COMPARE: Accelerating Groupwise Comparison in Relational
Databases for Data Analytics

Tarique Siddiqui
Microsoft Research
tasidd@microsoft.com

Surajit Chaudhuri
Microsoft Research
surajitc@microsoft.com

Vivek Narasayya
Microsoft Research
viveknar@microsoft.com

ABSTRACT

Data analysis often involves comparing subsets of data across many
dimensions for finding unusual trends and patterns. While the
comparison between subsets of data can be expressed using SQL,
they tend to be complex to write, and suffer from poor performance
over large and high-dimensional datasets. In this paper, we pro-
pose a new logical operator CoMmpPARE for relational databases that
concisely captures the enumeration and comparison between sub-
sets of data and greatly simplifies the expressing of a large class
of comparative queries. We extend the database engine with op-
timization techniques that exploit the semantics of COMPARE to
significantly improve the performance of such queries. We have
implemented these extensions inside Microsoft SQL Server, a com-
mercial DBMS engine. Our extensive evaluation on synthetic and
real-world datasets shows that COMPARE results in a significant
speedup over existing approaches, including physical plans gener-
ated by today’s database systems, user-defined functions (UDFs),
as well as middleware solutions that compare subsets outside the
databases.

PVLDB Reference Format:

Tarique Siddiqui, Surajit Chaudhuri, and Vivek Narasayya. COMPARE:
Accelerating Groupwise Comparison in Relational Databases for Data
Analytics. PVLDB, 14(11): 2419-2431, 2021.
doi:10.14778/3476249.3476291

1 INTRODUCTION

Comparing subsets of data is an important part of data explo-
ration [7, 17, 25, 38, 42], routinely performed by data scientists
to find unusual patterns and gain actionable insights. However,
as the size and complexity of the dataset increases, the manual
enumeration and comparison of subsets becomes challenging. To
address this, a number of visualization tools [17, 38, 42, 45] have
been proposed that automatically compare subsets of data to find
the ones that are relevant. Figure 1a depicts an example from
Seedb [42] where the user specifies the subsets of population (e.g.,
based on marital status, race) and the tool automatically find a
socio-economic indicator (e.g., education, income, capital gains)
on which the subsets differ the most. Unfortunately, most of
these tools perform comparison of subsets in a middleware and
as depicted in Figure 2, with the increase in size and number of
attributes in the dataset, these tools incur large data movement
as well as serialization and deserialization overheads, resulting in
poor latency and scalability.

The question we pose in this work is: can we efficiently perform
comparison between subsets of data within the relational databases

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476291

2419

Figure 1: A comparative query in Seedb [42] that finds socio-
economic indicators that differentiate married and unmarried cou-
ples. The user specifies the subsets (A) after which the tool outputs
a pair of attributes (B) along with corresponding visualizations (C)
that differentiate the subsets

= —+— Middleware (Outside DB)

g UDF-based Comparison
- 75| = COMPARE(Qur approach) it
2 3 e
o 50 /.—”’
g9 25 I
£5 ——
Loy 0 g\
8525 B

] ~——_
£5 -50 —
TI-75

= T10° 10" 10° 10° 107 10°

Number of Tuples
Figure 2: Relative performance of different execution approaches
for a comparative query w.r.t unmodified SQL SERVER execution
time (higher the better). The query finds a pair of origin airports
that have the most similar departure delays over week trends in the
flight dataset [1]

to improve performance and scalability of comparative queries? Sup-
porting such queries within relational databases also makes them
broadly accessible via general-purpose data analysis tools such as
PowerBI [2], Tableau [4], and Jupyter notebooks [23]. These tools
let users directly write SQL queries and execute them within the
DBMS to reduce the amount of data that is shipped to the client.

One option for in-database execution is to extend DBMS with
custom user-defined functions (UDFs) for comparing subsets of data.
However, besides incurring invocation overhead, UDFs are executed
as a batch of statements where each statement is run sequentially
with limited parallelism and memory. As such, the performance of
UDFs does not scale with the increase in the number of tuples (see
Figure 2). Furthermore, UDFs have limited interoperability with
other operators, making it less amenable to logical optimizations.

While comparative queries can be expressed using regular SQL,
such queries require complex combination of multiple subqueries
which are hard to write and optimize. While prior work have
proposed extensions [12, 13, 16, 20, 40] such as grouping variables,
GROUPING SETs, CUBE; as we discussed in the later sections,
expressing and optimizing grouping and comparison simultaneously
remains a challenge. To describe the complexity using regular SQL,
we consider the following example.

Example. Consider a market analyst exploring sales trends across
different cities. The analyst generates a sample of visualizations
depicting different trends, e.g., average revenue over week, average
profit over week, average revenue over country, etc., for a few cities.
She notices that trends for cities in Europe look different from those

SELECT A.region, A.city, A. week, A. revenue, ..., A.county, B.score
FROM sales A,
// Compares subsets of tuples (e.g., one each for cities in Asia and Europe) over
n pairs of attributes
(SELECT T.region, T.city, T. week, ..., T2.county, T.c1, T.c2, score
{

/! Compares subsets of tuples for attribute combination 1 {week, revenue)
outputs subsets with most similar trends
SELECT TZ.region, T2.city, T2. week, T2. revenue, Tl.cl, Tl.c2,
T1.score, NULL AS profit, NULL AS country, ...
FROM (SELECT c1, c2, SUM(diff) AS score
FROM (
SELECT s.city AS c1, r.city AS c2, s.week AS week,
POW((AVGs.revenue) - AVG(r.revenue)), 2) AS diff
FROM sales s, sales r
WHERE s.region = " Asia’ AND r.region="Europe’
AND sweek=r.week
GROUP BY ¢l, ¢2, week)
GROUP BY ¢1, ¢2
ORDER BY score ASC) T1,
sales T2
WHERE T1. ¢l = T2.city OR T1.c2 =T2.city
UNION
// Subquery 2 for attribute combination 2 (similar to to subquery 1)
UNION

Subquery 1

UNION

// Subquery n for agtribute combination n (similar to to subquery 1)
GROUP BY cl, c2, score
ORDER BY score ASC

LIMIT 1) B,
WHERE A.city = Beity

Figure 3: A SQL query for comparing subsets of data over differ-
ent attribute combinations, depicting the complexity of specifica-
tion using existing SQL expressions.

in Asia. To verify whether this observation generalizes, she looks
for a counterexample by searching for pairs of attributes over which
two cities in Asia and Europe have most similar trends. Often, an Lp
norm-based distance measure (e.g., Euclidean distance, Manhattan
distance) that measures deviation between trends and distributions is
used for such comparisons [17, 38, 42].

Figure 3 depicts a SQL query template for the above example. The
query involves multiple subqueries, which each subquery compares
a group of tuples (one group for each city) over an attribute pair (e.g.,
week, revenue). Clearly, the query is quite verbose and complex,
with redundant expressions across subqueries. While comparative
queries often explore and compare a large number of attribute
pairs [24, 42], we observe that even with only a few attribute pairs,
the SQL specification can become extremely long.

The number of groups to compare is determined by factors such
as the number of possible constraints (e.g., cities) as well as the num-
ber of attributes combinations and aggregation functions to explore.
For large and complex datasets, this results in many subqueries
with each subquery taking substantially long time to execute. Of-
ten, there are large opportunities for sharing computations (e.g.,
aggregations) across subqueries; however, the relational engines
tend to execute each subquery independently. Furthermore, while
comparison between pairs of groups can be performed indepen-
dently and in parallel, each subquery invokes an expensive self join
over a large relation consisting of all groups. Finally, in many cases,
the aggregated result for each comparison is sufficient; however
the join results in large intermediate data, resulting in substantial
overheads.

1.1 Overview of Our Approach

In this paper, we take an important step towards making specifica-
tion of the comparative queries easier and ensuring their efficient
processing. To do so, we introduce a logical operator and exten-
sions to the SQL language, as well as optimizations in relational
databases, described below.

Groupwise comparison as a first class construct (Section 2
and 3). We introduce a new logical operation, CoMPARE (D), as

2420

a first class relational construct, and formalize its semantics that
help capture a large class of frequently used comparative queries.
We propose extensions to SQL syntax that allows intuitive and
more concise specification of comparative queries. For instance,
the comparison between two sets of cities C; and Cy over n pairs of
attributes: (x1, y1), (x2, y2), ... (Xn, Yn) using a comparison function
F can be succinctly expressed as COMPARE [C1<->Ca][(x1, 11), (x2,
y2), - (Xn. Yn)] USING F. As illustrated earlier, expressing the
same query using existing SQL clauses requires a UNION over n
subqueries, one for each (x;, y;) where each subquery itself tends to
be quite complex. Overall, while ComPARE does not give additional
expressive power to the relational algebra, it reduces the complexity
of specifying comparative queries and facilitates optimizations via
query optimizer and the execution engine.

Efficient processing via optimizations (Section 4 and 5). We
exploit the semantics of COMPARE to share aggregate computations
across multiple attribute combinations, as well as partition and
compare subsets in a manner that significantly reduces the pro-
cessing time. While these optimizations work for any comparison
function, we also introduce specific optimizations (by introducing
a new physical operator) that exploit properties of frequently used
comparison functions (e.g., L, norms). These optimizations help
prune many subset comparisons without affecting the correctness.

Inter-operator optimizations (Section 6). We introduce new
transformation rules that transform the logical tree containing the
CoMPARE operator along with other relational operators into equiv-
alent logical trees that are more efficient. For instance, the attributes
referred in CoMPARE may be spread across multiple tables, involv-
ing PK-FK joins between fact and dimension tables. To optimize
such cases, we show how we can push CoMPARE below join that
reduces the number of tuples to join. Similarly, we describe how
aggregates can be pushed below ComPARE, how multiple CoMPARE
operators can reordered and how we can detect and translate an
equivalent sub-plan expressed using existing relational operators
to COMPARE.

Implementation inside commercial database engine (Section
7). We have prototyped our techniques in Microsoft SQL SERVER
engine, including the physical optimizations. Our experiments
show that even over moderately-sized datasets (e.g., 10-20 GB)
CoMPARE results in up to 4x improvement in performance relative
to alternative approaches including physical plans generated by
SQL SERVER, UDFs, and middlewares (e.g., Zenvisage, Seedb). With
the increase in the number of tuples and attributes, the performance
difference grows quickly, with ComPARE giving more than a order
of magnitude better performance.

