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ABSTRACT
Cloud analytical databases employ a disaggregated storage model,
where the elastic compute layer accesses data persisted on remote
cloud storage in block-oriented columnar formats. Given the high
latency and low bandwidth to remote storage and the limited size of
fast local storage, caching data at the compute node is important and
has resulted in a renewed interest in caching for analytics. Today,
each DBMS builds its own caching solution, usually based on file-
or block-level LRU. In this paper, we advocate a new architecture of
a smart cache storage system called Crystal, that is co-located with
compute. Crystal’s clients are DBMS-specific “data sources” with
push-down predicates. Similar in spirit to a DBMS, Crystal incorpo-
rates query processing and optimization components focusing on
efficient caching and serving of single-table hyper-rectangles called
regions. Results show that Crystal, with a small DBMS-specific
data source connector, can significantly improve query latencies on
unmodified Spark and Greenplum while also saving on bandwidth
from remote storage.
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1 INTRODUCTION
We are witnessing a paradigm shift of analytical database systems
to the cloud, driven by its flexibility and pay-as-you-go capabilities.
Such databases employ a tiered or disaggregated storage model,
where the elastic compute tier accesses data persisted on inde-
pendently scalable remote cloud storage, such as Amazon S3 [3]
and Azure Blobs [36]. Today, nearly all big data systems includ-
ing Apache Spark, Greenplum, Apache Hive, and Apache Presto
support querying cloud storage directly. Cloud vendors also offer
cloud services such as AWS Athena, Azure Synapse, and Google
BigQuery to meet this increasingly growing demand.

Given the relatively high latency and low bandwidth to remote
storage, caching data at the compute node has become important. As
a result, we are witnessing a renewed spike in caching technology
for analytics, where the hot data is kept at the compute layer in
fast local storage (e.g., SSD) of limited size. Examples include the
Alluxio [1] analytics accelerator, the Databricks Delta Cache [9, 15],
and the Snowflake cache layer [13].
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1.1 Challenges
These caching solutions usually operate as a black-box at the file or
block level for simplicity, employing standard cache replacement
policies such as LRU to manage the cache. In spite of their sim-
plicity, these solutions have not solved several architectural and
performance challenges for cloud databases:

• Every DBMS today implements its own caching layer tailored to
its specific requirements, resulting in a lot of work duplication
across systems, reinventing choices such as what to cache, where
to cache, when to cache, and how to cache.

• Databases increasingly support analytics over raw data formats
such as CSV and JSON, and row-oriented binary formats such as
Apache Avro [6] – all very popular in the data lake [16]. Com-
pared to binary columnar formats such as Apache Parquet [7],
data processing on these formats is slower and results in in-
creased costs, even when data has been cached at compute nodes.
At the same time, it is expensive (and often less desirable to users)
to convert all data into a binary columnar format on storage, par-
ticularly because only a small and changing fraction of data is
actively used and accessed by queries.

• Cache utilization (i.e., value per cached byte) is low in existing
solutions, as even one needed record or value in a page makes it
necessary to retrieve and cache the entire page, wasting valuable
space in the cache. This is true even for optimized columnar for-
mats, which often build per-block zone maps [21, 40, 48] (min and
max value per column in a block) to avoid accessing irrelevant
blocks. While zone maps are cheap to maintain and potentially
useful, their effectiveness at block skipping is limited by the fact
that even one interesting record in a block makes it necessary to
retrieve it from storage and scan for completeness.

• Recently, cloud storage systems are offering predicate push-down
as a native capability, for example, AWS S3 Select [4] and Azure
Query Acceleration [35]. Push-down allows us to send predicates
to remote storage and avoid retrieving all blocks, but exacerbates
the problem of how to leverage it for effective local caching.

1.2 Opportunities
In an effort to alleviate some of these challenges, several design
trends are now becoming commonplace. Database systems such as
Spark are adopting the model of a plug-in “data source” that serves
as an input adapter to support data in different formats. These data
sources allow the push-down of table-level predicates to the data
source. While push-down was developed with the intention of data
pruning at the source, we find that it opens up a new opportunity
to leverage semantics and cache data in more efficient ways.

Moreover, there is rapid convergence in the open-source com-
munity on Apache Parquet as a columnar data format, along with
highly efficient techniques to apply predicates on them using LLVM
with Apache Arrow [5, 8]. This opens up the possibility of system
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Figure 1: Crystal in big data ecosystem.
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Figure 2: Crystal components.

designs that perform a limited form of data processing and trans-
formation outside the core DBMS easily and without sacrificing
performance. Further, because most DBMSs support Parquet, it
gives us an opportunity to cache data in a DBMS-agnostic way.

1.3 Introducing Crystal
We propose a new “smart” storage middleware called Crystal, that is
decoupled from the database and sits between the DB and raw stor-
age. Crystal may be viewed as a mini-DBMS, or cache management
system (CMS), for storage. It runs as two sub-components:
• The Crystal CMS runs on the compute node, accessible to local
“clients” and able to interact with remote storage.

• Crystal’s clients, called connectors, are DB-specific adapters that
themselves implement the data source API with push-down pred-
icates, similar to today’s CSV and Parquet data sources.
Crystal manages fast local storage (SSD) as a cache and talks

to remote storage to retrieve data as needed. Unlike traditional
file caches, it determines which regions (parts of each table) to
transform and cache locally in columnar form. Data may be cached
in more than one region if necessary. Crystal receives “queries”
from clients, as requests with push-down predicates. It responds
with local (in cache) or remote (on storage) paths for files that cover
the request. The connectors pass data to the unmodified DBMS for
post-processing as usual. Benefits of this architecture include:
• It can be shared across multiple unmodified databases, requiring

only a lightweight DBMS-specific client connector component.
• It can download and transform data into automatically chosen

semantic regions in the cache, in a DBMS-agnostic columnar
format, reusing new tools such as Parquet and Arrow to do so.

