
Auto-Pipeline: Synthesizing Complex Data Pipelines By-Target
Using Reinforcement Learning and Search

Junwen Yang
University of Chicago
junwen@uchicago.edu

Yeye He
Microsoft Research

yeyehe@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

ABSTRACT

Recent work has made significant progress in helping users to auto-

mate single data preparation steps, such as string-transformations

and table-manipulation operators (e.g., Join, GroupBy, Pivot, etc.).

We in this work propose to automate multiple such steps end-

to-end, by synthesizing complex data-pipelines with both string-

transformations and table-manipulation operators.

We propose a novel by-target paradigm that allows users to

easily specify the desired pipeline, which is a significant departure

from the traditional by-example paradigm. Using by-target, users

would provide input tables (e.g., csv or json files), and point us to

a łtarget tablež (e.g., an existing database table or BI dashboard)

to demonstrate how the output from the desired pipeline would

schematically łlook likež. While the problem is seemingly under-

specified, our unique insight is that implicit table constraints such

as FDs and keys can be exploited to significantly constrain the space

and make the problem tractable. We develop an Auto-Pipeline

system that learns to synthesize pipelines using deep reinforcement-

learning (DRL) and search. Experiments using a benchmark of

700 real pipelines crawled from GitHub and commercial vendors

suggest that Auto-Pipeline can successfully synthesize around

70% of complex pipelines with up to 10 steps.

PVLDB Reference Format:

Junwen Yang, Yeye He, and Surajit Chaudhuri. Auto-Pipeline: Synthesizing

Complex Data Pipelines By-Target Using Reinforcement Learning and

Search. PVLDB, 14(11): 2563 - 2575, 2021.

doi:10.14778/3476249.3476303

1 INTRODUCTION

Data preparation, sometimes also known as data wrangling, refers

to the process of building sequences of table-manipulation steps

(e.g., Transform, Join, Pivot, etc.), to bring raw data into a form

that is ready for downstream applications (e.g., BI or ML). The end-

result of data preparation is often a workflow or data-pipeline with

a sequence of these steps, which are often then operationalized as

recurring jobs in production.

It has been widely reported that business analysts and data sci-

entists spend a significant fraction of their time on data preparation

tasks (some report numbers as high as 80% [23, 24]). Accordingly,

Gartner calls data preparation łthe most time-consuming step in

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 11 ISSN 2150-8097.
doi:10.14778/3476249.3476303

analyticsž [45]. This is particularly challenging for less-technical

users, who increasingly need to prepare data themselves today.

In response, significant progress has been made in the research

community toward helping users author individual data preparation

steps in data-pipelines. Notable efforts include automated data

transformations (e.g., [17, 27, 30, 32]), table-joins (e.g., [38, 53]),

and table-restructuring (e.g., [18, 34, 52]), etc.

In commercial systems, while pipelines are traditionally built

manually (e.g., using drag-and-drop tools to build ETL pipelines),

leading vendors have adopted recent advances in research and

released features that make it really easy for users to build key steps

in pipelines (e.g., automated transformation-by-example has been

used in Excel [12], Power Query [6], and Trifacta [7]; automated

join has been used in Tableau [15] and Trifacta [16], etc.).

Automating multi-step pipeline-building. While assisting

users to build single data-prep steps (e.g., Transform, Join, etc.) is

great progress, not much attention has been given to the more

ambitious goal of automating multi-step pipeline-building end-to-

end. We argue that building on top of recent success in automating

single-steps such as [52], synthesizing multi-step pipelines has be-

come feasible and will be an area that warrants more attention.

The key challenge in multi-step pipeline-synthesis is to allow

users to easily specify the desired pipelines. Existing methods use

the łby-examplež paradigm (e.g., SQL-by-example [51] and Query-

by-output [50]), which unfortunately requires a matching pair of

input/output tables to be provided in order for the desired program

(e.g., in SQL) to be synthesized. While by-example is easy-to-use

for row-to-row string transformation [27, 30] (because users only

need to type 2-3 example values), for table-to-table transformations

this paradigm would unfortunately require users to manually enter

an entire output table, which is not only significant overhead, but

can also be infeasible for users to provide in many cases (e.g., when

complex aggregations are required on large tables).

Furthermore, existing by-example approaches largely resort to

some forms of exhaustive search, which unfortunately limits the

richness of the operators they can support, also making these

approaches frequently fail or time-out when synthesizing real

pipelines with large amounts of data.

Newparadigm: łby-targetž pipeline-synthesis. In this work,

we propose a new paradigm for multi-step pipeline-synthesis called

by-target. We show that a łtargetž is easy for users to provide, yet

it still provides a sufficient specification for desired pipelines to be

synthesized. We emphasize that this novel paradigm is not studied

before, and is a significant departure from the by-example approach.