2 CHARACTERIZING COMPARATIVE
QUERIES

In this section, we first characterize comparative queries with the
help of additional examples drawn from visualization tools [17, 38,
42] and data mining [7, 9, 25, 30]. Then, we give a formal definition
that concisely captures the semantics of comparative queries.

2.1 Examples

We return to the example scenario discussed in introduction: a
market analyst is exploring sales trends of products with the help
of visualizations to find unusual patterns. The analyst first looks at
a small sample of visualizations, e.g., average revenue over week
trends for a few regions (e.g., Asia, Europe) and for a subset of
cities and products within each region. She observes some unusual
patterns and wants to quickly find additional visualizations that
either support or disprove those patterns (without examining all

product ='Inspiron nesion’
3 | & region = “Asia’ y| region=tasia ereduct = inseiran
< 2 -2 egion =
£ g]
2 @ H
week week week
product = ‘G7' & region = ‘Asia’ praduct = ‘Inspiron’
region = ‘Asia’ & <> | ®ion = 'Asia’
g £
al 3|
week country country
praduct = 'XPS' & UT,EQW = Asia’ product = ‘Inspiron’
S| region = ‘Asia’ =] <2 |®ion = Asia
s : 2
g 5]

week month month

1a One to many comparisans over fixed X and

Y attributes attributes

1b: One ta ane comparisons aver varying X and Y

city = Tokyo'

S

revenue
revenue
profit

= Tokyo'
(e Iﬁw_(lu_vh

week week categary
city = 'London’
ity ='Seoul’
g 2 | city = ‘Beiiing’ . 3 e
H 2 = c /-
5 H] 5
i 5 er_ﬂ g

week category week

£l = ' i &

E] u | ity = ‘Seout 1 ety 2| city ='Beijing
g c g - 5

week po week week

2b: Many to many comparisons over varying
Xand Y attributes

2a Many to many comparisons over fixed X and
¥ attributes

<— denotes comparison

Figure 4: Illustrating comparative queries described in Section 2.1

possible visualizations). Note that we use the term "trend" to refer to
a set of tuples in a more general sense where both categorical (e.g.,
country) or ordinal attributes (e.g., week) can be used for ordering
or alignment during comparison. We consider four scenarios below,
each depicted in Figure 4.

Example 1a. The analyst notes that the average revenue over week
trends for Asia as well as for a subset of products in that region
look similar. As a counterexample, she wants to find a product
whose revenue over week trend in Asia is very dissimilar (typically
measured using Ly norms) to that of the Asia’s overall trend. There are
visualization systems [11, 24, 38, 44] that support similar queries.

Example 1b. In the above example, the analyst sees that the trend
for product ‘Inspiron’ is different from the overall trend for the
region ‘Asia’. She finds it surprising and wants to find the attributes
where their trends deviate the most. More precisely, she wants
to compare ‘Inspiron’ and ‘Asia’ over multiple pairs of attributes
(e.g., average profit over country, average quantitysold over week, ...,
average profit over week) and select the one where they deviate the
most. Such comparisons can be found in features such as Explain
Data[3] in Tableau and tools such as Seedb [42], Zenvisage [38].

Example 2a. Consider another scenario: the analyst visualizes the
revenue trends of a few cities in Asia and in Europe, and finds that
while most cities in Asia have increasing revenue trends, those in
Europe have decreasing trends. As a counterexample, she wants to
find a pair of cities in these regions where this pattern does not hold,
i.e., they have the most similar trends. Such tasks involving search
for similar pair of trends are ubiquitous in time series [7, 9, 25, 30].

Example 2b. In the above example, the analyst finds that the out-
put pair of visualizations look different, supporting her intuition
that perhaps no two cities in Europe and Asia have similar revenue
over week trends. To verify whether this observation generalizes
when compared over other attributes, she searches for pairs of at-
tributes (similar to ones mentioned in Example 1b) for which two
cities in Asia and Europe have most similar trends. Such queries are
common in visualization recommendation tools [43].

The comparative queries in above examples help fast-forward
the analyst to a few visualizations that depict a pattern she wants to
verify—thereby allowing her to skip the tedious and time-consuming
process of manual comparison of all possible visualizations. As il-
lustrated in Figure 4, each query involves comparisons between
two sets of visualizations (henceforth referred as Set1 and Set2) to
find the ones which are similar or dissimilar. Each visualization
depicting a trend is represented via two attributes (X attribute, e.g.,
week and a Y attribute, e.g., average revenue) and a set of tuples
(specified via a constraint, e.g., product = Tnspiron’).

2.2 Formalization

We formalize our notion of comparative queries and propose a
concise representation for specifying such queries.

2421

2.21 Trend. Atrend is a set of tuples that are compared together
as one unit. Formally,

Definition 1 [Trend]. Given a relation R, a trend t is a set of tuples
derived from R via the triplet: constraint c, grouping g, measure m
and represented as (c)(g, m).

Definition 2 [Constraint]. Given a relation R, a constraint is a con-
Jjunctive filter of the form: (p1 = a1, p2 = az, ..., pn = an) that selects
a subset of tuples from R. Here, p1, p2, ..., pn are attributes in R and
@ is a value of p; in R. One can use ‘ALL’ to select all values of p;,
similar to [20].

Definition 3 [(Grouping, Measure)]. Given a set of tuples selected
via a constraint, all tuples with the same value of grouping are aggre-
gated using measure. A tuple in one trend is only compared with the
tuple in another trend with the same value of grouping.

In example 1a, (Rregion = ‘Asia’)(R.week, AVG(R.revenue)) is a
trend in Set 1, where (region = ‘Asia’) is a constraint for the trend and
all tuples with the same value of grouping:'week’ are aggregated
using the measure: ‘AVG(revenue)’.

2.2.2 Trendset. A comparative query involves two sets of trends.
We formalize this via trendset.

Definition 4 [Trendset]. A trendset is a set of trends. A trend in one
trendset is compared with a trend in another trendset.

In example 1a, the first trendset consists of a single trend: {(R.region
= ‘Asia’)(R.week, AVG(R.revenue))}, while the second trendset con-
sists of as many trends as there are are unique products in R:
{(R.region = ‘Asia’, R.product = ‘Inspiron’) (R.week, AVG(R.reven-
ue)), (Rregion = ‘Asia’, Rproduct = "XPS’)(R.week, AVG(R.reven-
ue)), ..., (Rregion = “Asia’, R.product = ‘G7’) (Rweek, AVG(R.rev-
enue))}.

As in the above example, often a trendset contains one trend for
each unique value of an attribute (say p) as a constraint, all sharing
the same (grouping, measure). Such a trendset can be succinctly
represented using only the attribute name as constraint, i.e., [p][(g1,
my)]. If @, e, .., represent all unique values of p, then,

[(p1l(g1, m1)] = {(p = a1)(g1, m1), (p = a2)(g1, m1), ... (p =
an g1, m1)} (= denotes equivalence)

Similarly, [p1, p2 = Bll(g1, m1)] = {(p1 = a1, p2 = fYg1, m).
(p1 = a2, p2 = f)g1. m1). ... (p1 = an. p2 = f)(g1. m1)}

Alternatively, a trendset consisting of different (grouping, mea-
sure) combinations but the same constraint (e.g., p = a1) can be
succinctly written as:

[(p = a)][g1, m1). ..., (gn, mn)] = {(p = a1)g1, m1), ... (p =
a1)(gn, ma)}

2.2.3 Scoring. We first define our notion of ‘Comparability’ that
tells when two trends can be compared.

Definition 5 [Comparability of two trends]. Two trends t1: (c1)(91,
my1) and t2: (¢1)(g2, mz) can be compared if g1 = g2 and my = my, ie.,
they have the same grouping and measure.

For example, a trend (R.product = ‘Inspiron’) (R.-week, AVG(
R.revenue)) and a trend (R.product = XPS’)(R.month, AVG(R.pro-
fit)) are not comparable since they differ on grouping and measure.

Next, we define a function scorer for comparing two trends.

Definition 6 [Scorer]. Given two trends t; and to, a scorer is any
function that returns a single scalar value called ‘score’ measuring
how t; compares with to.

While any function satisfying the above definition can be used
as a scorer, two trends are often compared using L, norms such as
Euclidean distance [26, 38, 42]. Such functions are also called ag-
gregated distance functions [29]. All aggregated distance functions
use a function DIFF(.)! as defined below.

Definition 7 [DIFF(my, m2, p)]. Given a tuple with measure value
my and grouping value g; in trend t; and another tuple with measure
value my and the same grouping value g;, DIFF(my, mz, p) = |m1 —
may|P where p € Z*. Tuples with non-matching grouping values are
ignored.

Since m; and my are clear from the definition of #; and ¢y, we
succinctly represent DIFF(my, ma, p) = DIFF(p).

Definition 8 [Aggregated Distance Function]. An aggregated dis-
tance function compares trends t1 : (c;)(gi, mi) and t : (cj) (gi, mi)
in two steps: (i) first DIFF(p) is computed between every pairs of tu-
ples in t1 and tz with same values of g;, and (ii) all values of DIFF(p)
are aggregated using an aggregate function AGG such as SUM, AVG,
MIN, and MAX to return a score. An aggregated distance function is
represented as AGG OVER DIFF(p).

For example, L, norms? such as Euclidean distance can be spec-
ified using SUM OVER DIFF(2), Manhattan distance using SUM
OVER DIFF(1), mean-absolute deviation as AVG OVER DIFF(1),
mean-square deviation as AVG OVER DIFF(2).

2.2.4 Comparison between Trendsets. We extend Definition 5 to
the following observation over trendsets.

Observation 1 [Comparability between two trendsets] Given
two trendsets Ty and Tz, a trend (c;)(gi, m;) in Ty is compared with
only those trends (cj)(g;, m;) in T where g; = gj and m; = m;.