• It can independently optimize what data to transform, filter, and
cache locally, allowing multiple views of the same data, and
efficiently match and serve clients at query time.
These architectural benefits come with technical challenges (Sec-

tion 2 provides a system overview) that we address in this paper:
• (Sections 2 & 3) Defining an API and protocol to communicate re-

gion requests and data between Crystal and its connector clients.
• (Section 3) Efficiently downloading and transforming data to

regions in the local cache, managing cache contents, and storing
meta-data for matching regions with push-down predicates over
diverse data types, without impacting query latency.

• (Section 4) Optimizing the contents of the cache while: (1) balanc-
ing short-term needs (e.g., a burst of new queries) vs. long-term
query history; (2) handling queries that are not identical but
often overlap; (3) exploiting the benefit of duplicating frequently
accessed subsets of data in more than one region; and (4) taking
into account the overhead incurred by creating many small files
in block columnar format, instead of fewer larger ones; and (5)
managing statistics necessary for the above tasks.

Using Crystal, we get lower query latencies and more efficient
use of the bandwidth between compute and storage, as com-
pared to state-of-the-art solutions. We validate this by implement-
ing Crystal with Spark and Greenplum connectors (Section 5). Our
evaluation using common workload patterns shows Crystal’s abil-
ity to outperform block-based caching schemes with lower cache
sizes, improve query latencies by up to 20x for individual queries
(and up to 8x on average), adapt to workload changes, and save
bandwidth from remote storage by up to 41% on average (Section 6).

We note that Crystal’s cached regions may be considered as
materialized views [20, 27, 44, 45] or semantic caches [14, 29, 30, 41–
43, 47], thereby inheriting from this rich line of work. Our caches
have the additional restriction that they are strictly the result of
single-table predicates (due to the nature of the data source API).
Specifically, Crystal’s regions are disjunctions of conjunctions of
predicates over each individual table. This restriction is exploited
in our solutions to the technical challenges, allowing us to match
better, generalize better, and search more efficiently for the best set
of cached regions. As data sources mature, we expect them to push
down cross-table predicates and aggregates in future, e.g., via data-
induced predicates [28]. Such developments will require a revisit
of our algorithms in future; for instance, our region definitions
will need to represent cross-table predicates. We focus on read-
only workloads in this paper; updates can be handled by view
invalidation (easy) or refresh (more challenging), and are left as
future work. Finally, we note that Crystal can naturally benefit from
remote storage supporting push-down predicates; a detailed study is
deferred until the technology matures to support columnar formats
natively (only CSV files are supported in the current generation).
We cover related work in Section 7 and conclude in Section 8.

2 SYSTEM OVERVIEW
Figure 1 shows where Crystal fits in today’s cloud analytics ecosys-
tem. Each compute node runs a DBMS instance; Crystal is co-
located on the compute node and serves these DBMS instances
via data source connectors. The aim is to serve as a caching layer
between big data systems and cloud storage, exploiting fast local
storage in compute nodes to reduce data accesses to remote storage.

2.1 Architecture
A key design goal is to make Crystal sufficiently generic so that
it can be plugged into an existing big data system with minimum
engineering effort. Therefore, Crystal is architected as two separate
components: a light DBMS-specific data source connector and the
Crystal CMS process. These are described next.
2.1.1 Data Source Connector. Modern big data systems (e.g., Spark,
Hive, and Presto) provide a data source API to support a variety of
data sources and formats. A data source receives push-down filter-
ing and column pruning requests from the DBMS through this API.
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Thus, the data source has the flexibility to leverage this additional
information to reduce the amount of data that needs to be sent back
to the DBMS, e.g., via block-level pruning in Parquet. In this paper,
we refer to such push-down information as a query or requested
region. A Crystal connector is integrated into the unmodified DBMS
through this data source API. It is treated as another data source
from the perspective of the DBMS, and as a client issuing queries
from the perspective of the Crystal CMS.

2.1.2 Crystal CMS. Figure 2 shows the Crystal CMS in detail. It
maintains two local caches – a small requested region (RR) cache
and a large oracle region (OR) cache – corresponding to short- and
long-term knowledge respectively. Both caches store data in an
efficient columnar open format such as Parquet. Crystal receives
“queries” from connectors via the Crystal API. A query consists of a
request for a file (remote path) with push-down predicates. Crystal
first checks with the Matcher to see if it can cover the query using
one or more cached regions. If yes (cache hit), it returns a set of file
paths from local storage. If not (cache miss), there are two options:
(1) It responds with the remote path so that the connector can

process it as usual. Crystal optionally requests the connector
to store the downloaded and filtered region in its RR cache.

(2) It downloads the data from remote, applies predicates, stores the
result in the RR cache, and returns this path to the connector.

Thus, the RR cache is populated eagerly by either Crystal or the
DBMS. Not every requested region is cached eagerly; instead an
LRU-2 based decision is taken per request.

More importantly, in the background, Crystal collects a historical
trace of queries and invokes a caching Oracle Plugin module
to compute the best content for the OR cache. The new content
is populated using a combination of remote storage and existing
content in the RR and OR caches. Section 3 covers region processing
in detail, while Section 4 covers cache optimization.

2.2 Generality of the Crystal Design
As mentioned above, Crystal is architected with a view to making
it easy to use with any cloud analytics system. Crystal offers three
extensibility points. First, users can replace the caching oracle with
a custom implementation that is tailored to their workload. Second,
the remote storage adapter may be replaced to work with any cloud
remote storage. Third, a custom connector may be implemented
for each DBMS that needs to use Crystal.

The connector interfaces with Crystal with a generic protocol
based simply on file paths. Cached regions are stored in an open
format (Parquet) rather than the internal format of a specific DBMS,
making it DBMS-agnostic. Further, a connector can feed the cached
region to the DBMS by simply invoking its built-in data source for
the open format (e.g., the built-in Parquet reader in Spark) to read
the region. Thus, the connector developer does not need to manu-
ally implement the conversion, making its implementation a fairly
straightforward process. In Section 5, we discuss our connectors
for Spark and Greenplum, which take less than 350 lines of code.

