
Debugging Missing Answers for SparkQueries over Nested Data
with Breadcrumb

Ralf Diestelkämper
University of Stuttgart - IPVS, Germany
ralf.diestelkaemper@ipvs.uni-stuttgart.de

Seokki Lee
University of Cincinnati, USA

lee5sk@ucmail.uc.edu

Boris Glavic
Illinois Institute of Technology, USA

bglavic@iit.edu

Melanie Herschel
University of Stuttgart - IPVS, Germany
melanie.herschel@ipvs.uni-stuttgart.de

ABSTRACT

We present Breadcrumb, a system that aids developers in debug-

ging queries through query-based explanations for missing answers.

Given as input a query and an expected, but missing, query result,

Breadcrumb identifies operators in the input query that are respon-

sible for the failure to derive the missing answer. These operators

form explanations that guide developers who can then focus their

debugging efforts on fixing these parts of the query. Breadcrumb is

implemented on top of Apache Spark. Our approach is the first that

scales to big data dimensions and is capable of finding explanations

for common errors in queries over nested and de-normalized data,

e.g., errors based on misinterpreting schema semantics.

PVLDB Reference Format:

Ralf Diestelkämper, Seokki Lee, Boris Glavic, and Melanie Herschel.

Debugging Missing Answers for Spark Queries over Nested Data with

Breadcrumb. PVLDB, 14(12): 2731 - 2734, 2021.

doi:10.14778/3476311.3476331

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/UniStuttgart-DataEngineering/breadcrumb.

1 INTRODUCTION

Data-intensive scalable computing (DISC) systems, e.g., Apache

Spark and Flink, enable scalable processing of queries over (nested)

data stored in a wide variety of data formats. Like database systems,

DISC systems allow developers to express their queries in a high-

level declarative language that abstracts away lower-level details of

data distribution, fault tolerance, and distributed execution. How-

ever, support for debugging queries for these systems is limited

compared to debugging support for programming languages.

One common problem that arises in debugging is that a query

fails to return an expected answer. Several types of explanations for

such missing answers have been studied in past work (as surveyed,

e.g., in [8, 9]). In this work, we focus on query-based explanations

as originally proposed in [4]. Such explanations aid data engineers

in their debugging tasks by identifying parts of the query that

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476331

should be repaired to return an answer that the developer did

expect to see in the result. For instance, a selection operator may

be part of an explanation if the selection condition is too strict,

causing the missing answer of interest to be filtered out. So far,

research on query-based explanations has primarily focused on

relational data and queries limited to subclasses of relational algebra

plus aggregation [2ś4, 6]. However, while it would be possible

to implement these algorithms in a DISC system, none of these

approaches addresses the following challenges stemming from the

characteristics of typical DISC workloads:

Challenge 1: Nested data. Nested data formats such as JSON are

common in DISCworkloads. Misuse of attributes in operations such

as flattening and nesting that restructure nested data are typical

sources of errors for queries over nested data. Past work neither

supports nested data nor detects such errors.

Challenge 2: Denormalized schemas. One advantage of DISC

systems is that they allow queries to directly access raw data with-

out the need for designing a relational schema and transforming

the data into this schema. The net result is that datasets processed

by such systems are often denormalized and have several hundreds

of attributes. Furthermore, data stored in a data lake is typically

not sufficiently documented. Thus, developers often have to make

educated guesses about the semantics of attributes, leading to errors

when wrong attributes are used in a query. Past work on query-

based explanations does not account for this type of errors, e.g.,

projection operators are not considered as sources of errors.

Challenge 3: Scalability. Typical DISC workloads process 100s of

GBs of data. However, existing solutions for query-based explana-

tions typically only scale to datasets that are a few MBs in size. The

main reason for this lack of scalability is that these methods rely on

tracing full provenance (e.g., [5]) and have to check intermediate

results produced by query operators to determine when tuples that

could have produced the missing answer łgot lostž.

In this paper, we present Breadcrumb, a system for explaining

missing answers in Apache Spark that addresses these challenges.

To the best of our knowledge, Breadcrumb is the first system ca-

pable of producing explanations for missing answers over (nested)

datasets of realistic scale (100s of GBs). The system is built upon the

scientific contributions detailed in [7]1, which we briefly summarize

in the following. Breadcrumb is available on GitHub2.

