
DICE: Data Discovery by Example
El Kindi Rezig

MIT CSAIL
elkindi@csail.mit.edu

Anshul Bhandari
NIT Hamirpur

185529@nith.ac.in

Anna Fariha
University of Massachusetts Amherst

afariha@cs.umass.edu

Benjamin Price
MIT Lincoln Laboratory
ben.price@ll.mit.edu

Allan Vanterpool
United States Air Force

allan.vanterpool@us.af.mil

Vijay Gadepally
MIT Lincoln Laboratory

vijayg@ll.mit.edu

Michael Stonebraker
MIT CSAIL

stonebraker@csail.mit.edu

ABSTRACT
In order to conduct analytical tasks, data scientists often need to
find relevant data from an avalanche of sources (e.g., data lakes,
large organizational databases). This effort is typically made in an
ad hoc, non-systematic manner, which makes it a daunting endeav-
our. Current data discovery systems typically require the users to
find relevant tables manually, usually by issuing multiple queries
(e.g., using SQL). However, expressing such queries is nontrivial, as
it requires knowledge of the underlying structure (schema) of the
data organization in advance. This issue is further exacerbatedwhen
data resides in data lakes, where there is no predefined schema that
data must conform to. On the other hand, data scientists can often
come upwith a few example records of interest quickly. Motivated by
this observation, we developed DICE—a human-in-the-loop system
for Data dIsCovery by Example—that takes user-provided example
records as input and returnsmore records that satisfy the user intent.
DICE’s key idea is to synthesize a SQL query that captures the user
intent, specified via examples. To this end,DICE follows a three-step
process: (1) DICE first discovers a few candidate queries by finding
join paths across tables within the data lake. (2) Then DICE consults
with the user for validation by presenting a few records to them,
and, thus, eliminating spurious queries. (3) Based on the user feed-
back, DICE refines the search and repeats the process until the user
is satisfied with the results. We will demonstrate howDICE can help
in data discovery through an interactive, example-based interaction.

PVLDB Reference Format:
El Kindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan
Vanterpool, Vijay Gadepally, and Michael Stonebraker. DICE: Data
Discovery by Example. PVLDB, 14(12): 2819 - 2822, 2021.
doi:10.14778/3476311.3476353

1 INTRODUCTION
Data preparation is becoming the behemoth of data analytics pipe-
lines [5, 7, 12]. The precursor of any data analytics task is to quickly

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476353

find and link relevant data of interest from multiple sources such
as enterprise databases and data lakes. Unfortunately, this puts
a significant burden on data scientists because (1) querying the
data requires knowledge of the underlying schema; and (2) linking
multiple tables from different sources (e.g., data lakes) requires
finding and assessing multiple possible join paths.

Through our collaborations with multiple partners, including the
U.S. Air Force, we have observed that (1) data that are relevant for
a specific data discovery intent are rarely contained within a small
set of tables, but, rather, are spread across multiple tables from het-
erogeneous sources (e.g., data lakes); (2) users are often unaware of
the underlying structure of those (typically heterogeneous) sources;
and (3) users can often provide a few example records that represent
data they want to discover. Based on these observations, we devel-
oped DICE [13], an interactive data-discovery-by-example system
that assists users in their data discovery tasks over data lakes.

Example 1.1 (U.S. Air Force). An organization within the Air
Force is in charge of collecting data from dozens of sensor plat-
forms to support data scientists in producing data-driven reports
for decision-makers. The vast and heterogeneous data is organized
across hundreds of tables in a data lake. Each table has a differ-
ent schema that may be governed by sensor type or proprietary
data handlers. While the end-user may have an idea of the type of
records they wish to find, navigating the untamed data lake poses
a major bottleneck in their data analytics pipelines.

