
Accelerating Approximate AggregationQueries with Expensive
Predicates

Daniel Kang*
Stanford University

ddkang@stanford.edu

John Guibas*
Stanford University

jtguibas@stanford.edu

Peter Bailis
Stanford University
pbailis@stanford.edu

Tatsunori Hashimoto
Stanford University

thashim@stanford.edu

Yi Sun
University of Chicago
yi.sun@uchicago.edu

Matei Zaharia
Stanford University

matei@cs.stanford.edu

ABSTRACT

Researchers and industry analysts are increasingly interested in
computing aggregation queries over large, unstructured datasets
with selective predicates that are computed using expensive deep
neural networks (DNNs). As these DNNs are expensive and because
many applications can tolerate approximate answers, analysts are
interested in accelerating these queries via approximations. Un-
fortunately, standard approximate query processing techniques to
accelerate such queries are not applicable because they assume the
result of the predicates are available ahead of time. Furthermore, re-
cent work using cheap approximations (i.e., proxies) do not support
aggregation queries with predicates.

To accelerate aggregation queries with expensive predicates, we
develop and analyze a query processing algorithm that leverages
proxies (ABae). ABae must account for the key challenge that it
may sample records that do not satisfy the predicate. To address
this challenge, we first use the proxy to group records into strata
so that records satisfying the predicate are ideally grouped into
few strata. Given these strata, ABae uses pilot sampling and plugin
estimates to sample according to the optimal allocation. We show
that ABae converges at an optimal rate in a novel analysis of strat-
ified sampling with draws that may not satisfy the predicate. We
further show that ABae outperforms on baselines on six real-world
datasets, reducing labeling costs by up to 2.3×.

PVLDB Reference Format:

Daniel Kang*, John Guibas*, Peter Bailis, Tatsunori Hashimoto, Yi Sun,
and Matei Zaharia. Accelerating Approximate Aggregation Queries with
Expensive Predicates. PVLDB, 14(11): 2341 - 2354, 2021.
doi:10.14778/3476249.3476285

1 INTRODUCTION

Analysts are interested in computing statistics over large, unstruc-
tured datasets where only a fraction of the data is of interest (i.e.,
with a selective predicate) with low computational cost. Machine
learning (ML) methods are increasingly used to automatically an-
swer such queries. For example, a media studies researcher may be

* Marked authors contributed equally.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476285

interested in computing the average viewership (the statistic) of
presidential candidates on TV news (the predicate) [28]. To answer
such queries, the researcher may deploy an expensive face detection
deep neural network (DNN) to find all faces in the dataset and filter
by presidential candidates, e.g.,

SELECT AVG(views) FROM video
WHERE contains_candidate (frame , ' Biden ')

Critically, these DNNs can be expensive to execute. For example,
executing a state-of-the-art face detection DNN on the past year of
MSNBC News would cost $262,000 on cloud compute infrastructure
(NVIDIA V100, Amazon Web Services) [60]. Due to limited compu-
tational budgets, many organizations cannot exhaustively execute
these expensive ML methods over the entirety of the dataset.

Fortunately, many applications can tolerate approximations (as is
standard in the approximate query processing (AQP) literature [40])
so answering queries does not require exhaustively executing the
expensive DNN. As is standard in AQP, a key requirement with
approximate answers are statistical guarantees on query results. For
example, the media studies researcher may require such guarantees
to make precise claims about bias in TV news. Furthermore, these
requirements are standard in scientific analyses. As such, we focus
on queries with statistical guarantees in this work.

Unfortunately, standard techniques in AQP, ranging from his-
tograms [47], sketches [7], and others [2], assume that the fields
used in the predicates are already available, i.e., as structured records
in a database. In contrast, we cannot precompute results as an expen-
sive ML method is required to compute the predicate in our setting,
e.g., we would have to execute an expensive face detector on every
video frame to answer the query above. Recent work has focused
on using cheap approximations (i.e., proxy models) to accelerate
queries without having to pre-compute expensive DNNs [4, 29, 32–
34]. For example, a proxy for presidential candidates might be a
cheap classifier in contrast to a full object detection DNN. Unfortu-
nately, existing work either does not provide statistical guarantees
on query accuracy (e.g., NoScope [33], Focus [29], Tahoma [4]) or
accelerates other query types (e.g., selection queries [34], aggrega-
tion queries without predicates [32], and limit queries [32]).

We propose and analyze ABae (Aggregation with Expensive
BinAry PrEdicates), a query processing algorithm leveraging strati-
fied and pilot sampling [39] to accelerate linear aggregation queries
(SUM, COUNT, and AVG) with expensive predicates and statistical
guarantees on query accuracy. We further extend ABae to sup-
port common aggregation patterns, including queries with multiple
predicates and with group by keys.

2341

https://doi.org/10.14778/3476249.3476285
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476285

ABae leverages two key opportunities to accelerate such queries:
proxy models and stratified sampling. That is, ABae splits the
dataset into disjoint groups (strata), samples within strata, and
computes a weighted average to obtain the final answer. ABae
must account for three key challenges, as the predicate results are
not available ahead of time: 1) strata selection, 2) budget allocation
between strata, and 3) stochastic draws (i.e., sampling a record that
may not match the predicate). We provide a principled stratifica-
tion approach, leverage pilot sampling for budget allocation [39],
and provide a novel analysis of stratified sampling with stochastic
draws that shows that ABae converges at an optimal rate.

To address strata selection, ABae uses the proxy model. We
assume the proxy provides information about the likelihood of
a record satisfying the predicate [4, 29, 33, 34]. Since the proxy
does not give information about the statistic, we stratify records
by proxy score quantile. Under a mild monotonicity assumption on
the proxy [23], this stratification will group records that are approx-
imately equally likely to match the predicate in the same stratum.
Intuitively, if the proxy is perfect (i.e., matches the predicate) and
is independent of the statistic, this stratification will minimize the
sampling variance. While ABae performs best when given proxy
models which approximate the expensive predicate well, ABae still
returns correct answers regardless of proxy model quality.

Given a stratification, our analysis shows that the optimal allo-
cation depends on two key, per-strata quantities: the fraction of
records that match the predicate (𝑝𝑘) and the standard deviation
of the statistic within a stratum (𝜎𝑘). Concretely, the optimal allo-
cation is proportional to √𝑝𝑘𝜎𝑘 . However, we do not know these
quantities ahead of time.

ABae proceeds in two stages to address this challenge. First,
ABae will estimate 𝑝𝑘 and 𝜎𝑘 using a fraction of the total sampling
budget. Then, ABae will allocate the sampling budget using our
plug-in estimates of 𝑝𝑘 and 𝜎𝑘 . We prove that ABae’s algorithm
matches the expected error rates of the optimal stratified sampling
allocation given the key quantities. Finally, to provide confidence
intervals, ABae uses a bootstrapping procedure which only adds
minimal computational overhead.