Schema alternatives. Breadcrumb considers attributes of the same

type and structure from the input schema as potential alternatives to

1An extended version is available at https://arxiv.org/abs/2103.07561
2https://github.com/UniStuttgart-DataEngineering/breadcrumb

2731



2732



user retweeted quoted

Peter

count text u_mention

1 Hello
name

Jay

Lisa

count text u_mention

42 Moin

name

Star

Jay

Jim

count text u_mention

13 Bonjour

name

Ava

Tom

count text u_mention

27 Hola

name

Star

Mia

Table 1: Example input data: simplified tweets

flattenT

retweet

selection
count > 10

flattenI

u_mention

projection
text, name

Figure 2: Example query

flattens user mentions of the remaining tweets (flatten𝐼 ), and

finally projects on text and the name of each user mentioned in

the retweet (projection𝑡𝑒𝑥𝑡,𝑛𝑎𝑚𝑒 ).

Breadcrumb programs are specified using Spark’s DataFrame

API. Formally, our approach is based on a nested algebra for bags

similar to [11]. Breadcrumb supports projection, selection, renam-

ing, equi-join and outer-joins, flattening of nested tuples (flatten𝑇 )

and relations, tuple and relation nesting, aggregation, union, and

deduplication. This set of operators is significantly larger than the

set of operators supported by existing approaches.

Returning to our example, the result of the program over the

example data is shown at the bottom of Figure 1a. Assume that the

developer notices that Jay, a user expected to be in the result, is not

returned by the query and uses Breadcrumb to explain this missing

answer. To initiate this investigation, the developer has to provide

Breadcrumb with the input data and program (shown before) and

a why-not question that expresses what missing answers to focus

on. To this end, Breadcrumb leverages tree-patterns [12]. These

patterns define the nesting structure of the missing answer as well

as permissible values. Placeholders can be used to leave some values

unspecified, i.e., a placeholder can stand in for any value. The

example question can be expressed as the tree pattern shown at the

bottom of Figure 1b. The developer expects an answer with attribute

name bound to value Jay and with any value for attribute text

(placeholder ?). The top part of Figure 1b shows how a tree pattern

is created in Breadcrumb by creating node and edge objects in Scala.

Nested relations in a tree pattern may also contain the placeholder

∗ that represents any number of tuples. Furthermore, tree patterns

may contain ancestor-decendant relationships in addition to direct

edges (the edge’s boolean flag is set to true).

Having created these inputs, the developer can call Breadcrumb

to compute explanations. Intuitively, each explanation encodes a set

of operators from the query such that there exists a re-parameter-

ization which produces at least one answer matching the tree pat-

tern (the missing answer). Recall that a re-parameterization is a re-

pair that changes parameters of all operators in an explanation, but

preserves the parameters of the other operators and the query struc-

ture. When computing explanations for missing answers, Bread-

crumb considers schema alternatives for re-parameterizations to be

Query instrumentation & explanation

Static pre-processing

schema alternative

computation

computing 

explanations

data forward 

tracing

schema 

backtracing

Spark DataFrames

Spark core

further 

Spark 

modules

Apache Toree

Breadcrumb

Spark

Toree

Figure 3: Breadcrumb’s architecture

able to explain errors caused by misinterpretation of attribute se-

mantics. To efficiently compute explanations, Breadcrumb rewrites

the original query plan to obtain an annotated query result. The

annotated result contains all information necessary for computing

explanations for each possible schema alternative. In Section 3, we

describe this process in more detail.

Breadcrumb returns two explanations for the running example.

The first one only consists of the filter operator (selection𝑐𝑜𝑢𝑛𝑡>10
in Figure 2). The filter prevents Jay from appearing in the result

since the retweet mentioning Jay (part of the first nested tuple in Ta-

ble 1) only has a retweet count of 1. Replacing the constant 10 with,

e.g., 0, in the filter operator causes the tuple (Hello,Jay) matching

the tree pattern to be returned. Note that this explanation does not

use a schema alternative, since the fix does not change an attribute

reference. The second explanation contains the first flatten opera-

tor, i.e., flatten𝑇 in Figure 2. This operator is a potential cause of

the missing answer under the aforementioned schema alternative.

