Towards A Polyglot Framework for Factorized ML

David Justo Shaoqing Yi Lukas Stadler
University of California, San Diego University of California, San Diego Oracle Labs
djusto@ucsd.edu shy218@ucsd.edu lukas.stadler@oracle.com
Nadia Polikarpova Arun Kumar

University of California, San Diego
npolikarpova@eng.ucsd.edu

ABSTRACT

Optimizing machine learning (ML) workloads on structured data
is a key concern for data platforms. One class of optimizations
called “factorized ML” helps reduce ML runtimes over multi-table
datasets by pushing ML computations down through joins, avoid-
ing the need to materialize such joins. The recent Morpheus system
automated factorized ML to any ML algorithm expressible in lin-
ear algebra (LA). But all such prior factorized ML/LA stacks are
restricted by their chosen programming language (PL) and run-
time environment, limiting their reach in emerging industrial data
science environments with many PLs (R, Python, etc.) and even
cross-PL analytics workflows. Re-implementing Morpheus from
scratch in each PL/environment is a massive developability over-
head for implementation, testing, and maintenance. We tackle this
challenge by proposing a new system architecture, Trinity, to en-
able factorized LA logic to be written only once and easily reused
across many PLs/LA tools in one go. To do this in an extensible and
efficient manner without costly data copies, Trinity leverages and
extends an emerging industrial polyglot compiler and runtime, Or-
acle’s GraalVM. Trinity enables factorized LA in multiple PLs and
even cross-PL workflows. Experiments with real datasets show that
Trinity is significantly faster than materialized execution (> 8x
speedups in some cases), while being largely competitive to a prior
single PL-focused Morpheus stack.

PVLDB Reference Format:

David Justo, Shaoging Yi, Lukas Stadler, Nadia Polikarpova, and Arun
Kumar. Towards A Polyglot Framework for Factorized ML. PVLDB, 14(12):
2918 - 2931, 2021.

doi:10.14778/3476311.3476372

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at
https://github.com/davidmrdavid/trinity.

1 INTRODUCTION

Optimizing machine learning (ML) workflows over structured data
on various data platforms is a major focus for the database commu-
nity. In particular, a recent line of work optimized ML over datasets
that are joins of multiple tables. Instead of forcing data scientists

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476372

University of California, San Diego
arunkk@eng.ucsd.edu

to always denormalize and materialize a bloated single table, fac-
torized ML techniques rewrite and push ML computations down
to the base tables [23, 35, 49, 50]. This is a form of cross-algebraic
query optimization bridging relational algebra and linear algebra
(LA) [36]. To enable factorized ML for many statistical ML algo-
rithms in one go, the Morpheus project [23] generalized factorized
ML, devising a framework that automatically factorizes any statis-
tical ML algorithm expressed in terms of a subset of linear algebra
(LA) operators.

Problem: Polyglot Industrial Data Science Landscape. The
industrial data science landscape has recently exploded in its linguis-
tic variety. Cross-PL polyglot workflows also now arise in practice,
e.g., data preparation in Python, model building in R, and model
deployment in Javascript [52]. All this PL diversity leads to a new
practical bottleneck: How to efficiently develop extensible factorized
ML systems for many PLs at once? This is a novel developability chal-
lenge from 3 standpoints. (1) Reimplementing factorized ML/LA
code stacks from scratch in each new PL/LA system is a highly
labor-intensive, tedious, error-prone, and ultimately costly process.
(2) Fragmentation of factorized ML/LA code stacks across PLs also
duplicates efforts and complicates testing, deployment, and mainte-
nance. (3) As DB+ML researchers keep devising novel LA+relational
algebraic optimizations (e.g., like [37]), prototyping them across PLs
leads to tedious development grunt work for researchers. Figure
1(A) illustrates these three issues.

Motivation: Morpheus prototype in Python. Morpheus was
originally prototyped in R, informing its design with knowledge of
matrix datatype representations, the efficiency of LA operators, and
other PL-specific idiosyncrasies. When we wanted to port Morpheus
to Python, we expected it to be a straightforward re-implementation
of the same optimizations in Python, i.e., same ideas, different syn-
tax. NumPy, Python’s de-facto LA framework, replicates much of
R’s functionality in Python. But we found NumPy’s design imposes
some implementation restrictions that led to more dramatic run-
time performance issues in Python than in R. Indeed, the original
re-implementation in Python was slower than no optimizations at
all! The culprit was not at the syntax level but rather a combination
of wasteful memory allocation at the C-level and NumPy’s eager
conversion to dense matrices from sparse matrix operations. To
make Morpheus in Python fast, it took us over two months to learn
the idiosyncrasies of NumPy’s LA performance and re-implement
and tweak Morpheus optimizations many times over. Overall, this
experience exemplifies the massive developability nightmare in-
herent in bringing modern data systems optimizations to multi-PL
industrial data science environments.

2918

https://doi.org/10.14778/3476311.3476372
https://github.com/davidmrdavid/trinity
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476372

(A) New PL:

= (o]
35 (o]

New Optimization: (B)

— R

A

New PL:

JS_’ [Opt]—'[MorpheusDSL]

New Optimization:

Figure 1: (A) Implementation burden without Trinity. Supporting a new PL requires re-implementing all optimizations in it;
adding a new optimization (opt) requires porting it to each PL. This burden is “quadratic” (product) in the number of PLs and
opts. (B) Implementation burden with Trinity. Supporting a new PL requires implementing only its MatrixLib interface; a new
opt needs to be specified only once in MorpheusDSL (details later). The burden is “linear” (sum) in the number of PLs and opts.

Informed by our experience, in this paper we take a first step to-
wards a first-of-its-kind polyglot framework for factorized ML to meet
the above developability challenge. We unify ideas from 3 fields: DB,
ML, and PL. Specifically, we exploit an emerging industrial polyglot
compiler/runtime stack to architect a new data system that makes
DB-style factorized ML optimizations easily reusable across PLs.
That is, our approach imposes minimal cost for supporting new PLs
and for updating the optimization techniques that get reused across
PLs automatically. A key benefit is we rein in the engineering cost
to be “linear” in the number of optimizations and PLs, as Figure 1(B)
illustrates, rather than “quadratic”

System Desiderata and Challenges. We have 3 key desider-
ata for our polyglot framework. (1) Genericity: It should be generic
enough to support many user-level PLs and LA systems. Existing
stacks like Morpheus in R tightly couple factorized LA logic with
the PL’s runtime. Enabling PL-agnostic stacks and interoperability
across PLs is challenging due to their differing object and mem-
ory management styles. (2) Extensibility: It should be relatively
easy to extend support to new LA systems in PLs or even new PLs
in the future. Today this requires deep knowledge on two fronts:
Morpheus-style algebraic rewrite rules and the new PL/LA sys-
tem’s compiler/runtime environment. We want to mitigate this
double whammy and enable a clean separation of concerns. (3)
Efficiency: Ideally, the higher generality we seek will not sacrifice
runtime performance too much relative to prior single PL-specific
implementations.