2.3 Revisiting the Caching Problem
Leveraging push-down predicates, Crystal caches different subsets
of data called regions. Regions can be considered as views on the
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Part 3 Part 4 LRU File Cache Semantic Cache
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Q 2: 1 file missing
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Figure 3: Benefit of semantic vs. traditional file caching. The
DBMS schedules Q1, Q2, and Q3 more frequently. Only the
semantic cache can answer these without remote access.

table, and are a form of semantic caching [14, 29, 30, 42, 43, 47].
Compared to traditional file caching, the advantage of semantic
caching is two-fold. First, it usually returns a much tighter view
to the DBMS, and thus reduces the need to post-process the data,
saving I/O and CPU cost. Second, regions can be much smaller than
the original files, resulting in better cache space utilization and
higher hit ratios. For example, Figure 3 shows a case where regions
capture all views of all queries, whereas LRU-based file caching can
only keep less than half of these views.

Cached regions in Crystal may overlap. In data warehouses and
data lakes, it is common to see that a large number of queries
access a few tables or files, making overlapping queries the norm
rather than the exception at the storage layer. Therefore, Crystal
has to take overlap into account when deciding which cached data
should be evicted. To the best of our knowledge, previous work
on replacement policies for semantic caching does not consider
overlap of cached regions (see more details in Section 7).

With overlapping views, the replacement policy in Crystal be-
comes a very challenging optimization problem (details in Section 4).
Intuitively, when deciding if a view should be evicted from the cache,
all other views that are overlapping with this view should also be
taken into consideration. As a result, traditional replacement poli-
cies such as LRU that evaluate each view independently are not
suitable for Crystal, as we will show in the evaluation (Section 6).

Recall that we split the cache into two regions: requested region
(RR) and oracle region (RR). The OR cache models and solves the
above problem as an optimization problem, which aims to find
the nearly optimal set of overlapping regions that should be re-
tained in the cache. Admittedly, solving the optimization problem
is expensive and thus cannot be performed on a per-request basis.
Instead, the OR cache recomputes its contents periodically, and thus
mainly targets queries that have sufficient statistics in history. In
contrast, the RR cache is optimized for new queries, and can react
immediately to workload changes. Intuitively, the RR cache serves
as a “buffering” region to temporarily store the cached views for
recent queries, before the OR cache collects sufficient statistics to
make longer-term decisions. This approach is analogous to the C-
Store architecture [46], where a writable row store is used to absorb
newly updated data before it is moved to a highly optimized column
store in batches. Collectively, the two regions offer an efficient and
reactive solution for caching.

3 REGION PROCESSING
In this section, we focus on region matching and the creation of
cached regions. Before we explain the details of the process of
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creating regions and matching cached regions to requests, we first
show how to transform client requests into region requests.

3.1 API
Crystal acts as a storage layer of the DBMS. It runs outside the
DBMS and transfers information via a minimalistic socket connec-
tion and shared space in the filesystem (e.g., SSDs, ramdisk). During
a file request, the DBMS exchanges information about the file and
the required region with Crystal. Because access to remote files is
expensive, Crystal tries to satisfy the request with cached files.

The overall idea is that Crystal overwrites the accessed file path
such that the DBMS is pointed to a local file. For redirecting queries,
Crystal relies on query metadata such as the file path, push-down
predicates, and accessed fields. Crystal evaluates the request and re-
turns a cached local file or downloads the requested file. Afterward,
the location of the local file is sent to the DBMS which redirects
the scan to this local file. Crystal guarantees the completeness for
a given set of predicates and fields. Internally, Crystal matches the
query metadata with local cache metadata and returns a local file if
it satisfies the requirements.

We use a tree string representation for push-down predicates
in our API. Since predicates are conventionally stored as an AST
in DBMS, we traverse the AST to build the string representation.
Each individual item uses the syntax similar to operation(left, right).
We support binary operators, unary operators, and literals which
are the leaf nodes of the tree. The binary operation is either a
combination function of multiple predicates (such as and, or) or
an atomic predicate (such as gt, lt, eq, . . . ). Atomic predicates use
the same binary syntax form in which left represents the column
identifier and right the compare value. To include the negation of
sub-trees, our syntax allows operation(exp) with the operation not.

3.2 Transformation & Caching Granularity
Crystal receives the string of push-down predicates and transforms
it back to an internal AST. Because arguing on arbitrarily nested
logical expressions (with and and or) is hard, Crystal transforms the
AST to Disjunctive Normal Form (DNF). In the DNF, all conjunc-
tions are pushed down into the expression tree, and conjunctions
and disjunctions are no longer interleaved. In Crystal, regions are
identified by their disjunction of conjunctions of predicates. Regions
also contain their sources (i.e., the remote files) and the projection
of the schema. This allows us to easily evaluate equality, superset,
and intersection between regions which we show in Section 3.3.

The construction of the DNF follows two steps. First, all nega-
tions are pushed as far as possible into the tree which results in
Negation Normal Form (NNF). Besides using the De-Morgan rules
to push down negations, Crystal pushes the negations inside the
predicates. For example, not(lt(id, 1)) will be changed to gteq(id, 1).

After receiving the NNF, Crystal distributes conjunctions over
disjunctions. The distributive law pushes ors higher up in the tree
which results in the DNF. It transforms and(a, or(b, c)) to or(and(a,
b), and(a, c)). Although this algorithm could create 2𝑛 leaves in
theory, none of our experiments indicate issues with blow-up.

Because the tree is in DNF, the regions store the pushed-down
conjunctions as a list of column restrictions. These conjunctions of
restrictions can be seen as individual geometric hyper-rectangles.
Regions are fully described by the disjunction of these hyper-
rectangles. Figure 4 shows the process of creating the DNF and
extracting the individual hyper-rectangles. Although we use the
term hyper-rectangles, the restrictions can have different shapes.
Crystal supports restrictions, such as noteq, isNull, and isNotNull,
that are conceptually different from hyper-rectangles.

Crystal’s base granularity of items is on the level of regions,
thus all requests are represented by a disjunction of conjunctions.
However, individual conjunctions of different regions can be com-
bined to satisfy an incoming region request. Some previous work
on semantic caching (e.g., [14, 17]) considers only non-overlapping
hyper-rectangles. Non-overlapping regions can help reduce the
complexity of the decision-making process. Although this is desir-
able, non-overlapping regions impose additional constraints.