We also extend ABae to support group bys (ABae-GroupBy) and
complex expressions involving multiple Boolean predicates (ABae-
MultiPred). To support group by statements, we adapt our sample
allocation strategy to minimize the maximum of the expected mean
squared error of the groups (minimax error). We show a numerical
optimization procedure can recover the optimal allocation for the
minimax error. We also support combining multiple expensive
predicates and their respective proxy models through negations,
conjunctions, and disjunctions.

Finally, a key challenge in leveraging proxy models is to ensure
efficient query answers despite potentially poor proxy model qual-
ity. Because ABae always produces valid results, we only need to
address efficiency. To address this challenge, we derive a formula
which computes the relative gain of using a given proxy. Then, by
using a cheap procedure which can estimate the quantities in the
formula, ABae can calculate expected performance gains of proxy
models and select the best proxy model at query time.

We evaluate ABae and its extensions on six real-world datasets
spanning text, images, and video. We show that ABae outperforms
uniform sampling by up to 2.3×. We also provide experiments to

show that our methods for creating confidence intervals, executing
group by aggregation queries, and forming complex predicates from
multiple proxy models outperforms baselines.

In summary, our contributions are:
(1) We develop ABae and its extensions, ABae-MultiPred and

ABae-GroupBy, to accelerate aggregation queries with ex-
pensive predicates via proxy models.

(2) We provide a theoretical analysis of ABae and show that it
matches the expected error of the optimal stratified sampling
algorithm asymptotically.

(3) We evaluate these techniques on text, image, and video
datasets, showing that ABae significantly outperforms uni-
form sampling.

2 OVERVIEW AND QUERY SEMANTICS

2.1 Overview

Target setting. ABae targets aggregation queries that contain one
or more predicates that are expensive to evaluate. These predicates
typically require executing expensive DNNs or querying human
labelers. We assume the statistic can be computed in conjunction
with the predicates or is cheap to compute. We support aggregation
queries targeting AVG, SUM, and COUNT statistics. We do not support
other aggregation types, such as COUNT DISTINCT or MAX.

Proxies. We further assume access to a proxy model per predicate,
which returns a continuous value between 0 and 1. While not
necessary for correctness, high quality proxies will return scores
that are correlated with the predicate. These proxies can be orders
of magnitude cheaper than oracles (e.g., over 4,000 images/second
for the proxy vs 3 fps for the oracle [37]). Thus, as is standard in the
literature, we assume these proxies are substantially cheaper than
the oracle methods so the proxies can be exhaustively executed
over the entire dataset [8, 32, 33, 59].

2.2 Examples

TV news. Consider a media studies researcher studying how
the presence of presidential candidate affects viewership. The re-
searcher is willing to query the expensive DNN at most 10,000 times
and computes the average viewership with the following:
SELECT AVG(views) FROM news
WHERE contains_candidate (frame , ' Biden ')
ORACLE LIMIT 10 ,000 USING proxy (frame)
WITH PROBABILITY 0.95

where contains_candidate is computed via a face detection DNN
and the proxy may be trained via specialization [33].

Traffic analysis. Consider an urban planner studying traffic pat-
terns. The planner is interested in understanding waiting times at
traffic lights and executes the following query
SELECT AVG(count_cars (frame)) FROM video
WHERE count_cars (frame) > 0

AND red_light (frame)
ORACLE LIMIT 1 ,000 USING proxy (frame)
WITH PROBABILITY 0.95

where count_cars is computed via an object detection DNN and
red_light is computed by a human labeler. The proxy could be
computed via an embedding index for unstructured data [35].

2342

SELECT {AVG | SUM | COUNT } ({ field | EXPR(field)})
FROM table_name WHERE filter_predicate
[GROUP BY key]
ORACLE LIMIT o USING proxy
WITH PROBABILITY p

Figure 1: Syntax for ABae. Users provide a statistic to com-

pute, an expensive predicate, an oracle limit, proxy scores,

and a success probability. As is standard for aggregation

queries, users may specify a group by key.

Analyzing historical newspaper scans. Consider political sci-
entists that are interested in computing statistics (e.g., fraction of
articles with positive sentiment) over editorials (i.e., the predicate)
in historical newspaper scans. Computing these statistics requires
executing expensive OCR and text processing DNNs.

2.3 Query Syntax and Semantics

We show the query syntax for ABae in Figure 1. As with standard
AQP systems, ABae accepts a sampling budget and a probability
of error and will return an approximate answer to the query and a
confidence interval (CI). Our CI semantics are the standard frequen-
tist CI semantics provided by other AQP systems [2]. In particular,
our CI semantics are valid regardless of proxy quality.

In contrast to standard AQP systems, ABae assumes that the
predicate is expensive to evaluate. We refer to the methods to
execute the predicates as “oracles” [32, 34]. These oracles typically
involve executing an expensive DNN and post-processing the result,
e.g., executing Mask R-CNN to extract object types and positions
from a frames of video and filtering by frames that contain at
least two cars. Other use cases may require a human labeler. We
further assume that the statistic is either cheap to compute or can
be extracted by post-processing the oracle results.

To accelerate these queries, the user also provides a proxy func-
tion that computes per-record proxy scores for each predicate.
These proxy scores are ideally correlated with the result of the pred-
icate and substantially cheaper than the oracle predicates. Nonethe-
less, our algorithms will provide valid results even if the proxy
scores are of poor quality: proxy correlation will only affect perfor-
mance, not correctness.

ABae aims to return query results that minimize the mean
squared error (MSE) between the approximate result and the re-
sult when exhaustively executing the query. ABae further aims
to return CIs that are as tight as possible while maintaining the
probability of success.

2.4 Query Formalism

Formally, let D = {𝑥𝑖 } be the set of data records, 𝑂 (𝑥) ∈ {0, 1}
be the oracle predicate, and 𝑋𝑖 = 𝑓 (𝑥𝑖) ∈ R be the expression the
query aggregates over. Let D+ = {𝑥 ∈ D : 𝑂 (𝑥) = 1}. Finally, let
𝑁 be the sample budget.

ABae computes 𝜇 =
∑︁
𝑥 ∈D+ 𝑓 (𝑥)/|D+ | via an approximation, 𝜇,

with a fixed sampling budget 𝑁 . We measure query result quality
by the MSE, i.e., |𝜇 − 𝜇 |2. ABae returns a CI [

¯
𝜇, 𝜇]. ABae further

aims to minimize the length of the CI 𝜇−
¯
𝜇 subject to 𝜇 ∈ [

¯
𝜇, 𝜇] with

Table 1: Summary of notation.

Symbol Description
D Universe of data records
S Stratification, i.e., 𝑘 strata
P(𝑥) Proxy model
𝑁 User-specified sampling budget
𝐾 Number of strata
O(𝑥) Oracle predicate
𝑋𝑘,𝑖 𝑖th sample from stratum 𝑘

𝑝𝑘 Predicate positive rate
𝑝all

∑︁
𝑘 𝑝𝑘

𝑤𝑘 Normalized 𝑝𝑘 , i.e., 𝑝𝑘/𝑝all
𝜇𝑘 E[𝑋𝑖,𝑘]
𝜇all

∑︁
𝑝𝑘𝜇𝑘/𝑝all

𝜎2
𝑘

𝑉𝑎𝑟 [𝑋𝑖,𝑘]
𝑁1 Number of samples in Stage 1
𝑁2 Number of samples in Stage 2

the specified probability and sample budget, over randomizations
of the query procedure.

