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ABSTRACT
The median absolute deviation (MAD) is a statistic measuring the

variability of a set of quantitative elements. It is known to be more

robust to outliers than the standard deviation (SD), and thereby

widely used in outlier detection. Computing the exact MAD how-

ever is costly, e.g., by calling an algorithm of finding median twice,

with space cost 𝑂 (𝑛) over 𝑛 elements in a set. In this paper, we

propose the first fully mergeable approximate MAD algorithm, OP-

MAD, with one-pass scan of the data. Remarkably, by calling the

proposed algorithm at most twice, namely TP-MAD, it guarantees

to return an (𝜖, 1)-accurate MAD, i.e., the error relative to the ex-

act MAD is bounded by the desired 𝜖 or 1. The space complexity

is reduced to 𝑂 (𝑚) while the time complexity is 𝑂 (𝑛 +𝑚 log𝑚),
where𝑚 is the size of the sketch used to compress data, related

to the desired error bound 𝜖 . To get a more accurate MAD, i.e.,

with smaller 𝜖 , the sketch size𝑚 will be larger, a trade-off between

effectiveness and efficiency. In practice, we often have the sketch

size𝑚 ≪ 𝑛, leading to constant space cost 𝑂 (1) and linear time

cost𝑂 (𝑛). The extensive experiments over various datasets demon-

strate the superiority of our solution, e.g., 160000× less memory and

18× faster than the aforesaid exact method in datasets pareto and
norm. Finally, we further implement and evaluate the parallelizable

TP-MAD in Apache Spark, and the fully mergeable OP-MAD in

Structured Streaming.
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1 INTRODUCTION
Like the standard deviation (SD), the median absolute deviation

(MAD) measures the variability of a quantitative dataset. It is de-

fined as the median of the absolute deviations from the dataset’s

median. For instance, for a dataset D = {1, 3, 3, 5, 5, 6, 9, 9, 10}, we
have MEDIAN = 5. The absolute deviations from the MEDIAN 5

are {4, 2, 2, 0, 0, 1, 4, 4, 5}. The MAD of D is thus 2, the MEDIAN of

the absolute deviations.

MAD is practically important for various applications, since it is

a statistic more robust to outliers and long tails than the standard

deviation (SD). For example, Cao et al. [9] use Cauchy distributions

[16] with MEDIAN and MAD of historical query latency data as
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Figure 1: Robustness of median absolute deviation (MAD) to
outliers. The outliers (introduced by errors) in the time se-
ries in (b) significantly distract the SD statistics, while the
MAD statistics are not affected by such outliers, close to
those in the clean data in (a). When using the 3-sigma rule
for outlier detection, the ranges determined by MEAN and
SD over the dirty data in (d) deviate largely from the truths
in (c), compared to the robust ones by MEDIAN and MAD.

parameters to detect rare or abnormal query events in a database.

They also apply this method to detect anomalous machines, proxy

anomaly and network anomaly. Malinowski et al. [19] use MAD

as a parameter to determine the number of principal factors for

a data matrix in outlier detection. Wu et al. [25] and Adekeye

et al. [4] calculate the limits of control charts with MAD as the

scale parameter for statistical process control. Shawiesh et al. [3]

and Athari et al. [7] use MAD as the estimation of variability to

determine confidence intervals for locations of skewed distributions.

Moreover, MAD is applied to image preprocessing, e.g., estimating

noises [17] in gray-scale and colored images using MAD to select

the threshold. As a popular method to preprocess high-throughput

gene expression microarray data, the hit selection method uses

MAD as the parameter of the z score (a hit selection threshold) to

improve the overall selection rates [10]. Software engineers use

MAD as the threshold to classify the defective and clean classes of

datasets from monitoring systems, as an unsupervised method for

software defect prediction [20].

Example 1.1. Figure 1 illustrates the superiority of MAD in out-

lier detection compared to SD. The time series in Figure 1(a) presents

(a segment of) the traffic speeds in the Twin Cities Metro area in

Minnesota in NAB [6]. Outliers, e.g., introduced by data errors,
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significantly distract the SD statistics but not MAD, as shown in

Figure 1(b). The K-sigma rule [18] with 𝐾 = 3 detects elements

outside the ranges of solid lines in the distribution as outliers, in

Figure 1(d). Such ranges of solid lines can either be determined

by MEAN and SD (in red), or by MEDIAN and MAD (in green).

As shown in Figure 1(d), the ranges determined by MEDIAN and

MAD are more robust and closer to those over the clean data in

Figure 1(c). The outlier detection by MEDIAN and MAD is thus

more accurate [6]. For instance, the outlier at time 19:00 with value

125, outside the range of green lines, will be detected by MEDIAN

and MAD, but not by MEAN and SD in red lines. ■

Unfortunately, computing the exact MAD over a set of 𝑛 ele-

ments is costly, since it is defined on the median. Unlike SD, which

can be efficiently calculated in constant space, the MAD computa-

tion needs to find the median of the absolute deviations from the

dataset’s median, i.e., finding median twice. Such an exact MAD

algorithm has the space cost𝑂 (𝑛) and its time cost depends heavily

on data size, which is not affordable for large scale data. Therefore,

approximate MAD is often considered.

Example 1.2. To demonstrate the sufficiency and superiority of

approximate MAD compared with exact MAD, we run the outlier

detection application in Example 1.1 over a larger data size with up

to 10
7
elements. Figure 2 compares the results of approximate MAD

(by Algorithm 2 in Section 3.2) and exact MAD (by Algorithm 3 in

the full version technical report [1]).

(1) Comparable effectiveness. Figure 2(a) with 𝐾 = 7 shows that

the F1-score of outlier detection with approximate MAD is almost

the same as that using exact MAD. That is, it is sufficient to use

approximate MAD in this application.

(2) Lower time cost. Figure 2(b) presents the corresponding time

costs of computing approximate MAD and exact MAD in a batch

mode. While their effectiveness of outlier detection is almost the

same as shown in Figure 2(a), the time cost of computing approxi-

mate MAD is only about 1/5 of exact MAD over 10
7
elements.

(3) Lower space cost. Not only is the time cost saved, as illus-

trated in Figure 2(c), the corresponding space cost of computing

approximate MAD is significantly lower, almost constant. Given

the almost the same effectiveness but much more efficient time and

space costs, it is sufficient to use approximate MAD in practice and

the costly exact MAD is not necessary.

(4) Streaming computation. As presented in Section 3.2, the algo-

rithm for computing approximate MAD can be naturally adapted to

incremental computation for streaming data. In contrast, the exact

MAD needs to scan the entire data, since the set of absolute devia-

tions needs to be reconstructed given a changed median. Therefore,

as illustrated in Figure 2(d), the time cost of computing approximate

MAD is constant in the streaming mode, while that of exact MAD

increases heavily. It demonstrates again the necessity of studying

approximate MAD.

Similarly, the superiority of approximate MAD compared to

exact MAD is also observed in another application of Shewhart

control charts in Figure 11 in Section 5.4. ■

To find approximate MAD, a natural idea is to find the approxi-
mate median of the absolute deviations from the dataset’s approxi-
mate median, by calling twice the existing methods of approximat-

ing median [15, 21]. With two median approximations, the error
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Figure 2: Superiority of approximate MAD over exact MAD.
(a) ApproximateMAD and exactMAD show almost the same
F1-score of outlier detection under various data sizes. The
time costs in (b) and space costs in (c) of computing approxi-
mate MAD are significantly lower than those of exact MAD,
in a batch mode. (d) The approximate MAD can also be in-
crementally computed in a streaming mode.

introduced by such a simple approximation relative to the exact

MAD is theoretically unknown and practically ineffective (see a

detailed discussion in Section 6.1).

To the best of our knowledge, this is the first study on approxi-

mating MAD with bounded error. Our contributions include

• an approximate MAD algorithm with explicit error bound,

which is fully mergeable and needs only 1-pass scan of data;

• a solution by calling the proposed algorithm twice, which is

parallelizable and guarantees to find an (𝜖 ,1)-accurate MAD;

• a pruning strategy to skip buckets in the sketch of the second

scan, significantly reducing the space cost;

• a distributed implementation in Apache Spark and a stream-

ing implementation in Structured Streaming, both outper-

forming the simple MAD approximation using the built-in

approxQuantile for the approximate median.

