
Phoebe: A Learning-based Checkpoint Optimizer
Yiwen Zhu

Microsoft

yiwzh@microsoft.com

Matteo Interlandi

Microsoft

mainterl@microsoft.com

Abhishek Roy

Microsoft

abro@microsoft.com

Krishnadhan Das

Microsoft

krisdas@microsoft.com

Hiren Patel

Microsoft

hirenp@microsoft.com

Malay Bag

Facebook

malayb@gmail.com

Hitesh Sharma

Google

hitesh@outlook.com

Alekh Jindal

Microsoft

aljindal@microsoft.com

ABSTRACT
Easy-to-use programming interfaces paired with cloud-scale pro-

cessing engines have enabled big data system users to author ar-

bitrarily complex analytical jobs over massive volumes of data.

However, as the complexity and scale of analytical jobs increase,

they encounter a number of unforeseen problems, hotspots with

large intermediate data on temporary storage, longer job recov-

ery time after failures, and worse query optimizer estimates being

examples of issues that we are facing at Microsoft.

To address these issues, we propose Phoebe, an efficient learning-

based checkpoint optimizer. Given a set of constraints and an ob-

jective function at compile-time, Phoebe is able to determine the

decomposition of job plans, and the optimal set of checkpoints to

preserve their outputs to durable global storage. Phoebe consists

of three machine learning predictors and one optimization module.

For each stage of a job, Phoebe makes accurate predictions for:

(1) the execution time, (2) the output size, and (3) the start/end

time taking into account the inter-stage dependencies. Using these

predictions, we formulate checkpoint optimization as an integer

programming problem and propose a scalable heuristic algorithm

that meets the latency requirement of the production environment.

We demonstrate the effectiveness of Phoebe in production work-

loads, and show that we can free the temporary storage on hotspots

by more than 70% and restart failed jobs 68% faster on average with

minimum performance impact. Phoebe also illustrates that adding

multiple sets of checkpoints is not cost-efficient, which dramatically

reduces the complexity of the optimization.

PVLDB Reference Format:
Yiwen Zhu, Matteo Interlandi, Abhishek Roy, Krishnadhan Das, Hiren

Patel, Malay Bag, Hitesh Sharma, and Alekh Jindal. Phoebe: A

Learning-based Checkpoint Optimizer. PVLDB, 14(11): 2505 - 2518, 2021.

doi:10.14778/3476249.3476298

1 INTRODUCTION
Big data platforms have democratized scalable data processing over

the last decade, giving developers the freedom of writing complex

programs (also referred to as jobs) without worrying about scaling

them [3, 9, 15, 42, 44, 49, 50, 61]. However, this flexibility has also

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.

doi:10.14778/3476249.3476298

20
18

-0
9

20
18

-1
1

20
19

-0
1

20
19

-0
3

20
19

-0
5

20
19

-0
7

20
19

-0
9

20
19

-1
1

20
20

-0
1

20
20

-0
3

20
20

-0
5

0

1

T
ot

al
D

at
aR

ea
d

(B
yt

es
) ×1013

TotalDataRead

6000

8000

T
as

kC
ou

n
t

TaskCount

Figure 1: Cosmos job size

led developers into building very large analytical programs that can

put the underlying platform under stress. For instance, the scale

and flexibility of Cosmos [9, 13, 45], a big data analytics platform

at Microsoft, empower developers to author large jobs composed

of pipelines of SQL-like query statements which are compiled into

query plans composed of up to thousands of stages (executable
units composed by one or more operators) running over hundreds

of thousands of processing units scheduled by YARN [53]. Figure 1

shows how the Cosmos workloads in one of the clusters have

evolved over the past two years: we see that the total number of

tasks per job (each corresponding to one process executed in one

container) has grown by 34% (shown in blue), while the volume of

input data has grown by 80% (shown in orange). Large analytical

jobs lead to several operational problems.