Our key observation here is that a common usage pattern in

pipeline-building (e.g., ETL) is to onboard new data files, such as

sales data from a new store/region/time-period, etc., that are of-

ten formatted differently. In such scenarios, users typically have a

2563

https://doi.org/10.14778/3476249.3476303
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476249.3476303

Figure 1: An example of pipeline-by-target. (1-3): Input ta-

bles from different time-periods/store-locations often have

different formats and schema. (1): A pipeline previously

built on one chunk of the input to produce database tables or

BI dashboards. (2, 3): Instead of manually building pipelines

for new chunks of input, we try to synthesize these pipelines

by asking users to point us to a fuzzy łtargetž that can be (4)

an existing table or (5) an existing visualization.

precise łtargetž in mind, such as an existing data-warehouse table,

where the goal is to bring the new data into a form that łlooks

likež the existing target table (so that the new data can be inte-

grated). Similarly, in building visualizations and dashboards for

data analytics (e.g., in Tableau or Power BI), users can be inspired

by an existing visualization, and want to turn their raw data into

a visualization that łlooks likež the given target visualization (in

which case we can target the underlying table of the visualization).

Figure 1 illustrates the process visually. In this example, a large

retailer has sales data coming from stores in different geographi-

cal regions and across different time-periods. Some version of the

desired pipeline has been built previously ś the top row of the

figure shows a chunk of data for łUS-Store-1ž and ł2019-Decž, and

for this chunk there may already be a legacy script/pipeline from

IT that produces a database table or a dashboard. However, as is

often the case, new chunks of data for subsequent time-periods or

new stores need to be brought on-board, which however may have

different formats/schema (e.g., JSON vs. CSV, pivoted vs. relational,

missing/extra columns, etc.), because they are from different point-

of-sales systems or sales channels. Building a new pipelinemanually

for each such łchunkž (shown in the second/third row in the figure)

is laborious, and especially challenging for less-technical users who

may not have the skills to build such pipelines from scratch. Today

these less-technical users often have to submit a ticket, and wait

until IT has the bandwidth to serve their needs.

The aspirational question we ask, is whether pipelines can be

synthesized automatically in such settings ś if users could point us

to a łtargetž that schematically demonstrates how the output should

łlook likež, as shown with green arrows in Figure 1 that point to

existing database tables or visualizations. Concretely, łtargetsž can

be specified like shown in Figure 2, where users could right-click an

existing database table and select the option to łappend data to the

tablež, or right-click an existing visualization and select łcreate a

dashboard like thisž, to easily trigger a pipeline synthesis process.

Unlike by-example synthesis, łtargetž used in this new paradigm

is only as a fuzzy illustration of user intent. Surprisingly, we show

that this seemingly imprecise specification is in fact often sufficient

to uniquely determine the desired pipeline ś our insight is that im-

plicit constraints such as FDs and Keys discovered from the target

table are often sufficient to constrain the space of possible pipelines.

This is a key property overlooked thus-far by existing work, which

Figure 2: To trigger by-target synthesis, users only need to

(Left): pick an existing database table, right click and select

łAppend data to this tablež, or (Right): point to a visualiza-

tion, right click and select łCreate a dashboard like thisž.

we argue can be the key to make pipeline-synthesis practical (be-

cause fuzzy łtargetsž are a lot easier for users to provide).

Search and RL-based Synthesis. The problem of synthesizing

multi-step pipelines is clearly challenging, as the number of candi-

date pipelines grows exponentially in the number of steps, which

is prohibitively large very quickly (reaching 1020 within 5 steps on

typical tables having 10 columns).

In order to make synthesis tractable, we formalize the end-to-end

synthesis as an optimization problem, and develop a search-based

algorithm Auto-Pipeline-Search that considers a diverse array of

factors to best prioritize search over the most promising candidates.

We also design a deep reinforcement-learning (DRL) based syn-

thesis algorithm Auto-Pipeline-RL, which łlearnsž to synthesize

pipelines using large collections of real pipelines. Drawing inspi-

ration from the success of using łself-playž to train game-playing

agents like AlphaGo [47] and Atari [40], we use łself-synthesisž to

train an agent by asking it to try to synthesize real pipelines, and

rewarding it when it succeeds. It turns out that the RL-based synthe-

sis can learn to synthesize fairly quickly, and slightly outperforms

hand-crafted search using Auto-Pipeline-Search.

2 MULTI-STEP BY-TARGET SYNTHESIS

We describe the by-target synthesis problem in this section, and

we will start with preliminaries.

2.1 Preliminary: Pipelines and Operators

Data-pipelines. Data pipelines are ubiquitous today, to transform

raw data into suitable formats for downstream processing. Step

(0)-(3) of Figure 3 shows a conceptual pipeline using the Titanic

table as input, which is a popular Kaggle task to predict which

passengers survived [4]. The pipeline in this case performs (1) a

GroupBy on the Gender column to compute Avg-Survived by Gender,

and then (2) a Join of the result with the input table on Gender, so

that in (3) Avg-Survived becomes a useful feature for predictions.