Figure 1 shows example tables over the music domain from
three separate sources on the right canvas (different colors denote
different data sources). In a nutshell, DICE works as follows: In step
1○, the user provides a few example records, without necessarily
including the column names (top left table in Figure 1). Based on the
examples, in step 2○, DICE automatically finds join paths—paths
that connect tables through Primary Key - Foreign Key (PK-FK)
relationships (inferred from the data)—and selection predicates to
construct “satisfying” SQL queries. Intuitively, a query “satisfies”
a set of examples if its output includes the examples as well as
other records that are similar to the examples (right canvas in
Figure 1). Since multiple queries may satisfy the examples, we need
a mechanism to figure out the correct query. To this end, in step
3○, DICE presents to the user a small subset of diverse records
from the output of one of the satisfying queries, and solicits their
feedback to help it prune spurious queries. The user then approves

2819

https://doi.org/10.14778/3476311.3476353
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476353


name ...

Pink Floyd

name ...

The Division Bell

Wish You Were Here

name duration

High Hopes 5:30

Wish You Were Here 5:35

Lost for Words 5:15

artist track_name lyrics

Pink Floyd High Hopes
Beyond the horizon 
of the place we 
lived when we were 
young [...]

Panic! At 
the disco High Hopes

Had to have high, 
high hopes for a 
living [...]

Pink Floyd Lost for 
Words

I was spending my 
time in the doldrums 
[...]

artist track_name rating

Pink Floyd High Hopes 98

artist

release

track

lyrics

ratings

artist_id

release_id
(track_nam

e, nam
e)

(artist, name)

([track_name, artist], 
[track_name, artist])

col1 col2 col3 col4 col5

Pink Floyd High Hopes 90 - 100 lived when we were young 5:30

Pink Floyd Wish You 
Were Here 90 - 100 So, so you think you can tell 5:35

artist track_name rating lyrics duration

Pink Floyd High Hopes 98
Beyond the horizon of 
the place we lived when 
we were young [...]

5:30

Pink Floyd Wish You 
Were Here 95 Had to have high, high 

hopes for a living [...] 5:35

Pink Floyd Lost for 
Words 94 I was spending my time 

in the doldrums [...] 5:15

Panic! At 
the disco High Hopes 99 Had to have high, high 

hopes for a living [...] 6:01

User provides examples

User validates output table

1 2 DICE finds join paths

3

source 2 source 1

source 3

Figure 1: Example DICE workflow: after obtaining the examples from the user in step 1○, DICE finds join paths (arrows) across tables to
construct output tables for the user to validate in step 2○. The user provides feedback by either accepting or rejecting a record in step 3○.

or rejects each record (bottom left table in Figure 1). Based on the
user’s feedback,DICE repeats steps 2○ and 3○ to explore alternative
queries, until the user is satisfied with the final results.

Related work. Query by example (QBE) [8, 11, 14] is closely related
to DICE as it also focuses on discovering SQL queries from user ex-
amples. However, existing QBE approaches make a strong assump-
tion that data is stored in a well-defined schema where key-foreign-
key relationships are known apriori. Some approaches [10, 16, 17]
require a small database along with the corresponding example
records as input; but, this requires complete schema knowledge.
Beyond examples, a recent work considers natural language as
an alternative means for specifying user intent [3]. Prior work on
interactive data exploration [4, 6] shares some similarities with
DICE, but they make simplified assumptions such as data resides in
a denormalized table or support only a limited class of queries. In
summary, none of the existing approaches are suitable for discover-
ing data from data lakes (e.g., Example 1.1)—where no knowledge
of the data organization is known in advance—while supporting
expressive class of queries (selection, projection, and join) which
DICE supports.

2 SYSTEM OVERVIEW
In this section, we present an overview of the building blocks of
DICE (Figure 2). At first, the user provides a few example records
(column names are not required). Then, DICE performs a fuzzy
matching (i.e., similarity search) between the example values and
the available data sources to extract matching columns. DICE then
finds PK-FK relationships among the tables with matching columns.
Finally, DICE shows a small set of records to the user for validation.

2.1 Example records
Format. The user provides a few example records, with named or
nameless columns. If the column names are available, DICE tries to
use those to prune the matching results later. DICE supports the
following input value formats:

Lookup 
example values

source 1

Extract 
matching columns

Find join paths

Build example 
records

Prune and 
validate

Is result 
satisfactory?

Return discovered tables

Search for new tablesNo

Yes

Example records

source 2 source n…
Offline 
Indexing

Figure 2: DICE has an interactive workflow to discover new data
from user-provided examples. It starts by looking up the examples
in the data sources, then it finds join paths, presents a few records
to the user for validation, and repeats until the user is satisfied.