Our Approach: Trinity. We present Trinity, the first data sys-
tem to offer factorized ML/LA as a “reusable service” that can be
used in multiple PLs and LA systems in one go. Trinity is built as a
service in and for Oracle’s GraalVM, a multi-PL virtual machine
with good support for PL interoperability aimed at industrial data
science applications [61]. We use GraalVM for two reasons. First,
GraalVM lets us reuse the same underlying code stack for factorized
ML across many user-level target PLs aka host PLs without needless
data copies or movement.Second, GraalVM’s advanced compiler
and runtime capabilities also enable truly polyglot programs that
span and compose PLs. Such capabilities are potentially beneficial
for data scientists to be given more freedom to choose the idioms
they prefer when writing LA scripts while also representing and
transforming data with the right semantics. All of this is powered by
an efficient interoperability protocol in a unified runtime. Figure 2
illustrates Trinity’s high-level architecture.

Architecture and Techniques. We briefly explain the archi-
tecture and usage of Trinity (details in Section 3). Trinity offers a
clean separation of concerns between 3 user/developer roles in our

2919

Sgs;ze adapters Application
.r/.py/.js | P " *.py
Language
Truffle |M0rpheU5DSL| | R " Python Implerfentgation
ASTs
I
MatrixLib
Truffle Virtual
Shared InteropLibrary Machine
runtime (GraalvMm)

Compiler

Interpreter
HotSpot Runtime

Figure 2: Trinity in and for GraalVM (Section 3 explains
more). GraalVM supports many host PLs, they execute on a
shared runtime Truffle, which provides services such as dy-
namic compilation and memory management. Truffle also
provides interoperability services across PLs. We build two
such services in Trinity to achieve our goals: MatrixLib (Sec-
tion 4) and MorpheusDSL (Section 5).

setting; data scientists (who write LA scripts), PL/GraalVM develop-
ers (who support more PLs/LA systems), and DB+ML researchers
(who devise Morpheus-style rewrite rule optimizations). To this
end, Trinity has 4 components: MatrixLib, a new matrix interop-
erability API; MorpheusDSL, a PL-agnostic Morpheus rewrite rule
engine; a collection of host PL-specific matrix datatype Adapters;
and Normalized Matrix datatypes in the host PLs with adapters.
MatrixLib (Section 4) allows PL/GraalVM developers to specify
generic LA operations that are reusable across PLs. It enables Trin-
ity to meet the desideratum of genericity. MorpheusDSL (Section
5) is an embeddable domain-specific language (DSL) for GraalVM
whose abstract syntax tree (AST) node semantics correspond to the
algebraic rewrite rules of Morpheus. It enables Trinity to meet the
desiderata of genericity and efficiency. Finally, our rewrite optimiza-
tion stack can be transparently invoked in concrete PL-specific LA
scripts via matrix Adapters (Section 4). These serve as a flexible, fast,
and easy-to-implement approach to support new PLs/LA systems.
Thus, it enables Trinity to meet the desideratum of extensibility.
Novelty and Industrial Track Relevance. Trinity marries
cutting-edge PL/compilers techniques with DB+ML systems tech-
niques. But we believe its key novelty is less in its individual tech-
niques and more in its first-of-a-kind holistic architecture that
synthesizes the “right” techniques from disparate fields to meet
our goals. To the best of our knowledge, Trinity is the first data

science system to offer 3 axes of generality in a unified manner: sup-
port for many ML/LA scripts, support for many PLs/LA systems,
and support for polyglot workflows. The industrial data science
landscape is increasingly polyglot, with end-to-end workflows for
data preparation, model building, and inference often straddling
PLs such as Python, R, Java, and Javascript. Thus, Trinity’s unified
approach can help reduce implementation costs and maintenance
headaches for industrial deployments. We believe our work is a
timely case study of how emerging industrial data science products
can benefit from the latest research in the DB+ML systems space.
Overall, this paper makes the following contributions:

o To the best of our knowledge, this is the first paper to study
the problem of generalizing factorized ML/LA optimizations
to multiple PLs/LA systems in one go.

We architect a new system, Trinity, leveraging GraalVM to
offer factorized LA as a generic reusable service: implement
once in a DSL, reuse efficiently in a polyglot runtime.

We devise new interoperability abstractions in GraalVM
to let developers and researchers make such optimizations
easily available to new PLs/LA systems.

We demonstrate prototypes with 3 host PLs of GraalVM,
including a cross-PL workflow to demonstrate the high gen-
erality of Trinity.

We perform an extensive empirical analysis of Trinity’s effi-
ciency using synthetic and real-world multi-table datasets.
Overall, Trinity offers substantial speedups over materialized
execution, even 8x on some real datasets and ML algorithms.
Trinity also has competitive runtimes relative to a prior sin-
gle PL-specific stack, MorpheusR, with the max overhead
being < 1.2x.

2 BACKGROUND AND PRELIMINARIES
2.1 Linear Algebra Systems

Linear Algebra (LA) is an elegant formal language in which many
statistical and ML algorithms are expressed. Data are represented as
matrices. LA operators transform a matrix/matrices to another ma-
trix/matrices. Common LA operators include include scalar-matrix
addition and multiplication, matrix-matrix multiplication, and ma-
trix aggregation. An LA system is a tool that supports matrices as
first-class datatypes and has many basic and derived LA operators.
Popular examples include R, Python’s NumPy and SciPy, Math.js
in JavaScript, Matlab, and SAS IML [9, 12, 13, 15, 44, 57]. Many
ML algorithms can be seen as LA scripts in which data and model
parameters are all represented as matrices and manipulated with
LA operators. For example, Algorithm 1 shows how a popular clas-
sifier, Logistic Regression trained using gradient descent, as an LA
script.! Table 1 lists some common LA operators (ops) that arise in
statistical ML scripts; this is the minimal set Trinity expects of an
LA system. All popular LA systems offer such ops, and we use R,
NumPy, and Math.js for our prototype but note that our approach
is generic enough to support other LA systems too.

IFor simplicity of exposition, we show batch gradient descent. Many sophisticated
gradient methods such as conjugate gradient and L-BFGS can also be expressed as
just LA scripts over the whole dataset [23]. A notable exception is stochastic gradient
descent, which needs external mini-batch sampling operations over the data [56].