Today pipelines like this are built by both experts (e.g., developers

and data-scientists) and less-technical users (e.g., end-users in tools

like Power Query and Tableau Prep).

Expert users typically build pipelines using code/script, with Pan-

das [14] in Python being particularly popular for table manipulation.

Figure 4(a) shows an example pipeline written in Pandas that corre-

sponds to the same steps of Figure 3. Today a lot of these pipelines

are written in Jupyter Notebooks [13] and are publicly available

online. We crawled over 4M such notebooks on GitHub [52], from

which we can extract large quantities of real data pipelines.

Less-technical users also increasingly need to build pipelines

themselves today, typically using drag-and-drop tools (e.g., Power-

Query, Informatica, Azure Data Factory, etc.) to manually specify

2564

Passenger Gender Fare-Class Survived?
A Female 1st 1
B Male 2nd 0
C Female 3rd 1
D Male 1st 0

Input: Titanic (a popular Kaggle challenge)

Gender Avg-Survived?
Female 0.731
Male 0.422

GroupBy (Gender)
Average(Survived)

Passenger Gender Fare-Class Survived? Avg-Survived
A Female 1st 1 0.731
B Male 2nd 0 0.422
C Female 3rd 1 0.731
D Male 1st 0 0.422Join (Gender)

Key: {Passenger}

FD: {Gender => Avg-Survived}

“Target” Output (from a previous pipeline) Implicit constraints discovered from target output

1

0

2

3 4

Passenger Gender Fare-Class Survived? Avg-Survived
E Male 3rd 0 0.422
F Male 3rd 0 0.422
G Female 2nd 0 0.731
H Female 3rd 1 0.731

6

Synthesized
pipeline

5
Passenger Gender Fare-Class Survived?

E Male 3rd 0
F Male 3rd 0
G Female 2nd 0
H Female 3rd 1

New Input: (e.g., a different subset)

“Soft” (plausible) column-mapping candidates, between
columns in synthesized output and columns in target output

Constraints from synthesized output are the same
as constraint from the target output above

7

Key: {Passenger}

FD: {Gender => Avg-Survived}

Figure 3: An example pipeline to show why łby-targetž provides a sufficient specification. Given (0) an input Titanic table

from Kaggle to predict passenger survivals, a manually-authored pipeline performs (1) a GroupBy on łGenderž to compute

łAvg-Survivedž by łGenderž, and then (2) Joins it back on łGenderž. Imagine that users give the output table (3) as the łtargetž,

we can discover constraints such as (4) Key:{łPassengerž} and FD: {łGenderž→ łAvg-Survivedž}. (5) For a new input table (with a

different set of passengers) and given (3) as the łtargetž, intuitively a correctly synthesized pipeline in (6) should have the

same FD/Key constraints that match the ones from the target table (3), like shown in (7).

pipelines step-by-step. Figure 4(b) shows an example pipeline with

the same steps as Figure 3, but built in a visual drag-and-drop tool,

which are more accessible to less-technical non-programmer users.

We note that the two pipelines in Figure 4 are equivalent, because

they invoke the same sequence of operators (a GroupBy followed

by Join). We introduce the notion of operators below.

Operators. Conceptually, data-pipelines invoke sequences of

operators that broadly fall into two categories:

(1) Table-level operators: e.g., Join, Union, GroupBy, Pivot, Un-

pivot, etc. that manipulate tables. A subset of these operators are

considered in SQL-by-example [50, 51].

(2) String-level operators: e.g., Split, Substring, Concatenate, etc.,

that perform string-to-string transformations. These operators are

traditionally considered in transformation-by-example [29, 30].

In this work, we consider both classes of operators, since both

are common in pipelines. Figure 5 shows the operators we consider,

henceforth referred to as O. Because these operators are fairly

standard (e.g., the automation of individual operators are studied in

depth in a prior work [52]), we defer descriptions of these operators

to a full version of the paper [1].

Limitations.We note that expert users can write ad-hoc user-

defined functions (e.g., any python code) in their pipelines, which

are unfortunately intractable for program-synthesis even in simple

cases (e.g., PSPACE-hard for arithmetic functions) [22, 25], and are

thus not considered in our work. Similarly, we do not consider

row-level filtering because it is also intractable in general [50].

2.2 Problem: Multi-step By-target Synthesis

As illustrated in Figure 1, in our pipeline synthesis problem, we

are given as łtargetž an existing table 𝑇 𝑡𝑔𝑡 (e.g., a database table or

a dashboard), generated from a pipeline 𝐿 on a previous batch of

input tables T𝑖𝑛 = {𝑇1,𝑇2, . . .}, written as 𝑇 𝑡𝑔𝑡 = 𝐿(T𝑖𝑛).