• Text value: If the user knows the values they are looking for,
or part thereof, they can enter those directly into an example
record. For ease of use, DICE features real-time keyword phrase
suggestions as the user types some text.

• Numerical value: For numerical values, the user enters a num-
ber and DICE attempts to find the entered number.

• Range: The user can also express numerical ranges to specify
values that lie within specific ranges (e.g., 90 - 100).

• Regular expression: Additionally, the user can enter regular
expressions if they know their intended format (e.g., dates).

Example semantics. Given the example records, DICE supports two
data discovery semantics: (1) Keep Columns (KC): The user wants
to re-generate the example columns they provided and enrich those
columns with new values. (2) Keep Columns and Extend (KCE):
Similar to KC, this mode adds new values to the example columns,
but, in addition, suggests new relevant columns (and values).

2.2 Offline Indexing
As a preprocessing step, DICE indexes all the tables using a text
index (Lucene [1]). Because the number of user-provided examples

2820



is assumed to be small compared to the size of source tables, hash-
based methods to match those examples to source data would not
be effective. As a result, the goal of this step is to bootstrap DICE

with a set of tables that contain the user-provided example values.

2.3 Looking up example values
In this phase, DICE looks up example values in the available source
tables. We pre-compute the min-hash of every source column to
make the lookup efficient. Few questions arise here: should we
search for all of the example column values at once (which could
significantly limit the scope of the results), or should we select just
a subset of the example columns, and, if the latter, which subset?
For instance, in the example of Figure 1, we can search using values
in col1 only, which will require looking for all possible columns
associated with Pink Floyd (e.g., years active, number of albums,
etc.). On the other hand, if we consider col1 and col3, we will only
get tracks (songs) whose user ratings are between 90 and 100.

In general, we would like to balance between generating values
as provided as examples and finding new values and columns of in-
terest. In order to prevent both over-fitting and over-generalization
we adopt two search strategies based on whether the user has
knowledge of the column names in the example or not:

Named columns. In this case, DICE attempts to use the provided col-
umn names to prune the space of matching columns in the source
tables. DICE performs a keyword search of the provided column
names (e.g., “song”) to find matching columns. Once column names
are resolved, DICE expedites the lookup of the example values in
the data sources as follows: During the ith iteration, it considers a
subset of the example columns with cardinality i, and incremen-
tally keeps augmenting this subset in the subsequent iterations.
For instance, in the example of Figure 1, assuming DICE knows
that col1 corresponds to lyrics.artist and col2 corresponds to
lyrics.name, DICE searches by the column lyrics.artist, and
populates the column lyrics.track_name with all the tracks by
Pink Floyd. This avoids the need to search by col1 and col2 to-
gether to find all Pink Floyd tracks, which significantly reduces
the overhead for value matching and join path discovery.

Nameless columns. In many cases, especially in data lakes, column
names are not meaningful; so the user might fail to provide the cor-
rect column names. In this case, DICE resolves the column mapping
as follows: (1) it finds columns (and corresponding tables) from the
data sources that match the example columns (based on their min-
hash signatures); (2) it computes similarity profiles—modeled using
min-hash signatures, following the procedure described in [9]—
across all the columns of the tables found, and ranks these columns
according to their similarity with the example columns; and (3) it
attempts to join the tables with columns that contain similar values.

2.4 Finding join paths
OnceDICE has identified the columns, the next step is to construct a
SQL query that generates a table that includes the example records.
To do so, we need to find the PK-FK relationships among the tables.
While some data sources may have PK-FK relationships explicitly
defined (e.g., normalized databases), many data sources today come
from data lakes which do not have PK-FK relationships pre-defined.

DICE automatically finds join paths (1) within a single source (e.g.,
data lakes) as well as across different sources (e.g., normalized
databases and data lakes). We have found that this hybrid setting is
the most realistic one since data scientists often have to sift through
a mix of data sources (data lakes, enterprise databases, data ware-
houses, etc.) to conduct their analytical tasks (e.g., linking together
a marketing database, a sales database, and a global company data
lake to extract informative product sales features).