2920

Algorithm 1: Logistic Regression (training loop)

Input: Matrix T, vector Y, vector w, scalar a
for iin1:max_iter do

‘ w=w+ax* (TT(Y/1+ exp(Tw)))
end

Table 1: Set of LA ops for an LA system to work with Trinity.
T is a dataset matrix; X is a parameter matrix; x is a constant.

l Operator Type H Name ‘ Expression
Aritmetic O
Element-wise (@, =+ —.%, /,:IZ:tc) ToxorxoT
Scalar Op Transpose TT
Scalar Function f f(T)
Row Summation rowSums(T)
Aggregation Column Summation | colSums(T)
Summation sum(T)
Left Multiplication TX
Multiplication || Right Multiplication XT
Cross-Product crossprod(T)
Matrix Addition Matrix Addition T+XorX+T

2.2 GraalVM and Truffle

Oracle’s GraalVM project aims to accelerate the development of PLs
by amortizing the cost of building PL-specific VMs [61] GraalVM
PLs are implemented using Truffle [59, 62], an interpreter-writing
framework, and execute on a modified version of the HotSpot VM
named GraalVM [61]. This approach has led to the development of
high-performance PL re-implementations that include R, Python,
and JavaScript-referred to as FastR, GraalPython, and GraalJS, re-
spectively [4-6]. Figure 2 gives and an architechtural overview of
GraalVM and how Trinity fits into it.

1 @Nodelnfo(shortNam)
2 public abstract class AddNode extends BinaryNode {
3 @Specialization // Specialization for numeric types
4 protected Number add(Number left, Number right) {
5 return new Number(
6 left.getValue().add(right.getValue()));
7
}
8 // Specialization for strings
9 @Specialization(guards = "isString(left, right)")
10 protected String add(Object left, Object right) {
11 return left.toString() + right.toString();
12}
13 @Fallback // catch-all specialization
14 protected Object typeError(Object left, Object right) {
15 throw Exception.typeError(this, left, right);

16 }}

Listing 1: Implementation of a binary addition operator for
a simple Truffle language, adapted from [16].

"o

e="+

A Truffle language is specified by writing an AST interpreter for
it in Java and making heavy use of an annotation pre-processor
to minimize boilerplate. Using the interpreter as input, GraalVM
uses a technique called “partial evaluation” to generate compiled

code for that language. In addition to a default implementation
for an AST node, language designers are encouraged to provide
alternative, specialized, variants that provide high-performance
when operating over a subset of inputs. Then at runtime, GraalvVM
will speculate about future inputs and compile AST nodes into their
optimized variants. If a speculative assumption is ever invalidated,
the code is de-optimized and the node is replaced with a more
general implementation [60].

Example. Consider the implementation of a binary addition
operator (+) for a simple language supporting numeric addition and
addition between Strings as concatenation. This node could then
be implemented in Truffle as shown in Listing 1. We use the annota-
tion @Specialization to provide optimized implementations for
different classes of inputs while @Fallback is used for providing a
default “catch-all” behaviour: throwing a type exception [3, 17].

2.3 DPolyglot Programs and Interoperability

Since all Truffle languages share the same implementation frame-
work, GraalVM can seamlessly combine nodes from different lan-
guages within the same AST [29, 30]. In practice, this means that
end-users can seamlessly combine and execute fragments of differ-
ent languages within the same script, and that the VM will partially
evaluate and optimize the resulting multi-language programs.

Interoperability. When discussing GraalVM’s interoperabil-
ity features, we are describing the utilities that Truffle language
implementers have in order to enable some data structure to be
shared among other Truffle languages. For our purposes, this mostly
refers to Truffle’s INTEROP protocol, which maps messages to the
language-specific operations that are used to interact with objects in
a language-agnostic manner [31]. Listing 3 from a later discussion
on interoperability exemplifies the usage of this technology.

1 import polyglot as poly

2 arr = poly.eval(language="R" string="c(42,39)") # Ex.1
3 print(arr[1]) # prints 39

4 # Example 2

5 mathIn]S = """

6 const mathjs = require("mathjs");

7 class UseMath {

8 function add(x, y) { return mathjs.add(x,y); };

9}

10"

11 useMath = poly.eval(language="nodejs",string="mathInJS");
12 useMath.add(1, 2); # returns 3

Listing 2: Embedding R code in Python using polyglot-eval.
We generate a list in R and then access its elements.

Polyglot Programs. A polyglot program is one that composes
functionality from multiple PLs within the same application [25].
Many Truffle languages facilitate this process by providing a func-
tion to enable end-users to syntactically embed fragments of other
Truffle languages within another host language [2]. For instance,
in Listing 2 we see an instance of a Python script (host) borrowing
functionality from R, by creating a foreign vector of two numbers
that can be accessed by the host, and JavaScript, where we encap-
sulate the functionality of the math. js library in a class and export
it to Python so we can call on its methods. End-users of GraalVM’s
polyglot programs can safely assume that many primitive types

2921

such as arrays, strings, and numeric types will map their function-
ality to INTEROP messages such that they can be re-used in foreign
languages using that language’s native operators. For other types,
while their interface is also mapped to INTEROP messages, their
layout may be expected by other languages so interacting with
them may require domain knowledge of the object’s interface in its
language of origin. This is one of the key issues this work addresses
for matrix datatypes.

2.4 Notation: Normalized Data

For the sake of tractability, we focus on star schema primary key-
foreign key (PK-FK) joins, which are common in practice. Snowflake
joins can be easily reduced to star joins with relatively low overhead
in our setting. We use the same notation as the Morpheus paper [23]
for uniformity. For simplicity of exposition, we discuss notation
only for a two-table join. We are given tables R(RID, Xg) and S(Y,
Xs, K). Xg and Xg are feature vectors, Y is the prediction target, K
is the foreign key, and RID is the primary key in R. We refer to R
as the attribute table (akin to dimension table in OLAP) and S as
the entity table (akin to fact table in OLAP). The materialized join
output is T(Y, [Xs, Xgr]) « (S »<g=rip R), where [Xs, Xg] is the
concatenation of the feature vectors. We use standard notation for
the corresponding matrix representation of the feature vectors in a
table: R for R.Xg and similarly, S and T.

2.5 Background on Morpheus

Normalized Matrix. This is a logical LA datatype introduced
in Morpheus [23]. It represents the output of the join, T, in an
equivalent “factorized” form using the inputs of the join as a 3-
tuple: Ty = (S, K, R). Here, K is an ultra-sparse indicator matrix
that encodes the PK-FK dependency as follows: K[, j] = 1, if ith
row of S.K = j, and 0, otherwise. Note the algebraic equivalence
T = [S,KR], wherein KR denormalizes the schema. Data scientists
using Morpheus specify the base tables and foreign keys to create
a Normalized Matrix. They then write LA scripts as usual using
Ty as if it is a single data matrix. But under the hood, Morpheus
automatically rewrites (“factorizes”) LA operators over Ty into
LA operators over S, K, and R. In this sense, Morpheus brings the
classical DB notion of logical data independence to LA systems.