Following is the structure of our paper. In Section 2, we first

give the formal definition of MAD and the measure of approxi-

mate MAD in accuracy. In Section 3, we present the approximate

MAD algorithm and analyze its error bound as well as complex-

ity. In Section 4, we illustrate the solution for approximate MAD

with desired error guarantees, and the bucket pruning strategy.

In Section 5, we compare our solution with several baselines in

experiments, showing the superiority of our proposal in accuracy

and resource occupation. Finally, in Section 6 and Section 7, we

discuss the related work and the conclusion.

Table 1 lists the frequently used notations.

2 FRAMEWORK
In this section, we review the MAD problem together with an exact

computation algorithm, and introduce approximate MAD as well

as the framework of our approximation solution.
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Table 1: Notations

Symbol Description

ˆ𝑀𝐴𝐷 approximate MAD

𝜖 the desired relative error of ˆ𝑀𝐴𝐷

𝜖 ′ the returned relative error of ˆ𝑀𝐴𝐷

𝛼 the parameter of APPROX-MAD, representing the tar-

geted relative error of ˆ𝑀𝐴𝐷

𝛽 a coefficient that helps our solution return an 𝜖-

accurate MAD in the second scan

D a univariate set of 𝑛 quantitative elements, having D =

{𝑣𝑖 |1 ≤ 𝑖 ≤ 𝑛}
S a sketch composed of at most𝑚 buckets with the car-

dinality 𝛾 = 1+𝛼
1−𝛼

S+, S− sketches for positive and negative elements

𝐵𝑖 the bucket with the index 𝑖 in S

𝐵0 the bucket with a counter for zero elements

L(𝐵𝑖 ) the lower boundary of 𝐵𝑖 , i.e., L(𝐵+𝑖 ) = 𝛾
𝑖−1

, L(𝐵−
𝑖
) =

−𝛾𝑖 and L(𝐵0) = 0

U(𝐵𝑖 ) the upper boundary of 𝐵𝑖 , i.e., U(𝐵+𝑖 ) = 𝛾
𝑖
, U(𝐵−

𝑖
) =

−𝛾𝑖−1 and U(𝐵0) = 0

𝑏𝑖 the number of elements in 𝐵𝑖

𝐵𝑝 the bucket covering𝑀𝐸𝐷𝐼𝐴𝑁

𝐵𝑞 the bucket used to estimate the range of MAD along

with 𝐵𝑝 , determined by Algorithm 1

2.1 Exact Median Absolute Deviation
Formally, MAD is defined as Definition 1.

Definition 1. The median absolute deviation (MAD) of a uni-
variate set, D = {𝑣1, 𝑣2, 𝑣3, . . . , 𝑣𝑛}, is the median of |𝑣𝑖 −𝑀𝐸𝐷𝐼𝐴𝑁 |,
for 1 ≤ 𝑖 ≤ 𝑛, where𝑀𝐸𝐷𝐼𝐴𝑁 is the median of D.

According to the definition, the straightforward and traditional

method to query MAD is to sort D to get exact MEDIAN and sort

the datasetD′ = {|𝑣𝑖−𝑀𝐸𝐷𝐼𝐴𝑁 | |1 ≤ 𝑖 ≤ 𝑛} to get its exact median,

which is MAD of D. (See Algorithm 3 in the full version technical

report [1].)

As the exact algorithm requires space to store the entire dataset,

its space complexity is 𝑂 (𝑛), which is not affordable for large data.

Also, its time cost depends heavily on the data size. Thus, we intro-

duce approximation to address the MAD calculation.

2.2 Approximate Median Absolute Deviation
Following the same line of approximate quantiles [21], we study

the relative error of approximate MAD. An 𝜖-accurate approximate

MAD is defined as Definition 2.

Definition 2. An 𝜖-accurate approximate median absolute devi-
ation, ˆ𝑀𝐴𝐷 , of the dataset D is bounded by

| ˆ𝑀𝐴𝐷 −𝑀𝐴𝐷 | ≤ 𝜖𝑀𝐴𝐷
where𝑀𝐴𝐷 is the exact median absolute deviation of D.

Next, we introduce our approximate MAD solution with relative

error bound guarantees. Most importantly, our solution does not

require storing all data into memory. Instead, its space occupation

can be bounded by a relatively small constant for data from most

distributions. Moreover, the solution supports parallelization, i.e., a

large dataset can be processed with the same accuracy by combin-

ing the results over several partitions. It is thus implemented and

evaluated in Apache Spark in Section 5.3.3, which can be further

applied in a clusterix-like database management system [22].

Figure 3 illustrates the framework of our solution that calculates

an 𝜖-accurate approximate MAD. Its core is APPROX-MAD, a one-

pass algorithm we propose to compute approximate MAD along

with its error bound. The solution works as follows.

(1) Execute APPROX-MAD with the desired error bound, 𝜖 , as

its parameter. It would return an approximate MAD,𝑀𝐴𝐷1,

and its error bound 𝜖 ′ which may exceed 𝜖 .

(2) If 𝜖 ′ ≤ 𝜖 , 𝑀𝐴𝐷1 is absolutely an 𝜖-accurate approximate

MAD and thus the final result, i.e., branch (a) in Figure 3.

(3) Otherwise, it would determine whether an 𝜖-accurate result

is available for this dataset with an auto-calculated coefficient

𝛽 according to Proposition 4.1. When the data is highly con-

centrated, i.e., 𝛽 ≤ 0 or 𝛽 ≥ 1, the elements in the dataset are

close with each other, in other words, close to the𝑀𝐸𝐷𝐼𝐴𝑁 ,

having
𝑀𝐴𝐷

|𝑀𝐸𝐷𝐼𝐴𝑁 | ≈ 0. The extreme case is that all the el-

ements in the dataset have the same (constant) value, i.e.,

𝑀𝐴𝐷 = 0. Intuitively, in such cases, we may directly assign

the approximate MAD as ˆ𝑀𝐴𝐷 = 0. Remarkably, referring

to Definition 2, this simple approximation indeed returns a

1-accurate MAD. Therefore, for 𝛽 ≤ 0 or 𝛽 ≥ 1, it outputs

⟨0, 1⟩, denoting ˆ𝑀𝐴𝐷 = 0 with error bound 1, in branch (c)

in Figure 3.

(4) In other cases, the second scanwould be posed usingAPPROX-

MADwith the updated parameter 𝛽𝜖 . It returns an 𝜖-accurate

𝑀𝐴𝐷2 as the final result, i.e., branch (b) in Figure 3.

As analyzed in Section 3.4, the time and space complexities

of Algorithm 2 APPROX-MAD by one-pass through the data are

𝑂 (𝑛 +𝑚 log𝑚) and 𝑂 (𝑚), respectively, where 𝑛 is the number of

elements and𝑚 is the size of the sketch used to compress data. As

aforesaid, by calling APPROX-MAD at most twice in Figure 3, our

solution guarantees to return an (𝜖, 1)-accurate MAD, with time

cost 𝑂 (𝑛 +𝑚 log𝑚) and space cost 𝑂 (𝑚).

3 FIRST SCAN
In this section, we present the algorithm, APPROX-MAD, for ap-

proximate MAD of a univariate dataset D with one-pass scan. It

has a parameter 𝛼 representing its targeted error bound. For the

first scan, we set 𝛼 = 𝜖 , the desired error bound. Two values would

be output by APPROX-MAD, an approximate MAD and its corre-

sponding error bound 𝜖 ′. Note that the approximate MAD returned

in the first scan is 𝜖 ′-accurate, rather than 𝜖-accurate (which will

be achieved by the second scan in Section 4).