3 ALGORITHM DESCRIPTION AND QUERY

PROCESSING

We describe ABae for accelerating aggregation queries with expen-
sive predicates. We first describe accelerating queries with a single
predicate. We then describe three natural extensions: queries with
a group by key, queries with multiple predicates, and estimating
proxy quality.

3.1 ABae with a Single Predicate

Overview. ABae leverages stratified sampling and pilot sampling
[39] to accelerate aggregation queries with expensive predicates.
Namely, ABae splits the dataset into disjoint subsets called strata.
Then, ABae allocates sampling budget to the strata and combines
the per-strata estimates to give the final estimate.

Our setting involves three distinct challenges. First, since not all
records satisfy the predicate, we may not sample a valid record. This
change, while seemingly simple, changes the optimal allocation and
requires new theoretical analysis to prove convergence rates. Sec-
ond, we must construct the strata without knowing which records
satisfy the predicate. Third, we do not know 𝑝𝑘 (the predicate posi-
tive rate) and 𝜎𝑘 (the standard deviation), which are necessary for
computing the optimal allocation.

To address these issues, we leverage a two-stage sampling algo-
rithm. ABae first estimates the key quantities necessary for optimal
allocation: 𝑝𝑘 and 𝜎𝑘 (also known as pilot sampling). ABae then
uses these estimates to allocate sampling budget in the Stage 2. We
show in Section 4 that ABae achieves an optimal rate.

Formal description. Recall that 𝑝𝑘 is the predicate positive rate
and that 𝜎2

𝑘
is the variance of the statistic. Furthermore, recall that

D is the full dataset, 𝑂 (𝑥) is the oracle predicate, and 𝑋𝑖 are the
samples. Denote 𝑋𝑘,𝑖 to be the 𝑖th positive sample from stratum 𝑘 .

Additionally, denote 𝐾 to be the number of strata, 𝑁1 to be the
number of samples in Stage 1, and 𝑁2 to be the number of samples
in Stage 2, which are parameters to ABae. ABae will compute

2343

Algorithm1 Pseudocode for ABae. ABae proceeds in two stages. It
first estimates 𝑝𝑘 and 𝜎𝑘 . It then samples according to the estimated
optimal allocation, 𝑇𝑘 =

√︁
𝑝𝑘 𝜎̂𝑘/

∑︁𝐾
𝑖=1

√︁
𝑝𝑖 𝜎̂𝑖 .

1: function ABaeInit(D, P, 𝐾)
2: D ← 𝑆𝑜𝑟𝑡 (D, 𝑘𝑒𝑦 = 𝑙𝑎𝑚𝑏𝑑𝑎 𝑥 : P(𝑥))
3: S1, ...,S𝐾 ← StratifyByQuantile(D, 𝐾)
4: return S
5:
6: function ABaeSample(S, O, 𝐾 , 𝑁1, 𝑁2, SampleFn)
7: for each k in [1, ..., K] do ⊲ Stage 1
8: 𝑅

(1)
𝑘
← SampleFn(S𝑘 , 𝑁1) ⊲ 𝑅𝑘 are sampled records

9: 𝑋
(1)
𝑘
← {𝑓 (𝑥) | 𝑥 ∈ 𝑅 (1)

𝑘
, O(𝑥) = 1}

10: 𝜇𝑘 ←
∑︁ |𝑋 (1)

𝑘
|

𝑖=1 𝑋
(1)
𝑘,𝑖
/|𝑋 (1)

𝑘
| if |𝑋 (1)

𝑘
| > 0 else 0

11: 𝑝𝑘 ← |𝑋
(1)
𝑘
|/|𝑅 (1)

𝑘
|

12: 𝜎̂2
𝑘
← ∑︁ |𝑋 (1)

𝑘
|

𝑖=1
(𝑋 (1)

𝑘,𝑖
−𝜇𝑘)2

|𝑋 (1)
𝑘
|−1

if |𝑋 (1)
𝑘
| > 1 else 0

13: for each k in [1, ..., K] do
14: 𝑇𝑘 ←

√︁
𝑝𝑘 𝜎̂𝑘/

∑︁𝐾
𝑖=1

√︁
𝑝𝑖 𝜎̂𝑖

15: for each k in [1, ..., K] do ⊲ Stage 2
16: 𝑅

(2)
𝑘
← 𝑅

(1)
𝑘
+ SampleFn(S𝑘 , ⌊𝑁2𝑇𝑘 ⌋)

17: 𝑋
(2)
𝑘
← 𝑋

(1)
𝑘
+ {𝑓 (𝑥) | 𝑥 ∉ 𝑅

(1)
𝑘
, 𝑥 ∈ 𝑅 (2)

𝑘
, O(𝑥) = 1}

18: 𝑝𝑘 ← |𝑋
(2)
𝑘
|/|𝑅 (2)

𝑘
|

19: 𝜇𝑘 ←
∑︁ |𝑋 (2)

𝑘
|

𝑖=1 𝑋
(2)
𝑘,𝑖
/|𝑋 (2)

𝑘
| if |𝑋 (2)

𝑘
| > 0 else 0

20: return

∑︁𝐾
𝑘=1 𝑝𝑘𝜇𝑘/

∑︁𝐾
𝑘=1 𝑝𝑘 , 𝑅

(2)

21:
22: function ABae(D, O, P, 𝐾 , 𝑁1, 𝑁2)
23: S ← ABaeInit(D,P, 𝐾)
24: SampleFn← SampleWithoutReplacement
25: 𝜇, 𝑅 (2) ← ABaeSample(S,O, 𝐾, 𝑁1, 𝑁2, SampleFn)
26: return 𝜇

several other quantities, including 𝑝all =
∑︁
𝑘 𝑝𝑘 , 𝑤𝑘 = 𝑝𝑘/𝑝all

the normalized 𝑝𝑘 , and 𝜇𝑘 = E[𝑋𝑘,𝑖] the per stratum mean. We
summarize the notation in Table 1.

We present the pseudocode for the sampling algorithm in Algo-
rithm 1. ABae creates the strata by ordering the records by proxy
score and splitting into 𝐾 strata by quantile.

ABae will then perform a two-stage sampling procedure. In
Stage 1, ABae samples 𝑁1 samples from each of the 𝐾 strata to
estimate 𝑝𝑘 and 𝜎𝑘 , which are the key quantities for determining
optimal allocation. In Stage 2, ABae will allocate the remaining
samples proportional to our estimates of the optimal allocation.

ABae construct plugin estimates for 𝑝𝑘 and 𝜇𝑘 , denoted 𝑝𝑘 and
𝜇𝑘 respectively. To compute its final estimates, ABae will use all the
samples from Stage 1 and Stage 2 to compute 𝑝𝑘 and 𝜇𝑘 . ABae will
return the estimate

∑︁
𝑘 𝑝𝑘𝜇𝑘/

∑︁
𝑘 𝑝𝑘 as the approximate answer.