Splitting the requests into sets of non-overlapping regions is
expensive. In particular, the number of non-overlapping hyper-
rectangles grows combinatorial. To demonstrate this issue, we eval-
uated three random queries in the lineitem space which we artifi-
cially restrict to 8 dimensions [23]. If we use these three random
hyper-rectangles as input, 16 hyper-rectangles are needed to store
all data non-overlapping. This issue arises from the number of di-
mensions that allow for multiple intersections of hyper-rectangles.
Each intersection requires the split of the rectangle. In the worst
case, this grows combinatorial in the number of hyper-rectangles.

Because all extracted regions need statistics during the cache
optimization phase, the sampling of this increased number of re-
gions is not practical. Further, the runtime of the caching policies
is increased due to the larger input which leads to outdated caches.

Moreover, smaller regions require that more cached files are
returned to the client. Figure 5 shows that each additional region
incurs a linear overhead of roughly 50ms in Spark. The preliminary
experiment demonstrates that splitting is infeasible due to the com-
binatorial growth of non-overlapping regions. Therefore, Crystal
does not impose restrictions on the semantic regions themselves.
This raises an additional challenge during the optimization phase
of the oracle region cache, which we address in Section 4.5.

3.3 Region Matching
With the disjunction of conjunctions, Crystal determines the rela-
tion between different regions. Crystal detects equality, superset,
intersections, and partial supersets relations. Partial supersets con-
tain a non-empty number of conjunctions fully.

Crystal uses intersections and supersets of conjunctions to argue
about regions. Conjunctions contain restrictions that specify the
limits of a column. Every conjunction has exactly one restriction for
each predicated column. Restrictions are described by their column
identifier, their range (min, max), their potential equal value, their
set of non-equal values and whether isNull or isNotNull is set. If two
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restrictions 𝑝𝑥 and 𝑝𝑦 are on the same column, Crystal computes if
𝑝𝑥 completely satisfies 𝑝𝑦 or if 𝑝𝑥 has an intersection with 𝑝𝑦 . For
determining the superset, we first check if the null restrictions are
not contradicting. Second, we test whether the (min, max) interval
of 𝑝𝑥 is a superset of 𝑝𝑦 . Afterward, we check whether 𝑝𝑥 has
restricting non-equal values that discard the superset property and
if all additional equal values of 𝑝𝑦 are also included in 𝑝𝑥 .

For two conjunctions 𝑐𝑥 and 𝑐𝑦 , 𝑐𝑥 ⊃ 𝑐𝑦 if 𝑐𝑥 only contains
restrictions that are all less restrictive than the restrictions on the
same column of 𝑐𝑦 . Thus, 𝑐𝑥 must have an equal number or fewer
restrictions which are all satisfying the matched restrictions of 𝑐𝑦 .
Otherwise, 𝑐𝑥 ⊅ 𝑐𝑦 . 𝑐𝑥 can have fewer restrictions because the
absence of a restriction shows that the column is not predicated.

In the following, we show the algorithms to determine the rela-
tion between two regions 𝑟𝑥 and 𝑟𝑦 .
• 𝑟𝑥 ⊃ 𝑟𝑦 holds if all conjunctions of 𝑟𝑦 find a superset in 𝑟𝑥 .
• 𝑟𝑥 ∩ 𝑟𝑦 ≠ ∅ holds if at least one conjunction of 𝑟𝑥 finds an

intersecting conjunction of 𝑟𝑦 .
• ∃ conj ⊂ 𝑟𝑥 : conj ⊂ 𝑟𝑦 (partial superset) holds if at least one

conjunctions of 𝑟𝑦 finds a superset in 𝑟𝑥 .
• 𝑟𝑥 = 𝑟𝑦 : 𝑟𝑥 ⊃ 𝑟𝑦 ∧ 𝑟𝑦 ⊃ 𝑟𝑥

Figure 6 shows an example that matches a query that consists of
two hyper-rectangles to two of the stored regions.

3.4 Request Matching
During region requests, Crystal searches the caches to retrieve a
local superset. Figure 7 shows the process of matching the request.
First, the oracle region cache is scanned for matches. If the request
is not fully cached, Crystal tries to match it with the requested
region cache. If the query was not matched, the download manager
fetches the remote files (optionally from a file cache).

During the matching, a full superset is prioritized. Only if no full
superset is found, Crystal tries to satisfy the individual conjunctions.
The potential overlap of multiple regions and the overhead shown
in Section 3.2 are the reasons to prefer full supersets. If an overlap
is detected between 𝐴 and 𝐵, Crystal needs to create a reduced
temporary file. Otherwise, tuples are contained more than once
which would lead to incorrect results. For example, it could return
𝐴 and 𝐵 − 𝐴 to the client. The greedy algorithm, presented in
Algorithm 1 reduces the number of regions if multiple choices are
possible. We choose the region that satisfies most of the currently
unsatisfied conjunctions and continue until all have been satisfied.

We optimize the matching of regions by partitioning the cache
according to the remote file names and the projected schema. The
file names are represented as (bit-)set of the remote file catalog. This
set is sharded by the tables. Similarly, the schema can be represented
as a (bit-)set. The partitioning is done in multiple stages. After the

Algorithm 1: Greedy reduction of multiple matches
input :Region requestedRegion, List<Regions> partialMatches
output :List<Regions> regions
BitSet<requestedRegion.disjunctionCount> matches(0);
while true do

if matches.isAllBitsSet() then
return regions

bestRegion = {}; bestVal = 0
foreach p ∈ partialMatches do

curval = additionalMatches(p, matches)
if curVal > bestVal then

bestRegion = p; bestVal = curVal
if !bestRegion then return {}
partialMatches = partialMatches \ bestRegion
regions = regions ∪ buildTempFile(bestRegion, regions)
matches.setAll(requestedRegion.satisfiedConjunctions(bestRegion))

fast file name superset check, all resulting candidates are tested
for a superset of the schema. Only within this partition of superset
regions, we scan for a potential match. Although no performance
issues arise during region matching, multi-dimensional indexes
(e.g., R-trees) can be used to further accelerate lookups.