The algorithm has two stages. The first sketch stage is to scan

elements, allocate them into multiple buckets, and keep their count

in each bucket. In the next stage, it calculates MAD based on the

counts and boundaries of buckets. We introduce the sketch struc-

ture as preliminary in Section 3.1 and Algorithm 1 in Section 3.2,
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Figure 3: The framework to get an (𝜖, 1)-accurate MAD,
where 𝜖 ′ is the output error bound of𝑀𝐴𝐷1 in the first scan,
and 𝛽 is used in the input error bound of the second scan, de-
termined automatically according to Proposition 4.1. When
the data is highly concentrated, i.e., 𝛽 ≤ 0 or 𝛽 ≥ 1, it directly
outputs 0 which is a 1-accurate MAD.

for the two stages respectively. Putting them together, we get the

complete algorithm. Its error bound and complexity are discussed

in Section 3.3 and Section 3.4.

3.1 Sketch Structure
Since storing the entire dataset in memory is intolerable for big

data as discussed in Section 2.1, we consider using a sketch struc-

ture from which we can infer data distribution at a relatively low

cost of space. We employ the sketch structure in DDSketch [21],

which is fully mergeable and used for quantile computation with

relative error bound guarantees. Its basic idea is bucketing and

estimating elements using buckets’ boundaries. We note that this

structure is potentially applicable for MAD computation. With sim-

ilar ideas, MAD can be estimated by two buckets’ distance as it

is computed by the distance between an element and MEDIAN.

Besides, its simplicity helps us guarantee high efficiency in time

and space (nevertheless, we propose an optimization strategy to

further improve the efficiency for MAD computation in Section

4.2). Now let us introduce the sketch as preliminary. The original

sketch [21] is only for positive elements as defined below.

Definition 3. With the cardinality 𝛾 = (1 + 𝛼)/(1 − 𝛼) and a
limit𝑚 on the number of buckets, where 𝛼 is the targeted relative
error bound, a sketch for positive elements is defined as

S+ = {𝐵+𝑖1 , 𝐵
+
𝑖2
, 𝐵+𝑖3 , . . . },

where |𝐵+
𝑖
| = 𝑏+

𝑖
counts 𝑣 with 𝛾𝑖−1 < 𝑣 ≤ 𝛾𝑖 , and |S+ | ≤ 𝑚.

Figure 4: The exact MAD is bounded by the minimum and
the maximum distances between buckets 𝐵𝑝 and 𝐵𝑞 refer-
ring to Lemma 3.3.

If |S+ | = 𝑚 + 1 or larger, the bucket with the lowest index, i.e.,

𝐵+
𝑖1
, is merged into its neighbor 𝐵+

𝑖2
with 𝑏+

𝑖2
= 𝑏+

𝑖1
+ 𝑏+

𝑖2
, in order to

keep at most𝑚 buckets.

For negative elements, a second sketch would be kept whose

indices are calculated on the absolute values. Its merging process

starts from the highest indices. To distinguish two sketches, we

denote them as S+ and S−. For zero elements, a separate bucket 𝐵0

is kept to count them. We use S to denote their combination for the

entire dataset. Here is an example to illustrate how it works.

Example 3.1. We consider a sketch S with 𝛼 = 0.01, making

𝛾 = 1.02, and𝑚 = 5. It scans D = {1, 3, 3, 5, 5, 6, 9, 9, 10}. For 𝑣1 = 1

and 𝑣2 = 3, they fall into 𝐵+
0
(⌈log𝛾 (1)⌉ = 0) and 𝐵+

55
(⌈log𝛾 (3)⌉ =

55). Thus, we increment 𝑏+
0
and 𝑏+

55
. In this way, we have S =

{𝐵+
0
(1), 𝐵+

55
(2), 𝐵+

81
(2), 𝐵+

90
(1), 𝐵+

110
(2), 𝐵+

116
(1)} where 𝑏+

𝑖
is within

parentheses. Because |S| exceeds 5, the bucket with the lowest

index, i.e., 𝐵+
0
, is merged into 𝐵+

55
, updating 𝑏+

55
= 3. Finally, we

have S = {𝐵+
55
(3), 𝐵+

81
(2), 𝐵+

90
(1), 𝐵+

110
(2), 𝐵+

116
(1)}. ■

We denote the scanning process that inserts elements as INSERT.

As a parameter to balance the capability and efficiency of S,𝑚 has

been comprehensively discussed in [21]. Therefore, we will not

include𝑚 in our following algorithms for convenience but only

discuss it when analyzing complexity in Section 3.4.

3.2 APPROX-MAD
In this section, we introduce the approximate MAD algorithm.

Recall that we keep the number of elements within each bucket 𝐵

in a sketch S. The idea is to find two buckets in S, denoted as 𝐵𝑝
and 𝐵𝑞 , whose minimum and maximum distance can bound the

exact MAD, as shown in Figure 4. Then we calculate approximate

MAD using their lower and upper boundaries, denoted as L(𝐵) and
U(𝐵).

Note that for buckets 𝐵+
𝑖
∈ S+, L(𝐵+

𝑖
) and U(𝐵+

𝑖
) are 𝛾𝑖−1 and

𝛾𝑖 . For buckets 𝐵−
𝑖
∈ S−, L(𝐵−

𝑖
) and U(𝐵−

𝑖
) are −𝛾𝑖 and −𝛾𝑖−1. And

boundaries of 𝐵0 are both 0. We use Algorithm 1, to locate the two

buckets, 𝐵𝑝 and 𝐵𝑞 .

The algorithm runs as follows.

(1) We first union S−, 𝐵0 and S+ to a general sketch S (Line 1).
(2) Then we find the bucket 𝐵𝑝 ℎ𝑜𝑙𝑑𝑖𝑛𝑔 MEDIAN using Algo-

rithm 4 in the full version technical report [1], which is the

progress of DDSketch to find 0.5-quantile [21] (Line 2).

(3) Regarding 𝐵𝑝 as the center of S, we divide S into two parts,

the left sketch S𝑙 and the right sketch S𝑟 (Lines 5-6).
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Algorithm 1: FIND-MAD-BUCKETS (S+, S−, 𝐵0, 𝑛)

Input: S+ for positive elements, S− for positive elements,

𝐵0 counting zero elements, and the data size 𝑛

Output: two buckets, 𝐵𝑝 and 𝐵𝑞

1 S← S− ∪ {𝐵0} ∪ S+;
2 𝐵𝑝 ← FIND-MEDIAN-BUCKET(S, 𝑛);

3 𝐵𝑞 ← 𝐵𝑝 ;

4 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑑 ← 𝑏𝑝 ;

5 S𝑙 ← {𝐵𝑖 |𝐵𝑖 ∈ S ∧ L(𝐵𝑖 ) < L(𝐵𝑝 )};
6 S𝑟 ← {𝐵𝑖 |𝐵𝑖 ∈ S ∧ L(𝐵𝑖 ) > L(𝐵𝑝 )};
7 𝐵𝑙 ← argmax𝐵∈S𝑙 L(𝐵);
8 𝐵𝑟 ← argmin𝐵∈S𝑟 L(𝐵);
9 while 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑑 < ⌊𝑛

2
⌋ do

10 if L(𝐵𝑝 ) − U(𝐵𝑙 ) < L(𝐵𝑟 ) − U(𝐵𝑝 ) then
11 𝐵𝑞 ← 𝐵𝑙 ;

12 S𝑙 ← S𝑙 − 𝐵𝑙 ;
13 𝐵𝑙 ← argmax𝐵∈S𝑙 L(𝐵);
14 else
15 𝐵𝑞 ← 𝐵𝑟 ;

16 S𝑟 ← S𝑟 − 𝐵𝑟 ;
17 𝐵𝑟 ← argmin𝐵∈S𝑟 L(𝐵);
18 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑑 ← 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑑 + 𝑏𝑞 ;
19 Find 𝐵𝑞′ covering L(𝐵𝑝 ) + U(𝐵𝑝 ) − U(𝐵𝑞);
20 if U(𝐵𝑞′) ≥ L(𝐵𝑝 ) + U(𝐵𝑝 ) − L(𝐵𝑞) then
21 𝐵𝑞 ← 𝐵𝑞′ ;

22 return 𝐵𝑝 , 𝐵𝑞 ;

(4) We use 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑑 to denote the number of elements nearby

𝑀𝐸𝐷𝐼𝐴𝑁 and start searching from buckets which are the

closest to 𝐵𝑝 in S𝑙 and S𝑟 , denoted as 𝐵𝑙 and 𝐵𝑟 (Lines 7-8).

