and 𝑘NN queries (right)

0.9 0.7 0.5 0.3 0.1
Value of δ

0

1

se
ar

ch
 ti

m
e

(s
) 1e3 FS

0.9 0.7 0.5 0.3 0.1
Value of δ

0.5
1.0
1.5

1e3 PMC

1 10 50 100
Result size (k)

0.5

1.0
1e3 FS

1 10 50 100
Result size (k)

0.8

1.0
1e3 PMC

LES3 Brute-force DualTrans InvIdx

Figure 13: Comparison to baselines in disk-based settings for
range queries (left) and 𝑘NN queries (right)

3.5 4.0 4.5 5.0
Value of α

0.8

1.0

Ra
tio

 o
f c

os
t

 (H
TG

M
/T

GM
)

Index access cost
Computational cost

Figure 14: TGM vs. HTGM

0.0 0.2 0.4 0.6 0.8 1.0
Insertion ratio

0.0

0.1

0.2

Re
du

ct
io

n
 in

 P
E

closed universe
open universe

Figure 15: Handling updates

7.8 Handling Updates
We evaluate the performance of the proposed approach under up-

dates. Two cases are considered: (1) closed universe, meaning the

new sets to be inserted contain only tokens from the original data-

base, and (2) open universe, where the new sets may contain previ-

ously unseen tokens. LetD be the original database,D𝑐𝑙𝑜𝑠𝑒𝑑
be the

collection of new sets to be inserted under a closed universe, and

D𝑜𝑝𝑒𝑛
be the collection of new sets to be inserted under an open

universes. For the experiment, we set insertion ratio (|D𝑐𝑙𝑜𝑠𝑒𝑑 |/|D|
and |D𝑜𝑝𝑒𝑛 |/|D|) in range [0, 1], and half of the tokens in D𝑜𝑝𝑒𝑛

are from D and half are new. We compute the decrease in prun-

ing efficiency after insertion compared to obtaining a partitioning

from scratch (namely running L2P) on D ∪D𝑐𝑙𝑜𝑠𝑒𝑑
or D ∪D𝑜𝑝𝑒𝑛

(referred to as re-build). We give the results for 𝑘NN query with

𝑘 = 10 on KOSARAK in Figure 15; the experiments on the other

datasets show similar trends.

Figure 15 depicts the percentage of pe reduction compared to

re-build. The pruning efficiency decreases slightly as more new sets

are inserted into the database. Insertions under an open universe

have a higher impact on performance. The reason is that the tokens

from the same universe mainly follow a similar distribution and

the partition results obtained on the original data are still sufficient,

while there is no prior knowledge regarding the distribution of new

tokens. We observe, however, that the overall pruning efficiency

is resistant to insertions (experiencing a decrease by at most 8%),

which attests to the robustness of the proposed approach.

8 RELATEDWORK
The problem of processing set similarity queries, including set sim-

ilarity search [36, 72, 73] and set similarity joins [14, 15, 21, 46, 67],

has attracted remarkable research interest recently. Zhang et al.

[72, 73] propose to transform sets into scalars or vectors with the

relative distance between sets preserved, and organize the trans-

formed sets with B+-trees or R-trees, which facilitate the use of

tree-based branch-and-bound algorithms for similarity search. The

major drawback of their work is that, as shown in the experiments,

the tree structure can easily grow larger than the original data

and thus using the index for filtering incurs a significant cost, es-

pecially when the index and the data are stored externally. Most

prior research in the area of set similarity join focuses on threshold-

join queries and follows the filter-and-verify framework. In the

filter step, existing methods mainly adopt (1) prefix-based filters

[7, 65, 69], based on the observation that if the similarity between

two sets exceeds 𝛿 , then they must share common token(s) in their

prefixes of length𝑚; and (2) partition-based filters [3, 13, 14, 68],

which partition a set into several subsets so that two sets are similar

only if they share a common subset. Set similarity queries in dis-

tributed environments [11, 47] and approximate queries [60, 61] are

beyond the scope of this paper but represent promising directions

for further investigation.