Morpheus Rewrite Rules. The core of Morpheus is an exten-
sive framework of algebraic rewrite rules for LA operators over the
Normalized Matrix. We present four key examples here and refer
the interested reader to [23] for the entire set of rules.

Tox— (Sox,K,Rox)
sum(T) — sum(S) + colSums(K)rowSums(R)
TX — SX[1:ds, | +K(RX[ds +1:4d,])
XT — [XS, (XK)R]

The first rewrite rule shows element-wise scalar addition/mul-
tiplication/etc. (@ is from Table 1). The second shows full matrix
summation. The third one shows Left Matrix Multiplication (LMM).
The last one shows Right Matrix Multiplication (RMM). Note that
the first LA operator preserves the shape of the Normalized Matrix,
while the others convert a Normalized Matrix to a regular matrix.

& R / Python / JavaScript
S Data Scientist .
— 3=
= g
Normalized Data ML Algorithm
! |
[Nm NM }__ Z
) i |adapter (adapted)
) I Factorized
1 System %o{ MatrixLib adapter | Execution
1 _Developer 7
: o IiVI ixLib Trinity’s
1 atrixLi
‘- ﬂ """ § GraalvMm
-[MorpheusDSL’s rewrite rules
Morpheus Expert

Figure 3: Usage of Trinity. Dotted arrows show what each
user provides/maintains in the system. We use NM as short
for Normalized Matrix. Solid arrows show the interaction be-
tween Trinity’s components. The Morpheus expert and PL/-
GraalVM Developer must work together to expand support
to new host PLs in GraalVM by updating the adapters.

Redundancy Ratio. Morpheus reduces runtimes by reducing
the raw number of FLOPS for LA ops on normalized data; recall that
T has join-induced data redundancy. Thus, “factorized” execution
has asymptotically lower runtime complexity as explained in [23].
We recap one example: LMM. Its number of FLOPS goes down from
dxns(ds + dR) to dx (nsds + nrdr). Note that star schemas typi-
cally have ng > npg. To theoretically estimate possible speedups,
Morpheus defines two quantities: tuple ratio (TR): ng/ng and fea-
ture ratio (FR): dr/ds. Since many LA ops are linear in the data
size (CrossProduct is an exception), the redundancy ratio (RR) was
defined to capture the FLOPS reduction: it is the ratio of the size of
T to the sum of sizes of input matrices. As TR and/or FR go up, RR
also goes up and Morpheus becomes faster than materialized. As
our experiments show, many real-world datasets have non-trivial
RR and thus benefit from Morpheus-style factorized execution.

3 SYSTEM OVERVIEW

3.1 Architechtural Overview

Design Goals and Intuition. Trinity is a first-of-its-kind polyglot
framework for factorized ML. Our main design goal is to have a
clean separation of concerns between 3 distinct groups of people,
as Figure 3 shows, so that each can focus on their own expertise.
We briefly highlight their roles (Section 3.2 goes into details). (1)
Data Scientist, who can write LA scripts for statistical/ML analysis
in any host PL without needing to know how factorized ML works.
(2) PL/GraalVM Developer, who can add more host PLs or GraalVM
optimizations without needing to know either ML or Morpheus
rewrite rules. (3) Morpheus Expert, who can add/change rewrite
rules while benefiting multiple host PLs in one go. GraalVM is a
good fit for our goals because all its host PLs share a common imple-
mentation infrastructure Truffle, whose interoperability primitives
enable us to uniformly specify rewrite rules just once.

2922

Components. Trinity has 4 main components, as Figure 3 shows.
(1) MatrixLib, a matrix interoperability API that provides a uni-
form means of interfacing with matrix datatypes regardless of their
host PL/LA system of origin. (2) MorpheusDSL, an embeddable DSL
to specify rewrite rules that has the benefit of being efficiently
co-optimized with the host PL. (3) Bi-directional adapters to map
between our generic matrix interface and a concrete interface of
matrices in some PL/LA system. (4) Normalized Matrix constructor,
which is what a Data Scientist will use to specify the base tables
and foreign key matrices. It is basically host PL-specific syntactic
sugar to shield Data Scientists from Trinity’s system internals.

Component Interactions. MorpheusDSL’s rewrite rules are
implemented in terms of MatrixLib calls, abstracting the idiosyn-
crasies of each PL/LA system into a uniform interface. GraalVM’s
polyglot functionality enables us to embed MorpheusDSL’s rewrite
rules within any host PL. Internally, the Normalized Matrix con-
structor calls MorpheusDSL to obtain a Normalized Matrix; before
returning, it adapts the object to conform to the appropriate matrix
interface in the host PL/LA system. All LA op calls for this object
would go through the adapter, which takes care of delegating them
to MorpheusDSL for the rewrite rules to execute. The rewrite rules
can execute because they interface with a MatrixLib adapter, which
exposes a generic interface to manipulate the base matrices.

3.2 Using and Extending Trinity

Recall that Trinity offers a clean separation of concerns between
Data Scientist, PL/GraalVM Developer, and Morpheus Expert. We
now explain their usage/interaction with Trinity. This discussion
shows how Trinity offers high generality along 3 axes: (1) Support
for multiple ML algorithms expressed in LA, (2) Support for multiple
host PLs, and (3) Easy extensibility to more algebraic and/or cost-
based optimizations devised by DB+ML systems researchers.

3.2.1 Data Scientists. A Data Scientist benefits from Trinity be-
cause all LA-based ML algorithm implementations in the host PLs’
LA systems now get automatically factorized over normalized data,
potentially making their analytics run faster. New statistical/ML
scripts in any of the host PLs—Python, R, Javascript, etc.—and multi-
lingual scripts spanning these PLs also benefit. This high a level of
generality for automating factorized ML did not exist before Trinity.

Data Scientists need only use our Normalized Matrix constructor
to specify the base table and foreign key matrices (S, R, and K)
instead of manually materializing the join. Recall that the output
of this constructor is an object whose interface resembles that of
a matrix. So, Trinity (like Morpheus) enables Data Scientists to
perform their usual analyses on this “logically single but physically
normalized” matrix. In the future, we can also consider overloading
the join operator itself in a host PL/LA system to auto-generate this
Normalized Matrix construction too.

322 PL/GraalVM Developers. A PL/GraalVM Developer benefits
from Trinity because it makes it simpler for them to offer the ben-
efits of factorized ML across host PLs, including future ones, e.g.,
Ruby or Scala, or even across different LA systems in existing host
PLs. Without Trinity, they would have to deeply understand, reim-
plement, test, debug, and maintain the Morpheus rewrite rules from
scratch separately for each host PL. With Trinity, they only need to

provide two simple adapter classes to map their PL/LA System’s
matrix interface to that of Trinity and vice versa.