As is often the case, new data files, denoted byˆ︁T𝑖𝑛 = {ˆ︁𝑇1,ˆ︁𝑇2, . . .},
have similar content but may have different schema and represen-

tations (e.g., because they come from a different store/region/time-

period, etc.). Users would want to bring ˆ︁T𝑖𝑛 onboard, but 𝐿 is no

longer applicable, and often also not accessible1.

1End-users wanting to build a łsimilarž pipeline targeting an existing

database-table/dashboard often do not have access to the original legacy

pipelines 𝐿 built by IT, due to discover-ability and permission issues. As

In this work, we ask the aspirational question of whether new

pipelines can be automatically synthesized, if users can point us

to the new input files ˆ︁T𝑖𝑛 and the target 𝑇 𝑡𝑔𝑡 , to schematically

demonstrate what output from a desired pipeline should łlook likež.

This by-target synthesis problem is defined as follows:

Definition 1. In by-target pipeline-synthesis, given input data
ˆ︁T𝑖𝑛 , and a target table 𝑇 𝑡𝑔𝑡 generated from related input T𝑖𝑛 that

schematically demonstrates the desired output, we need to synthe-

size a pipeline ˆ︁𝐿 using a predefined set of operators O, such that
ˆ︁𝑇𝑜 =

ˆ︁𝐿(ˆ︁T𝑖𝑛) produces the desired output.

Evaluate synthesized pipelines from by-target. Since one

may worry that a target-table 𝑇 𝑡𝑔𝑡 only provides a fuzzy specifi-

cation of the synthesis problem, we will start by discussing how a

by-target synthesis system can be systematically evaluated.

In traditional by-example synthesis (e.g., SQL-by-example [50,

51]), a pair of matching input/output tables (ˆ︁T𝑖𝑛 , ˆ︁𝑇𝑜) is provided as

input to synthesis algorithms (even though in practice ˆ︁𝑇𝑜 is hard
to come by). In such a setting, evaluating a synthesized program ˆ︁𝐿
often reduces to a simple check of whether the synthesized output
ˆ︁𝐿(ˆ︁T𝑖𝑛) is the same as ˆ︁𝑇𝑜 .

In by-target synthesis, we are given as input a pair of non-

matching tables (ˆ︁T𝑖𝑛 , 𝑇 𝑡𝑔𝑡), for which the same evaluation does

not apply. It turns out, however, that evaluation by-target synthe-

sis can be performed similarly, using what is analogous to łtest-

ingž/łtrainingž in Machine Learning.

Specifically, as illustrated in Figure 6, for each real pipeline 𝐿

authored by humans, we split the input tables used by 𝐿 50%/50%

into łtestingž and łtrainingž2. We treat the the first 50% as if they are

T𝑖𝑛 in by-target synthesis, and use the ground-truth pipeline 𝐿 to

generate the target output𝑇 𝑡𝑔𝑡 = 𝐿(T𝑖𝑛). We then use the remaining

50% as if they are ˆ︁T𝑖𝑛 , and feed the non-matching pair (ˆ︁T𝑖𝑛 , 𝑇 𝑡𝑔𝑡)
as input to by-target synthesis (circled in dash in Figure 6), so

such, to ensure generality, in this work we do not assume the original 𝐿 to

be available as reference to synthesize new pipelines (though we are clearly

more likely to succeed if the original 𝐿 is available).
2When there are multiple tables in a pipeline and Joins are required, we

split the largest input table (which is fact-table-like) to ensure that Joins do

not produce empty results.

2565

(a) A pipeline authored using Python Pandas

L

J

R

L

Step-0: Read input
Titanic.csv

Titanic_output.csv

Step-1: Group-by “Gender”
average “Survived”

Step-2: Join
back on “Gender”

R

Passenger Gender Fare-Class Avg-Survived

1 A Female 1st 0.731

2 B Male 2nd 0.422

3 C Female 3rd 0.731

4 D Male 1st 0.422

Results – Input Data - Output

(b) A pipeline authored in visual drag-and-drop
tool

Figure 4: Example pipelines corresponding to the same steps in Figure 3. (a): A pipeline built by data scientists using Python

Pandas in a Jupyter Notebook. (b): The same pipeline built by less-technical users using visual drag-and-drop tools.

Figure 5: Operators considered in by-target synthesis.

Figure 6: Evaluate by-target synthesis: Given a human-

authored pipeline 𝐿, we treat the first 50% of input data for 𝐿

as T𝑖𝑛 , to generate the target table𝑇 𝑡𝑔𝑡 = 𝐿(T𝑖𝑛). We then use

the remaining 50% of input as ˆ︁T𝑖𝑛 , which together with 𝑇 𝑡𝑔𝑡 ,

is fed into by-target synthesis to synthesize a new pipelineˆ︁𝐿.
The correctness of ˆ︁𝐿 can be verified on T𝑖𝑛 (held-out during

synthesis), by checking whether ˆ︁𝐿(T𝑖𝑛) ?
= 𝐿(T𝑖𝑛).

that a new pipeline ˆ︁𝐿 can be synthesized. The correctness of the

synthesized ˆ︁𝐿 can be verified on the first 50% data (T𝑖𝑛), which is

held-out during synthesis, by checking whether ˆ︁𝐿(T𝑖𝑛) ?
= 𝐿(T𝑖𝑛).