Thus, given two trendsets, we can automatically infer which
trends between the two trendsets need to be compared. We use
T1<->T2 to denote the comparison between T; and T. For example,
the comparison in example 1a can be represented as:

[region = ‘Inspiron’][(week, AVG(revenue))] <-> [region = ‘Asia’,
product][(week, AVG (revenue))]

If both T; and T; consist of the same set of grouping and measure
expressions say {(g1, m1), ..., (gn, mn)} and differ only in constraint,
then
[e1]l(g1, m1), .., (gn, mn)] <=> [c2][(g1, m1), .., (gn, mn)] = [e1 <->
c2][(g1, m1), ..., (gn, mn)]

Thus, the comparison between trendsets in example 1a can be
succinctly expressed as:

[(region = ‘Asia’) <-> (region = ‘Asia’, product)][(week, AVG(reve-
nue))]

Similarly, the following expression represents the comparison in
example 1b.

!Note that the function DIFF is distinct from another operator [5] with similar name.
2We ignore the pth root as it does not affect the ranking of subsets.

2422

Table 1: Output of ComPARE in Example 1a

R1 P W \ score
Asia XPS True | True 30
Asia | Inspiron | True | True 24

Asia G8 True | True 45

[(region = ‘Asia’) <-> (region = ‘Asia’, product = ‘Inspiron’)][(week,
AVG(revenue)), (country, AVG(profit)), ... , (month, AVG(revenue))]

We can now define a comparative expression using the notions
introduced so far.

Definition 9 [Comparative expression]. Given two trendsets Ty <—>
T, over a relation R, and a scorer ¥, a comparative expression com-
putes the scores between trends (c;)(gi, m;) in Ty and (cj) (gj, mj)
in T, where g; = g; and m; = m; using F.

3 THE COMPARE OPERATOR

In this section, we introduce a new operator COMPARE, that makes
it easier for data analysts and application developers to express
comparative queries. We first explain the syntax and semantics of
CompaRE and then show how CoMPARE interoperates with other re-
lational operators to express top-k comparative queries as discussed
in Section 2.1.

3.1 Syntax and Semantics

CoMPARE, denoted by &, is a logical operator that takes as input a
a comparative expression specifying two trendsets Ty <->T, over
relation R along with a scorer # and returns a relation R’.

®(R, T1<->T,,F) > R’

R’ consists of scores for each pair of compared trends between
the two trendsets. For instance, the table below depicts the output
schema for the COMPARE expression [c1 <-> c2][(g1, m1), (92, m2)].
The values in the shown tuple indicate that the trend (c1 = a1)(g1,
m1) is compared with the trend (c2 = a2)(g1, m1) and the score is
10.

Cc1 [} 91 m 92 my score
a; | az | True | True | False | False 10

We express the COMPARE operator in SQL using two extensions:
CompARE and USING:

COMPARE T1 <-> T2
USING 7

For instance, for example 1a, the comparison between the AVG(reve-
nue) over week trends for the region ‘Asia’ and each of the products
in region ’Asia’ can be succinctly expressed as follows:

Listing 1: COMPAREXPR1A

SELECT R1, P, W, V, score

FROM sales R

COMPARE [((R.region = Asia) AS R1) <-> (R1, R.product AS P)]
[R.week AS W, AVG (R.revenue) AS V]

USING SUM OVER DIFF(2) AS score

Here Tq = [((R.region = Asia) ASR1)][R.week AS W, AVG (R.revenue)
AS V] and T, = [((R.region = Asia) AS R1, R.product AS P)][R.week
AS W, AVG (R.revenue) AS V]. Since Ty and T, share the same
set of (grouping, measure) and the filter (R.region = Asia) in their
constraints, we concisely express them as [((R.region = Asia) AS
R1)<->(R1, R.product AS P)][R.week AS W, AVG (R.revenue) AS V]
as discussed earlier.

Table 1 illustrates the output of this query. The first two columns
R1 and P identify the values of constraint for compared trends in T1
and T2. The columns W and V are Boolean valued denoting whether
R.week and AVG(R.revenue) were used for the compared trends.

Table 2: Output of ComPARE in Example 1b

R1 P W C M v [¢) score
Asia | Inspiron | True | False | False | True [False 40
Asia | Inspiron | False | True | False | True [False 20
Asia | Inspiron | False | False | True | True [False 10

Thus, the values of (R1, P, W, V) together identify the pairs of trends
that are compared. Since R.week and AVG(R.revenue) are grouping
and measure for all trends in this example, their values are always
True. Finally, the column score specifies the scores computed using
Euclidean distance, expressed as SUM OVER DIFF(2).

Now, consider below the query for example 1b that compares
tuples where (R.region = Asia) with tuples where (R.region = Asia)
and (R.product = "Inspiron’) over a set of (grouping, measure):

Listing 2: COMPAREXPR1B

Essentially, the input to COMPARE is a relation, which can either be
a base table or an output from another logical operator (e.g., join
over multiple tables); similarly the output relation from COMPARE
can be an input to another logical operator or the final output. This
allows COMPARE to interoperate with other operators.

We show how we can use the above-listed COMPARE sub-express-
ions (referred by COMPAREXPR1A, COMPAREXPR1B, COMPAR-
EXPR2A, and COMPAREXPR1B) with LIMIT and join to select
tuples for trends belonging to top-k.

Example 1a. The following query selects the tuples of a prod-
uct in region ‘Asia’ that has the most different AVG(revenue) over
week trends compared to that of region ‘Asia’ overall. COMPAR-
EXPR1A refers to the sub-expression in Listing 1.

SELECT R1,P, W, C,V, .., M, score

FROM sales R

COMPARE [((R.region = Asia) AS R1) <-> (R1, (R.product = 'Inspiron')
AS P)][(R-week AS W, AVG(R.revenue) AS V), (R.country AS
C, AVG(R.profit) AS O), ..., (R.month AS M, V)]

USING SUM OVER DIFF(2) AS score

SELECT T.product, T.week, T.revenue, S.score
FROM sales T JOIN

(SELECT » FROM COMPAREXPR1A
ORDER BY score DESC

LIMIT 1) AS S

WHERE T.product = S.P

Table 2 depicts the output for this query. The columns R1 and P
are always set to "Asia" and "Inspiron" since the constraint for all
trends in T1 and T2 are fixed. W, C, M, V, and P consist of Boolean
values telling which columns among R.week, R.country, R.month,
AVG(R.revenue), and AVG(R.profit) were used as (grouping, mea-
sure) for the pair of compared trends.

From above examples, it is easy to see that we can write queries
with COMPARE expression for examples 2a and 2b as follows:

Listing 3: COMPAREXPR2A

SELECT R1, C1,R2, C2, W, V, score

FROM sales R

COMPARE [((R.Region = Asia) AS R1, (R.city) AS C1) <-> ((R.Region
= Europe) AS R2, (R.city) AS C2)][R.week AS W,
AVG(R.revenue) AS V]

USING SUM OVER DIFF(2) AS score

The ORDER BY and LIMIT clause select the top-1 row in Table 1
with the highest score with P consisting of the most similar product.
Next, a join is performed with the base table to select all tuples of
the most similar product along with its score.

Example 2a. The query for example 2a differs from example 1a
in that both trendsets consist of multiple trends. Here, one may
be interested in selecting tuples of both cities that are similar, thus
we use the WHERE condition (T.city = S.C1 AND T.Region = S.R1)
OR (T.city = S.C2 AND T.Region = S.R2). (S.R1, SR2, S.C1, S.C2) in
SELECT clause identifies the pair of compared trends.

Listing 4: COMPAREXPR2B

SELECT R1, C1,R2,C2, W, C, V, ..., M, score

FROM sales R

COMPARE [((R.Region = Asia) AS R1, (R.city) AS C1) <-> ((R.Region
= Europe) AS R2, (R.city) AS C2)][(R.week AS W, AVG(R.revenue)
AS V), (R.country AS C, AVG(R.profit) AS O), ..., (R.month AS M, V)]

USING SUM OVER DIFF(2) AS score

SELECT T.Region, T.city, T.week, T.revenue, S.R1, S.C1, S.R2, S.C2,
S.score

FROM sales T JOIN

(SELECT « FROM COMPAREXPR2A

ORDER BY score

LIMIT 1) AS S

WHERE (T.city = S.C1 AND T.Region = S.R1) OR (T.city = S.C2 AND

T.Region = S.R2)

Note that COMPARE is semantically equivalent to a standard re-
lational expression consisting of multiple sub-queries involving
union, group-by, and join operators as discussed in introduction.
As such, COMPARE does not add to the expressiveness of the SQL lan-
guage. However, COMPARE provides a succinct and more intuitive
way to express frequently used comparative queries. For example,
expressing the query in Listing 2 using existing SQL clauses (see
Figure 3) is much more verbose, requiring a complex sub-query for
each (grouping, measure). Prior work have also proposed similar
succinct abstractions such as GROUPING SETs [15] and CUBE [20]
(both widely adopted by most of the databases) and more recently
DIFF [5]; all of these work share our goal that with an extended
syntax, complex analytic queries are easier to write and optimize.

3.2 Expressing Top-K Comparative Queries

While CoMPARE outputs the scores for each pair of compared trends,
comparative queries often involve selection of top-k trends based
on their scores (Section 2.1). We discuss how COMPARE interoper-
ates with other operators such as join, filter to select top-k trends.

2423

Examples 1b and 2b. These examples extend the first two exam-
ples to multiple attributes. We show the query for example 2b; it’s
a complex version of (example 1b) where trends in each trendsets
are created by varying all three: constraint, grouping, measure
(example 1b has a fixed constraint for each trendset).

SELECT T.city, S.R1, SR2, S.C1, S.C2,
CASE WHEN S.W THEN T.week ELSE NULL END,

CASE WHEN S.V THEN T.revenue ELSE NULL END,
S.score
FROM sales T JOIN
(SELECT » FROM COMPAREXPR2B
ORDER BY score
LIMIT 1) AS S
WHERE (T.city = S.C1 AND T.Region = S.R1) OR (T.city = S.C2 AND
T.Region = S.R2)

The SELECT clause only outputs the values of columns for which
corresponding trends has the highest score, setting NULL for other
columns to indicate that those columns were not part of top-1 pair
of trends. This idea of setting NULL is borrowed from prior work
on CUBE [20]. Nevertheless, an alternative is to output values of
all columns, and add (SW, S.M, S.C, S.P, SV) (as in the previous
example) to the output to indicate which columns were part of the
comparison between top-1 pair of trends.