Bi-directional Adapters. Concretely, the first adapter is from
a PL/LA System’s matrix interface to that of MatrixLib; the second
is from MorpheusDSL’s Normalized Matrix interface to that of their
LA System’s. The latter should also export the Normalized Matrix
constructor that calls MorpheusDSL. The PL/GraalVM Developer
thus only needs to know how to use GraalVM’s polyglot-eval utility,
which has extensive documentation, community, and forums.

Beyond Factorized ML. Interestingly, MatrixLib’s utility actu-
ally extends beyond Trinity and factorized ML. It is general enough
to define other interoperable procedures or optimizations for LA.
For instance, a GraalVM Developer can add Matlab-style optimiza-
tions for reordering matrix chain multiplications, a classic opti-
mization in LA. By providing adapters to MatrixLib, the GraalVM
Developer can also piggyback on future optimizations in GraalVM.

3.2.3 Morpheus Experts. A Morpheus Expert or similar DB+ML
researchers working on cross-algebraic optimizations spanning
linear and relational algebras also benefit from Trinity. This is
because they need to implement their novel rewrite rules only once
and Trinity makes their benefits automatically available across
many host PLs/LA systems. This dramatically reduces software
prototyping/engineering effort for DB+ML researchers and can
potentially spur more research innovations in the LA+relational
algebra query optimization space.

Adding Novel Rewrite Rules. To add a new rule, a Morpheus
Expert only need to modify the MorpheusDSL implementation in
Truffle in terms of MatrixLib invocations. They can then ask the
PL/GraalVM Developer to update the Normalized Matrix adapter
to support the new ops or to do so themselves.

Limitation: More LA Ops. We remark that one limitation in
our setup arises when MatrixLib itself needs changes, e.g., adding
novel rewrite rules in terms of other LA ops beyond Table 1. In this
case, the Morpheus Expert must work closely with the PL/GraalVM
Developer to ensure that the new LA ops are actually supported in
the host PLs/LA systems and if so, expand the implementations of
the MatrixLib interface and adapters accordingly.

4 MATRIX INTEROPERABILITY API

4.1 Design Considerations

Desiderata. We need an interoperable API to express and execute
LA operations regardless of the host PL. This API will be used to
represent Morpheus rewrite rules as generic procedures re-usable
across host PLs/LA systems. We have 2 key desiderata for such an
API. (1) Generic Availability: it should be usable by multiple host
PLs/LA Systems and abstract over their specific matrix idioms. (2)
Extensiblility: it should be easy for new host PLs/LA Systems to use
the API without affecting prior procedures/stacks that used it.
Technical Challenge: FFIs. Interoperability between PLs is a
known hard problem and an active area of research in the PL com-
munity [24, 28, 31]. One approach is to target the Foreign Function
Interface (FFI) of each PL we want to support, while abstracting the
idiosyncracies of each with a unified API that translates high-level

2923

directives to the right FFI calls. But this complicates generic avail-
ability and extensibility because new host PLs/LA Systems may not
expose FFIs for our implementation language of choice.

Technical challenge: IRs. Another approach constitutes tar-
geting or creating a shared intermediate representation (IR) for
relevant LA Systems and encode rewrite rules with the IR. This can
work but it is nuanced to get such an IR at the right level of abstrac-
tion. For instance, if it is too low-level, it may be too cumbersome
to express LA operators and rewrite rules in it. But a major concern
with IRs is extensiblility: to enable a new host PL/LA System to
work with the IR, one would effectively need a small compiler to
support it, which is daunting.

Design Decisions and Tradeoffs with GraalVM. Observing
the above challenges is what led us to choose GraalVM, shared
runtime and a multi-lingual VM as the infrastructure to implement
our interoperability API. GraalVM offers two main advantages. (1)
All host PLs on it already share a high-level IR in the form of Truffle
ASTs; so, identifying and modifying LA operator calls is much easier
[60]. (2) It already exposes a foundation of interoperability APIs
that works across all host PLs [31]; this reduces work for correctly
interacting with foreign datatypes.

The above said, we have 2 limitations due to GraalVM. (1) Our
reach is currently limited to GraalVM’s host PLs. But they already
have working implementations of multiple PLs, including Python,
R, JavaScript, Java, Ruby, and more. (2) Support for some newer
host PLs is still at the experimental stage, i.e., they are not fully
stable yet. This means our rewrite rules may not yet offer runtime
benefits in those PLs on par with older PLs.

Nevertheless, since GraalVM is a major active industrial project,
we believe the above limitations will get mitigated over time. A
tighter integration of GraalVM with the Oracle Database is also
likely in the future; this could also bring the benefits of Trinity to
Oracle’s enterprise customers [19].

4.2 MatrixLib Features

Overview and Motivation. MatrixLib is a new Truffle Library for
interoperability on matrices that supports multiple host PLs/LA
Systems running on top of GraalVM. Before this, Truffle PL devel-
opers did not have a unified API with which to interact with foregin
matrix objects. Its rationale is as follows. When implementing AST
nodes, Truffle developers have access to an interoperability pro-
tocol for manipulating foreign objects. However, Truffle does not
provide abstractions to deal with many classes of common foreign
datatypes such as trees and matrices. Thus, a Truffle-level proce-
dure expecting a foreign matrix may need to know, in advance, the
public interface of the PL/LA System to support and worse, handle
each interface separately.

Example. Suppose we have to implement an AST node receiv-
ing a matrix input, with the output multiplying that matrix by
42. Suppose we expect NumPy or R matrices as input. Naively,
we would write something similar to Listing 3. In it, we utilize
InteropLibrary [10], Truffle’s programmatic means of sending inter-
operability messages to call methods from the input matrix. Even
though this computation is trivial, we need to handle a NumPy ma-
trix differently from an R matrix, each requiring a different method
name to be called. This is undesirable because it means we cannot

support a wider set of matrix datatypes without extending this
procedure. Thus, code duplication and grunt work gets amplified
and quickly becomes unwieldy as we start supporting more LA
operations and rewrite rules on them.

1 @Specialization

2 Object doDefault(Morpheus receiver, Object matrix,
3 @CachedLibrary("matrix") InteropLibrary interop)
4 throws UnsupportedMessageException {

5 // Handles each kind of matrix separately

6 Object output = null

7 boolean isPyMat =

8 interop.isMemberInvocable(matrix, "__mul__");
9 if(isPyMat){ // NumPy case

10 output = interop.invokeMember(matrix,

11 "__mul__", 42);

12 }else{//R case

13 output = interop.invokeMember(matrix, "+", 42);
4}

15 return output;

16}

Listing 3: Polyglot node to multiply a NumPy or R matrix by
42. Note how each case must be handled separately. Lines 1-
4 set up the node and enables interoperability calls. Line 7-8
naively checks if the input matrix came from Python. The
rest use interoperability calls to invoke the right method
names depending on the conditional check.