1. Large jobs result inmachine hotspots that run out of local
storage space due to temporary data. Big data systems typically

persist intermediate outputs on local SSDs until the end of the

query. However, large query plans end up consuming a substantial

amount of temporary storage. Figure 2 (left) shows, for one Cosmos

cluster, the cumulative distribution of available local SSD storage

that is used for storing temporary data. We can see that for different

Stock Keeping Units (SKUs), 15 − 50% of the machines run out of

local storage on SSDs. This results in not only expensive spilling

to HDDs and hence processing slowdown, but also an increase

in incidents reporting job failures due to SSD outages. Currently,

to avoid the SSD shortage, we need to either cap the number of

containers running on each machine (thus wasting expensive CPU

and memory resources)
1
, or scale the CPU and memory together

with the temporary storage in the newer SKUs.

2. Large jobs are prone to longer re-starting time in case of
failures. Figure 2 (right) shows the failure rates of jobs with in-

creasing runtimes. We observe that even though a majority of the

1
Alternate solution could be to make YARN scheduler aware of the SSD utilization.

However, additional parameters are not only harder to tune cluster-wide but also

increase the scheduling overhead, which could translate into high costs at scale.

2505

https://doi.org/10.14778/3476249.3476298
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476298


0 500 1000 1500 2000

SSD Available Space (GB)

0.0

0.5

1.0

E
C

D
F

SKU 1

SKU 2

SKU 3

SKU 4

0 100 200

Job Runtime (min)

0.00

0.05

P
D

F

0.02

0.04

F
ai

lu
re

R
at

e

Figure 2: The Empirical Cumulative Density Function
(ECDF) for SSD usage (left) and job failure rate with respect
to job runtime and the probability density function (PDF) of
job runtime distribution (right).

jobs finish within 20 minutes, the failure rates in larger jobs could

range as high as 5%. Network/communication failures, changes

in cluster conditions, transient system behavior, and user errors

are some of the common reasons for job failures in Cosmos. Even

though Cosmos already provides a lineage-based mechanism [60]

for coping with task failures, improving resiliency to job failures

and reducing recovery time are very important, especially as jobs

and workloads scale.

3. Large jobs end up havingworse query optimizer estimates.
Errors in cardinality propagate exponentially [36, 39], and hence

complex jobs are more likely to produce poor query plans. A recent

trend [31, 54] suggests to re-optimize plans adaptively during job

execution, but collecting statistics on-the-fly and on distributed in-

termediate results is highly not trivial and requires a major overhaul

of the runtime system.

Checkpointing and its challenges. The above problems can be

solved by “decomposing” large jobs into smaller ones that are sep-

arated by persistent (e.g., with 3-way replication) checkpoints on

durable global storage. This will allow, for instance, to (1) free up

intermediate data on hotspots even before the job completes; (2)

fast restart failed jobs from the previous state; (3) collect statistics

on the checkpoints and re-optimize large jobs into smaller ones

with better estimates; and (4) reduce intermediate data in local

storage to avoid wasting resources in newer SKUs. Prior check-

pointing approaches include gathering statistics at execution time

to dynamically select when to checkpoint [14, 46, 57], however,

they require additional dynamic components that are not easy to

implement reliably in large production systems such as Cosmos.

Alternatively, compile-time approaches use estimates to propose

optimal checkpoints during query optimization [10, 52, 58]. How-

ever, this requires accurate cost estimates, which is challenging

since query optimizer estimates are often off by several orders of

magnitudes [16, 28, 47], and even learned approaches are good

for only relative plan comparisons [34, 35, 40] while still being

significantly off in absolute values. Furthermore, all previous check-

pointing approaches considered relatively small tree-shaped plans,

whereas modern big data systems like SCOPE easily have complex

Direct Acyclic Graphs (DAGs) with thousands of operators [24].

Not to mention, we need a generalized framework that can make

checkpointing decisions on these DAGs for different scenarios with

different objectives and constraints.