—— Trendsetwise Join

300
) —=— Partitioning + Trendwise Join
50 / 52001+ Only Partitioning
v [=
[— _—a
Eas{ ™~ .,J_,_,/ E 100 I :
- i =¥ S

10! 102 103 10 10°
Number of trends per trendset

201816141210 8 6 4 21
Number of group-by expressions
after merging

(b) Improvements due to trendwise
join after partitioning trendset into

as we merge group-by aggre-yyon g (the size of each trend is fixed
gates to share computations to 1000 tuples)

(a) Variation in performance

Figure 5: Improvement in performance due to merging
group-by aggregates and trendwise comparison (via parti-
tioning)

4 OPTIMIZING COMPARATIVE QUERIES

In this section, we discuss how we optimize a logical query plan
consisting of a ComPARE operation. We extend the Microsoft SQL
SERVER optimizer to replace CoMPARE with a sub-plan of existing
physical operators using two steps. First, we transform COMPARE
into a sub-plan of existing logical operators. These logical operators
are then transformed into physical operators using existing rules
to compute the cost of CoMPARE. The cost of the sub-plan for
CoMPARE is combined with costs of other physical operators to
estimate the total cost of the query. We state our problem formally:

Problem 4.1. Given a logical query plan consisting of COMPARE op-
eration: ®(R, [c1<->c3] [(d1, my), ..., (dn, mp)], F) — R’, replace
CoMPARE with a sub-plan of physical operators with the lowest cost.

For ease of exposition, we assume that both trendsets contain the
same set of trends, one for each unique value of ¢, i.e., c; =cz = ¢.

4.1 Basic Execution

We start with a simple approach that transforms CoMPARE into
a sub-plan of logical operators. The sub-plan is similar to the
one generated by database engines when comparative queries are
expressed using existing SQL clauses (discussed in Section 1). We
perform the transformation using the following steps:
(1) Y(dj,mi): Ry « Group-byc,dIAggmr(R)
(2)V Ri: Rij bR, cI=R; c.R;.d;=R;.d; (Ri) o
(3) ¥ Rij: Riji « Group-byu .sAggypa,(Rij) // ¢!, ¢/ are aliases
of column ¢
(4) R« UniopkAll(Rijk)

L1

First, we create trendsets for each (grouping, measure) combi-
nation (e.g., GROUP BY product, week, AGG on AVG(reve- nue)).
Next, we join tuples between each pair of trends that are compared,
i.e., tuples with different constraints but same value of grouping
(e-g. MR’ product !=R’.product, R'.week ~Rweek)). The score between
each pair of trends is computed by applying F specified as an user-
defined aggregate (UDA). This is done by first partitioning the join
output to create a partition for each pair of trends. Each partition is
then aggregated using # . Finally, the scores from comparing each
pairs of trends are aggregated via Union AllL

Unfortunately, this approach has two issues that make it less
efficient as the size of the input dataset and the number of (grouping,
measure) combinations become large. First, aggregations across
(grouping, measure) are performed separately, even when there are
overlaps in the subset of tuples being aggregated. Second, the cost of
join increases rapidly as the number of trends being compared and
the size of each trend increases (see Figure 5b). We next discuss how
we address these issues via merging and partitioning optimizations

2424

4.2 Merging and Partitioning Optimization

To generate a more efficient plan, we adapt the sub-plan generated
above using two optimizations. We first describe each of these
optimizations and then present an algorithm that incorporates both
of these optimizations to find an overall efficient plan.

Merging group-by aggregates. The first optimization shares the
computations across a set of group-by aggregates, one for each
(grouping, measure), by merging them into fewer group-by aggre-
gates. We observe that (grouping, measure) often share a com-
mon grouping column, e.g., [(day, AVG(revenue), (day, AVG(profit)]
or have correlated grouping columns (e.g., [(day, AVG(revenue),
(month, AVG(revenue)]) or have high degree of overlapping tuples
across trends. For example, we considered a set of 20 group-by
aggregates in the flights [1] dataset, computing AVG(ArrivalDelay),
AVG(DepDelay), ..., AVG(Duration) grouped by day, week, ..., air-
port. As depicted in Figure 5a, by merging them (using an approach
discussed shortly) into 12 aggregates, the latency improves by 2x.
However, merging is helpful only up to a certain point, after which
the performance degrades due to less sharing and much larger
increase in the output size of group-by aggregates.

Finding the optimal merging of group-by aggregates is NP- Com-
plete [6]. Prior work on optimizing GROUPING SETs computa-
tion [15] have proposed best-first greedy approaches that merge
those group-by aggregates first that lead to maximum decrease in
the cost. Unfortunately, in our setting, we also need to consider the
impact of merging on the cost of subsequent comparison between
trends; ignoring which can lead to sub-optimal plans as we describe
shortly. We first introduce the second optimization for comparison.

Trendwise Comparison via Partitioning. The second optimiza-
tion is based on the observation that pairwise joins of multiple
smaller relations is much faster than the a single join between two
large relations. This is because the cost of join increases super-
linearly with the increase in the size of the trendsets. In addition to
improvement in complexity, trendwise joins are more amenable to
parallelization than a single join between two trendsets. Figure 5b
depicts the difference in latency for these two approaches as we
increase the number of trends from 10 to 10° (each of size 1000).
The black dotted line shows the partitioning overhead incurred
while creating partitions for each trend, showing that the overhead
is small (linear in n) compared to the gains due to trendwise join.
Moreover, this is much smaller than the overhead incurred when
partitioning is performed on the join output (o< n?) in the basic plan
(see step 3 in Section 4.1).

Figure 7 depicts the query plan after applying the above two
optimizations on the basic query plan. First,we merge multiple
group-by aggregates to share computations (using the approach
discussed below). Then, we partition the output of merged group-
by aggregates into smaller relations, one for each trend. This is
followed by joining and scoring between each pair of trends inde-
pendently and in parallel. Observe that the merging of group-by
aggregates results in multiple trends with overlapping (grouping,
measure) in the output relation. Hence, we apply the partitioning
in two phases. In the first phase, we partition it vertically, creating
one relation for each (grouping, measure). In the second phase, we
partition horizontally, creating one relation for each trend.

Joint Optimization of Merging and Partitioning. As depicted
in Figure 6b, the cost of partitioning increases with the increase in
the size of its input. The input size is proportional to the number
of unique group-by values, which increases with the increase in
the number of merging of group-by aggregates. Thus, when the
input becomes large, the cost of partitioning dominates the gains

3. Trend-wise UNION ALL
com parison o

e ——
L Grpeby jo'd)
Aggonim]

" Grp-bylc*d)
Aggon {m,]

“Grp-byle'd,)
Aggonim

Partition Partition

Partition
on ¢ on ¢

i onc
Horizontal Partition

Partition
Partitioning Vertical S ___onidm)
Partitioning / i : o
2. Partitioning
TrendSet into Group-bylcdd d} Group-by fcd d |

ded) ,
Trends T ieaine Aggregate on fm m m} Aggregate on {mm |
,;:;:ru,v:l:{ o {_________7‘_}
K
Figure 6: Optimized query plan generated after applying merging
and partitioning on basic query plan in Figure 7.

due to merging. It is therefore important to merge group-by aggre-
gates such that the overall cost of computing group-by aggregates,
partitioning and trendwise comparison together is minimal.

In order to find the optimal merging and partitioning, we follow a
greedy approach as outlined in Algorithm 1. Our key idea is to merge
at the granularity of sub-plans instead of the group-by aggregates.
We start with a set of sub-plans, one for each (grouping, measure)
as generated by the basic execution strategy discussed earlier and
merge two sub-plan at a time that lead to the maximum decrease
in cost.

Formally, if the two sub-plans operate over (d;, m;) and (dz, m2)
respectively, we merge them using the following steps (illustrated
in Figure 6):

(1) R1 « Group-by. 4, 4, ABEm,,
gates

(2) ¥ (di,mi): Ri < Tl(q, m,)(R1) // vertical partitioning

(3) V i: R;j « Partition R; ON ¢ // horizontal partitioning, one
partition for each value of ¢

(4 Vi, j: Ry jy « Group-by, ; Aggn, [Ri;] // aggregate again

[R] // merge group-by aggre-

my

(5) Vi’ j'. ki Ry jr. < Ryrjo ™g, Ry //partitition-wise join

©)Y i,k Rj’j’k — AggUDA‘F(Rifjrk) /{ compute scores
; . ,

(7)R" « Unil’gil::kAﬂ(Ri’fk)

We first merge group-by aggregates to share the computation,
followed by creating one partitions for each trend using both ver-
tical and horizontal partitioning. Then, we join pairs of trends
and compute the score as discussed in Section 4.1. For computing
the cost of the merged sub-plan, we use the optimizer cost model.
The cost is computed as a function of available database statistics
(e.g., histograms, distinct value estimates), which also captures the
effects of the physical design, e.g., indexes as well as degree of
parallelism (DOP). We merge two sub plans at a time until there is
no improvement in cost.

5 OPTIMIZING DIFF-BASED COMPARISON

While the approach discussed in the previous section works for any
arbitrary scorer (implemented as UDA), we note that for top-k com-
parative queries involving aggregated distance functions (defined
in Section 2.2) such as Euclidean distance, we can substantially
reduce the cost of comparison between pairs of trends. We first
outline the three properties of DIFF(.) function that we leverage for
optimizations.

1. Non-negativity: DIFF(my,mg, p) > 0

2. Monotonicity: DIFF(m;, my, p) varies monotonically with the
increase or decrease in |m; — ma|.

2425

Algorithm 1 Merge-Partition Algorithm

1: Let B be a basic sub-plan computed from @ as described in Section 4.1

2: while true do

3 C « OptimizerCost(B)

4 Let s; € S be a sub-plan in B consisting of a sequence of group-by
aggregate, join and partition operations over (d;, m;)

5: Let MP = Set of all sub-plans obtained by merging a pair of sub-plans
in S as described in Section 4.2

6: Let Bpevw be the sub-plan in MP with lowest cost (Cpeqy) after
merging two sub-plans s;, s;

7: if Cpew > C then

8: break;
9: end if

10: C — Chew
11: B «— Bhew
12: end while

13: Return B

3. Convexity: DIFF(m1, mz, p) are convex for all p.

5.1 Bound and Prune

We introduce a new physical operator that minimizes the num-
ber of trends that are compared using the following three steps
(illustrated in Figure 8). 1. We summarize each trend independently
using a set of three aggregates: SUM, MIN and MAX and a bitmap
corresponding to the grouping column. 2. Next, we intersect the
bitmaps between trends to compute the COUNT of matching tu-
ples between trends, which together with three aggregates help
compute the upper and lower bounds on the score between the two
trends. Given bounds on scores for each pair of trends, we find a
pruning threshold T on the lowest possible top k score, as the kth
largest lower bound score. Any pair with its upper bound score
smaller than T can thus be pruned. 3. Finally, we perform join only
between those trends that are not pruned.