MatrixLib is a Truffle Library that simplifies the implementation
of Truffle AST nodes operating over foreign matrices. Its key benefit
is eliminating the need to know, in advance, the interface details
of a foreign input matrix. Instead, MatrixLib users are given a uni-
fied interface supporting a variety of common matrix operations
that foreign input matrices are expected to support. As an example,
compare Listing 3 with Listing 4. We implemented MatrixLib as a
Truffle Library, which a Truffle mechanism for exporting messages,
a kind of interface, on Truffle-level objects [18].

1 @Specialization

2 Object doDefault(Morpheus receiver, Object matrix,
3 @CachedLibrary("receiver.adapter”)

4 MatrixLibrary matlib)

5 throws UnsupportedMessageException {

6 Object output = matlib.scalarMultiplication(

7 receiver.adapter, matrix, 42);

8 return output;

9

}

Listing 4: Polyglot node for multiplying a matrix by 42
with MatrixLib. Lines 1-5 set up the node to use MatrixLib.
The rest uses MatrixLib to uniformly invoke the scalar-
multiplication operator for any input matrix.

Is MatrixLib a Java Interface? What about Efficiency? No,
MatrixLib is implemented as a Truffle Library, which provide per-
formance benefits we’ll discuss shortly. However, MatrixLib does
specify generic matrix interface for multiple host PLs. In particular,
it expects its inputs to expose a variety of basic and self-descriptive

Truffle Python /R / JavaScript

multiply(mat, num) {

result = mat %*% num
mlib.multiply(mat, 1)

return result

}

MatrixLib-based Procedure MatrixLib Adapter

Language Boundary

Figure 4: MatrixLib is abbreviated as mlib. Suppose the ma-
trices’ host uses % * % for matrix multiplication (like R syn-
tax). MatrixLib crosses the language boundary every time an
LA operation is invoked. Built on top of Truffle’s basic In-
teroperability API, it relies on adapters exporting a unified
interface for matrices.

LA method names such scalarAddition, rowWiseSum, rowWiseAp-
pend, splice, transpose, getNumColumns, etc. Talking to host PLs is
handled dynamically via an Adapter, which guarantees the expected
matrix interface. Listing 5 shows an example of a MatrixLib Adapter
for JavaScript. Overall, MatrixLib is one of the first external uses of
the Truffle Library system, to the best of our knowledge. Finally,
Truffle Libraries allow for context-specific inlining, caching, and
other compiler optimizations. So, these let us meet our efficiency
desiderata as well in spite of writing MatrixLib in Java [18].

1 class MatrixLibAdapter {

2 constructor() {}

3 scalarAddition(matrix, number) {

4 return math.add(matrix, number);
5

}

Listing 5: Preview of a MatrixLib adapter for JavaScript.

Crossing the PL Boundary. As Figure 4 shows, MatrixLib pro-
cedures work by requesting a sequence of computations in some
Truffle language, the one where the operation’s receiver resides.
Implementation-wise, this is performed by making Truffle interop-
erability calls to a generic matrix interface, which is guaranteed
by the adapter. Each interoperability call takes as input an adapter,
providing the translation, and is followed by the operation’s LA
inputs. This let us compose generic sequences of LA operations.

5 EMBEDDABLE MORPHEUS DSL

5.1 Design and Overview

Overview. We now explain how we use MatrixLib to offer the
Morpheus rewrite rules in a host PL-agnostic way. Recall two key
desiderata: generic availability and extensibility. We achieve both by
making a key observation: if we can represent our rewrite rules as
a small Truffle “Language” itself, we can piggyback on GraalVM’s
pre-existing polyglot-eval functionality, i.e., its ability to talk across
PLs. Thus, we use a level of indirection to represent our rewrite
rules as a “language” itself: we call it MorpheusDSL. This meets
both the above desiderata. But it raises a key question: will the

2924

) R/ Python / JavaScript
O MorpheusDSL

MatrixLib-

/7 powered

3‘ M is NM rewrite

j& = /

\/j\/ _
YN N
c (M) ([c)(M)
\,,, AN N\

MorpheusDSL nodes execute
the rewrite rules by
delegating to M’s host

Uninterpreted AST NM alters the AST to use
MorpheusDSL nodes

Figure 5: MorpheusDSL dynamically factorizes ML algo-
rithms. C refers to some numeric constant, M refers to some
matrix datatype and NM refers to the adapted Normalized
Matrix. The rewrite occurs by using the host language’s own
LA operator implementations

cross-language overhead sacrifice our efficiency desideratum, i.e.,
kill the runtime benefits offered by Morpheus rewrite rules?

Addressing the Efficiency Challenge. We employ two mech-
anisms. (1) Since GraalVM handles multi-lingual programs using
the same IR, it already optimizes across PL boundaries. So, its com-
piler should be able to “collapse” some of our indirection given
enough warm-up. (2) The use of Truffle specializations machinery
in MatrixLib enables context-speficic inlining, inline caches, and
other compiler optimizations.

Obtaining a Normalized Matrix. MorpheusDSL has no dis-
tinctive syntax; all expressions in this language evaluate to return-
ing a constructor for a Normalized Matrix. Once constructed, we
effectively have access to a guest object in some host PL. The ob-
ject’s interface will not match the host PL’s expected matrix APIs;
so we utilize adapters to provide the translation.

AST Rewriting. The rewrite rules in MorpheusDSL orchestrate
a sequence of LA operator calls to the host PL/LA System’s physical
LA operator implementation. Note that Trinity does not have its
own physical LA operator implementations. It is the host PL that
runs the actual LA computations using its own AST nodes. Figure 5
illustrates this. This is in line with prior PL-specific Morpheus
implementations. In a sense, this is the generalization of the classical
DB idea of logical data independence to polyglot environments. Recall
that MatrixLib is only a means of making interoperability calls.
To the best of our knowledge, this is the first Truffle “language”
that works like this over data objects. Overall, even though the the
rewrite rules may produce intermediate data, MorpheusDSL does
not result in extra data copies but rather the data resides where it
is: the host PL.

5.2 Usage and Requirements

We bundled MorpheusDSL with our custom GraalVM distribution;
so, it is available for interoperability from any host PL. We now
explain how it can be used by a PL/GraalVM Developer to support
anew host PL.