(5) In each iteration, from 𝐵𝑙 and 𝐵𝑟 we choose the bucket with

smaller minimum distance and update 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑑 by adding

the bucket’ counter (Lines 9-18). Once 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑑 exceeds

⌊𝑛
2
⌋, the searching terminates.

(6) There may exist a bucket 𝐵𝑞′ on the other side of 𝐵𝑝 that is

searched before 𝐵𝑞 but has larger maximum distance from

𝐵𝑝 than 𝐵𝑞 . In this case, it should be 𝐵𝑞′ that makes 𝑐𝑜𝑢𝑛𝑡𝑚𝑎𝑑

exceed ⌊𝑛
2
⌋ rather than 𝐵𝑞 . We check this case in Line 19-21.

With 𝐵𝑝 and 𝐵𝑞 returned by Algorithm 1, we calculate approxi-

mate MAD in two cases. If 𝐵𝑝 and 𝐵𝑞 are from the same sketch (S+

or S−), we set

ˆ𝑀𝐴𝐷 = 2

(U(𝐵𝑝 ) − L(𝐵𝑞)) (L(𝐵𝑝 ) − U(𝐵𝑞))
(𝛾 + 1) |L(𝐵𝑝 ) − L(𝐵𝑞) |

. (1)

Otherwise, we set

ˆ𝑀𝐴𝐷 = 2

max( |U(𝐵𝑝 ) − L(𝐵𝑞) |, |L(𝐵𝑝 ) − U(𝐵𝑞) |)
𝛾 + 1 . (2)

We will discuss why we can bound the error of ˆ𝑀𝐴𝐷 with these

equations in Section 3.3.2. Note that in Equation 1, we assume 𝑝 ≠ 𝑞.

If 𝑝 = 𝑞, it has𝑀𝐴𝐷 ≤ 𝛾𝑝 −𝛾𝑝−1 < 2𝛼
1−𝛼 |𝑀𝐸𝐷𝐼𝐴𝑁 |, where 𝛼 is set

to a value close to 0. For such a situation, we believe the data is

too concentrated, inferring
𝑀𝐴𝐷

|𝑀𝐸𝐷𝐼𝐴𝑁 | ≈ 0, so that 0 would be the

approximation. The entire procedure of APPROX-MAD is given in

Algorithm 2.

Algorithm 2: APPROX-MAD (D, 𝛼)

Input: the input dataset D and the targeted error bound 𝛼

Output: approximate ˆ𝑀𝐴𝐷 and its error bound 𝜖 ′

1 𝑛 ← 0;

2 𝛾 ← 1+𝛼
1−𝛼 ;

3 create sketches S+ and S− with cardinality 𝛾 ;

4 initialize 𝐵0 with 𝑏0 = 0;

5 for 𝑣𝑖 ∈ D do
6 𝑛 ← 𝑛 + 1;
7 if 𝑣𝑖 > 0 then
8 INSERT(S+, 𝑣𝑖 );
9 else if 𝑣𝑖 < 0 then
10 INSERT(S−, |𝑣𝑖 |);
11 else
12 𝑏0 ← 𝑏0 + 1
13 𝐵𝑝 , 𝐵𝑞 ← FIND-MAD-BUCKETS(S+, S−, 𝐵0, 𝑛);
14 if 𝐵𝑝 and 𝐵𝑞 are from the same sketch then
15 if 𝑝 ≠ 𝑞 then
16 ˆ𝑀𝐴𝐷 ← 2

(𝛾𝑝−𝛾𝑞−1) (𝛾𝑝−1−𝛾𝑞 )
(𝛾+1) |𝛾𝑝−1−𝛾𝑞−1 | ;

17 𝜖 ′ ← 𝛾 |𝑝−𝑞 |+1
𝛾 |𝑝−𝑞 |−1𝛼 ;

18 else
19 ˆ𝑀𝐴𝐷 ← 0;

20 𝜖 ′ ← 1;

21 else
22 ˆ𝑀𝐴𝐷 ← 2

max( |U(𝐵𝑝 )−L(𝐵𝑞 ) |, |L(𝐵𝑝 )−U(𝐵𝑞 ) |)
𝛾+1 ;

23 𝜖 ′ ← 𝛼 ;

24 return ˆ𝑀𝐴𝐷 , 𝜖 ′;

Example 3.2. For D = {1, 3, 3, 5, 5, 6, 9, 9, 10} and 𝛼 = 0.01, its

MEDIAN and MAD are 5 and 2. After scanning, we have the sketch

S = {𝐵+
0
(1), 𝐵+

55
(2), 𝐵+

81
(2), 𝐵+

90
(1), 𝐵+

110
(2), 𝐵+

116
(1)}. We get 𝐵+

81

that covers 5 as 𝐵𝑝 (step 1-2). Next, the searching for 𝐵𝑞 starts from

𝐵+
55

and 𝐵+
90
, and stops until finding 𝐵+

55
that covers 3 as 𝐵𝑞 (step

3-5). The condition in step 6 does not hold. Therefore, with 𝐵+
81

and

𝐵+
55
, we estimate ˆ𝑀𝐴𝐷 = 2.0257. ■

3.3 Accuracy Analysis
With Algorithm 2 for an approximate MAD, we next analyze the

relative error bound of the MAD result. We first prove that the

exact MAD is bounded by the minimum and the maximum distance

between 𝐵𝑝 and 𝐵𝑞 referring to Lemma 3.3 in Section 3.3.1. Then,

with the scope of MAD determined by 𝐵𝑝 and 𝐵𝑞 , Section 3.3.2

presents the error bound of approximateMAD defined in Equation 1

and Equation 2 in Proposition 3.4 and Proposition 3.5, respectively.

Finally, in Section 3.3.3, we give the worst-case error bound in

Proposition 3.6 of the aforesaid results.

3.3.1 Bounds of MAD. First, we can bound MAD as follows.
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Lemma 3.3. Given the output of Algorithm 1, 𝐵𝑝 and 𝐵𝑞 , MAD is
bounded by the minimum and the maximum distance between 𝐵𝑝
and 𝐵𝑞 as illustrated in Figure 4, i.e.,

L(𝐵𝑝 ) − U(𝐵𝑞) ≤ 𝑀𝐴𝐷 ≤ U(𝐵𝑝 ) − L(𝐵𝑞) if L(𝐵𝑝 ) ≥ L(𝐵𝑞),
L(𝐵𝑞) − U(𝐵𝑝 ) ≤ 𝑀𝐴𝐷 ≤ U(𝐵𝑞) − L(𝐵𝑝 ) if L(𝐵𝑝 ) < L(𝐵𝑞).

(See proof in the full version technical report [1].) ■

3.3.2 Error Bound. Note that 𝐵𝑝 and 𝐵𝑞 could be either from the

same sketch (S+ or S−) or not, and we give different formulas

for approximate MAD in Equation 1 and Equation 2, respectively.

Now we discuss the error bound of MAD in these two cases, in

Proposition 3.4 and Proposition 3.5.

For the first case, i.e., 𝐵𝑝 and 𝐵𝑞 are from the same sketch, the

bound of MAD in Lemma 3.3 can be written as 𝛾𝑚𝑎𝑥 (𝑝,𝑞)−1 −
𝛾𝑚𝑖𝑛 (𝑝,𝑞) ≤ 𝑀𝐴𝐷 ≤ 𝛾𝑚𝑎𝑥 (𝑝,𝑞) − 𝛾𝑚𝑖𝑛 (𝑝,𝑞)−1

, based on which we

have the following proposition.