[28, 30] [15, 19] [26, 29] [28, 30] /3) 26, 29]
N

Bitmap + Bitmap + Bitmap +

Summary Summary Summary

Aggregates Aggregates Aggregates

Figure 7: Illustrating pruning for DIFF-based comparisons

Computing Bounds. The simplest approach is to create a single
set of summary aggregates for each trend as depicted in Figure 8b.
The gray and yellow blocks depict the summary aggregates for
two trends respectively, consisting of COUNT (computed using
bitmaps), SUM, MIN, and MAX in order.

First, for deriving the lower bound, we prove the following useful
property based on the convexity property of DIFF functions (see [37]
for the proof).

Theorem 1. ¥V DIFF(m;, ma, p),
AVG (DIFF(mi, ma, p)) = DIFF(AVG (m1),AVG (m2), p)

This essentially allows us to apply DIFF on the average values
of each trend to get a sufficiently tight lower bounds on scores. For
example, in Figure 8b, we get a lower bound of 1700 for a score of
1717 for the two trends shown in Figure 8b.

For the upper bound, it is easy to see that the maximum value
of DIFF(mmy, my, 2) between any pairs of tuples inR and S is given
by: MAX ([MAX (mj) — MIN (mz)|, [MAX (mz) — MIN (my)]).
Given that DIFF(my, my, 2) is Non-negative and Monotonic, we can

(181814181816 141410 1412101313] 14] 14]

16, 229, 10, 18

[81291318][8 100,10, 14 |

Score = 1717

Bounds

= [1700, 6400] Bounds = [1702, 4624]

[26 [23]23[29[30 282425 27 24]24]20]21]25]20]22]

(a) Exact score on comparing two trends

16, 394, 20, 30

(b)

ing a single summary

[8211,23,30 |[8 183,20,27 |

Bounds on score us- (c) Bounds on score using

two-segment summaries

Figure 8: Using summaries to bound scores. ¥ = SUM OVER DIFF(2). Each value in (a) corresponds to a single tuple in a trend.

compute the upper bound on SUM by multiplying the the MAX
(DIFF(m1, my, 2)) by COUNT. For example, in Figure 8b, we get an
upper bound of 6400.

Multiple Piecewise Summaries. Given that the value of measure
can vary over a wide range in each trend, using a single summary ag-
gregate often does not result in tight upper bound. Thus, to tighten
the upper bound, we create multiple summary aggregates for each
trend, by logically dividing each trend into a sequence of | segments,
where segment i represents tuples from index: (i—1) X % +1toix %
where n is the number of tuples in the trend. Instead of creating a
single summary, we compute a set of same summary aggregates
over each segment, called segment aggregates. For example, Fig-
ure 8c depicts two segment aggregates for each trend, with each
segment representing a range of 8 tuples. The bounds between a
pair of matching segments is computed in the same way as we de-
scribed above for a single summary aggregates. Then, we sum over
the bounds across all pairs of matching segments to get the overall
bound (see [37] for formal description). To estimate the number
of summary aggregates for each trend, we use Sturges formula,
ie., (L1 +loga2(n)]) [36], which assumes the normal distribution
of measure values for each trend. Because of its low computation
overhead and effectiveness in capturing the distribution or trends of
values, Sturges formula is widely used in the statistical packages for
automatically segmenting or binning data points into fewer groups.
We empirically evaluate the effectiveness of Sturges formula in
Section 8.

5.2 Early Termination

When selecting top-k trends, we can further reduce the computation
by ordering the comparison of trends that are not pruned in the
previous step. To do so, we assign an utility to each of the trends
that tells how likely they are going to be in the top-k. For estimating
the utility of trends, we use the bounds computed using segment
aggregates. Specifically, for selecting top-k trends in descending
order of their scores, a trend with higher upper bound score has
a higher utility and for ascending order of scores, a trend with
the smallest lower bound has a higher utility. The processing of
higher utility trends leads to the faster improvement in the pruning
threshold, thereby minimizing wastage of tuple comparisons over
low utility trends.

Furthermore, the utility of a trend can vary after comparing a
few tuples in a candidate trend. Hence, instead of processing the
entire trend in one go, we process one segment of a trend at a time,
and then update the bounds to check (i) if the trend can be pruned,
or (ii) if there is another trend with better utility that we can switch
to. Incrementally comparing high utility trends leads to pruning of
many trends without processing all of their tuples.

5.3 Putting It All Together

We implemented a new physical operator, ®,, that takes as input
the trends, and replaces the join and ¥ in query plan discussed in
Section 4. It outputs a relation consisting of tuples that identify
the top-k pairs of trends along with their scores. The algorithm
used by the operator makes use of four data structures: (1) SegAgg :
An array where index i stores summary aggregates for segment i.
There is one SegAgg per trend. (2) TState : It consists of the current

2426

upper and lowers bounds on the score between two trends, as well
as the next segment within the trends to be compared next. There is
one TState for each pairs of trends, and is updated after comparing
each pairs of segment. (3) PQp: a max priority queue that keeps
track of the trend pairs with the highest upper bound. It is updated
after comparing each segment. (4) PQ s: a min priority queue that
keeps track of the trend pairs with the smallest lowest bound. It is
updated after comparing each segment.

Algorithm 2 Pruning Algorithm for DIFF-based Comparison

1: Compute SegAgg and bitmaps for each trend ¢;
2: for each pair of trends c;, ¢; do
3 Compute bounds on scores (Section 5.1)
4 Update PQs
5: end for
6: for each pair of trends (c;, cj) do
7 If ((c;, cj) upper bound < P Qg .Top()) Continue;
8 Initialize (c;, cj) TState and push to PQp
9: end for
while size of PQp > k do
(ci,cj) = PQp . Top()
Compare a segment of ¢; with that of ¢;
Update bounds and PQs
If ((c;, cj) upper bound < P Qg .Top()) Continue;
Push (c;, ¢j) to PQyp
end while
Return Top k trend pairs of trends and their scores from P Qp

10:
11:
12:
13:
14:
15:
16:
17:

Algorithm 2 depicts the pseudo-code for a single threaded im-
plementation. We first compute the segment aggregates for trends
(line 1). For each pair of trends, we compute the bounds on scores
as discussed in Section 5.1, and update PQ s to keep track of top k
lower bounds (lines 2—5). The upper bound for each pair of trend
is compared with PQ s.Top() to check if it can be pruned (line 7).
If not pruned, the TState is initialized and pushed to PQ (line 8).
Once the TState of all unpruned trends are pushed to PQp, we
fetch the pair of trends with the highest upper bound score ((line
11)), and following the process outlined in Section 5.2, compare a
pair of segments (line 12). After the comparison, we check if the
current pair of trends is pruned or if there is another pair of trends
with higher upper bound (line 14-15). This process is continued
until we are left with k pairs of trends . Finally, we output values
of k pairs of trends with highest scores (line 17).

Memory Overhead. Given a relation of n tuples consisting of
p trends, ®,, creates p x log(n/p) segment aggregates (assuming
tuples are uniformly distributed across trends), with each segment
aggregate consisting of fixed set of aggregates. In addition, the
operator maintains a TState consisting of bounds on scores between
each pair of trends as well as the priority queues to maintain top-k
pairs of trends. Thus, the overall space overhead is O(pxlog(n/p)+
Y.

6 ADDITIONAL ALGEBRAIC RULES

When CoMPARE occurs with other logical operators, we present
transformation rules (see Table 3) that reorder ® with other opera-
tors to generate more efficient plans.

R1. Pushing ® below join. Data warehouses often have a snowflake
or star schema, where the input to COMPARE may involve a PK-FK

Table 3: Algebraic equivalence rules for ®: COMPARE [P1 = o;|P2=a2][(M1, M2)] USING A OVER ¥

Rule | Equivalence rule Pre-condition

Rl | ®(Rxr S) = (®F(R)) w1 S

T:PKin S; T € {P1,P2, M1, M2} CR :®F: ® with PK columns replaced with FK columns

Rz | Y6a(2(R) = 2(Yga(R))

{P1,P2, M1, M2} C Gand A € {MAXMIN}

R3 oc(®(R)) = ®(oc(R)) C c {P1,P2}

R4 D, (D1(R)) = D1 (P2(R))) Dy : P, P, =0y : P, P,

join between fact and dimension tables. If one or more columns
in ® are the PK columns or have functional dependencies on the
PK columns in the dimension tables , ® can be pushed down below
the join on fact table by replacing the dimension tables columns
with the corresponding FK columns in the fact table (see Rule R in
Table 3.) For instance, consider example 1a in Section 2.1 that finds
a product with a similar average revenue over week trend to ‘Asia’.
Here, revenue column would typically be in a fact table along with
foreign key columns for region, product and year. In such cases, we
can push ® below the join by replacing dimension table columns
(e.g., product, week) values with corresponding PK column values.

R2. Pushing Group-by Aggregate (Y) below ® to remove du-
plicates. When an aggregate operation occurs above COMPARE, in
some cases we can push the aggregate operation below the Com-
PARE to reduce the size of each trend. In particular, consider an
aggregate operation Yg 4 with group by attributes G and aggregate
function A such that all columns used in ® are in G. Then, if all
aggregation functions in ® € {MAX, MIN}, we can push Y below @
as per the Rule R; in Table 3. Pushing aggregation operation below
® reduces the size of each trend by removing the duplicate values.

R3. Predicate pushdown. A filter operation (o) on partition col-
umn (e.g., product) can be pushed down below ®, to reduce the
number of partitions to be compared. While predicate pushdown
in a standard optimization, we notice that optimizers are unable to
apply such optimizations when the COMPARE are expressed via com-
plex combination of operations as described in Section 1. Adding
an explicit logical CoMPARE, with a predicate pushdown rule makes
it easier for the optimizer to apply this optimization.

R4. Commutativity. Finally, a single query can consist of a chain
of multiple COMPARE operations for performing comparison based
on different metrics (e.g., comparing products first on revenue, and
then on profit). When multiple ® operations on the same parti-
tioning attribute, we can swap the order such that more selective
COMPARE operation is executed first.