Example. Suppose we want to obtain a Normalized Matrix from
within JavaScript. We request its constructor from MorpheusDSL

2925

and give the appropriate inputs: an entity table matrix S, an array
of indicator matrices K’s, an array of attribute table matrices R’s,
and a matrixLib adapter. Listing 6 illustrates this. Listing 7 pre-
views how the Javascript Normalized Matrix adapter exports the
host PL’s matrix interface from Trinity’s generic MatrixLib interface

1// assume S, K, R are pre-existing math.js matrices

2 // Obtain the Normalized Matrix constructor

3 let adapter = new MatrixLibAdapter();

4 let constructor = Polyglot.eval("morpheusDSL", "");

5 this.normMatrix = constructor.build(S, K, R, adapter);
6 // now we can use the normalized matrix, ex:

7 let normMatrix.elementWiseSum(); // returns sum

Listing 6: Obtaining a Normalized Matrix in JavaScript

// scalar addition
const addScalar = math.typed(‘addScalar’, {
'NormMatrix, number": function (a, b) {
let normMatrix = a.morph.scalarAddition(b);
return new NormMatrix({"nmat": normMatrix});
.
} // matrix multiplication
const multiply = math.typed('multiply’, {
'Matrix, NormMatrix': function (a, b) {
return b.normMatrix.
rightMatrixMultiplication(a);
|
13});

Listing 7: A preview of the Normalized Matrix adapter in
Math.JS. In most cases, adapting a factorized LA op like
requires only a simple function invocation. In cases such as
scalarAddition, where the result is also a Normalized Matrix,
we need to adapt the output before returning

1 Object doDefault(NormalizedMatrix receiver,
2 Object num, @CachedLibrary("receiver.adapter")
3 MatrixLibrary matrixlib) {
int size = receiver.Rs.length;
Object[] newRs = new Object[size];
for(int i = 0; i < size; i++) {
newRs[i] =
matrixlibGen.scalarAddition(receiver.adapter,
receiver.Rs[i], num);
}
Object newS =
matrixlibS.scalarAddition(receiver.adapter,
receiver.S, num);
// return a new normalized matrix
return createCopy(newsS, receiver.Ks, newRs,
receiver.adapter);

17}

Listing 8: Interoperable scalarAddition with
MatrixLib. Lines 1-6 set up the node and enable Truffle to
cache specializations for the matrix arguments. Lines 7-16
perform the rewrite rule. The remaining lines return a new
Normalized Matrix instance.

- MatrixLib call Matrix
e Interop call Matrix Adapter
Method call

Matrices’ host

Norm.
Matrix

Figure 6: How Trinity’s components interact for factorized
execution. (1) Host PL invokes an LA op from the Normal-
ized Matrix Adapter, whose inner object is a foreign datatype
originating from MorpheusDSL. (2) Rewrite rule begins ex-
ecuting in MorpheusDSL. (3) Since the rewrite rule is imple-
mented as MatrixLib calls, they execute ops on foreign ma-
trices, which may originate from a PL different than the in-
voking host PL. (4) The result returns to MorpheusDSL. (5)
MorpheusDSL returns result to invoking host PL.

Rewrite Rules as AST Nodes. Morpheus rewrite rules, and all
of the NormalizedMatrix’s interface, are implemented as Truffle
AST nodes that utilize MatrixLib to manipulate, generate, and in-
spect matrices. As a case study, we discuss the implementation
of scalar addition. Recall its rewrite rule from Section 2. Listing 8
shows how that is implemented in MorpheusDSL.

5.3 End-to-End Working Example

Now that we have seen all the components of Trinity, we reuse our
running example of scalar addition to walk through how various
Trinity components interact when performing factorized execution.
Figure 6 illustrates this. For exposition sake, we assume GraalJS is
the host PL. Assume we have already constructed a Normalized
Matrix; we add a constant to it.

The Data Scientist interacts with the adapted Normalized Ma-
trix. So, the process begins by executing the addition method in
the Adapter, which redirects that call to MorpheusDSL, as line 4
of Listing 7 shows. That leads to MorpheusDSL’s scalarAddition
node implementation, shown in Figure 8. The code implements the
rewrite rule seen in Section 2.5 in terms of MatrixLib calls. Each
MatrixLib call leads to the execution of FastR code corresponding to
the MatrixLib LA operation requested. Here, the MatrixLib call from
Listing 8 invokes the scalarAddition method of a Graal]S adapter, as
implemented in Listing 5. After executing the rewrite rule’s steps,
Trinity returns a new Normalized Matrix reference to the caller,
Graal]S. Back at the caller, since we received a Normalized Matrix
from MorpheusDSL, we adapt the foreign Normalized Matrix before
returning, as line 5 of Listing 7 shows. Since we have an adapted
Normalized Matrix, future LA ops will be factorized the same way.

2926

5.4 Factorizing Polyglot Scripts

GraalVM enables truly polyglot scripts wherein a user can, say,
write LA scripts in one PL for ease of coding/maintainability but
represent the matrices in a different foreign language’s matrix im-
plementation, say, for memory efficiency.

In Trinity, if matrices are represented in a host PL/LA system
different from the one in which the LA script is written, then the
rewrite rules that do not output a Normalized Matrix will output a
foreign matrix. In such cases, and in order for the script to work,
end-users must provide a mapping from their matrices” host PL to
that of the host PL in which their script is written. This is reason-
able because they need to write such a mapping anyway (i.e., even
without Trinity) for their polyglot script to work. Conveniently,
supporting Trinity already gives users the components they need to
provide this mapping as we have developed bi-directional adapters
to- and from- MatrixLib. In our experience running polyglot exper-
iments with Trinity, only minor control-flow tweaks were needed
in the existing adapters for the r and Python to work in tandom.

6 EXPERIMENTAL EVALUATION

We now empirically evaluate Trinity’s efficiency on both real-world
and controllable synthetic datasets. We also highlight Trinity’s
generality by using all of FastR, GraalPython (NumPy), and GraalJS
(Math.js). Specifically, we answer the following 3 questions on
efficiency. (1) How well does Trinity perform against Materialized
execution for various redundancy ratios? (2) What is the overhead
of Trinity relative to MorpheusR, a prior PL-specific implementation
with much less generality? (3) How well does Trinity support new
host PLs and polyglot scripts?

As a heads-up summary, our results show the following: (1)
Trinity is significantly faster than Materialized; the speedups are
in line with the expectations based on data redundancy ratio. (2)
Trinity’s speedups are just as competitive that of MorpheusR; their
gap in real-world datasets is no more than 1.2X and often, much less.
(3) Trinity works seamlessly with Javascript and a polyglot Python-
R script. These newer host PLs see stranger behaviors, however,
due to known GraalVM issues that Oracle is actively working on

Synthetic Datasets. We generate controlled synthetic 2-table
join datasets with varying size parameters to control the redun-
dancy ratio. We always fix ng and ds and vary TR and FR as specified
in the experiments. Recall the definitions from Section 2.5.