3.5 Creating Regions
The cached regions of Crystal are stored as Apache Parquet files.
Crystal leverages Apache Arrow for reading and writing snappy
encoded Parquet files. Internally, Parquet is transformed into Arrow
tables before Crystal creates the semantic regions.

Gandiva, which is a newly developed execution engine for Arrow,
uses LLVM compiled code to filter Arrow tables [8]. As this promises
superior performance in comparison to executing tuple-at-a-time
filters, Crystal translates its restrictions to Gandiva filters. When
Crystal builds new Parquet files to cache, the filters are compiled
to LLVM and executed on the in-memory Arrow data. Afterward,
the file is written to disk as snappy compressed Parquet file. If a file
is accessed the first time, Crystal creates a sample that is used to
predict region sizes and to speed up the client’s query planning.

3.6 Client Database Connector
Database systems are often able to access data from different for-
mats and storage layers. Many systems implement a connection
layer that is used as an interface between the DBMS and the dif-
ferent formats. For example, Spark uses such an abstraction layer -
known as data source.

Crystal is connected to the DBMS by implementing such a small
data source connector. As DBMSs can process Parquet files already,
we can easily adapt this connector for Crystal. Crystal interacts
with the DBMS via a socket connection and transfers files via shared
disk space or ramdisk. Since Crystal returns Parquet files, the DBMS
can already process them without any code modifications.
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The only additional implementation needed is the exchange of
control messages. These consist of only three different messages
and the responses of Crystal. One of the messages is optional and
is used to speed up query planning. The scan request message and
the message that indicates that a scan has finished are required by
all Crystal clients. The first message includes the path of the remote
file, the push-down predicates, and the required fields of the schema.
Crystal replies with a collection of files that can be used instead
of the original remote file. The finish message is required to delete
cached files safely that are no longer accessed by the client. The
optional message inquires a sample of the original data to prevent
storage accesses during query planning.

3.7 Cloud Connection
Crystal itself also has an interface similar to the data source. This
interface is used to communicate with various cloud connectors.
The interface implements simple file operations, such as listings of
directories and accesses to files. For blob storage, the later operation
basically downloads the file from remote storage to the local node.

Recently, cloud providers have been adding predicate push-down
capabilities to their storage APIs, e.g., S3 Select [4]. Clients can
push down filters to storage and receive the predicated subset. This
feature can incur additional monetary costs, as well as a per-request
latency. Crystal complements this feature naturally, as it is aware
of semantic regions and can use predicate push-down to populate
its cache efficiently. As Crystal can reuse cached results locally, it
can save on future push-down costs as well.

Crystal implements a download manager that fetches blobs from
remote and stores them into ramdisk. The client is pointed to this
location, and as soon as it finishes accessing it, the file is deleted
again. Multiple accesses can be shared by reference counting.

4 CACHE OPTIMIZATION
This section summarizes the architecture of our caches, followed
by more details on caching. Finally, we explain our algorithms that
explore and augment the overlapping search space.

4.1 Requested Region and Oracle Region Cache
Recall that Crystal relies on two region caches to capture short- and
long-term trends. The RR cache is an eager cache that stores the
result of recently processed regions. The long-term insights of the
query workload are captured by the OR cache. This cache leverages
the history of region requests to compute the ideal set of regions to
cache locally for best performance. Crystal allows users to plug-in
a custom oracle; we provide a default oracle based on a variant of
Knapsack (covered later). After the oracle determines a new set of
regions to cache, Crystal computes these regions in the background
and updates the OR cache. The creation in the background allows to
schedule more expensive algorithms (runtime) to gather meaningful
insights. This allows for computing (near-) optimal results and the
usage of machine learning in future work. The oracle runs in low
priority, consuming as little CPU as possible during high load.

An interesting opportunity emerges from the collaboration be-
tween the two caches. If the OR cache decided on a set of long-term
relevant regions, the requested region cache does not need to com-
pute any subset of the already cached long-term regions. On the

other hand, if the requested region cache has regions that are con-
sidered for long-term usage, the OR cache can take control over
these regions and simply move them to the new cache.

4.2 Metadata Management
A key component for predicting cached regions is the history of
requested regions. To recognize patterns, the previously accessed
regions are stored within Crystal. We use a ring-buffer to keep the
most recent history. Each buffer element represents a single historic
region request which has been computed by a collection of (remote)
data files. These files are associated with schema information, tuple
count, and size. The selectivity of the region is captured by result
statistics. The database can either provide result statistics, or Crystal
will compute them. Crystal leverages previously created samples to
generate result statistics. In conjunction with the associated schema
information, Crystal predicts the tuple count and the result size.

4.3 Oracle Region Cache
Long-term trends are detected by using the oracle region cache. An
oracle decides according to the seen history which regions need
to be created. The history is further used as a source of candidate
regions that are considered to be cached.

The quality of the cached items is evaluated with the recent
history of regions. Each cached region is associated with a benefit
value. This value is the summation of bytes that do not need to
be downloaded if the region is stored on the DBMS node. In other
words, how much network traffic is saved by processing the history
elements locally. Further, we need to consider the costs of storing
candidate regions. The costs of a region are simply given by the size
it requires to be materialized. The above caching problem can be
expressed as the knapsack problem: maximize

∑︁𝑛
𝑖=1 𝑏𝑖𝑥𝑖 subject to∑︁𝑛

𝑖=1𝑤𝑖𝑥𝑖 ≤𝑊 where 𝑥𝑖 ∈ {0, 1}. The saved bandwidth by caching
a region is denoted by 𝑏, the size of the materialized cache by𝑤 . If
the region is picked 𝑥 = 1, otherwise 𝑥 = 0. The goal is to maximize
the benefit while staying within the capacity𝑊 .

However, the current definition cannot capture potential overlap
in regions well. As the benefit value is static, history elements that
occur in multiple regions would be added more than once to the
overall value. Thus the maximization would result in a suboptimal
selection of regions. In Section 4.5, we show the adaptations of our
proposed algorithm to compensate for the overlapping issue.