7 DISCUSSION

We discuss the generalizability and robustness of our proposed
optimizations as well as potential applications of COMPARE.

Generalizability of optimizations. The optimizations in Section
4 deal with replacing COMPARE to a sub-plan of physical operators
supported within database engines. These optimizations can be
incorporated in other database engines supporting cost-based opti-
mizations and transformation rules. We discuss additional transfor-
mation rules (see Table 3) in Section 6 that optimize sub-expressions
involving CoMPARE and other logical operators. Finally, we show
that DIFF-based comparisons can be further optimized by adding a
new physical optimizations that first computes the upper and lower
bounds on the scores of each trend, which can be used for pruning
partitions without performing costly join.

Robustness to physical design changes. A large part of Com-
PARE execution involves operators such as group-by, joins and parti-
tion (See Figure 6). Hence, the effect of physical design changes on
COMPARE is similar to their effect on these operators. For instance,
since column-stores tend to improve the performance of group-by
operations, they will likely improve the performance of COMPARE.
Similarly, if indexes are ordered on the columns used in constraints

2427

or grouping, they can be leveraged to speed up the aggregation
and join. Finally, if there is a materialized view for a part of the
COMPARE expression, modern day optimizers can match and replace
the part of the sub-plan with a scan over the materialized view.

Applications of CoMPARE. COMPARE can be used by data ana-
lysts as well as applications to issue comparative queries over large
datasets stored in relational databases. It has two advantages over
regular SQL and middleware approaches (e.g., Zenvisage, Seedb).
First, it allows succinct specification of comparative queries which
can be invoked from data analytic tools supporting SQL clients.
Second, it helps avoid data movement and serialization and dese-
rialization overheads, and is thus more efficient and scalable. We
classify the applications into two categories:

BI Tools. BI applications such as Tableau and Power BI do not
provide an easier mechanism for analysts to compare visualizations.
However, for supporting complex analytics involving multiple joins
and sub-queries, these tools support SQL querying interfaces. For
comparative queries, users currently have to either write complex
SQL queries as discussed in Introduction, or generate all possible
visualizations and compare them manually. With COMPARE, users
can now succinctly express such queries (as illustrated in Section
3) for in-database comparison.

Notebooks and Visual Analytic Tools. For large datasets stored in
relational databases, it is inefficient to pull the data into notebook
and use dataframe APIs for processing. Hence, analysts often use
a SQL interface to access and manipulate data within databases.
While one can also expose Python APIs for comparative queries
and automatically translate them to SQL, such features are limited
to the users of the Python library. SQL extensions, on the other
hand, can be invoked from multiple applications and languages
that support SQL clients. Similarly, there are visual analytic tools
such as as Zenvisage and Seedb that perform comparison between
subsets of data in a middleware. With COMPARE, such tools can
scale to large datasets and decrease the latency of queries as we
show in Section 8. Furthermore, in the same query, one can use
CoMPARE along with other relational operators such as join and
group-by that are frequently used in data analytics (see Section
3.2).

8 PERFORMANCE EVALUATION

Using our prototype implementation on SQL SERVER (referred as
CoMPARE below), we evaluate the improvement in latency with
respect to current execution strategy in SQL SERVER as described in
Section 4.1. We also consider two alternative strategies as baselines:
(b) MIDDLEWARE: Issuing select-aggregate queries to retrieve the
data from SQL SERVER over a network (average speed of 10 MB/s)
and performing comparison and filtering in a C# implementation;
this approach mimics the data retrieval approach followed by vi-
sualization tools such as Zenvisage [38] while also incorporating
trendwise comparison and segment-aggregates based pruning opti-
mizations (discussed in Section 5), and (c) an UDF implementation
that executes within SQL SERVER. It takes as input the UNION of
all group-by aggregates (computed via GROUPING SETs clause)
and incorporates trendwise comparison and segment-aggregates
based pruning optimizations.

Datasets and Queries. We use two datasets: Flight [1] and TPC-
DS with a scale factor of 100 [27](summarized in Table 5). We use

Table 4: Queries over Flight and TPC-DS datasets
ight

ID | Type Fligh TPC-DS
trendset 1 trendset 2 trendset 1 trendset 2
constraint, # (prouping measure), # | # constraint, # (grouping.measure), # | # constraint, # (grouping,measure), # | # constraint, # (groupingmeasure), # | #
trends trends trends trends
Q1 | One to many | airport=SEFQ, 1 | (Days, ArrDelays), 1 1 all airports, 384 | (Days, ArrDelays) 384 webpage = 13 1 | (Ltems, NetProfits), 1 1 all webpages; | 1 2040
with fixed at- 2040
tributes
©Z | Many to many | all airports, 384 | (Days, ArrDelays), 1 384 all airports, 384 | (Days, ArrDelays) 384 all webpages; | (Items, NetProhits), 1 2040 | all webpages; | (ltems NetProfits), 1 2040
with fixed at- 2040 2040
tributes
Q3 | One to one | airport=SFO.1 | (Days, ArrDelays), | 10 airport = SFO', | (Days, AmDelays), | 10 webpage = 131 | (Items, NetProfits), | 5 webpage = 11 | (ltems, NetProfits), | 5
with varying (Days DepDelays), 1 (Days, DepDelays)), (Days, NetProfits), (Days, NetProfits),
attributes (Weeks, ArrDelays), ..., (Weeks, ArrDelays), ..., (Days, Quantity)5 (Days, Quantity)5
(Weeks, WeatherDe- (Weeks, DepDelays); 10
lays.); 10
Q4 | Many to many | all airports, 384 | (Days, ArrDelays), | 3840 | all airports (Days, AnDelays), | 3840 | all webpages; | (tems, NetProfits), | 10200 | all webpages; | (Items, NetProfits), | 10200
with varying at- (Days, DepDelays), (Days, DepDelays), 2040 (Days, NetProfits), 2040 (Days, NetProfits), ...
tribues (Weeks, ArrDelays), ..., (Weeks, ArrDelays), .., (Days, Quantity) 5 (Days, Quantity)5
(Weeks, WeatherDe- (Weeks, WeatherDe-
lays.); 10 lays,); 10
B Merging Aggregates S50 Segment Aggregates
—_ F772 Trend-wise Processing [T EarlyTermination
3 [0 Middleware [EZZ UDF [SX] COMPARE §70
-": 60 75 =60
g @ 2 £30 5
g 20f [H:I 2 ﬁj g 30 N 7
5 of =g [20l o 7
2o H‘[- 510 73 .
g: =40 =751l E a1 Q2 Q3
E Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
Flight
a) Flight b) TPC-DS

(a) Comparison with Baselines

(b) Ablative analysis quantifying the impact of
each optimization. Each optimization is succes-
sively turned on from left to right.

Figure 9: Improvement in end-to-end latency w.r.t. unmodified SQL SERVER

websales table in TPC-DS which has PK-FK joins with tables web-
pages and warehouses. As depicted in Table 4, we issue four types
of comparative queries (with characteristics similar to examples
discussed in Section 2.1), with the default number of output pair of
trends set to 5. All measure attributes are aggregated using AVG(.)
and we use SUM() OVER DIFF(2) as scorer.

Table 5: Datasets

Dataset | Disk Size | Buffer Size | Number of rows
Flight 3GB 11GB 74M
TPC-DS 20GB 24 GB 720M

Setup. All experiments were conducted on a 64-bit Windows 2012
Server with 2.6GHz Intel Xeon E3-1240 10-core, 20 logical proces-
sors and 192GB of 2597 MHz DDR3 main memory. Unless specified,
we use the default settings for the degree of parallelism (DOP) and
buffer memory, where the SQL SERVER tries to utilize the maximum
possible resources available in the system. We report the results
of warm runs by loading the tables referenced in the query into
memory.

8.1 End-to-End Latency

Figure 9a depicts the end-to-end improvement in latency of Com-
PARE, MIDDLEWARE, and UDF with respect to the unmodified SQL
SERVER runtimes. We see that CoMPARE provides a substantial im-
provement with respect to all approaches, with improvement being
proportional number and size of trends.

For Q1 that involves one to many comparisons over a fixed at-
tribute combination, we see a speed-up of about 26% on Flight and
about 36% on the TPC-DS. The improvement increases substantially
as we increase the complexity of the query; for example we see
upto 4x improvement in latency for Q2 and Q4 which involve a
large number of trend comparisons. For MIDDLEWARE, the main
bottleneck is the data transfer and deserialization overhead, which
takes up to 70% of the overall execution time. While UDF also
incurs an overhead in invocation and reading the input from down-
stream aggregate operators, a large part of its time (> 90%) is spent
on processing, indicating that inline execution of CoMPARE via

partitioning and join operators is much faster. In summary, we
find that CoMPARE gives the best of both worlds: requires minimal
data transfer and deserialization overhead, and runs much faster by
efficiently comparing tuples within databases.

Ablative Analysis. Next, we conducted an ablative analysis to
evaluate the effectiveness of each of the optimizations described
in Section 4 and Section 5. Figure 9b depicts the impact of each
optimization as we add them successively from left to right. Each
level of CoMPARE optimization provides a substantial speed-up
in latency compared to basic execution strategy. For Q3 and Q4,
sharing aggregates improves the runtime by about 30% (note that
there are no sharing opportunities for Q1 and Q2). The trend-wise
processing further improves the processing by 25% on average—
more the number of trend comparisons, the higher the improvement.
Note that both sharing aggregates and trend-wise processing do
not depend on the properties of scorer and hence can be applied
on arbitrary scorer. The next two optimizations based on segment-
aggregates and early termination, although only applicable for
DIFF-based comparison, result in the massive improvement ranging
between 20-25% by pruning trends early that are guaranteed to be
not in top-k.

8.2 Sensitivity to Data Characteristics

We now evaluate the impact of dataset characteristics on the per-
formance of CoMPARE. For these experiments, we use the flight
dataset (consisting of real-world trends/distributions) and scale its
size as described below.