As the final estimates are sensitive to the estimate of 𝑝𝑘 , i.e., 𝑝𝑘 ,
we find that reusing samples between stages dramatically improves
performance (Section 5.3).

We defer the proofs of convergence and rates to Section 4.

Algorithm 2 Bootstrap procedure for computing CIs. We resample
existing samples over both stages of the algorithm.

1: function Bootstrap(𝑅 (2) , O, 𝐾 , 𝑁1, 𝑁2, 𝛽 , 𝛼)
2: for each b in [1, ..., 𝛽] do ⊲ 𝛽 is # of bootstrap trials
3: for each k in [1, ..., 𝐾] do
4: 𝑅∗

𝑘
← SampleWithReplacement(𝑅 (2)

𝑘
, |𝑅 (2)

𝑘
|)

5: 𝑋 ∗
𝑘
← {𝑓 (𝑥) | 𝑥 ∈ 𝑅∗

𝑘
, O(𝑥) = 1}

6: 𝑝∗
𝑘
← |𝑋 ∗

𝑘
|/|𝑅∗

𝑘
|

7: 𝜇∗
𝑘
← ∑︁ |𝑋 ∗

𝑘
|

𝑖=1 𝑋 ∗
𝑘,𝑖
/|𝑋 ∗

𝑘
| if |𝑋 ∗

𝑘
| > 0 else 0

8: 𝜇𝑏 ←
∑︁𝐾
𝑘=1 𝑝

∗
𝑘
𝜇∗
𝑘
/∑︁𝐾

𝑘=1 𝑝
∗
𝑘

9: return Percentile(𝛼/2, 𝜇), Percentile(1 − 𝛼/2, 𝜇)
10:
11: function ABaeWithCI(D, O, P, 𝐾 , 𝑁1, 𝑁2, 𝛽 , 𝛼)
12: S ← ABaeInit(D,P, 𝐾)
13: SampleFn← SampleWithoutReplacement
14: 𝜇, 𝑅 (2) ← ABaeSample(S,O, 𝐾, 𝑁1, 𝑁2, SampleFn)
15: return 𝜇, Bootstrap(𝑅 (2) ,O, 𝐾, 𝑁1, 𝑁2, 𝛽, 𝛼)

Confidence intervals. We use the non-parametric bootstrap [16]
to compute confidence intervals, which resamples existing sam-
ples. Since the per-stratum samples from both stages of ABae are
independent and identically distributed (i.i.d.), we resample from
samples across both stages.

We present the pseudocode for the bootstrap procedure in Al-
gorithm 2. ABae bootstraps across both stages of the sampling
algorithm to form CIs. We formally show the validity of the boot-
strap in an extended technical report [36]. We further show that
our procedure produces CIs that are nominally correct in Section 5.

In standard AQP, the bootstrap is considered an expensive proce-
dure as it requires resampling and recomputing the statistic. How-
ever, in our setting, we assume that the oracle predicate is expensive
to execute. As a result, the bootstrap is computationally cheap com-
pared to the cost of obtaining the samples. Concretely, in several of
our experiments, executing 1,000 bootstrap trials using unoptimized
Python code on a single CPU core is as expensive as executing 2,500
oracle calls on an NVIDIA T4 accelerator, which corresponds to
under 0.3% of a medium-sized dataset.

Setting parameters. ABae requires setting two parameters: the
fraction of samples between Stage 1 and 2 and the number of strata.
We recommend using 30-50% of samples in Stage 1 and 𝐾 to be
maximal such that every strata receives at least 100 samples in
Stage 1. Our experiments show that ABae is not sensitive to these
parameters, but that these settings tend to do best (Section 5.3).

3.2 Group Bys

We extend ABae to support queries with group by keys (ABae-
GroupBy). We focus on minimizing the maximum error (minimax
error) over groups. Other objectives can be supported (e.g., the sum
of errors), but we defer optimizing other objectives to future work.
As an example of a query with a group by key, consider:

SELECT COUNT (frame), person FROM VIDEO
WHERE person IN (' Biden ', ' Trump ')
GROUP BY person

2344

where, for simplicity, we assume that person is a virtual field ex-
tracted by an expensive face detection DNN.

We assume that the group by key is expensive to compute and
consider two different scenarios. In the first scenario, a single oracle
determines the group key directly. For example, in the query above,
a single oracle would directly classify a person as Biden or Trump. In
the second scenario, there is an oracle per group, where each oracle
can classify whether a record belongs to a specific group key or not.
For example, in the query above, we must execute two oracles: one
to classify whether or not a person is Biden and another for Trump.
We have found this scenario to be common when practitioners do
not build their own models. We separate these two cases as they
have different optimization objectives.

To optimize the minimax error, we formulate the allocation of the
samples to minimize the minimax error as a non-linear optimization
problem. Concretely, consider the multiple oracle setting. Given a
stratification of group 𝑔 (with a total of𝐺 groups), denote the error
of this stratification as Err(𝑔)/𝑁 , for 𝑁 samples. Namely, Err(𝑔)/𝑁
is equivalent to the error when using a single predicate. Then, we
aim to optimize the following objective

L = min
Λ∈[0,1]𝐺 ,∑︁𝐺

𝑙=1 Λ𝑙=1

(︃
max
𝑔

Err(𝑔)
Λ𝑙𝑁

)︃
(1)

where Λ is a weight vector corresponding to the sample allocation
between groups. We show that this optimization problem can be nu-
merically optimized using the Nelder-Mead simplex algorithm [53].

Concretely, ABae-GroupBy proceeds as follows:

(1) Sample uniformly at random to estimate the quantities needed
to compute Err(𝑔).

(2) Solve Eq. 1 via the Nelder-Mead simplex algorithm [53].
(3) Sample according to the allocation in the previous step.
(4) Return the combined estimates.

We defer the full formulation to Section 4.5.

3.3 Complex Predicates

In addition to a queries with a single predicate, we extend ABae to
support queries that contain any number of conjunctions, disjunc-
tions, and negations (ABae-MultiPred). Presently, we assume that
ABae-MultiPred receives as input a set of per-record proxy scores
per predicate. We show an example of such a query in Section 2.2.

To answer such queries, ABae-MultiPred will combine the
proxy scores from the predicates to obtain a single, per-record set
of scores that ideally indicates the likelihood of a record matching
the whole expression. ABae-MultiPred combines the proxy scores
by transforming the expression into an arithmetic expression with
the following substitutions:

(1) Negations are replaced by subtraction from one.
(2) Conjunctions are replaced by products.
(3) Disjunctions are replaced by max.

ABae-MultiPred’s approach will return exact results if the
proxies are perfectly calibrated and perfectly sharp. While this
assumption does not hold in practice, we show that our approach
works well in practice in Section 5.