Introducing Phoebe. In this paper, we present Phoebe, a learning-

based checkpointing optimizer for determining, at the compile-time,

the decomposition (or the “cuts”) of large job graphs in big data

workloads. Phoebe builds upon the state-of-the-art CLEO [47] cost

models and fine-tunes its operator-level predictions with historical

statistics from past executions. This is possible since production

big data workloads are often recurrent, e.g., > 70% in Cosmos [25].

Furthermore, checkpointing decisions only require cost predictions

at stage boundaries (i.e., a set of operators that process a partition of

data on a given node), which are precise since stages get executed

with physical boundaries, thus making the fine-tuning approach

highly effective. Phoebe applies a similar fine-tuning when pre-

dicting the time to live (TTL) for the output of each stage, which

is needed to estimate how long the data lives on temporary stor-

age. Phoebe uses a job runtime simulator and then fine-tunes its

estimates with historical TTL of stage outputs.

Apart from cost models, Phoebe also introduces a scalable heuris-

tics based checkpointing algorithm, that (1) can scale to millions of

jobs in Cosmos workload; (2) it is two orders of magnitude faster

than the optimal Integer Programming (IP) approach; and (3) yet

strikingly close to the optimal in meeting the objective value. Fi-

nally, to the best of our knowledge, Phoebe is the first checkpointing

framework that supports multiple objectives and constraints, and

hence could be used in several different scenarios.

To summarize, we make the following key contributions:

• We present Phoebe, a learning-based system that uses past

workloads formaking checkpoint decisions over future queries

in big data workloads. (Section 3)

• We describe accurate stage-wise cost predictors for stage

output size, stage runtime, and stage output TTL by fine-

tuning over historical statistics seen in the past. (Section 4)

• We introduce a scalable checkpoint optimization algorithm

for large query DAGs and global constraints over hundreds

of thousands of jobs, that can support several different check-

pointing scenarios. (Section 5)

• We evaluate Phoebe over large production Cosmos work-

loads, and show how the various components contribute

towards picking good checkpoints as well as the involved

trade-offs. Our results show that Phoebe can free more than

70% of the local storage on hotspots, and reduce the recovery

time for failed jobs by 64% on average, while increasing job

latency by less than 3%. (Section 6)

Below we first provide a background on Cosmos and SCOPE

before presenting each of our contributions.

2 BACKGROUND
Cosmos is the state-of-the-art big data analytics platform at Mi-

crosoft. It consists of hundreds of thousands of machines exe-

cuting hundreds of thousands of jobs per day [42, 45]. Cosmos

users submit their analytical jobs using SCOPE [9, 62], a SQL-like

data flow dialect. SCOPE jobs are compiled into a Direct Acyclic

Graph (DAG) of stages which in turn are executed in parallel by

a YARN-based scheduler [13]. Figure 3 shows the execution plan

for a 7-stage SCOPE job, with each rectangle representing a stage.

Within a stage, there can be multiple operators, such as Extract,
Filter, etc., chained together. Each stage is packed into a task
that runs in parallel on different data partitions on different ma-

chines. During the execution, users can monitor the progress of

each stage (green means finished, blue means waiting, and white

means not started). Based on the execution dependency, we call

the dependee an upstream stage and the dependent a downstream

2506



Views.ss

SV4 Extract SV1 Extract Partition

SV5 Aggregate

SV6 Extract Combine Split SV3 Aggregate

SV7 Aggregate

Empty Input

Summary.ss

Overlap.ss

SV2 Aggregate Split

200 Tasks 325 Tasks

30 Tasks 30 Tasks

30 Tasks 30 Tasks

30 Tasks

Figure 3: A job execution graph in SCOPE and one potential
checkpoint decision (horizontal line).

stage. For instance, stage SV2_Aggregate_Split in Figure 3 is

an upstream stage of SV3_Aggregate and a downstream stage of

SV1_Extract_Partition. An upstream stage usually (but not al-

ways) finishes before its downstream stage. When a stage finishes,

its output will be saved to the local SSDs of each server, which we

refer to as Temp Data Storage in the rest of the paper. Cosmos emits

telemetry data recording not only the detailed execution plan for

every single job, but also the schedule for every stage, its execution

time and output/input size, type of operators involved, etc.