4.4 Knapsack Algorithms
Dynamic programming (DP) can be used to solve the knapsack
optimally in pseudo-polynomial time. The most widespread algo-
rithm iterates over the maximum number of considered items and
the cache size to solve the knapsack optimal for each sub-problem
instance. Combining the optimally solved sub-problems results in
the optimal knapsack, but the algorithm lies in the complexity of
O(𝑛 ∗𝑊 ). Another possible algorithm iterates over the items and
benefit values, and lies in O(𝑛 ∗ 𝐵) (𝐵 denotes maximum benefit).

In our caching scenario, we face two challenges with the DP
approach. First, both𝑊 (bytes needed for storing the regions) and
𝐵 (bytes the cached element saves from being downloaded) are
large. Relaxing these values by rounding to mega-bytes or giga-
bytes reduces the complexity, however, the instances are not solved
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Algorithm 2: Overlap Greedy Knapsack
input :List<Region> history, List<Region> candidates, Int maxCacheSize
output :List<Region> cache
List<Region> cache = List<Region>(); Int currentCacheSize = 0
Map<Float, Region> benefitRatioMap = evaluate(candidates, history, cache)
foreach {benefit, region} ∈ benefitRatioMap do

if currentCacheSize + region.size > maxCacheSize then
return cache

foreach item ∈ cache do
if item ⊆ region then

cache = cache \ item
cache = cache ∪ region
benefitRatioMap = evaluate(candidates, history, cache)
currentCacheSize += region.size

return cache

optimally anymore. Second, the algorithm considers that each sub-
problem was solved optimally. To solve the overlapping issue, only
one region is allowed to take the benefit of a single history element.
An open question is to decide which sub-problem receives the
benefit of an item that can be processed with several regions.

Since many knapsack instances face a large capacity 𝑊 and
unbound benefit 𝐵, approximation algorithms were explored. In
particular, the algorithm that orders items according to the benefit-
cost ratio has guaranteed bounds and a low runtime complexity of
O(𝑛 ∗𝑙𝑜𝑔(𝑛)). The algorithm first calculates all benefit ratios 𝑣 = 𝑏

𝑤
and orders the items accordingly. In the next step, it greedily selects
the items as long as there is space in the knapsack. Thus, the items
with the highest cost to benefit ratio 𝑣 are contained in the knapsack.
This algorithm solves the relaxed problem of the fractional knapsack
optimal which loosens 𝑥 ∈ {0, 1} to 𝑥 ∈ [0, 1] [24].

4.5 Overlap-aware Greedy Algorithm
This greedy knapsack algorithm is used as the basis of our adap-
tations. In contrast to DP, this approach gives us an order of the
picked items which allows us to incorporate the benefit changes.

Algorithm 2 shows the adapted greedy knapsack algorithm. The
general idea is that we recompute the benefit ratio for each picked
item. For each iteration step, we reevaluate the benefit and size
of the current candidate set. The evaluation function sorts the
input according to this benefit ratio. Thus, regions that result in
higher returns in comparison to the caching size are picked earlier.
Note that we only consider regions that have a benefit ratio > 1
to reduce unnecessary computation for one-time requests. The
runtime complexity of the adapted algorithm is O(𝑛2 ∗ 𝑙𝑜𝑔(𝑛)).

The evaluation of the benefit ratio is adapted according to the
previously chosen regions. We define three geometric rules which
change the ratio of unpicked elements.
(1) if a candidate is a superset of a picked item, we reduce the

weight and the benefit by the values of the picked elements.
(2) if a candidate is a subset of an already picked item, we reduce

the benefit to 0 as it does not provide any additional value.
(3) if a candidate is intersected with an already picked item, we

reduce the benefit by the history elements that are covered
completely by both regions.
(1) A container region 𝑟𝑐 = {𝑟1, 𝑟2, . . . , 𝑟𝑛, 𝑟𝑥 } fully contains 𝑛

stand-alone regions and the remainder region 𝑟𝑥 . The cost of 𝑟𝑐 is
computed by𝑤𝑐 = 𝑤𝑥 +∑︁𝑛

𝑖=1𝑤𝑖 and the benefit 𝑏𝑐 = 𝑏𝑥 +∑︁𝑛
𝑖=1 𝑏𝑖 .

If a region 𝑟𝑘 is fully contained in another region 𝑟𝑐 , we reduce both

Algorithm 3: Approximative Merging Augmentation
input :List<Region> history, Int maxRegions, Int maxSize, Int maxCacheSize
output :List<Region> resultRegions
// RegionStruct consists of Region, Quality (0), and Size Savings (0)
List< RegionStruct<Region, Int, Int> > enlargedRegions

foreach 𝑟 ∈ history do
foreach 𝑟 ′ ∈ history \ {𝑟0 , . . . , 𝑟 } do

𝑟 .enlargeAll(𝑟 ′, enlargedRegions)
foreach 𝑟 ∈ enlargedRegions do

foreach 𝑟 ′ ∈ history do
if 𝑟 .region.satisfies(𝑟 ′) then

𝑟 .quality += 1; 𝑟 .sizeSavings += 𝑟 ′.size
sort(enlargedRegions, 𝜆 (r1, r2) { r1.quality > r2.quality })
while !enlargedRegions.empty() ∧ maxRegions > 0 do

𝑟 = enlargedRegions.pop(); considered = true
foreach 𝑟 ′ ∈ resultRegions do

if r’.satisfies(𝑟 .region) ∧ 𝑟 ′.size < maxSize then
considered = false

if !considered then
continue

𝑟 .region.computeStatisticsWithSample()
if 𝑟 .region.size < maxSize ∨ (𝑟 .region.size < 𝑟 .sizeSavings ∧ 𝑟 .region.size <
maxCacheSize) then

resultRegions = resultRegions ∪ 𝑟 .region; maxRegions -= 1
return resultRegions

the weight and benefit of 𝑟𝑐 when 𝑟𝑘 is picked. Thereby, we simulate
𝑟 ′𝑐 which is a non overlapping version of 𝑟𝑐 with 𝑣𝑘 >= 𝑣𝑐 >= 𝑣𝑐′ .
In the case, the greedy algorithm picks 𝑟 ′𝑐 in a future iteration, we
actually add 𝑟𝑐 and remove the previously picked item 𝑟𝑘 .