Based on the similarity profiles computed in the lookup phase,
multiple possible join pathsmay exist to join two ormore tables (e.g.,
in Figure 1, column artist in table ratings is similar to column
name in table artist).DICE joins tables with similar columns as this
indicates a potential PK-FK relationship. DICE strives to conserve
coverage of all the example column values because they fall within
the user’s interest. In each iteration, DICE generates at most 𝑛
join paths (𝑛 is user-provided) that cover all the example values.
DICE generates the next 𝑛 candidate join paths in the subsequent
iterations until the user is satisfied with the results.

2.5 Building and pruning example records
From the selected join path, DICE generates records for user valida-
tion. Since the number of records that result from a join path can be
very large, DICE shows 𝑘 (𝑘 is user-specified, 20 by default) records
to the user for validation and strives to (1) present a diverse sample
of records in terms of values; and (2) include the user-provided ex-
ample values. Since there is a trade-off between value diversity and
coverage of the example records, DICE allows the user to specify
a coverage threshold (e.g., 80%) that indicates what fraction of the
example records must be included in the results from a join path.

3 DEMONSTRATION SCENARIO
The data from the Air Force is not public, so we will demonstrate
DICE over the following public datasets in the music domain as this
data domain is of universal interest: (1) Music Brainz [15] contains
over 200 tables that include detailed information about musical
artists, their records (songs), releases (albums), production dates,
etc. (2) MusicXMatch [2] was crawled from AZLyrics and contains
about 150K song titles with their lyrics.
Demonstration outline. DICE allows user interaction, where at each
step, the user can provide feedback to refine the results. Through
our demonstration, we aim to (1) show the participants various
steps of DICE; (2) allow them to engage with DICE by entering their
own example records and by walking through the data discovery
steps; and (3) allow the participants to interact with DICE through
multiple iterations where they will validate records during the
feedback solicitation phase. Figure 3 illustrates the DICE interface
built within a Jupyter Notebook. We chose Jupyter notebook as it
is extremely popular for developing data-analytics pipelines, and
data scientists are usually familiar with its interface. We describe
the demonstration scenario through the following steps:
1○ Providing example records: In the first step (top left canvas
of Figure 3), the user enters example records (e.g., artist names, song
titles, etc.). To facilitate this step, DICE provides keyword phrase
suggestions as the user types example values.
2○ Excluding irrelevant tables: To aid the user in narrowing
down the relevant tables, DICE shows a snippet that displays the

2821



2

4

3

1

Figure 3: The DICE interface: the four canvases represent points of interaction with the user during the data discovery process.

tables that it is currently considering to generate the PK-FK graphs
(bottom left canvas in Figure 3). The goal here is to allow the user
to discard tables that they deem irrelevant to their search, which
will lead to fewer iterations to reach a satisfactory result.
3○ Enumerating candidate join paths: DICE displays all join
paths being considered to construct the candidate queries and high-
lights the ones that are being expanded in the current iteration (the
red arrow in the bottom right canvas in Figure 3). DICE allows the
user to override the pre-selected paths by selecting different ones.
4○ Generating example records and feedback solicitation:
After DICE expands the chosen join paths, it presents a few records
to the user for review (top right canvas in Figure 3). The user then
examines the records and provides feedback for each record by
either accepting or rejecting it, which helps DICE refine the search
in the later iterations.

In the subsequent iterations, the user can enter more examples,
or simply let DICE explore alternative join paths and repeat the
four steps until they are satisfied with the final results.

Demonstration engagement. After the guided demonstration, partic-
ipants will be able to use DICE to explore other real-world datasets
(e.g., IMDB, Box Office Mojo). While DICE was designed for Air
Force and Navy use cases, it can work on any data domain and
participants will be able to plug their own datasets into DICE.

Through the demonstration, we will showcase how DICE can
effectively discover data that are of user’s interest based on a few
examples and interactions. The key takeaway is that interactive
and example-based data discovery aids in data retrieval from data
lakes, where no predefined schema exists.