Indexing is an important and well-studied problem in data man-

agement and recent works have utilized machine learning to learn a

CDF or to partition the data space for traditional database indexing

[17, 19, 40, 42, 43, 51, 56, 71]. In this paper, we complement recent

work by studying the applicability of machine learning techniques

to assist index construction for set similarity search problems. Our

results show that the proposed methods offer vast advantages over

traditional techniques.

Embedding sets and other entities consisting of discrete elements

has been well-studied. The most natural way to represent such data

types is 𝑛-hot encoding, but the resulting vectors are often very

long and sparse. Dimensionality reduction techniques are used to

compress the encoding vectors with different focuses: maximiz-

ing variances [54], preserving distances [6], solving the crowding

problem [45], etc. Recent advances in document embedding, e.g.,

word2vec [48], BERT [16], also provide new perspectives to con-

struct representations of sets. Compared to these methods, the PTR

proposed in Section 5.3 utilizes a very efficient method to produce

relatively short representations and is optimized for the specific

problem at hand.

9 CONCLUSIONS
In this paper, we have studied the problem of exact set similarity
search, and designed LES3, a filter-and-verify approach for effi-

cient query processing. Central to our proposal is TGM, a simple

yet effective structure that strikes a balance between index access

cost and effectiveness in pruning candidate sets. We have revealed

the desired properties of optimal partitioning in terms of pruning

efficiency under the uniform token distribution assumption. We de-

velop a learning-based approach, L2P, utilizing a cascade of Siamese

networks to identify partitions. A novel set representation method,

PTR, is developed to cater to the requirements of network train-

ing. The experimental results have demonstrated the superiority of

LES3 over other applicable approaches.

2084

REFERENCES
[1] DBLP. http://dblp.uni-trier.de/

[2] KOSARAK. http://fimi.uantwerpen.be/data/

[3] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. 2006. Efficient exact set-

similarity joins. In Proceedings of the 32nd international conference on Very large
data bases. VLDB Endowment, 918–929.

[4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-

chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[5] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. 2020. Machine learning for

combinatorial optimization: A methodological tour d’horizon. European Journal
of Operational Research (2020).

[6] Ingwer Borg and Patrick Groenen. 2003. Modern multidimensional scaling:

Theory and applications. Journal of Educational Measurement 40, 3 (2003), 277–
280.

[7] Panagiotis Bouros, Shen Ge, and Nikos Mamoulis. 2012. Spatio-textual similarity

joins. Proceedings of the VLDB Endowment 6, 1 (2012), 1–12.
[8] Jane Bromley, Isabelle Guyon, Yann LeCun, Eduard Säckinger, and Roopak Shah.

1994. Signature verification using a" siamese" time delay neural network. In

Advances in neural information processing systems. 737–744.
[9] Ümit V Çatalyürek and Cevdet Aykanat. 2011. Patoh (partitioning tool for

hypergraphs). In Encyclopedia of Parallel Computing. Springer, 1479–1487.
[10] Stephen A Cook. 1971. The complexity of theorem-proving procedures. In

Proceedings of the third annual ACM symposium on Theory of computing. 151–
158.

[11] Akash Das Sarma, Yeye He, and Surajit Chaudhuri. 2014. Clusterjoin: A similarity

joins framework using map-reduce. Proceedings of the VLDB Endowment 7, 12
(2014), 1059–1070.

[12] Vin De Silva and Joshua B Tenenbaum. 2004. Sparse multidimensional scaling
using landmark points. Technical Report. Technical report, Stanford University.

[13] Dong Deng, Guoliang Li, He Wen, and Jianhua Feng. 2015. An efficient partition

based method for exact set similarity joins. Proceedings of the VLDB Endowment
9, 4 (2015), 360–371.