Given the motivation to create persistent checkpoints, we want

to decompose a job execution graph by selecting a set of stages for

checkpointing, and redirecting their outputs to global HDD storage

with 3 replicas. We refer to these selected stages as checkpoint
stages.We want to select the checkpoint stages carefully such that the
objective (e.g., minimizing temp storage load) could be met, while
constraining the global storage costs. Finding the optimal checkpoint

stages is similar to decomposing the execution plan and finding

a cut in the graph. The dashed black line in Figure 3 illustrates

an example cut in the execution graph for checkpoint selection.

When we select Stages SV_2 and SV_5 as the checkpoint stages, we

need to save the their outputs to global persistent stores. The space

needed for the global store is proportional to the sum of the output

sizes of Stages SV_2 and SV_5.
Objectives such as minimizing the overall temp data storage of

all jobs, or minimizing the recovery/restart time for a failed job,

depend on the time a job lives 𝑡𝑢 after each stage𝑢, while the global

storage constraints depend on the output size 𝑜𝑢 of each stage.

Furthermore, 𝑡𝑢 , is a function of the runtime, 𝑟𝑢 , of all stages in the

execution graph, i.e., 𝑡𝑢 = 𝑓 (𝑟1, 𝑟2, ...𝑟𝑘 ). Accurate estimations of 𝑜𝑢 ,

𝑟𝑢 , and 𝑡𝑢 are therefore crucial for a good checkpoint optimization.

In the following sections, we first present an overview of Phoebe,

then we will describe the three ML models used for stage-wise costs

(𝑜𝑢 and 𝑟𝑢 ) and time-to-live predictions (𝑡𝑢 ), respectively.

3 PHOEBE OVERVIEW
In this section we give an overview of Phoebe and highlight the de-

sign choices we have made. As discussed in the previous section, to

determine the optimal cut(s) of an execution graph, it is important to

estimate the output size, the runtime, and the time-to-live for each

stage. Unfortunately, the estimates the query optimizer in big data

systems are off by orders of magnitude [24], due to (1) large query

execution DAGs where the errors propagate exponentially [36, 43];

(2) prevalent use of custom user-defined functions that are hard to

analyze [56]; (3) recent works have exploited workload patterns to

learn models for improving the cardinality estimates [16, 28, 56],

but still these learned estimates are not accurate enough in abso-

lute values; and (4) the presence of both structured and unstruc-

tured input data [51]. Problem: state-of-the-art cardinality estimation
approaches are not good enough for predicting actual output sizes.
Design choice: Phoebe augments state-of-the-art learned cardinalities
(i.e., CLEO [47]) by focusing on recurring jobs and exploiting historical
statistics to instance-optimize the cardinality predictors.

Previous work on estimating cardinalities focus on improving

the query optimizer estimates at the operator level. For checkpoint-

ing, however, we need to: (1) estimate the costs at the stage-level,

each consisting of multiple operators executing on a task in the

same container; (2) operators within a stage could be pipelined in

different ways when scheduled on distributed tasks, which makes it

non-trivial to combine individual operator costs into stage costs; (3)

stage outputs are persistent for the full duration of the job, therefore

to estimate the storage costs we need to take into account this tem-

poral dimension. Problem: cardinality estimates at the operator level
need to be aggregated at the stage level and augmented with a time
dimension in order to properly model the storage cost. Design choice:
Phoebe generates stage-level estimates starting from the operator-level
one, and adds a predictor for the time-to-live of each stage.