(2) If 𝑟𝑐 is picked, all the other included regions in 𝑟𝑐 are fully
contained with their benefits and weights. Since the greedy algo-
rithm picks 𝑟𝑐 ⇒ ∀𝑟 ∈ 𝑟𝑐 : 𝑣𝑐 >= 𝑣𝑟 . The benefit of all contained 𝑟
is reduced to 0 as all history elements are included in 𝑟𝑐 .

(3) Besides full containment, regions can have partial overlap.
Assume that 𝑟𝑥 and 𝑟𝑦 overlap partially, and 𝑟𝑥 is picked. Our algo-
rithm reduces the benefit𝑏𝑦 by all history elements that are covered
by both 𝑟𝑥 and 𝑟𝑦 . However, we cannot reduce the costs of caching
𝑟𝑦 as we would need to compute the non-overlapping part of the
regions. This is in direct contradiction to the goal of minimizing
region splits as shown in Section 3.2. For retaining optimality, all
interleaving regions must be considered as the potentially picked
item in an individual branch of the problem. The branch that yields
the maximum benefit is chosen as the winner. Unfortunately, this in-
troduces exponential growth of the search space. Our experiments
show that even without considering all paths, our greedy algorithm
produces highly effective OR caches. Although this revokes the
fractional knapsack optimality guarantee, our greedy algorithm
only picks the locally optimal choice and does not branch.

4.6 Region Augmentation
To predict regions that are accessed in the future, the oracle needs
to generalize. If the candidate set of the decision-making solely
consists of the seen history elements, the oracle will overfit. Thus,
a crucial part is the augmentation of the candidate set to include
unseen regions that are evaluated according to the seen history.

To find generalized candidate sets, we developed the approxima-
tive merging algorithm. This algorithm tries to merge intersecting
regions to find the generalized region of interest. In particular, we
combine two predicates and for each predicate the global min and
global max are used as new dimension restrictions. As this intro-
duces 𝑛2 new regions, we only merge conjunctions if they intersect
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in at least one dimension. To overcome the issue of non-intersecting
but neighboring hyper-rectangles (e.g., 𝑥 < 1, 𝑥 ≥ 1), we allow for
approximative intersections that add a small delta to the boundaries.

The full approximative merging procedure is presented in Algo-
rithm 3. First, we compute enlarged regions from the history and
consider the ones that match the previously described criteria. After
determining new enlarged regions, each enlarged region is assigned
a quality and size saving value. Quality counts how many history
regions can be processed with this enlarged region. The overall sum
of the size required by each region, that can be processed with this
new enlarged region, denotes the size saving. With these properties,
Crystal ranks the new regions according to quality and adds the
highest ranked ones to the candidate set. We only add new regions
if these cannot be represented by already existing regions and their
size overhead is either smaller than a defined maximum size or the
size saving is larger than the region itself. The sizes of the enlarged
regions are computed with the help of the samples already collected
for each file. In the experimental evaluation, we add at most 20%
of additional regions (according to the history size) and define a
maximum size of 20% of the total semantic cache size.

4.7 Requested Region Cache
The requested region cache is similar to a traditional cache but with
semantic regions instead of pages. It decides in an online fashion
whether the requested region should be cached. The algorithm
must be simple to reduce decision latencies. Traditional algorithms,
such as LRU and its variants, are good fits in terms of accuracy
and efficiency. Besides the classic LRU cache, experiments showed
the benefit of caching regions after the second (k-th in general)
occurrence. With the history already available for OR, this adaption
is simple and does not introduce additional latency. For combined
OR and RR with LRU-k, it is beneficial to reduce the history size by
the RR/OR split as long-term effects are captured by OR.

One of the biggest advantages of the RR cache is the fast reaction
to changes in the queried workload. In comparison to the OR cache
that only refreshes periodically, the request cache is updated con-
stantly. This eager caching, however, might result in overhead due
to additional writing of the region file. To overcome this issue, the
client DBMS can simultaneously work on the raw data and provide
the region as a file for Crystal; this extension is left as future work.

5 IMPLEMENTATION DETAILS
Crystal is implemented as a stand-alone and highly parallel process
that sits between the DBMS and blob storage. This design helps to
accelerate workloads across different database systems. Crystal is a
fully functional system that workswith diverse data types and query
predicates, and is implemented in C++ for optimal performance.
Parallel ProcessingwithinCrystal. Latency critical parts of Crys-
tal are optimized for multiple connections. Each new connection
uses a dedicated thread for building the predicate tree and matching
cached files. If a file needs to be downloaded, it is retrieved by a pool
of download threads to saturate the bandwidth. All operations are
either implemented lock-free, optimistically, or with fine-grained
shared locks. Liveness of objects and their managed cached files
is tracked with smart pointers. Therefore, Crystal parallelizes well
and can be used as a low latency DBMS middleware.

Crystal also handles large files since some systems do not split
Parquet files into smaller chunks. During matching we recognize
which parts of the original file would have been read and translate
it to the corresponding region in the cached files. Further, we are
able to parallelize reading and processing Parquet files.
Spark Data Source. For our evaluation, we built a data source to
communicate between Spark and Crystal, by extending the existing
Parquet connector of Spark with less than 350 lines of Scala code.
The connector overrides the scan method of Parquet to retrieve the
files suggested by Crystal. Because Spark pushes down predicates
to the data source, we have all information available for using the
Crystal API. As Spark usually processes one row iterator per file,
we developed a meta-iterator that combines multiple file iterators
transparently (Crystal may return multiple regions). The connector
is packaged as a small and dynamically loaded Java jar.
Greenplum Data Source. Further, we built a connector for Green-
plum which is a cloud scale PostgreSQL derivative with an external
extension framework – called PXF [34, 51]. PXF allows one to
access Parquet data from blob storage [52]. We modified the Par-
quet reader such that it automatically uses Crystal if available. Our
changes to the Greenplum connector consist of less than 150 lines
of code. Without recompiling the core database, Crystal accelerates
Greenplum by dynamically attaching the modified PXF module.