Note that because T𝑖𝑛 is held-out during synthesis (analogous to

hold-out test-data inML), and the original pipeline 𝐿 is also held-out,

the fact that we can łreproducež a synthesized ˆ︁𝐿 that has the same

effect as 𝐿 on the hold-out data T𝑖𝑛 ensures that the synthesized ˆ︁𝐿
from by-target is indeed what users want.3

Is by-target a sufficient specification? Even though by-target

synthesis can be systematically evaluated using a procedure anal-

ogous to train/test in ML, one may still wonder whether a non-

matching pair (ˆ︁T𝑖𝑛 ,𝑇 𝑡𝑔𝑡) in by-target synthesis provides a sufficient

specification for a desired pipeline to be synthesized. We show

that this seemingly imprecise specification is in fact sufficient in

3Note that we do not require ˆ︁𝐿 and 𝐿 to be identical at a syntactical-level,

because there are often semantically equivalent ways to rewrite a pipeline

(e.g., change of operator orders, or rewrite using an equivalent sequence).

most cases, by leveraging implicit constraints that we can discover

from 𝑇 𝑡𝑔𝑡 . We illustrate this using the following example.

Example 1. Figure 3 shows the conceptual steps of a simple

pipeline for the Titanic challenge [5]. Like we discussed in Sec-

tion 2.1, this particular pipeline computes (1) a GroupBy on the

Gender column to compute Avg-Survived by Gender, and then (2) a

Join on Gender to bring Avg-Survived as an additional feature into

the original input, like shown in (3).

In our setting of by-target synthesis, a different user is now given

a similar input table with a different set of passengers like shown in

(5). Without having access to the original pipeline, she points to (3)

as the target table to as a fuzzy demonstration of her desired output,

in order for by-target synthesis to produce the desired pipeline.

Our key insight is that in such cases, the desired pipeline can

be uniquely determined, by leveraging implicit constraints discov-

ered from the output table (3). Specifically, we can apply stan-

dard constraint-discovery techniques (e.g., [42]) to uncover two

constraints shown in (4): Key-column:{łPassengerž}, Functional-

dependency (FD): {łGenderž→ łAvg-Survivedž}.

When table (5) is used as the new input and table (3) is used as

the target, implicitly we want a synthesized pipeline (6) to follow

the same set of transformations in the pipeline that produces (3),

and as such the new output using table (5) as input should naturally

satisfy the same set of constraints. Namely, if we perform a column-

mapping between the table (3) and table (6), we can see that the

constraints discovered from these two tables, as shown in (4) and

(7), have direct one-to-one correspondence. If we need to recreate

these implicit constraints in table (3) in a synthesized pipeline, it

can be shown that the only pipeline with the fewest steps to satisfy

all these constraints is the aforementioned pipeline. (Others would

either miss one constraint, or require more steps, which are less

likely to be desired according to MDL and Occam’s Razor [26]). 4

In summary, our key insight is that leveraging implicit con-

straints can sufficiently constrain the synthesis problem. Our large-

scale evaluation on real pipelines (Section 5) confirms that most can

indeed be successfully synthesized using the by-target paradigm.

2.3 Synthesis Algorithm: Intuitive Sketch

We now give a sketch of how a synthesis algorithm may look like

before we formalize the problem.

4We note that while the synthesized pipeline in the example of Figure 3 is the same as
the original, there are many cases where synthesized pipelines are different from the
original, while still being semantically equivalent. We defer this to Section 5.4.

2566

Figure 7: A search graph for synthesis: from the start-node

(an empty pipeline) to the end-node (a synthesized pipeline),

each intermediate node represents a partial pipeline, and

each edge represents the act of adding one operator, which

leads to a new pipeline with one more operator.

Figure 7 gives an intuitive illustration of the synthesis process.

Each node here represents an intermediate state in the synthesis

process, which corresponds to a łpartial pipelinež. The starting state

(shown with a checkerboard pattern at the top-left) corresponds

to an empty pipeline ˆ︁𝐿 = {}, and the ending state (at bottom-right)

corresponds to a final synthesized pipeline ˆ︁𝐿 = {𝑂1,𝑂2, . . . 𝑂𝑛}.

From each state representing a partial pipeline, we can extend

the partial pipeline by one additional łstepž using some operator

𝑂 ∈ O in Figure 5, to move to a subsequent state. For example, from

the starting state ˆ︁𝐿 = {}, we can add different instantiations of op-

erators in O (e.g., different ways to apply GroupBy/Join/Pivot, etc.,

on given input tables), which lead to different one-step pipelines

(e.g., ˆ︁𝐿 = {GroupBy(table-1, column-1)}). This synthesis process

can then be visualized as traversing the search graph, until a satis-

factory end-state is reached (e.g., satisfying all implicit constraints).