Proposition 3.4. Given 𝑝 , 𝑞 with 𝑝 ≠ 𝑞, 𝛼 > 0 and 𝛾 = 1+𝛼
1−𝛼 , let

ˆ𝑀𝐴𝐷 = 2
(𝛾𝑝−𝛾𝑞−1) (𝛾𝑝−1−𝛾𝑞 )
(𝛾+1) |𝛾𝑝−1−𝛾𝑞−1 | . Then, we have

| ˆ𝑀𝐴𝐷 −𝑀𝐴𝐷 | ≤ 𝛾
|𝑝−𝑞 | + 1

𝛾 |𝑝−𝑞 | − 1
𝛼𝑀𝐴𝐷

if 𝛾𝑚𝑎𝑥 (𝑝,𝑞)−1 − 𝛾𝑚𝑖𝑛 (𝑝,𝑞) ≤ 𝑀𝐴𝐷 ≤ 𝛾𝑚𝑎𝑥 (𝑝,𝑞) − 𝛾𝑚𝑖𝑛 (𝑝,𝑞)−1.
(See proof in the full version technical report [1].) ■

Proposition 3.4 shows that if 𝐵𝑝 and 𝐵𝑞 are from the same sketch,

we estimate MAD by APPROX-MAD(D, 𝜖) with error bounded by

𝜖 ′ = 𝛾 |𝑝−𝑞 |+1
𝛾 |𝑝−𝑞 |−1𝜖 only if 𝑝 ≠ 𝑞, i.e., 𝑀𝐴𝐷 ≥ 2𝜖

1−𝜖 |𝑀𝐸𝐷𝐼𝐴𝑁 |. How-
ever, the error bound, affected by 𝛾 |𝑝−𝑞 | , exceeds 𝜖 . Note that

|𝑀𝐸𝐷𝐼𝐴𝑁 | ≈ 𝛾𝑝 and 𝑀𝐴𝐷 ≈ |𝛾𝑝 − 𝛾𝑞 |, and thereby 𝛾 |𝑝−𝑞 | ≈
1 + 𝑀𝐴𝐷

|𝑀𝐸𝐷𝐼𝐴𝑁 | or 1/(1 −
𝑀𝐴𝐷

|𝑀𝐸𝐷𝐼𝐴𝑁 | ). With a fixed 𝜖 , if 𝑀𝐴𝐷
|𝑀𝐸𝐷𝐼𝐴𝑁 |

is smaller, i.e., data is more concentrated, APPROX-MAD would

get a smaller 𝛾 |𝑝−𝑞 | and thereby output an approximate MAD with

larger 𝜖 ′.
For the other case, i.e., one of 𝐵𝑝 and 𝐵𝑞 is from S+ and the

other is from S−, the bound of MAD in Lemma 3.3 can be written

𝛾𝑝−1 + 𝛾𝑞−1 ≤ 𝑀𝐴𝐷 ≤ 𝛾𝑝 + 𝛾𝑞 . It leads to the error bound below.

Proposition 3.5. Given 𝑝 , 𝑞, 𝛼 > 0 and 𝛾 = 1+𝛼
1−𝛼 , let ˆ𝑀𝐴𝐷 =

2
𝛾𝑝+𝛾𝑞
𝛾+1 . We have

| ˆ𝑀𝐴𝐷 −𝑀𝐴𝐷 | ≤ 𝛼𝑀𝐴𝐷

if 𝛾𝑝−1 + 𝛾𝑞−1 ≤ 𝑀𝐴𝐷 ≤ 𝛾𝑝 + 𝛾𝑞 .
(See proof in the full version technical report [1].) ■

According to Proposition 3.5, APPROX-MAD(D, 𝜖) returns an
𝜖-accurate MAD, when one of 𝐵𝑝 and 𝐵𝑞 is from S+ and the other

is from S−. Besides, if either 𝐵𝑝 or 𝐵𝑞 is 𝐵0, whose boundaries are

both 0, we have 𝛾𝑝−1 ≤ 𝑀𝐴𝐷 ≤ 𝛾𝑝 (suppose 𝐵𝑞 is 𝐵0). Then the

MAD computation is reducible to querying 𝑀𝐸𝐷𝐼𝐴𝑁 , meaning

that ˆ𝑀𝐴𝐷 =
2𝛾𝑝

1+𝛾 (as defined in Equation 2) is an 𝜖-accurate MAD

[21]. If both 𝐵𝑝 and 𝐵𝑞 are 𝐵0, we have ˆ𝑀𝐴𝐷 = 0 calculated by

Equation 2, which equals the exact MAD. Combining these cases,

we define ˆ𝑀𝐴𝐷 as Equation 2.

3.3.3 Worst-case Accuracy. As discussed in Section 3.2, if 𝑀𝐴𝐷

< 2𝜖
1−𝜖 |𝑀𝐸𝐷𝐼𝐴𝑁 |, APPROX-MAD may find 𝐵𝑝 and 𝐵𝑞 as the same

bucket in the same sketch (S+ or S−), which means the data is so

concentrated that APPROX-MAD would output 0 directly. Other-

wise, MAD would be computed over Equation 1 or Equation 2. In

the worst case, we have the following proposition for accuracy.

Proposition 3.6. APPROX-MAD(D, 𝜖) can estimate a 1-accurate
approximate MAD of D.
(See proof in the full version technical report [1].) ■

3.4 Complexity Analysis
3.4.1 Time Complexity. In the scanning stage, APPROX-MAD re-

quires one-pass scan of data. In the query stage, it needs to sort the

sketch to search for 𝐵𝑝 and 𝐵𝑞 . Therefore, its time complexity is

𝑂 (𝑛 +𝑚 log𝑚), where𝑚 is the maximum sketch size as introduced

in Definition 3.

3.4.2 Space Complexity. Intuitively, the space cost of the sketch is

𝑂 (𝑚). Note that𝑚 is only related with value range instead of data

size. In the worst case that D = {𝛾1, 𝛾2, . . . , 𝛾𝑛}, we have 𝑚 = 𝑛.

However, it has been proven sufficiently that for most distributions

(even Pareto distributions that have exponentially fatter tails),𝑚

is bounded by a relatively small constant for billions of elements

[21]. We will further demonstrate the superiority of our solution in

memory cost by experiments in Section 5.2.3.

4 SECOND SCAN
Using APPROX-MAD, we can get an 𝜖 ′-accurate MAD, where 𝜖 ′

may exceed the desired error bound 𝜖 . As discussed in Section 2,

if data is extremely concentrated, 0 would be the approximation.

However, for most cases, we can utilize the knowledge from the

first scan to fine-tune the parameter 𝛼2 of APPROX-MAD(D, 𝛼2) in
the second scan, i.e., by narrowing it down, to get a more accurate

approximate MAD with a bounded error 𝜖 . To distinguish the no-

tations of the two scans, we mark those in the first scan with the

subscript 1 and those in the second scan with the subscript 2, e.g.,

the sketch in the first or the second scan is denoted as S1 or S2.

4.1 Parameter Determination
Now we introduce how to set 𝛼2 so that the error of ˆ𝑀𝐴𝐷2 is

bounded by 𝜖 . Note that we need a second scan using APPROX-

MAD only when the error bound of the first scan 𝜖 ′ exceeds 𝜖 and
does not equal 1, i.e., 𝐵1𝑝1 and 𝐵1𝑞1 are from the same sketch (S+

1

or S−
1
) with 𝑝1 ≠ 𝑞1 according to Proposition 3.4. Our discussion is

based on this prerequisite. With 𝜖 ′
1
=

𝛾
|𝑝
1
−𝑞

1
|

1
+1

𝛾
|𝑝
1
−𝑞

1
|

1
−1
𝜖 based on Propo-

sition 3.4, we can set 𝛼2 by multiplying 𝜖 with a coefficient 𝛽 , i.e.,

𝛼2 = 𝛽𝜖 , so that 𝜖 ′
2
=

𝛾
|𝑝
2
−𝑞

2
|

2
+1

𝛾
|𝑝
2
−𝑞

2
|

2
−1
𝛽𝜖 ≤ 𝜖 . This condition holds only if

𝛽 ≤ 𝛾
|𝑝
2
−𝑞

2
|

2
−1

𝛾
|𝑝
2
−𝑞

2
|

2
+1
. We thereby define 𝛽 = 𝛿−1

𝛿+1 with

𝛿 =


min(𝛾 |𝑝1−𝑞1 |−2

1
− 1

𝛾1
+ 1

𝛾3

1

, 1

𝛾3

1
−𝛾 |𝑝1−𝑞1 |+1

1
+𝛾2

1

) if 𝑝1 < 𝑞1

min( 1
𝛾2

1

+ 1

𝛾3

1

− 1

𝛾
|𝑝
1
−𝑞

1
|+1

1

, 1

𝛾
2−|𝑝

1
−𝑞

1
|

1
+𝛾3

1
−𝛾1
) if 𝑝1 > 𝑞1

which leads to the desired error bound 𝜖 .
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Figure 5: The bucket pruning strategy for the second scan
when L(𝐵1𝑝1 ) > L(𝐵1𝑞1 ). 𝐵1𝑝1 and 𝐵1𝑞1 are buckets in the first
scan, whereMEDIAN is covered by 𝐵1𝑝1 andMAD is bounded
by the minimum and the maximum distance between 𝐵1𝑝1
and 𝐵1𝑞1 . According to Proposition 4.2, during the second
scan, only buckets within the shadow range need mainte-
nance, while other buckets can be pruned.