3.4 Selecting Proxies

In some applications, users may have to select between several
viable proxies for an expensive predicate. For example, suppose
the user wishes to filter emails by spam. The user can provide
several rule-based proxies in the form of detecting keywords, such
as “money” or “$”.

A key question is which proxy will provide the lowest MSE for
a given budget. To estimate performance improvements, ABae will
use the samples from Stage 1. For each proxy, ABae will construct
the strata and estimate the corresponding 𝑝𝑘 and 𝜎𝑘 . ABae will use
the MSE formula for the perfect information, deterministic draws
setting to estimate the optimal achievable MSE (Proposition 2).
Given these estimates, ABae will take the top proxy as the proxy
to use in the query. We note that this procedure can reuse samples
and only adds negligible computational overhead.

Although the formula for the perfect information, deterministic
draws setting does not directly apply, we find it is a good predictor
of relative performance.

Finally, ABae can combine proxies by sampling randomly in
Stage 1 and using these samples to train a logistic regression model
using the proxies as features and the predicate as the target.

4 THEORETICAL ANALYSIS

We present a statistical analysis of ABae and its extensions. We
first show that a related sampling procedure achieves rate 𝑂

(︂
1
𝑁

)︂
assuming perfect knowledge of 𝑝𝑘 and 𝜎𝑘 . We then show that our
sampling procedure matches the rate of the optimal strategy. Finally,
we show that our optimization procedure for allocation for group
by keys is optimal for the deterministic setting.

We provide the intuition and theorem statements in this manu-
script. We defer the full proofs to an extended technical report [36].

4.1 Notation and Preliminaries

Notation. Recall the notation in Table 1. We emphasize that 𝑋𝑘,𝑖
is the 𝑖th positive sample from stratum 𝑘 , i.e., the 𝑖th sample that
satisfies the predicate. Furthermore, recall that 𝜇𝑘 is the per-stratum
mean, 𝑝all =

∑︁
𝑝𝑘 be the sum of the 𝑝𝑘 , and 𝜇all be the overall mean.

Finally, recall that𝑤𝑘 = 𝑝𝑘/𝑝all, the normalized predicate positive
rate, which corresponds to the weighting of 𝜇𝑘 to 𝜇all.

Assumptions and properties. We assume 𝑋𝑘,𝑖 is sub-Gaussian
with nonzero standard deviation, a standard assumption for strati-
fied sampling [9]. Sums of sub-Gaussian variables converge with
quantitative rates and this assumption widely holds in practice. In
particular, centered, bounded random variables are sub-Gaussian.
The sub-Gaussian assumption gives the existence of universal con-
stants such that E[|𝑋𝑘,𝑖 |] ≤ 𝐶 (𝜇) and 𝑉𝑎𝑟 [𝑋𝑖,𝑘] ≤ 𝐶 (𝜎

2) .
We further assume that 𝑝all ≥ 𝐶𝑝all > 0, which enforces that at

least one stratum has non-vanishing 𝑝𝑘 .

4.2 Optimal Allocation with Deterministic

Draws

We first analyze the setting where we assume perfect knowledge of
𝑝𝑘 and 𝜎𝑘 and that we receive a deterministic, per-stratum number
of draws given a sampling budget. Specifically, given a budget

2345

of 𝑇𝑘𝑁 per stratum, we assume that we receive 𝑝𝑘𝑇𝑘𝑁 samples,
rounded up. We prove the optimal allocation under a continuous
relaxation and the rate when using this optimal allocation.

Proposition 1. Suppose 𝑝𝑘 and 𝜎𝑘 are known and we receive
𝐵𝑘 = 𝑝𝑘𝑇𝑘𝑁 samples per stratum (up to rounding effects). Then, the
choice 𝑇𝑘 = 𝑇 ∗

𝑘
that minimizes the MSE for the unbiased estimator

𝜇all =
∑︁
𝑘 𝑝𝑘𝜇𝑘/

∑︁
𝑘 𝑝𝑘 is

𝑇 ∗
𝑘
=

√
𝑝𝑘𝜎𝑘∑︁𝐾

𝑖=1
√
𝑝𝑖𝜎𝑖

(2)

Proposition 2. Suppose the conditions in Proposition 1 hold. Then,
the squared error under the allocation 𝑇 ∗

𝑘
is

E[(𝜇all − 𝜇all)2 |𝐵𝑘 = 𝑝𝑘𝑇
∗
𝑘
𝑁] =

𝐾∑︂
𝑘=1

𝑤2
𝑘
𝜎2
𝑘

𝑝𝑘𝑇
∗
𝑘
𝑁

(3)

=
1

𝑁𝑝all
2 ·

(︄
𝐾∑︂
𝑘=1

√
𝑝𝑘𝜎𝑘

)︄2

(4)

Intuitively, these propositions say for deterministic draws, the
optimal allocation downweights the standard importance sampling
allocation by a factor of √𝑝𝑘 . The resulting MSE decreases linearly
with respect to the sample budget and a scaling factor.

We note that uniform sampling with deterministic draws con-
verges at rate 𝜎2

𝑁𝑝avg
, where 𝑝avg =

∑︁
𝑝𝑘/𝐾 . As a result, strati-

fied sampling offers room for improvement. For example, suppose
𝑝1 = 1, 𝑝𝑘 = 0 for 𝑘 ≠ 1, and that 𝜎𝑘 = 1 for all 𝑘 . This corre-
sponds to a perfect proxy and conditionally independent draws and
statistic. Then, uniform sampling converges at rate 𝐾

𝑁
, in contrast

to stratified sampling’s rate of 1
𝑁
. This corresponds to a 𝐾-fold

improvement in rate.

4.3 ABae with a Single Predicate

We analyze ABae’s two stage sampling algorithm, in which we do
not know 𝑝𝑘 and 𝜎𝑘 . We provide the theorem statement, but defer
the full proof to an extended technical report [36]. We assume that
𝑁2 is suitably large relative to 𝑁1 for the remainder of the paper.

Theorem 4.1. With high probability over the draws made in Stage
1 and in expectation in Stage 2,

E[(𝜇all − 𝜇all)2] ≤ 𝑂
(︃

1
𝑁1
+ 1
𝑁2
+
√
𝑁1√
𝑁2
· 1
𝑁2

)︃
(5)

Furthermore, if 𝑁1 = 𝑁2

E[(𝜇all − 𝜇all)2] ≤ 𝑂
(︃

1
𝑁

)︃
(6)

4.4 Understanding ABae

We provide an overall proof sketch of the analysis of ABae and
highlight several aspects of the analysis of broader interest.

4.4.1 Proof Sketch. Our proof strategy proceeds as follows. We
first show that our estimates 𝑝𝑘 and 𝜎̂𝑘 converge to 𝑝𝑘 and 𝜎𝑘 in a
quantitative way (i.e., with a specific rate). As a result, our estimate
for the optimal allocation will also converge in a quantitative way.

Given the estimate for the optimal allocation, we show that
the number of draws in Stage 2 for all strata will approach the

deterministic number of draws, for 𝑝𝑘 large enough (larger than
1
𝑁2

). We then show that the error converges appropriately for the
strata with 𝑝𝑘 large enough and that the error for the remaining
strata becomes negligible. As a result, our final estimate converges
with rate 𝑂 (1

𝑁
).