SCOPE-like big data engines have query plans that are DAGs of

operators, not trees. Furthermore, Scope plans are complex: in our

production workloads we have plans easily reaching thousands of

operators. Prior works (e.g., MCSN [28], DeepDB [19], NEO [34],

NeuroCard [59], TBCNN [37], and [35, 40]) suggest to use DNNs

to “learn” the encoding of relatively simple query structures and

mapped each operator to neural unit(s). Problem: Mapping Scope
complex plans into deep neural networks results in severe gradient
explosion or vanishing problems [18]. Design choice: Phoebe captures
the complex structure of big data query execution DAGs using a sched-
ule simulator. Therefore, in this work, instead of a full black-box

approach, we combine the existing work of cardinality estimation

with an explainable simulation process, which is a judicious mix-

ture of domain knowledge and principled data-science that leads

to optimal results tailored to our complex production workloads.

The checkpoint optimizer (Section 5) uses the above estimates to

make the checkpoint decisions. Problem: Production checkpointing
applications may have different objectives while the traditional check-
pointing frameworks are rigid. Design choice: Phoebe checkpointing
algorithm is based on a “graph cut” algorithm that is adaptive to
different objectives and constraints based on the specific application.

Figure 4 shows the Phoebe architecture that is integrated with

an already deployed workload optimization platform, namely Pere-

grine [22]. Phoebe consists of the following three modules:

(1) The stage cost models take as input the aggregated features

at the stage level and uses machine learning methods to predict the

duration of each stage, which is measured by the average execution
time for all the tasks of the corresponding stage. Likewise, we also

learn models to predict the output size of each stage, i.e., the size

of the output of the last operator in the stage.

(2) The time-to-live (TTL) estimator consists of two steps. First,
a job runtime simulator infers the start/end times for each stage

based on the job execution graph. We assume a stage can only start

once all its upstream stages have finished. TTL can be calculated

2507



Query Compiler Query Optimizer Job Scheduler Job Manager

Checkpoint 
Models

Training 
Data

Checkpoint 
Optimizer

Optimize Job 
Graph Cuts

Optimize Global 
Storage Constraints

Job Runtime Simulator

Stage TTL Predictor

Stage Execution 
Time Predictor

Stage Output 
Size Predictor

Cost Estimators

TTL Estimator

Phoebe

Analytical Query Engine (SCOPE)

Telemetry
Feedback

W
or

kl
oa

d 
In

sig
ht

s S
er

vi
ce

W
or

kl
oa

d 
Re

po
sit

or
y

Figure 4: Phoebe architecture and its integration within the
workload optimizer in SCOPE.

as the time interval between the estimated stage end time to the

estimated job end time. Similar to model stacking, we use a meta-

learning model to further improve the TTL prediction from the

simulator, i.e., we take the estimated TTL and the estimated time

from start (TFS, defined as the time interval from the job start time

to the start time of a stage) from the simulator, and use another

machine learning model to generate the final TTL prediction.

(3) The checkpoint optimizer uses as input the previous two

modules, namely the estimated TTL and the output size of each

stage, and selects the optimal set of global checkpoints given a par-

ticular objective function. To reduce the computation time for large

workload sizes and to apply the storage constraints dynamically at

runtime, we introduce a two-phase approach to find the graph cuts

and apply the storage constraint separately.

For a new job, the SCOPE compiler makes a call to the Workload

Insight Service [22], determines the checkpoint stages, modifies

the query plan for materialization (similar as in CloudViews [23]),

and sends the information to the job manager, which takes care of

checkpointing those stages to the global store. The telemetry data

from the query engine is collected into a workload repository and

later used by Phoebe to re-train the models.

4 STAGE-LEVEL PREDICTORS
In this section, we discuss the stage-level predictors, namely the

predictors for execution time and output size (Section 4.1) and the

predictor for TTL (Section 4.2).