Proposition 4.1. If the determined coefficient 𝛽 has 0 < 𝛽 < 1,
the second scan APPROX-MAD(D, 𝛽𝜖) guarantees to return an 𝜖-
accurate MAD.
(See proof in the full version technical report [1].) ■

Note that Proposition 4.1 is based on the condition that 0 < 𝛽 < 1,

i.e., 𝛿 > 1. Because 𝛿 is monotonically increasing with |𝑝1 − 𝑞1 |
and |𝑝1 −𝑞1 | is positively correlated with

𝑀𝐴𝐷
|𝑀𝐸𝐷𝐼𝐴𝑁 | , the condition

holds only if the data is not extremely concentrated. In such cases,

the more concentrated the data is, the lower 𝛽 would be, leading

a finer-grained sketch in the second scan, i.e., more buckets for

holding all elements and thus higher costs of time and space. If the

condition does not hold, our solution would estimate MAD as 0,

which is 1-accurate according to Definition 2, as shown in Figure 3

in Section 2.2. Finally, together with Proposition 4.1 for 0 < 𝛽 < 1,

the framework guarantees to return an (𝜖, 1)-accurate MAD.

4.2 Bucket Pruning
With 0 < 𝛽 < 1, we have 𝛼2 = 𝛽𝜖 < 𝛼1 = 𝜖 and thus 𝛾2 < 𝛾1. It

means more buckets would be allocated during the second scan

to hold elements used in APPROX-MAD. To prevent the sketch

size, i.e., the number of buckets, from growing substantially, we

propose to prune unnecessary buckets. Intuitively, with 𝐵1𝑝1 and

𝐵1𝑞1 according to the first scan, we have determined the rough

scope of MEDIAN and MAD, which implies the potential locations

of 𝐵2𝑝2 and 𝐵2𝑞2 . Therefore, we can prune unnecessary buckets

that cannot be selected as 𝐵2𝑝2 and 𝐵2𝑞2 in the second scan. We

enable the pruning by changing elements in unnecessary buckets

to make them fall in their closest necessary buckets. In this way,

their count is maintained while unnecessary buckets are omitted.

For L(𝐵1𝑝1 ) > L(𝐵1𝑞1 ) as shown in Figure 5,MEDIAN is bounded

by L(𝐵1𝑝1 ) andU(𝐵1𝑝1 ), andMAD is bounded by L(𝐵1𝑝1 )−U(𝐵1𝑞1 )
and U(𝐵1𝑝1 ) − L(𝐵1𝑞1 ). For elements 𝑣 with 𝑣 < 𝑣 = L(𝐵1𝑝1 ) −
(U(𝐵1𝑝1 ) − L(𝐵1𝑞1 )) < 𝑀𝐸𝐷𝐼𝐴𝑁 − 𝑀𝐴𝐷 , they can be regarded

as 𝑣 without influencing the searching process of Algorithm 1.

Thereby, buckets covering the range (−∞, 𝑣], i.e., buckets 𝐵2𝑖 with
U(𝐵2𝑖 ) ≤ 𝑣 , can be pruned. Following the same idea, we have the

proposition below for necessary buckets in the second scan.

Proposition 4.2. With 𝐵1𝑝1 and 𝐵1𝑞1 according to Lemma 3.3
from the first scan, a bucket 𝐵2𝑖 of the sketch in the second scan is
necessary only if its lower- and upper- boundaries, L(𝐵2𝑖 ) andU(𝐵2𝑖 ),
satisfy one of the following conditions.{

L(𝐵2𝑖 ) < U(𝐵1𝑝1 )
U(𝐵2𝑖 ) > L(𝐵1𝑝1 ){

L(𝐵2𝑖 ) < 2U(𝐵1𝑝1 ) − L(𝐵1𝑞1 )
U(𝐵2𝑖 ) > 2L(𝐵1𝑝1 ) − U(𝐵1𝑞1 ){

L(𝐵2𝑖 ) < U(𝐵1𝑝1 ) + U(𝐵1𝑞1 ) − L(𝐵1𝑝1 )
U(𝐵2𝑖 ) > L(𝐵1𝑝1 ) + L(𝐵1𝑞1 ) − U(𝐵1𝑝1 )

■

After pruning, we require far fewer buckets to hold elements

and also avoid searching unnecessary buckets.

Example 4.3. Following Example 3.2, we use 𝛼2 = 𝛽𝜖 ≈ 0.0014 as

the parameter of APPROX-MAD in the second scan. Without the

bucket pruning strategy, we get a new sketch with 6 buckets as S =
{𝐵+

0
(1), 𝐵+

399
(2), 𝐵+

584
(2), 𝐵+

650
(1), 𝐵+

797
(2), 𝐵+

836
(1)}. After pruning,

the sketch shrinks to 5 buckets as {𝐵+
380
(1), 𝐵+

399
(2), 𝐵+

584
(2), 𝐵+

701
(1),

𝐵+
715
(3)}. Then Algorithm 1 returns 𝐵+

584
(covering 5) and 𝐵+

399
(cov-

ering 3) as 𝐵2𝑝2 and 𝐵2𝑞2 . Finally, we get
ˆ𝑀𝐴𝐷2 = 1.9965 with its

error bound 0.0055 < 0.01. ■

5 EVALUATION
We implement the algorithms in Java. It includes two versions, the

native version and the Spark version, which uses the template of

the user-defined aggregation function of Apache Spark 3.0. The

methods have also been implemented in HUAWEI Cloud.

5.1 Experimental Settings
Experiments run on a machine with 2.4GHz CPU & 8GB memory.

5.1.1 Baseline. To distinguish the performance of our proposed

solutions with one-pass scan or two-pass scan, we refer to them

as OP-MAD and TP-MAD, respectively. As there are no existing

approximate MAD algorithms to our knowledge, we compare our

solution against the Java implementation of EXACT-MAD, the

Java implementation of the method, called GK-MAD, that invokes

GKArray (an adaptive version of GK Algorithm [15]) twice, and the

Java implementation of the method, called DD-MAD, that invokes

DDSketch [21] twice. GK Algorithm and DDSketch are two rep-

resentative algorithms for approximate quantile computation and

can therefore be used to calculate approximate MAD. We compare

them in accuracy, time cost and memory cost, implemented in both

versions.

5.1.2 Parameter. For our solution, the parameter 𝜖 representing

the desired relative error bound is set according to the data concen-

tration degree. Since desired rank-error (or relative error) bound for

GK-MAD (or DD-MAD) is unknown, we use the parameter as de-

fined for approximate quantiles that gives roughly similar memory

footprints, also denoted as 𝜖 . The parameter𝑚 is a constant repre-

senting the limit on the sketch size for our solution and DD-MAD.

These parameters are summarized in Table 2.
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Figure 6: Histograms of datasets. The y-axes of retail, bitcoin and pareto are in log scale due to heavy-tailed data distributions.

5.1.3 Dataset. We use 9 datasets in our comparison experiments,

whose distributions are shown in Figure 6. Five of them are real

datasets. The hepmass dataset and the retail dataset, both used in

[14], consist of the first feature of the UCI [12] HEPMASS dataset

and integer purchase quantities from the UCI Online Retail dataset,

respectively. The power dataset, used in [14, 21], consists of Global

Active Power measurements from the UCI Individual Household

Electric Power Consumption dataset. The wesad dataset is the con-

verted temperature data collected from RespiBAN Professional (a

wearable respiration monitoring device) in the UCI WESAD dataset.