It is clear from this intuitive sketch, however, that the search

space of possible pipelines is prohibitively large, because (1) the

number of possible pipelines grows exponentially with the number

of steps; and (2) even one individual step can be parameterized in

numerous ways ś e.g., a Join between two tables with |𝐶 | columns

each can in theory use any of the |𝐶 |2 column-pairs as the Join key

(the same is true for GroupBy/Pivot, etc.).

While we will defer a description of our solution to (1) above,

solving (2) is relatively straightforward because for each operator

(e.g., Join), we can leverage existing work (e.g., [52]) to accurately

predict the most likely way to parameterize the operator given

input tables (e.g., which columns to Join/GroupBy/Pivot, etc.).

Predict Single-Operator Parameters. Conceptually, for each

operator 𝑂 ∈ O, and given input tables 𝑇 , we need to predict the

likelihood of using parameter 𝑝 for 𝑂 in the context of 𝑇 , written

as 𝑃𝑇 (𝑂(𝑝)). For instance, for a Join between two given tables, we

need consider the characteristics of the tables to estimate which

columns will likely join (which is a Join parameter); similarly for

Unpivot, we need to consider input tables and predict which subset

of columns should Unpivot (also a parameter), etc.

For this reason, we build upon a prior technique called Auto-

Suggest [52], which learns from real data pipelines to predict the

likelihood of using parameters 𝑝 for each operator 𝑂 given input

tables 𝑇 , which is exactly 𝑃𝑇 (𝑂(𝑝)). In this work, we leverage [52]

and treat these 𝑃𝑇 (𝑂(𝑝)) as given, to better focus on the end-to-end

pipeline synthesis problem. We refer readers to [52] for details of

these single-operator predictions in the interest of space.

Optimization-based formulation. Given the probabilistic es-
timates of operator parameters 𝑃 (𝑂(𝑝)), and the fact that we want
to synthesize a pipeline that can satisfy all implicit constraints
(FD/Key), we formulate the synthesis as an optimization prob-

lem. Specifically, we want to find the łmost likelyž pipeline ˆ︁𝐿
consisting of a sequence of suitably parameterized operators ˆ︁𝐿 =

{𝑂1(𝑝1),𝑂2(𝑝2), . . .}
5, by maximizing the joint probabilities of these

operators 𝑂𝑖 (𝑝𝑖), under the constraints that output from ˆ︁𝐿 should
satisfy all implicit constraints. This problem, henceforth referred
to as PMPS (probability-maximizing pipeline synthesis), can be
written as follows:

(PMPS) argmax
ˆ︁𝐿

∏︂

𝑂𝑖 (𝑝𝑖)∈ˆ︁𝐿
𝑃 (𝑂𝑖 (𝑝𝑖)) (1)

s.t. FD(ˆ︁𝐿(ˆ︁T𝑖𝑛)) = FD(𝑇 𝑡𝑔𝑡) (2)

Key(ˆ︁𝐿(ˆ︁T𝑖𝑛)) = Key(𝑇 𝑡𝑔𝑡) (3)

Col-Map(ˆ︁𝐿(ˆ︁T𝑖𝑛),𝑇 𝑡𝑔𝑡) (4)

The objective function in Equation (1) states that we want to find

the most likely pipeline ˆ︁𝐿, or the one whose joint probability of all

single-step operator invocations is maximized. Equation (2) and (3)

state that when running the synthesized pipeline ˆ︁𝐿 on the given

input ˆ︁T𝑖𝑛 to get ˆ︁𝐿(ˆ︁T𝑖𝑛), the FD/Key constraints discovered from

𝑇 𝑡𝑔𝑡 should also be satisfied on ˆ︁𝐿(ˆ︁T𝑖𝑛). Finally Equation (4) states

that we should be able to łmapž columns from ˆ︁𝐿(ˆ︁T𝑖𝑛) to 𝑇 𝑡𝑔𝑡 , with
standard schema-mapping [44].

Example 2. We revisit Figure 3. Using [52], we estimate the

probabilities 𝑃 (𝑂(𝑝)) of the two steps in the pipeline (GroupBy

and Join) to be 0.4 and 0.8, respectively. Among all other possible

pipelines, this two-step pipeline maximizes the joint probability

(0.32) in Equation (1), while satisfying all FD/Key/column-mapping

constraints in Equation (2)-(4), which is thus the solution to PMPS.

3 SEARCH-BASED AUTO-PIPELINE

This section describes our synthesis using Auto-Pipeline-Search.

3.1 A High-level Overview

As discussed in Section 2.3, at a high level the synthesis process

can be seen as traversing a large search graph shown in Figure 7.