4.4.2 Challenges. We describe several challenges in the analysis of
ABae. Prior work has focused on known, deterministic per-strata
costs and variances. In contrast, our problem does not have a cost,
but rather a stochastic probability of receiving useful information.
We study this stochastic draw case and prove that using pilot sam-
pling with plug-in estimates [39] is valid and near optimal.

Unknown 𝑝𝑘 and 𝜎𝑘 . Most work in stratified sampling assumes
that features of the data distributions within each stratum are
known and constructs optimal allocations of samples using this in-
formation. In our setting, these quantities must be estimated, which
may not be possible when 𝑝𝑘 is small. For example, if 𝑝𝑘 = 1

𝑁 2 for
some stratum, then we may not draw even a single positive record
from that stratum, making 𝑝𝑘 and 𝜎𝑘 impossible to estimate.

Stochastic draws. In contrast to standard stratified sampling, we
may draw a record that does not satisfy the predicate. As a result,
for a fixed number of draws, the number of records matching a
predicate is stochastic. Most work on stratified sampling assumes a
deterministic allocation of samples to strata.

When the number of draws for some arbitrary𝑀 from a stratum
and the probability 𝑝𝑘 of matching the predicate are both large, the
number of positive records concentrates around 𝑝𝑘𝑀 and the result-
ing estimator has similar properties to one with 𝑝𝑘𝑀 deterministic
draws. However, if 𝑝𝑘𝑀 is small, this analysis breaks down.

Fractional allocations. To show that ABae converges at the op-
timal rate, we compare to the setting of deterministic draws and
perfect information. Given perfect information of 𝑝𝑘 and 𝜎𝑘 , the
optimal allocation is given by Proposition 1 and its MSE is given
by Proposition 2. However, this allocation cannot be achieved in
general, as it results in fractional sampling. Nonetheless, we show
that our sampling procedure, which rounds down the ideal frac-
tional allocations, achieves the same 𝑂

(︂
1
𝑁

)︂
rate. Thus, rounding

does not affect the convergence rate of our procedure.

4.4.3 Statistical Intuition. Our primary tool for dealing with un-
known quantities and stochastic draws is dividing the strata into
groups: where 𝑝𝑘 is large and where 𝑝𝑘 is small. Since the number
of positive draws is Binomial, we apply standard convergence to
the total number of positive draws when 𝑝𝑘 is large. For stratum
where 𝑝𝑘 is small, the contribution of that stratum to the total error
is at most 𝑝𝑘𝐶 (𝜇) , which does not increase the asymptotic error. To
illustrate our technique, consider the following proposition.

Proposition 3. Recall that 𝑁1 and 𝑁2 are the number of samples
in Stages 1 and 2 respectively. With high probability in Stage 1 and if
𝑁1 is a constant multiple of 𝑁2 as 𝑁 grows, the MSE of the error in
Stage 2 can be written as

E
[︁
(𝜇all − 𝜇all)2

]︁
=

𝐾∑︂
𝑘=1

𝑤̂2
𝑘
Var(𝜇𝑘) +𝑂

(︃
1
𝑁1
+ 1
𝑁2

)︃
(7)

where 𝑤̂𝑘 = 𝑝𝑘/
∑︁
𝑝𝑘 .

2346

As shown in Eq. 7, the overall MSE is bounded above by the
sum of 𝑤̂2

𝑘
Var(𝜇𝑘), which are per-strata quantities. We then bound

these quantities for strata where 𝑝𝑘 is (quantitatively) large or

small. Specifically, define 𝑝∗ =
2 ln(1/𝛿)+2

√
ln(1/𝛿)+2

𝑁1
= 𝑂

(︂
1
𝑁1

)︂
for

failure probability 𝛿 . Furthermore, we assume that 𝑁1 is a constant
multiple of 𝑁2 as 𝑁 grows. We divide the strata into cases based
on whether 𝑝𝑘 > 𝑝∗ or 𝑝𝑘 ≤ 𝑝∗

Consider the case where 𝑝𝑘 > 𝑝∗. By standard concentration
arguments, the number of positive samples in Stage 2 concentrates
to its expectation, which is large. Thus, 𝑤̂2

𝑘
Var(𝜇𝑘) decays at rate

(approximately) 𝑂
(︂

1
𝑁2

)︂
by standard concentration arguments. For

𝑝𝑘 ≤ 𝑝∗, we can directly bound the contribution. To understand
this, consider the following proposition.

Proposition 4.

𝑤̂2
𝑘
Var[𝜇𝑘] ≤ 𝑤̂2

𝑘

⎛⎜⎝E
⎡⎢⎢⎢⎢⎣
𝜎2
𝑘

𝐵
(2)
𝑘

|𝐵 (2)
𝑘

> 0
⎤⎥⎥⎥⎥⎦ + 𝑃 (𝐵 (2)𝑘 = 0)𝜇2

𝑘

⎞⎟⎠ (8)

≤ 𝑂
(︃

1
𝑁1
+ 1
𝑁2
+
√
𝑁1√
𝑁2
· 1
𝑁2

)︃
(9)

where 𝐵 (2)
𝑘

is the number of positive draws in Stage 2.

Proof sketch. The key challenge is bounding quantities involv-
ing 𝐵 (2)

𝑘
. Suppose counterfactually that 𝐵 (2)

𝑘
were deterministic:

then the expression would correspond to the standard variance of
an i.i.d. estimator. Namely, the variance if an i.i.d. estimator decays
as 1/𝐵 (2)

𝑘
. However, since we obtain a stochastic number of draws,

we must condition on the event of non-zero draws and take the
expectation. Since the draws are binomial in distribution, the lead-
ing order converges a.s. to its mean value, which would give the
desired bound in this toy setting.

We now adapt this strategy to account for 𝐵 (2)
𝑘

being stochastic

in ABae. For 𝑝𝑘 > 𝑝∗, 𝐵
(2)
𝑘

is approximately 𝑝𝑘𝑇 ∗𝑘 𝑁2 with high
probability. As a result, with high probability, each stratum had
sufficient samples to form estimates. We can complete the proof
similarly to the toy setting with deterministic 𝐵 (2)

𝑘
.

However, if 𝑝𝑘 < 𝑝∗, we may not draw the requisite number
of samples. For example, if 𝑝𝑘 = 1

𝑁 2 , we would not obtain any
samples on average. Thus, our analysis must consider the case
where 𝑝𝑘 < 𝑝∗ separately. When 𝑝𝑘 is small, we can directly bound
the contribution of the sum. Namely, 𝑤̂2

𝑘
= 𝑂 (1/𝑁 2) as 𝑝𝑘 ≤ 𝐶1

𝑁
and the remainder of the quantities are bounded by a constant.