Impact of number of trends. To evaluate this, we scale the num-
ber of trends for query Q2 between 10 and 10* by randomly remov-
ing or replicating the trends corresponding to original 384 airports.
While replicating, we update the original value m, of each measure
column m by a new value m, where m, = m, * stdev(m). This en-
sures that the replicated trends are not duplicates but still represent
the original distribution. We find that the increase in the number of
trends leads to the increase in latency for all approaches; however
the increase is much higher for UDF and MIDDLEWARE due to data
movement and deserialization overhead. ComMPARE is further able

2428

+— Middleware UDF #— COMPARE

+— Middleware UDF = COMPARE . ~—* Middleware UDF —=— COMPARE -
£ £ R T—
z S = g0 " " £ 50—]
< c — bt —_— .
g E 60 2 £ 0 " -
oy S g40f - ey g
3 i > " - &= 5 -50 .
S 220 e - . Sy
o a Qlie" £ T z] 3 5
E 0 1?10 i £'q =0 20 =0 a1 50 - o A Ay W

Number of Trends

Number of Trends

Number of (Grouping, Measure)

(a) Varying number of trends with (b) Varying number of (grouping,(c) Increasing number of trends

fixed (grouping, measure) measure)

with proportional decrease in trend
size over a fixed data of size 10°

Figure 10: Impact on latency on varying the number and size of trends on the flight dataset.

to reduce comparisons due to early pruning of partitions using
segment-aggregates.

Impact of number of (grouping, measure). In this case, we
scale the number of (grouping, measure) for query Q3 between 1
and 50 by randomly removing or replicating the columns for each
trend while updating the values of replicated measure column as
described above. All approaches incur increase in latency; however,
the increase in latency is much higher for SQL SERVER compared to
CoMPARE, MIDDLEWARE and UDF due to higher sharing of aggregate
computations.

Varying number and size of trends while keeping the overall
data size fixed. Using a similar process as described above, we
scale the number of trends between 10 and 10° while proportionally
decreasing the size of each trend such that the size of the dataset is
fixed to 10°. Here, we see an interesting observation. The latency
of SQL SErRVER decreases as we increase the number of trends and
reduce their size. This is because with the decrease in the size of
trends, the number of tuple comparison decreases. As a result of
this, the improvement in latency w.r.t SQL SERVER decreases for all
of ComPARE, MIDDLEWARE, and UDF. However, for COMPARE, the
latency initially decreases as sorting and comparison can done faster
in parallel as the number of partitions increase. As the number of
partitions become too large, the improvement due to parallelism
decreases.

8.3 Impact of number of Segment Aggregates

Recall from Section 5.1 that we use the Sturges formula [36], i.e.,
(L1 +loga(n)]) (where n is the estimated size of trend) to estimate
the number of segment-aggregates. To measure the efficacy of this
formula, we measure the changes in latency as we increase the
number of segment-aggregates for Q2 (Figure 11a) and Q4 (Fig-
ure 11b). With the increase in number of segments, the overall
latency decreased initially. However, as the number of segments is
increased beyond a certain number, the latency starts increasing.
This is because of the increase in the number of segment-aggregates
comparisons without further pruning. The dotted line shows the
results for the number of segments (i.e., (|1 +/ogz(n)]) that is au-
tomatically selected by Comparg, showing that the latency for
selected segments is close to minimal possible latency.

Next, we measure the impact of number of tuples processed per
update for early termination (Section 5.2). Figure 12 depicts the
impact of overall latency for Q2 and Q4 as we vary the number
of tuples processed for a given trend for updating the upper and
lower bounds. The dotted black line depicts the performance for
the number of tuples that ComPARE automatically decides, ie.,
(m) (i.e., estimated size of a segment). We see that the

latency is very high when we only consider a few tuples (< 10)
at time. This is because of cache misses and many updates to
the priority queues for reprocessing the same set of partitions
repeatedly. On the other hand, processing too many tuples leads to

-~ COMPARE —— COMPARE

g - g
240 LTy 4 E100 !
@ ’
£ 30 ” * g s H
220 * I g 50 1
g10{] g 25 ke
2 gl 1 & gla—* 1 —*
E “10° 16° 107 E T10° 19! 167
Number of Segments Number of Segments
(@) Q2 (b) Q4

Figure 11: Varying number of segment-aggregates

—d— COMPARE —#— COMPARE

AT ey
b 1
50 H
¥

T
,:* 1 Tw
*

Improvement (%)

ol
I 19T I 10

mprovement (%)

p—
E10° 107 10 107
Number of Tuples Compared Per Update ;o of Tuples Compared Per Update
a b
(@) Q2 (b) Qs
Figure 12: Varying number of tuples compared per update
during early termination

extra processing, even for low utility partitions that can be pruned
earlier. As depicted by the dotted line, the number chosen by
CoMPARE, although not perfect, is close to the optimal performance
that we can get by processing few tuples at a time.

8.4 Impact of Transformation Rules

Figure 13 depicts the performance results on pushing ® below PK-FK
joins (») and pushing Aggregate (Y) below ®. We omit the results
on other logical optimizations such as predicate pushdown and
reordering of multiple @ operations as the gains in these cases are
always proportional to the selectivity of predicates and ¢ operation

pushed down.

Pushing ® below 4. We consider Q3 and Q4 over websales table
of TPC-DS dataset which has PK-FK joins with two other tables.
We observe that by pushing ® below join leads to the improvement
in the runtime of both queries due to reduction in amount of time
taken by join. For Q3, ® reduces of size of websales to %th of the
original size, which improves the overall latency by about 18%. On
the other hand, the selectivity of ® for Q4 is more (ﬁth of the
original size), which leads to a relatively higher improvement of
about (32%) in latency. Thus, the amount of gain increases with the
increase in the selectivity of @.

Pushing Y (aggregation) below ®. In order to evaluate this, we
use MAX as aggregation function for measure and scorer in Q1
and Q2 over the Flight dataset. We added a simple aggregation
operation I 4 on top of @, setting G = {Days, ArrDelays} and A
= COUNT (*). While Y needs to process more tuples compared to
when it is above @, the pushdown helps improve the overall latency
by reducing duplicate values of G, which minimize the number of
all pair comparisons for ® above. In particular, we observe that
pushing T down reduces the input to @ by about 24% leading to an
improvement of of about 14% for Q1 and 19% for Q2.

2429

- IS COMPARE — =9 COMPARE
= £

<60 = a0

Em E

£ En|
e "l §
g a3 Ga 3 a1 7]
= Query = Query

(a) Join pushdown (b) Aggregate pushdown

Figure 13: Pushdown logical optimizations

[HER Without Indexes 227 With Indexes

cococooo

B i A i
Q1 Q2 Q3 Q4

Flight

Improvement (%)
ERNWEU G~

Figure 14: Impact of adding non-clustered indexes on referenced
columns and removing other columns

g Je—- COMPARE —_ COMPARE

:su 3540

S oo 21T 30

E.ol% — | 28

G 40 i’k*,.*—"’* 5520

> =10 Q
2 =g o 1§ N g Q
E‘ a 10 20 30 40 50 11} S 01 02 03 Q4
= Degree of Parallelism Query

(a) Varying DOP (b) Memory consumption

Figure 15: Impact of Parallelism and Memory Overhead

8.5 Impact of Indexes

To evaluate the changes in physical design on COMPARE, we made
the following changes on Flight data set. We removed all columns
from the tables that are not part of queries, and created non-clustered
indexes on the queried columns. Adding indexes results between
20% to 38% improvement in overall runtime across queries; the ma-
jor changes in physical plan include the use of index scan and the
replacement of hash join with merge join. As depicted in Figure 14,
due to overall decrease in runtime, the performance improvement
for CoMPARE when indexes are used is less than when indexes are
not used. However, compared to regular SQL, COMPARE is still
between 2-3x faster. This is primarily because of the reduction in
CPU time due to sharing of aggregates, trend-wise processing and
pruning of trend comparisons.

8.6 Parallelism and Memory Overhead

Figure 15a shows the improvement in latency of COMPARE w.r.t.
SQL SERVER on (Q; as we vary the Degree of Parallelism (DOP)
from 1 to 64. Both SQL SErVER and CoMPARE benefit significantly
from increasing DOP up to a point, after which they experience di-
minishing returns. For any given DOP, COMPARE is usually faster
(between 2x to 3x) similar to what we see in previous experiments.

Figure 15b shows the additional overhead in committed memory
usage of COMPARE w.r.t. to SQL SERVER for each of the queries.
Although CompPARE uses additional data-structures for maintaining
segment-aggregates, and bounds in the priority queue, the over-
head is minimal (< 13%) compared to the memory already used
by the system for sorting and maintaining aggregates which are
common to all approaches. Moreover, the execution engine reuses
the memory already committed by the downstream operators in the
plan, instead of allocating new memory. Thus, the total memory
used during query processing is bounded by the maximum memory
used by any operator in the plan.

2430

9 RELATED WORK

Visual Analytics. Our work has been motivated by recent visual
analytic tools [17, 26, 38, 39, 42, 45] where comparing subsets or
groups of tuples using a deviation-based measures (e.g., Lp norms)
is the common theme. As discussed in Section 1, these tools either
retrieve the data into a middleware or issue complex SQL queries
for comparison, both approaches do not scale to large datasets. As
a result, recent work [18, 41, 46] have called for supporting new
abstractions and query optimization techniques for addressing the
impedance mismatch between relational databases and analytic
tasks—our work is a concrete step in this direction.

OLAP. Damianos et al. have proposed grouping variables and MD-
Join [12, 13] for succinctly expressing complex aggregate queries
such as finding products with sales above average sales. Similarly,
CUBE [20], GROUPING SETs [47], Semantic Group By [40] allow
flexible specification and optimization of group by queries. In our
work, we extend these work to make it easier to jointly specify and
optimize both grouping and comparison between groups of tuples.
Sarawagi et al. have proposed techniques for interactive browsing
of interesting cells in data cube [33, 35]. In contrast, we provide
extensions to query optimization and execution layers of relational
databases to support comparative queries like other SQL queries.
There have been database extensions [5, 21, 22, 28, 32] that support
association and frequent pattern mining; our focus in this work is
on aggregate distance measures such as L, norms

Similarity Join. Prior work on similarity join use set similarity
functions such as edit distance, Jaccard similarity, cosine similar-
ity or their variants to join two relations [8, 10, 14, 19, 31, 34].
While these work are based on measuring set overlap or edit distance
between strings, COMPARE optimizes aggregate distance functions
between groups of tuples such as Euclidean distance, requiring fun-
damentally different execution techniques.