Because each node corresponds to a partial-pipeline, and each edge

corresponds to the act of adding one operator, each node that is

𝑑𝑒𝑝𝑡ℎ-steps away from the start-node would naturally correspond

to a partial-pipeline with 𝑑𝑒𝑝𝑡ℎ number of operators/steps.

Given the large search graph, it is natural to explore only łpromis-

ingž parts of the graph. We first describe such a strategy in a meta-

level synthesis algorithm shown in Algorithm 1 below, which uses

a form of beam search [41].

Algorithm 1 starts by initializing 𝑑𝑒𝑝𝑡ℎ = 0 to indicate that we

are at the start-node in Figure 7. The variable 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 stores all

łvalidž pipelines satisfying the constraints in PMPS (Equation (2)-

(4)), and is initialized as an empty set. The variable 𝑆𝑑𝑒𝑝𝑡ℎ corre-

sponds to all pipelines with 𝑑𝑒𝑝𝑡ℎ-steps that are actively explored

5 While pipelines are in general directed acyclic graphs (DAGs), they can
be serialized into sequences of invocations, thus the simplified notation.

2567

Algorithm 1 Synthesis: A meta-level synthesis algorithm

1: procedure Synthesis(ˆ︁T𝑖𝑛,𝑇 𝑡𝑔𝑡 ,O)

2: 𝑑𝑒𝑝𝑡ℎ ← 0, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← ∅

3: 𝑆𝑑𝑒𝑝𝑡ℎ ← {𝑒𝑚𝑝𝑡𝑦()} ⊲ #initialize an empty pipeline

4: while 𝑑𝑒𝑝𝑡ℎ <𝑚𝑎𝑥𝐷𝑒𝑝𝑡ℎ do

5: 𝑑𝑒𝑝𝑡ℎ ← 𝑑𝑒𝑝𝑡ℎ + 1

6: for each (𝐿 ∈ S𝑑𝑒𝑝𝑡ℎ−1,𝑂 ∈ O) do

7: 𝑆𝑑𝑒𝑝𝑡ℎ ← 𝑆𝑑𝑒𝑝𝑡ℎ ∪ AddOneStep(𝐿,𝑂)

8: 𝑆𝑑𝑒𝑝𝑡ℎ ← GetPromisingTopK(𝑆𝑑𝑒𝑝𝑡ℎ,𝑇
𝑡𝑔𝑡)

9: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ∪ VerifyCands(𝑆𝑑𝑒𝑝𝑡ℎ,𝑇
𝑡𝑔𝑡)

10: return GetFinalTopK(𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

in one loop iteration, and at line 3 we initialize it to a single place-

holder empty-pipeline, because it is the only 0-step pipeline and

we are still at the start-node of the search graph.

From line 4, we iteratively visit nodes that are 𝑑𝑒𝑝𝑡ℎ = {1, 2, . . .}

steps away from the start-node, which is equivalent to exploring

all pipelines with {1, 2, . . .} operators. As we increment 𝑑𝑒𝑝𝑡ℎ in

the loop, we take all active pipelines from the previous iteration

with (𝑑𝑒𝑝𝑡ℎ − 1) steps, denoted by 𝑆𝑑𝑒𝑝𝑡ℎ−1, and łextendž each par-

tial pipeline 𝐿 ∈ 𝑆𝑑𝑒𝑝𝑡ℎ−1 using one additional operator 𝑂 ∈ O,

by invoking AddOneStep(𝐿,𝑂), which is shown at line 7. These

resulting pipelines with 𝑑𝑒𝑝𝑡ℎ-steps are saved as 𝑆𝑑𝑒𝑝𝑡ℎ . Because

we cannot exhaustively explore all pipelines in 𝑆𝑑𝑒𝑝𝑡ℎ , at line 8,

we select top-K most promising ones from 𝑆𝑑𝑒𝑝𝑡ℎ by invoking Get-

PromisingTopK(). Among these top-K promising partial pipelines,

we check whether any of them already satisfy PMPS constraints

using VerifyCand(), and save the feasible solutions separately into

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 (line 9). This marks the end of one iteration.

We continue with the loop and go back to line 4, where we

increment 𝑑𝑒𝑝𝑡ℎ by 1 and explore longer pipelines, until we find

enough number of valid candidates, or we reach the maximum

depth, at which point we return the final top-K candidate pipelines

by invoking GetFinalTopK() (line 10).

Discussion.While the key steps in our synthesis are sketched

out in Algorithm 1, we have yet to describe the sub-routines below:

• AddOneStep() extends a partial pipeline 𝐿 using one addi-

tional operator 𝑂 ∈ O;

• VerifyCands() checks whether pipelines satisfy PMPS con-

straints, and if so marks them as final candidates;

• GetPromisingTopK() selects the most promising K pipelines

from all explored pipelines with 𝑑𝑒𝑝𝑡ℎ-steps;

• GetFinalTopK() re-ranks and returns final pipelines.