Thus, the overall bound follows from considering the strata
where 𝑝𝑘 is small and where 𝑝𝑘 is large. □

4.4.4 Overview of Techniques. We briefly describe two techniques
used to prove the necessary bounds. First, we leverage exponential
tail bounds on sums of Bernoulli random variables (Lemma 1 [11]).
Both the upper and lower tail bounds are requires to show that

√︁
𝑝𝑘

converges to √𝑝𝑘 : this requires stronger tail bounds than showing
𝑝𝑘 converges to 𝑝𝑘 . Second, we use quantitative, exponential tail
bounds on Binomial random variables [54] to bound the number of
positive draws.

4.5 Analyzing Group Bys

Recall that we aim to optimize the minimax error for queries with
a group by clause. Suppose there are 𝐺 groups and that we have
a proxy per group. As in the case with a single predicate, each
proxy induces a stratification over the dataset. Given these 𝐺 strat-
ifications, ABae-GroupBy estimates the quantities necessary for
optimal allocation and executes Stage 2 of ABae on each strati-
fication appropriately. Thus, the key question is how to allocate
samples between the stratifications. We first demonstrate how to
allocate samples in the perfect information, deterministic setting
and use our plug-in estimates for allocation estimation.

For this section, we index the stratification by 𝑙 , the group by 𝑔,
and the strata by 𝑘 . Thus, 𝑝𝑙,𝑔,𝑘 , 𝜎𝑙,𝑔,𝑘 , and 𝜇𝑙,𝑔,𝑘 denote the predi-
cate positive rate, the standard deviation, and the stratum mean in
stratification 𝑙 , group 𝑔, and strata 𝑘 respectively.

To accelerate group by queries, we rely on ABae as a subroutine.
When we say that we execute an instance of ABae with a strat-
ification 𝑙 , we mean that we stratify the dataset using the proxy
for group 𝑙 and that we allocate samples across strata optimally for
computing the statistic associated with that group.

We now analyze the two cases described in Section 3.2.

Single Oracle. In this scenario, recall that we can identify the
group key with a single oracle model. To accelerate this query, we
will execute 𝐺 instances of ABae’s Stage 2 for each stratification 𝑙 .

Since a single oracle model identifies the group key, applying
ABae’s allocation for a given group gives us estimates for the other
groups for free. As a result, we can reuse these estimates across
all groups to obtain combined estimators. Thus, by uniformly sam-
pling in Stage 1, ABae-GroupBy can obtain estimates 𝑝𝑙,𝑔,𝑘 , 𝜎̂𝑙,𝑔,𝑘 ,
and 𝜇𝑙,𝑔,𝑘 . Given these quantities, we can estimate the error using
Proposition 2. To account for the multiple estimators across strati-
fications, we aggregate estimates via inverse-variance weighting,
which minimizes the variance [25].

Given the estimates from Stage 1, we estimate the optimal allo-
cation across stratifications with the following objective, where we
allocate Λ𝑙 · 𝑁2 samples to stratification 𝑙 :

L = min
Λ∈[0,1]𝐺 , ∑︁𝐺

𝑙=1 Λ𝑙=1

⎛⎜⎜⎝max
𝑔

⎛⎜⎝
𝐺∑︂
𝑙=1

⎛⎜⎝ 1
Λ𝑙𝑁2

𝐾∑︂
𝑘=1

𝑤̂2
𝑙,𝑔,𝑘

𝜎̂2
𝑙,𝑔,𝑘

𝑝𝑙,𝑔,𝑘𝑇𝑙,𝑘

⎞⎟⎠
−1⎞⎟⎟⎠
−1⎞⎟⎟⎠
(10)

The constraint that
∑︁𝐺
𝑙=1 Λ𝑙 = 1 ensures at most 𝑁2 samples are

used in Stage 2. The term in the inner sum is the estimated MSE
using our plug-in estimates.

This objective follows from the per stratification and per group
error which can be calculated using Proposition 2 and using that
inverse-varianceweighting achieves the least error among all weighted
averages which can be calculated as

(︁∑︁
𝑖 1/𝜎2

𝑖

)︁−1.
Standard tools in convex optimization [6] show that the objective

and constraints are convex. Thus, the optimization problem has a
unique minimizer. We use the Nelder-Mead simplex algorithm [53]
to numerically compute the minimizer.

Multiple Oracles. In this scenario, determining which group, if
any, a record belongs to requires 𝐺 oracle models (one for each
group), which we assume has similar costs. In contrast to the setting

2347

with a single oracle model, we do not obtain estimates for other
groups when sampling a given group.

As we cannot obtain estimates for other groups in this setting,
the oracle for group 𝑔 is only applied to samples from stratification
𝑔. Namely, we only consider elements where 𝑔 = 𝑙 . Specifically, we
need only estimate 𝑝𝑔,𝑔,𝑘 , 𝜎̂𝑔,𝑔,𝑘 , and 𝜇𝑔,𝑔.𝑘 . Hence, we will have a
single final estimate 𝜇𝑎𝑙𝑙,𝑔,𝑔 for each group 𝑔. Using Proposition 2
we can estimate the error of 𝜇𝑎𝑙𝑙,𝑔,𝑔 as function of the number of
samples we allocate towards the instance of ABae associated with
stratification and group 𝑔.

We allocate 𝑁1 samples in Stage 1 for each group. To optimize
for the minimax error, we will Stage 2 for stratification 𝑙 withΛ𝑙 ·𝑁2
samples such that

∑︁𝐺
𝑙=1 Λ𝑙 = 1. We will optimize for the optimal

values of Λ with the following objective:

L = min
Λ∈[0,1]𝐺 ,∑︁𝐺

𝑙=1 Λ𝑙=1

⎛⎜⎝max
𝑔

1
Λ𝑙𝑁2

𝐾∑︂
𝑘=1

𝑤̂2
𝑔,𝑔,𝑘

𝜎̂2
𝑔,𝑔,𝑘

𝑝𝑔,𝑔,𝑘𝑇𝑔,𝑘

⎞⎟⎠ (11)

This objective follows from the formula for estimating error pro-
vided in Proposition 2. We further note that the objective in Equa-
tion 10 reduces to the objective in Equation 11 when 𝑝𝑙,𝑔,𝑘 =

1, 𝜎𝑙,𝑔,𝑘 = ∞ for 𝑙 ≠ 𝑔.
As before, we can use standard tools in convex optimization to

show that the objective and constraints are convex, so the optimiza-
tion problem has a unique minimizer. We also use the Nelder-Mead
simplex algorithm to find the minimizer.

Asymptotic optimality of this objective follows fromTheorem 4.1.
As the per-group objectives are asymptotically optimal, we can
apply the union bound across the 𝐺 groups, which shows the con-
vergence of the overall objective.

4.6 Discussion

We have shown that ABae achieves the same asymptotic rate as
the optimal allocation strategy for deterministic draws. To our
knowledge, the setting of stochastic draws and our convergence
proofs are novel. However, we defer extensions to future work. For
example, our analysis is asymptotic: finite sample bounds with exact
constants would compare against uniform sampling more precisely.
Additionally, a bandit algorithm that updates the estimates of 𝑝𝑘 and
𝜎𝑘 per sample draw may provide non-asymptotic improvements.