[14] Dong Deng, Yufei Tao, and Guoliang Li. 2018. Overlap set similarity joins with

theoretical guarantees. In Proceedings of the 2018 International Conference on
Management of Data. 905–920.

[15] Dong Deng, Chengcheng Yang, Shuo Shang, Fan Zhu, Li Liu, and Ling Shao. 2019.

LCJoin: set containment join via list crosscutting. In 2019 IEEE 35th International
Conference on Data Engineering (ICDE). IEEE, 362–373.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[17] Jialin Ding, Umar Farooq Minhas, Jia Yu, Chi Wang, Jaeyoung Do, Yinan Li,

Hantian Zhang, Badrish Chandramouli, Johannes Gehrke, Donald Kossmann,

et al. 2020. ALEX: an updatable adaptive learned index. In Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. 969–984.

[18] Xin Luna Dong and Theodoros Rekatsinas. 2018. Data integration and machine

learning: A natural synergy. In Proceedings of the 2018 International Conference
on Management of Data. 1645–1650.

[19] Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. 2020. Learning Space

Partitions for Nearest Neighbor Search. In International Conference on Learning
Representations. https://openreview.net/forum?id=rkenmREFDr

[20] Jingfan Fan, Xiaohuan Cao, Zhong Xue, Pew-Thian Yap, and Dinggang Shen. 2018.

Adversarial similarity network for evaluating image alignment in deep learning

based registration. In International Conference on Medical Image Computing and
Computer-Assisted Intervention. Springer, 739–746.

[21] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019.

Lazo: A cardinality-based method for coupled estimation of jaccard similarity

and containment. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). IEEE, 1190–1201.

[22] Alex Galakatos, Michael Markovitch, Carsten Binnig, Rodrigo Fonseca, and Tim

Kraska. 2019. Fiting-tree: A data-aware index structure. In Proceedings of the 2019
International Conference on Management of Data. 1189–1206.

[23] Chang Ge, Yinan Li, Eric Eilebrecht, Badrish Chandramouli, and Donald Koss-

mann. 2019. Speculative distributed CSV data parsing for big data analytics. In

Proceedings of the 2019 International Conference on Management of Data. 883–899.
[24] Lars Gottesbüren,Michael Hamann, Sebastian Schlag, andDorotheaWagner. 2020.

Advanced Flow-Based Multilevel Hypergraph Partitioning. In 18th International
Symposium on Experimental Algorithms, SEA 2020, June 16-18, 2020, Catania, Italy
(LIPIcs), Simone Faro and Domenico Cantone (Eds.), Vol. 160. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 11:1–11:15. https://doi.org/10.4230/LIPIcs.SEA.

2020.11

[25] Maya R Gupta, Samy Bengio, and Jason Weston. 2014. Training highly multiclass

classifiers. The Journal of Machine Learning Research 15, 1 (2014), 1461–1492.

[26] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.

In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[27] Marios Hadjieleftheriou, Xiaohui Yu, Nick Koudas, and Divesh Srivastava. 2008.

Hashed samples: selectivity estimators for set similarity selection queries. Pro-
ceedings of the VLDB Endowment 1, 1 (2008), 201–212.

[28] Jiawei Han, Micheline Kamber, and Jian Pei. 2011. Data mining concepts and

techniques third edition. The Morgan Kaufmann Series in Data Management
Systems 5, 4 (2011), 83–124.

[29] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means

clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28, 1 (1979), 100–108.

[30] Piotr Indyk and Rajeev Motwani. 1998. Approximate nearest neighbors: towards

removing the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing. 604–613.

[31] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2013. An
introduction to statistical learning. Vol. 112. Springer.

[32] Ian T Jolliffe and Jorge Cadima. 2016. Principal component analysis: a review

and recent developments. Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 374, 2065 (2016), 20150202.

[33] PubMed Central Journal. .. https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/.

[34] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. 1999. Multi-

level hypergraph partitioning: applications in VLSI domain. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 7, 1 (1999), 69–79.