The bitcoin dataset is a Kaggle public dataset, consisting of the

bitcoin transaction amount from 2009 to 2018 [11]. It has 300 M

elements (71.4GB in total), which cannot be kept in main memory.

The last four datasets are synthetic, all with data size 10
8
(100M

elements). The pareto dataset consists of elements generated from a

Pareto distribution, a typical long-tailed distribution, with the scale

parameter and the shape parameter both as 1. It is used in [21] as

the worst case for DDSketch. The norm and central datasets consist
of elements generated from two Normal distributions N(10, 1)
and N(1, 0.0015), respectively. In particular, the central dataset
is highly concentrated with

𝑀𝐴𝐷
|𝑀𝐸𝐷𝐼𝐴𝑁 | = 0.001. The last constant

dataset consists of elements with the same (constant) value 2, having

𝑀𝐴𝐷 = 0. The last two datasets central and constant are non-trivial
to our solution, because they are highly concentrated, i.e., having

𝑀𝐴𝐷
|𝑀𝐸𝐷𝐼𝐴𝑁 | ≈ 0. As discussed in Section 4.1, for such datasets, our

solution needs to use smaller 𝜖 , leading to a finer-grained sketch in

Algorithm 2 and thus higher costs of time and space.

5.2 Comparison to Baselines
By the native version, we compare our proposals, OP-MAD and

TP-MAD, to the baselines, GK-MAD and DD-MAD using the ex-

isting GK and DD algorithm for the approximate median. The

performances are summarized in Table 2, where the units of time

and memory are second and kB. The error of approximate MAD

relative to exact MAD by EXACT-MAD follows Definition 2, i.e.,

| ˆ𝑀𝐴𝐷−𝑀𝐴𝐷 |
𝑀𝐴𝐷

. Figure 7 shows scalability in terms of accuracy, time

cost and memory cost.

5.2.1 Accuracy of Approximation. TP-MAD guarantees a relative

error bound on its returned MAD, while other algorithms provide

no guarantees. GK-MAD (DD-MAD) provides a rank (relative) error

of at most 𝜖 in quantile estimates for each scan. But these errors do

not provide straightforward error bounds for the MAD results.

As shown in Table 2, TP-MAD provides the smallest relative-

error results for each dataset. Its highest relative error is 0.0024.

That is, the returned error of TP-MAD in practice is significantly

smaller than the theoretical bound 𝜖 .

The errors of OP-MAD are a bit higher, as illustrated in Table 2.

It is not surprising, since OP-MAD has only one pass through the

data while other methods such as TP-MAD can conduct a second

scan for more accurate results.

According to Table 2, for bitcoin, OP-MAD, TP-MAD and DD-

MAD perform much better than GK-MAD in accuracy. It is because

bitcoin is a sparse dataset with the long-tail distribution as illus-

trated in Figure 6. The baseline GK-MAD, based on the rank error,

is not effective in dealing with sparse datasets.

For the highly concentrated dataset central, having 𝑀𝐴𝐷
|𝑀𝐸𝐷𝐼𝐴𝑁 | =

0.001, TP-MAD is still applicable with error bound guarantees, as

shown in Table 2. For the extreme case constant, TP-MAD returns

0 directly according to Figure 3, which is exactly the ground truth.

5.2.2 Time Cost. We experiment on each dataset of each scale for

ten times and use the average run time as results. As Table 2 shows,

using a machine with a 2.4GHz CPU and 8GB memory, it takes

less than 10 seconds for TP-MAD to give an approximate MAD

over pareto and norm with 10
8
elements (1.7GB). Compared with

EXACT-MAD, it is 18× faster.

In Figure 7(b), the average run time of TP-MAD increases linearly

with data size, demonstrating its linear time cost𝑂 (𝑛). Besides, TP-
MAD and DD-MAD are very close in terms of time performance

because of their same sketch structure.

The time costs of OP-MAD are about half of the corresponding

TP-MAD time costs, in all the datasets except constant. The result
is not surprising, given that OP-MAD needs only one-pass of data

as illustrated in branch (a) in Figure 3, while TP-MAD in branch (b)

scans the data twice. TP-MAD and OP-MAD have comparable time

cost on dataset constant, since TP-MAD directly returns 0 in this

constant dataset without a second scan, i.e., branch (c) in Figure 3.

For bitcoin, our proposals, especially OP-MAD, outperform the

other approximate algorithms in time cost, because OP-MAD re-

quires only one-pass scan. Moreover, our TP-MAD is optimized

with the bucket pruning strategy proposed in Section 4.2.

Since the dataset central is highly concentrated, TP-MAD needs

to use much smaller buckets in the second scan. It increases the

sketch size and leads to longer run time than it does for norm with

𝑀𝐴𝐷
|𝑀𝐸𝐷𝐼𝐴𝑁 | = 0.068, as illustrated in Table 2. For the extreme case of

having the same value in the dataset constant, EXACT-MAD shows

comparable time cost. The reason is that the same-value elements

are naturally in order for exact computation, while other methods

need extra time to allocate sketches.
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Table 2: Comparison to different baselines over various datasets (OOM stands for out-of-memory)

hepmass (𝜖=0.01,𝑚=1024, 𝑛=10.5M) retail (𝜖=0.01,𝑚=1024, 𝑛=530k) power (𝜖=0.01,𝑚=1024, 𝑛=2M)

Algorithm Result Error Time Memory Result Error Time Memory Result Error Time Memory

EXACT-MAD 0.7080 / 10.11 147000.12 2.0000 / 0.12 7438.13 0.3960 / 0.61 28690.04

TP-MAD (our) 0.7069 0.0016 2.27 23.97 1.9952 0.0024 0.07 4.86 0.3961 0.0004 0.27 6.37

OP-MAD (our) 0.6954 0.0179 1.07 23.97 1.9836 0.0082 0.03 4.86 0.3889 0.0178 0.13 6.37

GK-MAD 0.7210 0.0183 3.19 3.20 3.0000 0.5000 0.17 19.31 0.3900 0.0152 0.41 3.41

DD-MAD 0.7046 0.0048 1.53 23.97 1.9937 0.0032 0.07 4.94 0.4106 0.0037 0.26 8.05

wesad (𝜖=0.001,𝑚=1024, 𝑛=63M) bitcoin (𝜖=0.01,𝑚=1024, 𝑛=300M) pareto (𝜖=0.01,𝑚=2048, 𝑛=100M)

Algorithm Result Error Time Memory Result Error Time Memory Result Error Time Memory

EXACT-MAD 329.00 / 47.99 881097.10 OOM OOM OOM OOM 0.8279 / 175.63 1400000.12

TP-MAD (our) 329.07 0.0002 9.49 5.09 0.2347 0.0007 40.96 31.13 0.8282 0.0003 9.72 8.71

OP-MAD (our) 310.44 0.0564 5.41 2.76 0.2329 0.0084 21.98 31.13 0.8308 0.0035 4.62 8.71

GK-MAD 331.00 0.0061 22.38 57.74 0.2415 0.0284 67.79 3.44 0.8451 0.0208 20.73 3.26

DD-MAD 330.63 0.0050 7.94 33.78 0.2345 0.0012 42.20 31.13 0.8780 0.0606 9.45 18.23

norm (𝜖=0.003,𝑚=1024, 𝑛=100M) central (𝜖=0.0001,𝑚=71680, 𝑛=100M) constant (𝜖=0.01,𝑚=1024, 𝑛=100M)

Algorithm Result Error Time Memory Result Error Time Memory Result Error Time Memory

EXACT-MAD 0.6742 / 173.52 1400000.12 0.0010 / 175.93 1400000.12 0 / 5.42 1400000.12

TP-MAD (our) 0.6743 0.0002 9.16 8.62 0.0010 0.0000 19.83 1678.33 0 / 5.67 0.486

OP-MAD (our) 0.6756 0.0012 4.41 5.14 0.0010 0.0510 8.45 2.40 0 / 5.61 0.486

GK-MAD 0.6750 0.0021 21.71 10.57 0.0010 0.0001 41.56 293.69 0 / 9.40 3.23

DD-MAD 0.6791 0.0012 9.18 25.94 0.0010 0.0021 18.63 942.30 0.0063 +∞ 11.13 0.486

5.2.3 Memory Cost. For approximate MAD algorithms, the mem-

ory cost is mainly on storing the sketch. It is obtained by serializing

each sketch to a byte array, whose length is the sketch size in byte.