5 EVALUATION

We evaluate ABae and its extensions on six real world datasets and
synthetic datasets. We first describe the experimental setup and
baselines. We then demonstrate that ABae outperforms baselines
in all settings we consider. We also show that ABae’s sample reuse
is effective and ABae is not sensitive to hyperparameters.

5.1 Experimental Setup

Datasets, target DNNs, and proxies. We consider six real world
datasets, including text, still images, and videos (Table 2). We addi-
tionally consider synthetic datasets for some settings.

We used the night-street (also known as jackson) and taipei
video datasets, which are commonly used for video analytics evalu-
ation [8, 31–33, 59]. We executed the following query:
SELECT AVG(count_cars (frame)) FROM video

WHERE count_cars (frame) > 0

which computes the average number of cars in the video, condi-
tioning on cars present. We use Mask R-CNN to compute the oracle
filter [26]. We use an efficient index for the proxy scores [35].

We used the celeba dataset [42], an image dataset of celebrity
faces that contains annotations of celebrity names and other at-
tributes, such as hair color. We executed the following query:

SELECT PERCENTAGE (is_smiling (img)) FROM images
WHERE hair_color (img) = ' blonde '

which computes the fraction of images where the celebrity is smil-
ing conditioned on the celebrity having blonde hair. We used the
human labels in the celeba dataset as the ground truth. We used a
specialized MobileNetV2 [50] as the proxy.

We used the TREC public spam corpora from 2005 (trec05p) [13].
We used the SPAM25 subset. We executed the following query:

SELECT AVG(NB_LINKS (text)) FROM emails
WHERE is_spam (text)

which computes the average number of links for spam emails. We
used human labels as ground truth. We used a manual, keyword-
based proxy based on the presence of words (e.g., “money,” “please”).

We used Amazon movie reviews and posters, which was gener-
ated from the Amazon reviews dataset [46]. We scraped the movie
posters from the metadata and excluded reviews that did not have
posters. We executed the following query:

SELECT AVG(rating) FROM movies
WHERE face_exists (poster) AND gender (poster) = ' female '

which computes the average rating of posters with a female actress.
We use MT-CNN to extract faces [62] and VGGFace pretrained from
deepface [52] to classifier gender as the ground truth. We use a
specialized MobileNetV2 as a proxy [50].

We used the Amazon reviews dataset [46] which is a dataset
of textual reviews from Amazon. We subset to the office supplies
reviews. We executed the following query:

SELECT AVG(rating) FROM data
WHERE sentiment (review) = ' strongly ␣ positive '

which computes the average rating of reviewswith strongly positive
sentiment. We use a BERT-based sentiment classifier provided by
FlairNLP to compute the oracle filter [3] and the NLTK sentiment
predictor, a simple rule-based classifier, for the proxy [30].

Metrics. Our primary metric is the RMSE of the true and estimated
values: we use the RMSE so that the units are on the same scale as
the original value. We additionally compare the number of samples
required to achieve a particular error target in some experiments.
We measure the cost in terms of oracle predicate invocations as it
is the dominant cost of query execution by orders of magnitude.

Methods evaluated. We compare ABae to uniform sampling as
it is applicable without precomputing predicate results. A range of
standard AQP techniques are not applicable to our setting, since the
results of the predicate are not available at ingest time. For example,
techniques that create histograms [14, 47, 49] or sketches [20, 21]
as ingest time are not applicable.

Implementation. We implement ABae’s sampling procedure in
Python for ease of integration with deep learning frameworks.

2348

Table 2: Summary of datasets, predicates, target DNNs, and proxies.

Dataset Size Predicate Target DNN Proxy model
night-street 973,136 At least one car Mask R-CNN [26] TASTI [35]
taipei 1,187,850 At least one car Mask R-CNN [26] TASTI [35]
celeba [42] 202,599 Blonde hair Human labels MobileNetV2 [50]
Amazon movie posters [46] 35,815 Contains woman MT-CNN [62], VGGFace [52] MobileNetV2 [50]
trec05p [13] 52,578 Is spam Human labels Keyword-based
Amazon office supplies [46] 800,144 Strong positive sentiment FlairNLP BERT sentiment [3] NLTK sentiment [30]

MKM
N

MKM
O

o
j
p
b

~F=¬§¥¦²J±²°££²
j£²¦­¢

^_~£
r¬§¤­°«

MKM
MR

MKM
NM

 F=²~§®£§

N

O

P

o
j
p
b

¡F=¡£ª£ ~

MKM
Q

MKM
S

MKM
U

¢F=~«~¸­¬J«­´§£±

OMMMQMMMSMMMUMMMNMMMM
_³¢¥£²

MKN

MKO

MKP

o
j
p
b

£F=²°£¡MR®

OMMMQMMMSMMMUMMMNMMMM
_³¢¥£²

MKM
O

MKM
Q

¤F=~«~¸­¬J­¤¤§¡£

Figure 2: Sampling budget vs RMSE for uniform sampling

and ABae, with the standard deviation shaded. ABae out-

performs on all budgets and datasets we evaluated on. ABae

can outperform by up to 1.5× on RMSE at a fixed budget and

achieve the same error with up to 2× fewer samples.

Our open-sourced code is available at https://github.com/stanford-
futuredata/abae.

5.2 End-to-end Performance

Single predicate. We show that ABae outperforms uniform sam-
pling on the metric of RMSE. For each dataset and query, we exe-
cuted ABae and random sampling for sampling budgets of 2,000
to 10,000 in increments of 2,000. We used five strata and allocated
half budget to each stage. We used a failure probability of 5% for
every condition. We ran every condition 1,000 times.

As shown in Figure 2, ABae outperforms for every dataset, query,
and budget setting we consider. ABae can achieve up to 2.3× im-
provements in RMSE at a fixed budget or up to 2× fewer samples
at a fixed error rate. We additionally show that ABae outperforms
uniform sampling at low sampling budgets (500-1,000) in Figure 3.

We further show that ABae outperforms on Q-error [44], which
is a relative error metric that penalizes under- and over-estimation
symmetrically. We show the normalized Q-error (i.e., 100× (𝑞 − 1)),
which roughly indicates percent error in Figure 4. As shown, ABae

Figure 3: Low sampling budgets vs RMSE for uniform sam-

pling and ABae, with the standard deviation shaded. We

see that even at small sample sizes, ABae outperforms or

matches uniform sampling in all cases.

Figure 4: Sampling budget vs normalized Q-error for uni-

form sampling and ABae, with the standard deviation

shaded.We see thatABaeoutperforms onQ-error. The same

trends hold for all other datasets.

outperforms on the two datasets we show–ABae also outperforms
on all the other datasets by 14-70%, which we omit for brevity. ABae
similarly outperform on relative error by 13-76%.

We further show that ABae outperforms on the metric of confi-
dence interval (CI) width. For each dataset and query, we executed
ABae and random sampling with the parameters above. We ran
every condition 1,000 times.

2349