Recall that this schema alternative replaces the retweeted with

the quoted attribute in the parameters of operator flatten𝑇 . It

corresponds to the assumption that the developer may actually be

interested in quoted instead of retweeted tweets. When applying a

re-parameterization corresponding to this explanation, the devel-

oper obtains the tweet (Moin,Jay) in the result. For demonstration

purposes, the system provides two implementations to compute

explanations: one that ignores schema alternatives and one that

uses schema alternatives. Figure 1c shows the two corresponding

code snippets (the function call which does not consider schema

alternatives is shown on top). Currently, Breadcrumb requires the

schema alternatives for the input schema to be manually provided

as input to the system, e.g., the user has to specify that the quoted

attribute and retweeted attribute are alternatives for each other.

Integrating schema matching techniques or schema-free query pro-

cessors [1, 10] to automatically identify alternatives is an interesting

avenue for future work. Also note that the visualization of the result

uses labels for nodes in the operator pipeline that differ from the

(internal) operator names to make it easier for users to match the

operator with a line of code in their query.

3 THE BREADCRUMB ARCHITECTURE

Breadcrumb extends Apache Spark with the means to compute

explanations. As depicted in Figure 3, Breadcrumb’s modules (in

blue) are divided into two categories that correspond to the two

2733



main steps mentioned in Section 1: (a) modules that are data inde-

pendent and pre-process the user-provided input, and (b) modules

that leverage the result of pre-processing for the efficient compu-

tation of explanations. These modules extend Spark’s DataFrame

API and rewrite query plans obtained from Spark’s query planner

Catalyst (dark grey). In this demo, we use Jupyter notebooks with

the Apache Toree kernel as an interactive frontend for Breadcrumb

(light grey).

Recall that an explanation is a set of operators such that there ex-

ists a repair of the query that modifies precisely these operators and

returns an answer that matches the why-not question. We call such

repairs successful re-parameterizations. Ideally, the repairs corre-

sponding to an explanation should be minimal, i.e., they should not

unnecessarily modify operators or result in unnecessary side-effects

(changes to the query result). We call such repairs minimal success-

ful re-parameterizations (MSRs). While our formalization requires

explanations to correspond to MSRs, the approach implemented

in Breadcrumb is heuristic and cannot guarantee minimality in all

cases. We now briefly describe each of Breadcrumb’s components

involved in the process of generating explanations.

Pre-processing. Given the query and why-not question provided

via the user interface as well as schema alternatives, Breadcrumb

first calls the modules for static pre-processing. These modules do

not access the input data. Schema backtracing (step 1) determines

selection conditions over the input table by back-propagating con-

straints defined in the why-not questions to attributes in the input

schema. For every query repair, the inferred selection conditions

have to hold for all input tuples that may be involved in the deriva-

tion of the missing answer. Later, these conditions are applied to

prune data that is irrelevant for computing explanations. Schema

backtracing resembles the approach from [3]. During the schema

alternative computation step (step 2), Breadcrumb determines

statically how to substitute attributes in the query with alternatives

and enumerates all possible combinations of such substitutions. It

checks for each combination whether the corresponding combined

attribute substitution yields an executable query.

Query instrumentation and explanation. The two modules ac-

cessing and processing the input data are then used as follows.

Given the constraints, schema alternatives derived during pre-

processing, and the query, forward tracing (step 3) instruments the

query to trace input data matching these constraints through the

query’s operators. For that purpose, Breadcrumb propagates four

types of boolean provenance annotations through the query opera-

tors for each schema alternative. It extends the operator semantics

to propagate the annotations, compute the operator’s output un-

der all schema alternatives simultaneously, and retain tuples that

would be removed by selective operators as explained above. These

operator extensions are carefully designed to keep computational

overhead reasonable. Upon evaluation of the instrumented query

over the input data, Breadcrumb returns a query result with suffi-

cient information to compute explanations. During the last step,

computing explanations (step 4), Breadcrumb extracts successful

re-parameterizations based on the annotated output produced by

the previous step. To identify explanations that correspond to MSRs,

it computes a lower and upper bound for the size of side-effects

caused by any MSR for a set of operators. An exact measure of

side-effects is computationally prohibitive because it would require

(a) precisely knowing the side-effects caused by each possible re-

parameterization involving an explanation’s operators and (b) an

efficient approach to compare the number of side-effects for each

such re-parameterization.