4.1 Execution Time & Output Size Estimators
4.1.1 Input Features. Cosmos implements a state-of-the-art query

optimizer and learned cost models, CLEO [47]. CLEO generates

a collection of cost models, one for each common sub-graph in

the plans. Each sub-graph corresponds to the same root physical

operator (e.g., Filter) and all upstream operators (e.g., Scan). The
rationale is that cloud workloads are quite diverse in nature, and his-

torically the one-fits-all models have failed to improve the estimated

costs. CLEO [47] has proved to have 2 to 3 orders of magnitude

Table 1: Cost model features

Feature Group Feature Name Feature De-

scription

Query Optimizer

Features

Estimated Cost, Estimated Input
Cardinality, Estimated Exclusive
Cost, Estimated Cardinality for

the last operator of the stage

Numeric fea-

tures from the

optimizer’s

internal infor-

mation

Historic Statistics the Exclusive Time and the Out-
put Size for the job template

and operator combination

The historic

average of the

statistics

Normalized File

Path/Job Name

Norm Job Name, Norm Input
Name

Text features

more accurate than existing approaches. In this work, we leverage

CLEO and extend it in three ways.

(1) We use CLEO operator-level features as input to generate stage-

level estimates. Stage-level estimates do not correspond to any sub-

graphs, but they are estimates of all the operators combined into

a stage by the SCOPE optimizer. These input features are directly

accessible from the SCOPE optimizer.

(2) We use historical data coming from the previous occurrences

of the recurrent job to instance-optimize the predictors. In Cosmos,

even with a large number of recurrent jobs, the parameters, inputs

and execution plan can vary significantly over time. Therefore, it is

important to not only capture repetitive patterns but also leverage

the specific context of each of the stages in the workload.

(3) Finally, the input file paths and the job names often preserve

information of file type, or locations and can be used as text features.

For instance, a log file with file names including “log” usually
consists of raw text in string format, which makes it more time-

consuming to process compared to input with an ending of *.ss
(structured steam [51], a SCOPE internal file format).

In summary, we constructed three groups of features as shown

in Table 1. As we will see in Section 6.1, it is the combination of

these input feature sets that yield the best prediction accuracy.

4.1.2 Model Implementation. NimbusML [12] is an open-source

python package for ML.NET [1]. We tried different ML learners

from NimbusML (e.g., linear regression, ensemble regression, etc.)

and found that the LightGBM learner [27] is the best in terms of

prediction accuracy for our use case. We developed two groups of

models, each of them using only the non-textual features (i.e., query

optimizer features and historic statistics): (1) General model, i.e.,
one model for all stages; and (2) Stage-type specific model. In
fact, we observe that stages can be divided by their type based on the
operators involved. Similar to CLEO [47] where the model is sub-

graph specific, the stage-type corresponds to a unique set of (usually

one or two) operators forming the stage, e.g., an Extract_Split
stage has a Process operator followed by a Split operator. In

the production workload used in this paper, we observed 33 stage

types. We therefore train stage-type specific models, each with

more homogeneous data. The stage-type specific models capture

the heterogeneity of runtime variation across different combina-

tions of operators. Given that we only select recurrent jobs for

the checkpoint mechanism, it is desirable for the cost model to

“overfitted” the selected recurrent jobs.

2508



To leverage text features such as Norm Input Name and the Norm
Job Name where simple One Hot Encoding [6] is not possible, we

trained a customized word embedding using a language model [5]

and integrated it with another DNN model with 2 hidden layers to

predict the final targets as a benchmark. We host the end-to-end

model training process on Azure ML for better experiment tracking

and model archiving [11].

4.2 Time-to-Live Estimator
The time-to-live (TTL) estimator predicts the average lifetime of

the intermediate output of each stage, defined as the time interval

from the average end time of all tasks in the corresponding stage

to the end time of the job. This is different from the estimation at

the sub-tree/sub-query level because the TTL can be impacted by

operators not included in the sub-tree which determine the job end

time. Instead of training a DNN model to capture the complex de-

pendency structure between stages (as in [34, 35, 40]), we introduce

a simple schedule simulator to mimic the job execution process

in Cosmos. The TTL estimator consists of two steps. First, a job

runtime simulator takes as input (1) the stage execution time (i.e.,

the average task latency) estimated by the stage execution time

predictor from the previous section; and (2) the execution graph

to simulate the job execution process. Second, we develop another

machine learning model to further improve the TTL prediction

based on the simulator output. In the following sections, we discuss

each step in more detail.