Both connectors currently do not support sending regions back
to Crystal; instead, Crystal itself handles additions to the RR cache.
Azure Cloud Connection. We use Azure Blob Storage to store
remote data, using a library called azure-storage-cpplite [37]
to implement the storage connector. The library just translates the
file accesses to CURL (HTTPS) requests. Other cloud providers have
similar libraries with which connections can be easily established.
Crystal infers the cloud provider from the remote file path. The file
path also gives insights into the file owner (user with pre-configured
access token) and the blob container that includes the file.

6 EXPERIMENTAL EVALUATION
In this section, we evaluate Crystal as an acceleration unit for Spark,
and further report an experiment with Greenplum to showCrystal’s
generality. Our experiments utilize a single compute node that is
connected to standard Azure Blob Storage. The blob storage uses
the pre-selected configuration of standard storage and hot tier. All
experiments were performed on the DS14_v2 virtual machine. This
instance features 16 cores with 112 GB main memory. It comes
with 224 GB premium (SSD) storage attached and has a maximum
network bandwidth of 12 Gbit/s. The Apache Spark experiments
run on version 3.0.1 pre-built for Hadoop 3.2. Our software stack
includes Apache Arrow 3.0.0 and azure-storage-cpplite (be490ed).

6.1 Datasets and Caching Strategies
We test workloads comprising real-world data and benchmarks.
Following prior work [18], we synthesize queries that contain a
mix of range filters and equality filters. Each query is associated
with a query type. Within one type, all queries evaluate the same
question on a different region of data. For all workloads, we define 5
query types that drill down into distinct combinations of columns.

Lineitem: We generated TPC-H with a scale factor of 50. As
lineitem is the main fact table, we use it to schedule predicated
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Figure 8: Violin plots of the regions workload. The blue bars report the 25th, 50th, and 75th percentiles, the red dot the mean.

Table 1: Datasets Statistics in MB.

Datasets TPC-H Lineitem Taxi Stocks

Raw 54,344 37,701 32,473 19,100
Parquet 16,822 10,915 6,858 4,021

queries. Query predicates build upon typical predicates of lineitem
and answer questions such as how much revenue was created in
the year with low-taxed products.

NYC Taxi: The New York City Taxi dataset includes detailed taxi
trips between different regions and locations of the city [22]. Each
ride is associated with the duration, price, range, start time, end
time, and locations. We drill down on this table to analyze multiple
aspects of the data. An example query answers how much tip was
accumulated for a region of fares during a certain date range.

Historical Stock Prices: Our second real-world dataset contains
historic stock prices of the New York Stock Exchange [39]. With
information on open, close, volume, and dates many analytics on
stock changes are possible. We execute queries that for example
help to determine which stocks had the highest intraday changes
in the last year while being traded with high volume.

For a fair comparison, the cache size is given in percentage of
the full Parquet remote data. The default value is 20%. Table 1
summarizes statistics on the size of the raw files and the converted
and snappy encoded Parquet files.
Crystal supports a wide variety of caches and caching policies:
• No Cache uses vanilla Spark without any code changes
• File Cache (F) caches on a block / file level (traditional cache)
• Requested Region Cache (RR) caches semantic regions eagerly
• Oracle Region Cache (OR) caches semantic regions lazily accord-

ing to decisions of an oracle
Crystal’s caching policies include LRU, LRU-k, DP Knapsack (K𝐷𝑃 ),
and our novel Overlap Greedy Knapsack (K𝐺 ). Both knapsack strate-
gies leverage our automatic approximative merging augmentation
to find region supersets. For the experiments, we keep a history of
128 regions (see Section 6.8). In the result plots, we combine the
cache handle with a caching policy. For example, RR-LRU2 denotes
a competitor that uses only the requested region cache with LRU-2
as caching policy. Because the number of combinations is large, we
focus on the individual strategies and show only two combinations.
First, an equal combination of F-LRU, RR-LRU2, and OR-K𝐺 cache,
that all get 1

3 of the caching space. Second, we combine the short-
term RR-LRU2 and the long-term OR-K𝐺 with 95% of the cache
denoted to OR. RR / OR uses mostly the OR cache because RR is
only used to cope with changes that are not yet considered by OR

(refresh latency). We propose to use RR / OR as it provides superior
long-term knowledge because of our overlap-aware OR-K𝐺 while
being able to adapt quickly to short-term changes with RR-LRU2.

6.2 Regions of Query Accesses
This scenario features a regional access pattern which can help
reduce future request latencies. Each of the query types spans a
region that contains 10 - 15% of the tuples. A query reads between
8 - 13% of a random sample of the region (∼1% of the tuples).

The regions workload explores a region by individual queries
that overlap in some of the dimensions. The overall union of all the
queries within a region represents a large fraction of the region’s
spanning space. We decide on the region before an individual query
is chosen. The regions are accessed in a non-uniform pattern as
these span a large percentage of the remote data. Next, one of
the 200 pre-computed queries per region is picked randomly. The
query parameters are chosen uniformly inside the borders of its
type region. The region experiments schedule 400 queries in total.
We have made the queries available at [12].

Figure 8 shows this long-term knowledge workload for the
lineitem, taxi, and stocks datasets. Note that, the lineitem and taxi
experiments run on cold caches. As violin plots give insights into the
distribution of the queries, we prefer them over box plots. The shape
represents the density of the observations at this value (smoothed
by a kernel). Violin plots also encode percentiles and the mean.

Overall, we see significant improvements of the oracle region
caches. The greedy knapsack and its RR/OR variant with the over-
lap adaptions outperform the competitors in all three workloads.
Because OR-K𝐺 benefits most from augmentation, more general re-
gions of interest are found. Especially, at the end of the experiment
better caches are used to significantly speed up query processing.

To demonstrate the effectiveness of the better caches, we show
the stocks queries after warm-up. At the warm-up phase, the se-
mantic caches (OR and RR-LRU2) have similar performance. They
can capture some of the frequent queries, but fail to generalize.
Over time, OR learns to cache a better subset. The improvements
are shown in Figure 8c. We analyze the cache refresh latency of
oracle region caches in Section 6.8.

6.3 Crystal vs. Block Caching
To highlight the performance benefits of Crystal compared to tra-
ditional caches, we run the regions workload with different cache
sizes. We compare Crystal’s RR / OR approach with a traditional
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