For algorithms with two-pass, we report the larger sketch size.

In Figure 7(c), the memory cost of OP-MAD and TP-MAD keeps

almost constant for most datasets. The reason is that the sketch

size of TP-MAD is related to value range instead of data size. For

Pareto distributions, while the data size increases, the sampling

probability of larger values goes up, expanding the value range.

Hence the sketch size of OP-MAD and TP-MAD for pareto increases.
In all cases, the memory cost of OP-MAD is less than or equal

to that of TP-MAD, because TP-MAD uses a finer-grained sketch

during the second scan. It may lead to a larger number of buckets

even with the bucket pruning strategy. Especially in dataset central,
the data is highly concentrated (with

𝑀𝐴𝐷
|𝑀𝐸𝐷𝐼𝐴𝑁 | = 0.001) that TP-

MAD in the second scan needs to decrease the buckets’ granularity

substantially, making its memory cost much higher than the first

scan, i.e., the cost of OP-MAD.

For bitcoin with a long-tail distribution, with the increase of

data size, the value range expands and enlarges the sketch sizes of

OP-MAD, TP-MAD and DD-MAD. Note that EXACT-MAD is not

applicable to the dataset owing to out-of-memory (OOM), showing

again the necessity of approximate MAD over large scale data.

For central, TP-MAD requires larger space than in dataset norm
as aforesaid, but it is still significantly more efficient in memory

than EXACT-MAD as illustrated in Table 2. For constant, TP-MAD

occupies the same memory as OP-MAD does, because it does not

have a second scan but outputs 0 directly. They are 2800000× less

than EXACT-MAD in memory cost.

5.3 Evaluation of Proposed Techniques
5.3.1 Varying the Error Bound 𝜖 . The parameter 𝜖 specifies the

trade-off between effectiveness and efficiency. Besides, with smaller

𝜖 , TP-MAD is applicable to estimate MAD for more concentrated

datasets. To illustrate these points, we vary 𝜖 and apply TP-MAD

to each entire dataset, as shown in Figure 8.

Sharp upward/downward trends are observed in Figure 8. It is

because when the data is too concentrated, i.e.,
𝑀𝐴𝐷

|𝑀𝐸𝐷𝐼𝐴𝑁 | is too
small, TP-MAD returns ⟨0, 1⟩ directly. For other cases, with 𝜖 de-
creasing, i.e., to get a more accurate result, memory cost increases

while the rise of time cost is gentle. Thereby we can set 𝜖 to an

appropriate value if the dataset is very concentrated without much

extra time cost. In practice, to set desired error bounds while keep-

ing memory cost as low as possible, we can take a sample as the

input for TP-MAD to help find an 𝜖 that make TP-MAD follow

branch (b) in Figure 3, e.g., setting 𝜖 = 0.01 for pareto.

5.3.2 Evaluating the Bucket Pruning Strategy. Figure 9 shows the
sketch size of TP-MAD in the second scan with or without bucket
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(a) Relative error of MAD (our TP-MAD shows good accuracy in all the datasets)
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(c) Sketch size in memory in kB
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Figure 7: Scalability in accuracy, time and memory costs over various datasets
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Figure 8: Varying the desired error bound 𝜖 in TP-MAD

pruning. When data size increases, the memory cost of the algo-

rithm without bucket pruning increases owing to the wider value

range. Note that the range is not the difference between the maxi-

mum and minimum elements, but the region where elements exist.

Therefore, for norm whose extreme elements are not likely to vary

too much, its value range still expands and thus the memory cost of

TP-MAD increases. After pruning, the sketch can ignore unneces-

sary range, which helps TP-MAD keep the sketch size at a relatively

low level in the second scan.

5.3.3 Evaluating the Distributed Implementation. To evaluate our

proposals on large distributed datasets, we compare TP-MAD imple-

mented in Apache Spark and OP-MAD implemented in Structured

Streaming [8] (a stream processing engine built on Spark) with

GK-MAD using approxQuantile, the Spark built-in GK algorithm.

Spark provides three interfaces in the template of the user-defined

aggregation function, reduce, merge and finish, corresponding to

INSERT, MERGE and Lines 13-24 of APPROX-MAD in our solution,

respectively. MERGE is the process to merge two sketches, realized

by combining buckets with the same index from the two sketches

and summing up their counts. The fully mergeable OP-MAD is

implemented a similar way in Structured Streaming.

Figure 10 shows the average run time of algorithms on two

datasets. Under the same settings, TP-MAD outperforms GK-MAD

in time performance. It is 14.66% and 9.35% faster when using 8

cores for 10
9
elements from the Pareto distribution and the Normal

distribution respectively. It is not surprising that the mergeable OP-

MAD with Structured Streaming implementation is more efficient

than TP-MAD having two scans.

5.4 Application Study
In addition to outlier detection in Examples 1.1 and 1.2, we present

another application in out-of-control monitoring [2].
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Figure 9: Memory cost in kB of the second scan in TP-MAD with or without the bucket pruning strategy in Section 4.2
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Figure 10: Time performance of Apache Spark/Structured
Streaming implementation by varying (a) the number of el-
ements in datasets and (b) the number of cores in the cluster

Analogous to Figure 1 of comparing SD and MAD for outlier

detection, Figure 11 presents the Shewhart S-control charts for

determining whether a manufacturing or business process is out

of control, using SD and MAD, respectively. Specifically, consider

a data stream of sensor readings, monitoring the manufacturing

process. The central line (CL), lower control limit (LCL) and upper

control limit (UCL) are computed from historical data, using either

SD or MAD. When new data come, SD or MAD is computed over

the samples of the new data. If the SD or MAD of the samples of the

newly coming data exceeds the limits, the manufacturing process is

identified as out-of-control. The less the data is sampled, the better

the performance is. Figure 11(a) and (b) show that SD needs to

sample 37 times to identify out-of-control (i.e., SD exceeding LCL),

while MAD needs only 3 samples, i.e., more effective.

Similar to Figure 2(a), comparing approximate MAD and exact

MAD in the outlier detection application, Figure 11(c) evaluates the

sample number needed to identifying the out-of-control process

by exact MAD and its approximation. Almost the same sample

numbers illustrate again that using approximate MAD is sufficient

in practice. The corresponding time cost for computing approximate

MAD is much lower than that of exact MAD in Figure 11(d).
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Figure 11: Application of MAD in the Shewhart S-control
chart to identify out-of-control manufacturing process. (a)
SD needs to sample 37 times to identify out-of-control, i.e.,
SD exceeding LCL,while (b)MADneeds only 3 samples, find-
ing MAD exceeding UCL, i.e., more effective. Approximate
MAD has almost no difference to exact MAD in the effec-
tiveness of identifying out-of-control states in (c), but with
much lower cost for computing the MAD in (d).

6 RELATEDWORK
While MEDIAN is found to be more robust and useful than MEAN

in identifying outliers [23], MAD also works better than SD with

outlier detection and the Cauchy distribution [16].

6.1 Adaption of Approximate Median
While sketches have been widely used for approximating quantiles

and median (see Section C in the full version technical report [1]

for an introduction), the methods for approximating median can

be adapted for MAD, by calling them twice, e.g., the baseline DD-

MAD in Section 5.1.1 calling DDSketch [21] twice. However, this

direct adaption of MEDIAN approximation to MAD is not effective

(unknown theoretical error bounds and poor practice performance).

The novelty of our proposal compared to [21] and its two-pass

adaption for MAD approximation is as follows.

(1) New problem. To the best of our knowledge, this is the first

work on approximating MAD computation, while [21] addresses

only quantile/median computation. Estimating quantiles is to find
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