The first two sub-routines, AddOneStep() and VerifyCands(),

are reasonably straightforward ś AddOneStep() adds one addi-

tional step into partial pipelines by leveraging Auto-Suggest [52] to

find most likely parameters for each operator, while VerifyCands()

checks for PMPS constraint using standard FD/key-discovery [20,

42] and column-mapping [44]. We will describe these two sub-

routines in Section 3.2 and 3.3, respectively.

The last two sub-routines, GetPromisingTopK() and GetFinal-

TopK(), are at the core of Auto-Pipeline, where a good design

ensures that we can efficiently search promising parts of the graph

and synthesize successfully. In Section 3.4, we will describe a search-

based strategy to instantiate these two sub-routines, and later in

Section 4, we will describe a learning-based alternative using RL.

3.2 Extend pipelines by one step

We describe the AddOneStep() subroutine in this section.

AddOneStep(𝐿,𝑂) takes as input a 𝑑𝑒𝑝𝑡ℎ-step partial pipeline 𝐿 =

{𝑂1(𝑝1), . . . ,𝑂𝑑𝑒𝑝𝑡ℎ(𝑝𝑑𝑒𝑝𝑡ℎ)}, and some operator 𝑂 (enumerated

from all possible operators O) that we want to add into 𝐿. We

leverages [52], which considers the characteristics of intermedi-

ate tables in the partial pipeline 𝐿, to predict the best parameter

𝑝 = argmax𝑝∈p 𝑃 (𝑂(𝑝)|𝐿) to use. We use this predicted param-

eter 𝑝 to instantiate the new operator 𝑂 , and use the resulting

𝑂(𝑝) to extend 𝐿 by one additional step, producing 𝐿′ = {𝑂1(𝑝1),

. . . 𝑂𝑑𝑒𝑝𝑡ℎ(𝑝𝑑𝑒𝑝𝑡ℎ),𝑂(𝑝)}.

Note that in general, for each operator 𝑂 , there may be more

than one good way to parameterize 𝑂 (e.g., there may be more

than one plausible GroupBy column, and more than one good Join

column, etc.). So instead of using only top-1 predicted parameter,

for each 𝑂 we keep top-𝑀 most likely parameters, which would

produce 𝑀 possible pipelines after invoking AddOneStep(𝐿,𝑂) for

a given 𝐿 and 𝑂 .

We use the following example to illustrate the process.

Example 3. We revisit the pipeline in Figure 3. At step (0), we

have one input table and an empty pipeline 𝐿 = {}. We enumerate

all possible operators 𝑂 ∈ O to extend 𝐿.

Suppose we first pick 𝑂 to be GroupBy. Intuitively we can see

that Gender and Fare-Class columns are themost likely for GroupBy

(because among other things these two columns have categorical

values with low cardinality). We leverage single-operator predictors

from [52] ś in this case we use the GroupBy predictor (Section 4.2

of [52]), which may predict that 𝑃 (𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Fare-Class)|𝐿) = 0.5

and 𝑃 (𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Gender)|𝐿) = 0.4 to be the most likely. If we use

𝑀 = 2 or keep top-2 parameters for each operator, this leads to

two new 1-step pipelines 𝐿′1 = {𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Fare-Class)} and 𝐿′2 =

{𝐺𝑟𝑜𝑢𝑝𝐵𝑦(Gender)}.

The same process continues for other 𝑂 ∈ O. For instance

when we pick 𝑂 to be łPivotž, we may predict that Gender and

Fare-Class to be likely Pivot keys, so we get 𝐿′3 = {𝑃𝑖𝑣𝑜𝑡 (Gender)},

𝐿′4 = {𝑃𝑖𝑣𝑜𝑡 (Fare-Class)}.

However, when we pick 𝑂 to be Join/Union, the probabilities

of all possible parameters are 0, because no parameter is valid

with only one input table in 𝐿. This changes when we have more

intermediate tables ś e.g., in a subsequent step marked as (1) in

Figure 3, a new intermediate table is generated from GroupBy. At

that point, using [52] we may predict a Join using Gender to be

likely, while a Union is unlikely (because of the schema difference).

3.3 Verify constraint satisfaction

We now describe VerifyCands() in this section. Recall that

VerifyCands(𝑆𝑑𝑒𝑝𝑡ℎ,𝑇
𝑡𝑔𝑡) takes as input a collection of pipelines

𝑆𝑑𝑒𝑝𝑡ℎ (the set of synthesized pipelines with𝑑𝑒𝑝𝑡ℎ steps), and check

if any ˆ︁𝐿 ∈ 𝑆𝑑𝑒𝑝𝑡ℎ satisfy all constraints listed in Equation (2)-(4) for

Key/FD/column-mapping, in relation to the target table 𝑇 𝑡𝑔𝑡 .

Column-mapping. For column-mapping, we apply standard

schema-mapping techniques [44] to find possible column-mapping

2568