4.2.1 Job Runtime Simulator. The job runtime simulator estimates

the start and end time of each stage based on the predictions of

the stage execution time and the dependency relationship in the

execution graph. To simplify the modeling, we assume strict stage

boundaries, i.e., each stage can only start after all of its upstream

stages have finished. A topological sorting [55] algorithm sorts all

stages in a linear order based on the execution graph
2
, such that an

upstream stage executes before a downstream stage. The schedule

simulator uses the linear ordering of the stages to estimate the

stages’ start and end times. For each stage, the simulator calculates

its start time based on the maximum end time of all its upstream

stages, and estimates its end time based on the estimated stage

execution time from the stage execution time predictor.

Algorithm 1 shows the detailed schedule simulator process. Based

on the linear ordering from the topological sorting algorithm, we

schedule stages sequentially from the front of the ordered stack

(from position 0). The TTL can be calculated as the time interval

between the stage end time and the job end time.

4.2.2 Fine-tuning. While the simulator assumes a strict stage bound-

ary and captures the dependency between stages, it doesn’t simulate

the pipelined operation. In Cosmos, for some stage types, tasks can

start before all the tasks of upstream stages finish. Strict stage

boundary assumption is helpful for computation efficiency; how-

ever, it potentially results in overestimating the TTL. Therefore,

we create an ML model to systematically adjust for this bias by

stage-type. We observed that some of the stage types usually have

longer or shorter TTL, such as Extract, that always starts before all
the other stages thus with longer TTL or an Aggregate stage that

2
This is very similar to how the SCOPE job manager schedules tasks in Cosmos.

Algorithm 1: ScheduleSimulator
Input :execution graph𝐺 , ordered stack 𝑅, estimated execution

time𝑇

Output : start time for stages 𝐷 [𝑠 ]
end time for stages 𝑃 [𝑠 ]

Initialize :𝐷 [𝑠 ] =Null, ∀𝑠 ∈ 𝑅
𝑃 [𝑠 ] =Null, ∀𝑠 ∈ 𝑅

foreach stage 𝑠 ∈ 𝑅 do
MaxUpstreamEndTime = 0

if 𝑠 .UpstreamStages!= Null then
foreach upstream ∈ 𝑠.UpstreamStages do

MaxUpstreamEndTime =

max

{︁
MaxUpstreamEndTime, 𝑃 [upstream]

}︁
𝐷 [𝑠 ] = MaxUpstreamEndTime

𝑃 [𝑠 ] = 𝐷 [𝑠 ] +𝑇 [𝑠 ]
return 𝐷, 𝑃

Figure 5: Graph cut in the integer programming.

tends to be placed towards the end of the job thus has shorter TTL.

Therefore, we develop machine learning models per stage-type to

have different adjustment mechanisms to achieve better accuracy.

The input feature for the stacking model includes the estimated

TTL from the simulator as well as the time from start (TFS), which

is defined as the time interval between the start time of the job to

the start time of the corresponding stage. Those two values define

the “position” of this stage throughout the execution of the job.

5 CHECKPOINT OPTIMIZER
We now describe the checkpoint optimizer. Similar to Flint [46], we

only consider a set of “frontiers" of the program’s lineage graph. The

checkpointing problem can then be naturally mapped to finding a

cut in the execution graph. We categorize stages in a job execution

graph into three groups (with respect to each cut):

(1) Group I: the checkpoint stages, i.e., stages that need to persist

their outputs to the global storage;

(2) Group II: stages that have finished executing before the

checkpoint stages; and

(3) Group III: stages that will execute after the checkpoint stages.

Phoebe’s checkpointing optimizer is extensible: it can be tuned

using different objective functions based on different checkpointing

applications, as described earlier in Section 1. In particular, we

discuss two of the applications in this section, namely freeing up

temp data storage on hotspots and quickly restarting failed jobs.

Below, we first show an IP formulation of the single-cut checkpoint

problem. Then we show how it can be extended for multiple cuts.

2509




