ACKNOWLEDGMENTS
Research was sponsored by the United States Air Force Research
Laboratory and the United States Air Force Artificial Intelligence
Accelerator and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions contained in
this document are those of the authors and should not be interpreted
as representing the official policies, either expressed or implied,
of the United States Air Force or the U.S. Government. The U.S.

Government is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
herein.

The authors acknowledge:WilliamArcand, David Bestor,William
Bergeron, Chansup Byun, Matthew Hubbell, Michael Houle, Mike
Jones, Jeremy Kepner, Tim Kraska, Anna Klein, Peter Michaleas,
Lauren Milechin, Julie Mullen, Andrew Prout, Albert Reuther, An-
tonio Rosa, Siddharth Samsi, and Charles Yee.

REFERENCES
[1] Apache Lucene. 2021. https://lucene.apache.org. Accessed: 03/2021.
[2] AZLyrics. 2021. https://azlyrics.com Accessed: 03/2021.
[3] Christopher Baik, Zhongjun Jin, Michael J. Cafarella, and H. V. Jagadish. 2020.

Duoquest: A Dual-Specification System for Expressive SQL Queries. In SIGMOD.
[4] Angela Bonifati, Radu Ciucanu, and Slawek Staworko. 2016. Learning Join

Queries from User Examples. ACM Trans. Database Syst. 40, 4 (2016), 24:1–24:38.
[5] Dong Deng, Raul Castro Fernandez, Ziawasch Abedjan, Sibo Wang, Michael

Stonebraker, Ahmed K. Elmagarmid, Ihab F. Ilyas, Samuel Madden, Mourad
Ouzzani, and Nan Tang. 2017. The Data Civilizer System. In CIDR.

[6] Kyriaki Dimitriadou, Olga Papaemmanouil, and Yanlei Diao. 2016. AIDE: An
Active Learning-Based Approach for Interactive Data Exploration. TKDE 28, 11
(2016), 2842–2856.

[7] Ian Drosos, Titus Barik, Philip J. Guo, Robert DeLine, and Sumit Gulwani. 2020.
Wrex: A Unified Programming-by-Example Interaction for Synthesizing Readable
Code for Data Scientists. In CHI. 1–12.

[8] Anna Fariha and Alexandra Meliou. 2019. Example-Driven Query Intent Discov-
ery: Abductive Reasoning using Semantic Similarity. PVLDB 12, 11 (2019).

[9] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A Data Discovery System. In
ICDE. 1001–1012.

[10] Hao Li, Chee-Yong Chan, and David Maier. 2015. Query From Examples: An
Iterative, Data-Driven Approach to Query Construction. PVLDB 8, 13 (2015).

[11] Fotis Psallidas, Bolin Ding, Kaushik Chakrabarti, and Surajit Chaudhuri. 2015. S4:
Top-k Spreadsheet-Style Search for Query Discovery. In SIGMOD. 2001–2016.

[12] El Kindi Rezig, Lei Cao, Giovanni Simonini, Maxime Schoemans, Samuel Madden,
Nan Tang, Mourad Ouzzani, and Michael Stonebraker. 2020. Dagger: A Data (not
code) Debugger. In CIDR.

[13] El Kindi Rezig, Allan Vanterpool, Vijay Gadepally, Benjamin Price, Michael J.
Cafarella, and Michael Stonebraker. 2020. Towards Data Discovery by Example.
In Poly/DMAH@VLDB, Vol. 12633. 66–71.

[14] Yanyan Shen, Kaushik Chakrabarti, Surajit Chaudhuri, Bolin Ding, and Lev Novik.
2014. Discovering Queries Based on Example Tuples. In SIGMOD. 493–504.

[15] The Music Brainz Encyclopedia. 2021. https://musicbrainz.org Accessed: 03/2021.
[16] Chenglong Wang, Alvin Cheung, and Rastislav Bodík. 2017. Synthesizing Highly

Expressive SQL Queries from Input-output Examples. In PLDI. 452–466.
[17] Sai Zhang and Yuyin Sun. 2013. Automatically synthesizing SQL queries from

input-output examples. In ASE. 224–234.

2822

https://lucene.apache.org
https://azlyrics.com
https://musicbrainz.org