[35] Leonard Kaufman and Peter J Rousseeuw. 2009. Finding groups in data: an
introduction to cluster analysis. Vol. 344. John Wiley & Sons.

[36] Jongik Kim and Hongrae Lee. 2012. Efficient exact similarity searches using

multiple token orderings. In 2012 IEEE 28th International Conference on Data
Engineering. IEEE, 822–833.

[37] Sungyeon Kim, Minkyo Seo, Ivan Laptev, Minsu Cho, and Suha Kwak. 2019. Deep

metric learning beyond binary supervision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 2288–2297.

[38] Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018.

The case for learned index structures. In Proceedings of the 2018 International
Conference on Management of Data. 489–504.

[39] Ani Kristo, Kapil Vaidya, Ugur Çetintemel, Sanchit Misra, and Tim Kraska. 2020.

The Case for a Learned Sorting Algorithm. In Proceedings of the 2020 ACM SIG-
MOD International Conference on Management of Data. 1001–1016.

[40] Harald Lang, Alexander Beischl, Viktor Leis, Peter Boncz, Thomas Neumann,

and Alfons Kemper. 2020. Tree-Encoded Bitmaps. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data. 937–967.

[41] Daniel Lemire, Owen Kaser, Nathan Kurz, Luca Deri, Chris O’Hara, François

Saint-Jacques, and Gregory Ssi-Yan-Kai. 2018. Roaring bitmaps: Implementation

of an optimized software library. Software: Practice and Experience 48, 4 (2018),
867–895.

[42] Linwei Li, Kai Zhang, Jiading Guo, Wen He, Zhenying He, Yinan Jing, Weili Han,

and X Sean Wang. 2020. BinDex: A Two-Layered Index for Fast and Robust Scans.

In Proceedings of the 2020 ACM SIGMOD International Conference on Management
of Data. 909–923.

[43] Pengfei Li, Hua Lu, Qian Zheng, Long Yang, and Gang Pan. 2020. LISA: A

Learned Index Structure for Spatial Data. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data. 2119–2133.

[44] Yifan Li, Xiaohui Yu, and Nick Koudas. 2019. Top-k queries over digital traces. In

Proceedings of the 2019 International Conference on Management of Data. 954–971.
[45] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.

Journal of machine learning research 9, Nov (2008), 2579–2605.

[46] Willi Mann, Nikolaus Augsten, and Panagiotis Bouros. 2016. An empirical evalu-

ation of set similarity join techniques. Proceedings of the VLDB Endowment 9, 9
(2016), 636–647.

[47] Ahmed Metwally and Christos Faloutsos. 2012. V-smart-join: A scalable mapre-

duce framework for all-pair similarity joins of multisets and vectors. arXiv
preprint arXiv:1204.6077 (2012).

[48] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[49] Alan Mislove, Massimiliano Marcon, Krishna P. Gummadi, Peter Druschel, and

Bobby Bhattacharjee. 2007. Measurement and Analysis of Online Social Networks.

In Proceedings of the 5th ACM/Usenix Internet Measurement Conference (IMC’07).
San Diego, CA.

[50] Jonas Mueller and Aditya Thyagarajan. 2016. Siamese recurrent architectures for

learning sentence similarity. In thirtieth AAAI conference on artificial intelligence.
[51] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learn-

ing Multi-dimensional Indexes. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data. 985–1000.

[52] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. 2016. Learning text sim-

ilarity with siamese recurrent networks. In Proceedings of the 1st Workshop on
Representation Learning for NLP. 148–157.

[53] Greg Pass, Abdur Chowdhury, and Cayley Torgeson. 2006. A picture of search.

In Proceedings of the 1st international conference on Scalable information systems.
1–es.