Spatial Databases. Spatial databases such as PostGIS [48] support
similarity search queries (e.g., [29]); however the physical design
in these systems is typically optimized to store all information (e.g.,
sales) for each entity (e.g., product) together, along with spatial
indexes to speed up the search. In contrast, our work is meant
for supporting ad hoc similarity search queries over traditional
databases, which are typically used as back-end for BI tools such
as Power BI and Tableau.

10 CONCLUSION

In this work, we introduce CoMPARE, a complex operator that con-
cisely captures comparison between groups of tuples using ag-
gregated distance measures. We introduce physical optimizations
within the execution engine and extend the query optimizer with
new algebraic rules that improve the performance by significantly
reducing the number of subset comparisons and intermediate data
size. Together, these logical and physical optimizations help address
the impedance mismatch problem between data exploration sys-
tems and relational databases for supporting comparative queries.
There are several avenues for future work such as supporting prim-
itives for easily expressing comparison metrics such as Jaccard
similarity, cosine similarity, as well as using sampling-based tech-
niques to tighten the bounds on scores for further reducing the
number of comparisons.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers, Arnd Christian
Koénig, Wentao Wu, and Bailu Ding for their valuable feedback.

REFERENCES

[12]
[13]

[14

[15]

[16]

[17]

[18]

[19]

[20

[21]

[22

[23]

[24]

Airline dataset (http://stat-computing.org/dataexpo/2009/the-data.html). [Online;
accessed 30-Oct-2015].

Powerbi (https://powerbi.microsoft.com/en-us/). [Online; accessed 3-June-2019].
Powerbi (https://www.tableau.com/products/new-features/explain-data). [On-
line; accessed 3-June-2020].

Tableau public (www.tableaupublic.com/). [Online; accessed 11-Nov-2019].

F. Abuzaid, P. Kraft, S. Suri, E. Gan, E. Xu, A. Shenoy, A. Ananthanarayan, J. Sheu,
E. Meijer, X. Wu, et al. Diff: a relational interface for large-scale data explanation.
Proceedings of the VLDB Endowment, 12(4):419-432, 2018.

S. Agarwal, R. Agrawal, P. M. Deshpande, A. Gupta, J. F. Naughton, R. Ramakr-
ishnan, and S. Sarawagi. On the computation of multidimensional aggregates. In
VLDB, volume 96, pages 506521, 1996.

R. Agrawal, C. Faloutsos, and A. Swami. Efficient similarity search in sequence
databases. In International conference on foundations of data organization and
algorithms, pages 69-84. Springer, 1993.

A. Arasu, V. Ganti, and R. Kaushik. Efficient exact set-similarity joins. In
Proceedings of the 32nd international conference on Very large data bases, pages
918-929. VLDB Endowment, 2006.

C. Bohm and F. Krebs. The k-nearest neighbour join: Turbo charging the kdd
process. Knowledge and Information Systems, 6(6):728-749, 2004.

C.Bohm and H.-P. Kriegel. A cost model and index architecture for the similarity
join. In Proceedings 17th International Conference on Data Engineering, pages
411-420. IEEE, 2001.

P. Buono, A. Aris, C. Plaisant, A. Khella, and B. Shneiderman. Interactive pattern
search in time series. In Visualization and Data Analysis 2005, volume 5669, pages
175-187. International Society for Optics and Photonics, 2005.

D. Chatziantoniou. Using grouping variables to express complex decision support
queries. Data & Knowledge Engineering, 61(1):114-136, 2007.

D. Chatziantoniou and K. A. Ross. Querying multiple features of groups in
relational databases. In VLDB, volume 96, pages 295-306, 1996.

S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive operator for similarity joins
in data cleaning. In 22nd International Conference on Data Engineering (ICDE’06),
pages 5-5. IEEE, 2006.

Z. Chen and V. Narasayya. Efficient computation of multiple group by queries.
In Proceedings of the 2005 ACM SIGMOD international conference on Management
of data, pages 263-274, 2005.

C. Cunningham, C. A. Galindo-Legaria, and G. Graefe. Pivot and unpivot: Op-
timization and execution strategies in an rdbms. In Proceedings of the Thirtieth
international conference on Very large data bases-Volume 30, pages 998-1009. VLDB
Endowment, 2004.

R. Ding, S. Han, Y. Xu, H. Zhang, and D. Zhang. Quickinsights: Quick and
automatic discovery of insights from multi-dimensional data. In Proceedings of
the 2019 International Conference on Management of Data, pages 317-332. ACM,
2019.

J. V. D’silva, F. De Moor, and B. Kemme. Aida: abstraction for advanced in-
database analytics. Proceedings of the VLDB Endowment, 11(11):1400-1413, 2018.
L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan, D. Sri-
vastava, et al. Approximate string joins in a database (almost) for free. In VLDB,
volume 1, pages 491-500, 2001.

J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pel-
low, and H. Pirahesh. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-totals. Data mining and knowledge discovery, 1(1):29-
53, 1997.

J. Han et al. Dmgql: A data mining query language for relational databases. In
Proc. 1996 SiGMOD, volume 96, pages 27-34, 1996.

T. Imielinski and A. Virmani. Msql: A query language for database mining. Data
Mining and Knowledge Discovery, 3(4):373-408, 1999.

T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al. Jupyter notebooks-a publishing
format for reproducible computational workflows. In ELPUB, pages 87-90, 2016.
D. J.-L. Lee, J. Lee, T. Siddiqui, J. Kim, K. Karahalios, and A. Parameswaran.
Accelerating scientific data exploration via visual query systems. arXiv preprint
arXiv:1710.00763, 2017.

2431

[25]

[26]

[27]

[28

[29]

[46]

[47]

[48

R. A. K-l Lin and H. S. S. K. Shim. Fast similarity search in the presence of
noise, scaling, and translation in time-series databases. In Proceeding of the 21th
International Conference on Very Large Data Bases, pages 490-501. Citeseer, 1995.
S. Macke, Y. Zhang, S. Huang, and A. Parameswaran. Adaptive sampling for
rapidly matching histograms. Proceedings of the VLDB Endowment, 11(10):1262—
1275, 2018.

R. O. Nambiar and M. Poess. The making of tpc-ds. In Proceedings of the 32nd inter-
national conference on Very large data bases, pages 1049-1058. VLDB Endowment,
2006.

A. Netz et al. Integrating data mining with sql databases: Ole db for data mining.
In ICDE’01, pages 379-387. IEEE, 2001.

D. Papadias, Y. Tao, K. Mouratidis, and C. K. Hui. Aggregate nearest neighbor
queries in spatial databases. ACM Transactions on Database Systems (TODS),
30(2):529-576, 2005.

D. Rafiei and A. Mendelzon. Similarity-based queries for time series data. In
Proceedings of the 1997 ACM SIGMOD international conference on Management of
data, pages 13-25, 1997.

K. Ramasamy, J. M. Patel, J. F. Naughton, and R. Kaushik. Set containment joins:

The good, the bad and the ugly. In VLDB, pages 351-362, 2000.
S. G. Rao, A. Badia, and D. Van Gucht. Providing better support for a class of

decision support queries. In ACM SIGMOD Record, volume 25, pages 217-227.
ACM, 1996.

S. Sarawagi. Explaining differences in multidimensional aggregates. In VLDB,
volume 99, pages 7-10, 1999.

S. Sarawagi and A. Kirpal. Efficient set joins on similarity predicates. In Proceed-
ings of the 2004 ACM SIGMOD international conference on Management of data,
pages 743-754. ACM, 2004.

S. Sarawagi and G. Sathe. i3: intelligent, interactive investigation of olap data
cubes. ACM SIGMOD Record, 29(2):589, 2000.

D. W. Scott. Sturges’ rule. Wiley Interdisciplinary Reviews: Computational Statistics,
1(3):303-306, 2009

T. Siddiqui, S. Chaudhuri, and V. Narasayya.
https://bit.ly/3i5XNCD.

T. Siddiqui, A. Kim, J. Lee, K. Karahalios, and A. Parameswaran. Effortless data
exploration with zenvisage: an expressive and interactive visual analytics system.
Proceedings of the VLDB Endowment, 10(4):457-468, 2016.

T. Siddiqui, P. Luh, Z. Wang, K. Karahalios, and A. Parameswaran. Shapesearch:
flexible pattern-based querying of trend line visualizations. Proceedings of the
VLDB Endowment, 11(12), 2018.

M. Tang, R. Y. Tahboub, W. G. Aref, M.]. Atallah, Q. M. Malluhi, M. Ouzzani, and
Y. N. Silva. Similarity group-by operators for multi-dimensional relational data.
IEEE Transactions on Knowledge and Data Engineering, 28(2):510-523, 2015.

N. Tang, E. Wu, and G. Li. Towards democratizing relational data visualization.
In Proceedings of the 2019 International Conference on Management of Data, pages
2025-2030. ACM, 2019.

M. Vartak et al. Seedb: Efficient data-driven visualization recommendations to
support visual analytics. VLDB, 8(13), Sept. 2015.

M. Vartak, S. Huang, T. Siddiqui, S. Madden, and A. Parameswaran. Towards
visualization recommendation systems. ACM SIGMOD Record, 45(4):34-39, 2017.
M. Wattenberg. Sketching a graph to query a time-series database. In CHI "01
Extended Abstracts on Human Factors in Computing Systems, CHI EA ’01, pages
381-382, New York, NY, USA, 2001. ACM.

K. Wongsuphasawat, Z. Qu, D. Moritz, R. Chang, F. Ouk, A. Anand, J. Mackinlay,
B. Howe, and J. Heer. Voyager 2: Augmenting visual analysis with partial view
specifications. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems, pages 2648-2659. ACM, 2017.

E. Wu, L. Battle, and S. R. Madden. The case for data visualization management
systems: vision paper. Proceedings of the VLDB Endowment, 7(10):903-906, 2014.
M. Zaharioudakis, R. Cochrane, G. Lapis, H. Pirahesh, and M. Urata. Answering
complex sql queries using automatic summary tables. In Proceedings of the 2000
ACM SIGMOD international conference on Management of data, pages 105-116,
2000.

L. Zhang and J. Yi. Management methods of spatial data based on postgis. In 2010
Second Pacific-Asia Conference on Circuits, Communications and System, volume 1,
pages 410-413. IEEE, 2010.

Compare technical report.