Overall, our heuristic approach trades accuracy for performance

and, thus, may return explanations that are not minimal and may

miss explanations. See [7] for a discussion under which circum-

stances Breadcrumb returns accurate explanations. Before return-

ing the explanations corresponding to MSRs, Breadcrumb orders

them by the number of operators that need to be modified by re-

parameterizations corresponding to an explanation. If two explana-

tions have the same number of operators, Breadcrumb ranks the

one higher that has a lower upper bound for the side-effects.

4 DEMONSTRATION EXPERIENCE

We showcase Breadcrumb through interactive debugging sessions

running in a Jupyter Notebook. We will use two real world datasets

(Twitter and DBLP data) as well as TPCH datasets of up to 100GB

in size deployed on a cluster with six compute nodes. For each

dataset, we have prepared multiple scenarios (including a scenario

similar to our running example), each comprising a query, a tree

pattern expressing a why-not question, and the schema alternatives

for the dataset. After showcasing a (simple) scenario to familiarize

attendees with the use of the system, we offer attendees the possi-

bility to experience additional pre-cooked scenarios and/or to write

their own scenarios to explore Breadcrumb’s capabilities described

in Section 2, e.g., in terms of expressing tree patterns, queries, or

assessing scalability and explanation quality.

ACKNOWLEDGMENTS

Partially funded by Deutsche Forschungsgemeinschaft (DFG, Ger-

man Research Foundation) under Germany’s Excellence Strategy -

EXC 2120/1 - 390831618 and by NSF grants IIS-1956123.

REFERENCES
[1] D. Aumueller, H. Do, S. Massmann, and E. Rahm. 2005. Schema and Ontol-

ogy Matching with COMA++. In ACM Conference on the Management of Data
(SIGMOD). 906ś908.

[2] N. Bidoit, M. Herschel, and A. Tzompanaki. 2015. Efficient Computation of
Polynomial Explanations of Why-Not Questions. In Conference on Information
and Knowledge Management (CIKM). 713ś722.

[3] N. Bidoit, M. Herschel, and K. Tzompanaki. 2014. Query-Based Why-Not Prove-
nance with NedExplain. In Conference on Extending Database Technology (EDBT).
145ś156.

[4] A. Chapman and H. V. Jagadish. 2009. Why not?. In ACM Conference on the
Management of Data (SIGMOD). 523ś534.

[5] Y. Cui and J. Widom. 2003. Lineage tracing for general data warehouse transfor-
mations. The VLDB Journal 12, 1 (2003), 41ś58.

[6] D. Deutch, N. Frost, A. Gilad, and T. Haimovich. 2018. NLProveNAns: Natural
Language Provenance for Non-Answers. Proceedings of the VLDB Endowment
(PVLDB) 11, 12 (2018), 1986ś1989.

[7] R. Diestelkämper, S. Lee, M. Herschel, and B. Glavic. 2021. To not miss the forest
for the trees ś a holistic approach for explaining missing answers over nested
data. In ACM Conference on the Management of Data (SIGMOD). 405ś417.

[8] B. Glavic. 2021. Data Provenance - Origins, Applications, Algorithms, andModels.
Foundations and Trends in Databases 9, 3-4 (2021), 209ś441.

[9] M. Herschel, R. Diestelkämper, andH. Ben Lahmar. 2017. A survey on provenance:
What for? What form? What from? The VLDB Journal 26, 6 (2017), 881ś906.

[10] Y. Li, C. Yu, and H. V. Jagadish. 2008. Enabling Schema-Free XQuery with
meaningful query focus. The VLDB Journal 17, 3 (2008), 355ś377.

[11] L. Libkin and L. Wong. 1997. Query Languages for Bags and Aggregate Functions.
Journal of Computer and System Sciences (JCSS) 55, 2 (Oct. 1997), 241ś272.

[12] J. Lu, T.W. Ling, Z. Bao, and C.Wang. 2011. Extended XML Tree PatternMatching:
Theories and Algorithms. IEEE Transactions on Knowledge and Data Engineering
(TKDE) 23, 3 (2011), 402ś416.

2734