[54] Karl Pearson. 1901. LIII. On lines and planes of closest fit to systems of points in

space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of

2085

http://dblp.uni-trier.de/
http://fimi.uantwerpen.be/data/
https://openreview.net/forum?id=rkenmREFDr
https://doi.org/10.4230/LIPIcs.SEA.2020.11
https://doi.org/10.4230/LIPIcs.SEA.2020.11

Science 2, 11 (1901), 559–572.
[55] Lior Rokach and Oded Maimon. 2005. Clustering methods. In Data mining and

knowledge discovery handbook. Springer, 321–352.
[56] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, and Hervé Jégou. 2019.

Spreading vectors for similarity search. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
https://openreview.net/forum?id=SkGuG2R5tm

[57] Mehran Sahami and Timothy D Heilman. 2006. A web-based kernel function

for measuring the similarity of short text snippets. In Proceedings of the 15th
international conference on World Wide Web. 377–386.

[58] David Salomon. 2004. Data compression: the complete reference. Springer Science
& Business Media.

[59] David Salomon andGiovanniMotta. 2010. Handbook of data compression. Springer
Science & Business Media.

[60] Venu Satuluri and Srinivasan Parthasarathy. 2011. Bayesian locality sensitive

hashing for fast similarity search. arXiv preprint arXiv:1110.1328 (2011).
[61] Sebastian Schelter and Jérôme Kunegis. 2016. Tracking the trackers: A large-scale

analysis of embedded web trackers. In Tenth International AAAI Conference on
Web and Social Media.

[62] Tibor Szkaliczki. 2016. clustering. sc. dp: Optimal clustering with sequential

constraint by using dynamic programming. R JOURNAL 8, 1 (2016), 318–327.

[63] Matus Telgarsky and Andrea Vattani. 2010. Hartigan’s method: k-means cluster-

ing without voronoi. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics. 820–827.

[64] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. In

Advances in neural information processing systems. 2692–2700.
[65] Jiannan Wang, Guoliang Li, and Jianhua Feng. 2012. Can we beat the prefix

filtering? An adaptive framework for similarity join and search. In Proceedings of

the 2012 ACM SIGMOD International Conference on Management of Data. 85–96.
[66] Pei Wang and Yeye He. 2019. Uni-Detect: A Unified Approach to Automated

Error Detection in Tables. In Proceedings of the 2019 International Conference on
Management of Data. 811–828.

[67] XuboWang, Lu Qin, Xuemin Lin, Ying Zhang, and Lijun Chang. 2019. Leveraging

set relations in exact and dynamic set similarity join. The VLDB Journal 28, 2
(2019), 267–292.

[68] Chuan Xiao, Wei Wang, Xuemin Lin, and Haichuan Shang. 2009. Top-k set

similarity joins. In 2009 IEEE 25th International Conference on Data Engineering.
IEEE, 916–927.

[69] Chuan Xiao, Wei Wang, Xuemin Lin, Jeffrey Xu Yu, and Guoren Wang. 2011.

Efficient similarity joins for near-duplicate detection. ACM Transactions on
Database Systems (TODS) 36, 3 (2011), 1–41.

[70] Jaewon Yang and Jure Leskovec. 2015. Defining and evaluating network commu-

nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

[71] Cong Yue, Zhongle Xie, Meihui Zhang, Gang Chen, Beng Chin Ooi, Sheng Wang,

and Xiaokui Xiao. 2020. Analysis of Indexing Structures for Immutable Data. In

Proceedings of the 2020 ACM SIGMOD International Conference on Management of
Data. 925–935.

[72] Yong Zhang, Xiuxing Li, Jin Wang, Ying Zhang, Chunxiao Xing, and Xiaojie

Yuan. 2017. An efficient framework for exact set similarity search using tree

structure indexes. In 2017 IEEE 33rd International Conference on Data Engineering
(ICDE). IEEE, 759–770.

[73] Yong Zhang, JiachengWu, JinWang, and Chunxiao Xing. 2020. A Transformation-

Based Framework for KNN Set Similarity Search. IEEE Trans. Knowl. Data Eng.
32, 3 (2020), 409–423.

2086

https://openreview.net/forum?id=SkGuG2R5tm