Real-world Datasets. We reuse all 7 real-world normalized
datasets from the Morpheus paper; Table 2 lists the statistics. We
also report the redundancy ratio (RR) alongside for more context;
recall that RR is the ratio of the size of T against the size of the
Normalized Matrix. We use FastR’s object.size utility to esti-
mate memory footprints for sizes. Most LA ops and LA-based ML
algorithms have runtime complexity linear in the matrix sizes;
Cross-Product and OLS linear regression are the only ones here
that have runtimes quadratic in the number of features.

LA-based ML Algorithms and Parameters. We show results
for all 4 LA-based ML algorithms from the original Morpheus paper:
Linear Regression (LinReg), Logistic Regression (LogReg), K-Means
Clustering (KMeans), and GNMF Clustering (GNMF). The number
of iterations is set to 20 for all three iterative algorithms; number
of centroids is 10 for KMeans; rank parameter is 5 for GNMF.

columnWiseSum rightMatrixMultiplication crossProduct
5 ® @€ @ # # & HE E N E E E ¢ O 51 @ # # # = @ @ B B B B HE N NN ¢ 5H @ #« m &
[} o o
'*g 41 e @ # # # # m H 6 E B E R EH B 'g 41 @@ # # # # 4+ @ E E E N HEEEGBN 'g 41 #+ m m & &
o -4 -4
V3{e @ @ # @ # # + B H + H & H B V310 % + & # # % + + + + % + + * P3{0 # + B H H &6 ¢ ¢ 6 00
35 3 =]
=1 =1 =1
C2]1 0 @ @ # & & + % & %+ +# m m E W C21 0 @ % 4 & @ & + + + + & + + $2{ 0 # # #+ *+ m m m m EEEEBEG®
uw - w
1{® @ @ @ © + + + + + + + * # + 110 © © ¢ ¢ ¢ ¢ 0 0 0 0 0 0 0 o 110 © © @ + #+ % + # + + + + + #
2 4 6 8 10 12 14 2 4 6 8 10 12 14 2 4 6 8 10 12 14
Tuple Ratio Tuple Ratio Tuple Ratio
@® speedup<l # l<speedup<2 B 2<speedup<3 € 3<speedup<4 4<speedup<5 5>=speedup

Figure 7: Discretized speedups of Trinity over Materialized in FastR.

Table 2: Real-world dataset statistics

Dataset “ (ns,ds) [#tbs [(ng;, dr,) [RR ‘
‘ (11939, 12013)
Exped 942142,27) | 2 45
xpedia || () (37021,40242)
. (6040, 9509)

M 1000209,0) | 2 12.7
ovies || () (3706,3839)
(11535, 11706)

Yel 215879,0) | 2 7.5
¢p () (43873,43900)
(2340, 2387)

Walmart || (421570,1) 2 (45.53) 5.9
(4099, 5019)

LastFM || (343747,0) | 2 4.4
as () (50000,50233)
(27876, 28022)

Book 253120,0) | 2 2.3
ooks || () (49972,53641)

(540, 718)

Flights | (66548,20) | 3 (3167,6464) | 4.8

(3170,6467)

Experimental Setup. All experiments were run on a c8220
CloudLab node, equiped with Two Intel E5-2660 v2 10-core CPUs
at 2.20 GHz, 256GB GB RAM, and over 1TB disk, running Ubuntu
16 as the OS. Unless otherwise stated, we warm up for 10 runs and
report the mean runtimes of the following 15 runs.

6.1 LA Operator-level Results in FastR

We first evaluate Trinity’s efficiency at the LA op level using syn-
thetic data. This controlled experiment will shed light on interpret-
ing the results with the ML algorithms and real-world datasets later.
We fix ng = 10% and ds = 20, and vary TR and FR in [1,15] and
[1, 5], respectively. We plot the runtime speedup of Trinity against
Materialized. We exclude the time to materialize the join, which
might favor Materialized. Due to space constraints, we only show 3
LA ops here-ColumnWiseSum, RMM, and CrossProd-and present
the rest in our technical report [33]. Figure 7 shows the results.
Other LA ops show similar trends.

We see that Trinity is faster than Materialized for almost all
TR-FR combinations that result in substantial data redundancy. As
expected, the speedups grow as TR and/or FR grow, i.e., as the re-
dundancy ratio grows. ColWiseSums sees slowdowns at lower TRs
because the relative per-column overheads of columnar summation
is higher with low numbers of rows. RMM has lower speedups that

2927

Table 3: Mean runtimes (in seconds) for Materialized (M),
median speedups of Trinity relative to M (Sr), median
speedups of MorpheusR relative to M (Sp). M, Y, W, F, E,
L, and B refer to Movies, Yelp, Walmart, Flights, Expedia,
LastFM, and Books, respectively. RR is their redundancy ra-
tio as per Table 2.

logReg linReg
RR M [St [Sp M [ST [Sp
M | 12.7 || 165.07 | 8.13 | 8.56 || 132.66 | 7.49 | 7.55
Y 7.5 46.59 | 543 | 6.2 40.76 | 4.22 | 4.87
W | 59 47.22 | 4.44 | 4.53 32.66 | 3.97 | 4.08
F 4.8 8.2 1.93 | 1.98 4.19 0.87 | 0.95
E 4.5 168.54 | 4.74 | 4.96 || 121.39 | 3.16 | 3.41
L 4.4 35.05 | 3.33 | 3.71 23.63 | 2.04 | 2.23
B 2.3 23.37 | 2.24 | 248 15.72 | 1.23 | 1.41
KMeans GNMF
RR M [St [Sp M [St [Sp
M | 12.7 || 358.13 | 4.98 | 5.05 || 256.78 | 0.88 | 0.79
Y 7.5 109.8 | 3.22 | 3.29 68.8 0.82 | 0.85
W | 59 95.03 3.1 | 3.15 97.18 0.8 0.8
F 4.8 20.46 | 1.37 | 1.44 21.64 | 081 | 0.8
E 4.5 384.51 | 1.38 | 1.39 265.8 | 0.66 | 0.68
L 4.4 85.56 | 2.11 | 2.07 || 101.06 | 0.84 | 0.84
B 23 66.31 | 1.47 | 1.49 82.85 | 0.84 | 0.82

ColWiseSums at higher TRs due to the relatively higher overhead
of its more complex rewrite rule. As expected CrossProd sees the
highest speedups, even above 5X in many cases.

6.2 ML Algorithm-level Results in FastR

We now compare Trinity’s efficiency against Materialized on the
4 LA-based ML algorithms. We also compare Trinity’s speedups
against that of MorpheusR, which is PL-specific, to assess the cost
of Trinity’s much higher generality. Table 3 shows the results on
all the real-world datasets.

LogReg sees some of the highest speedups with both Trinity and
MorpheusR on all datasets. Trinity is 8 faster than Materialized
on Movies; 5% on Yelp. LinReg is a close second on speedups seen,
7x on Movies and 4X on Yelp. Flights sees the only example of
slowdowns relative to Materialized, albeit only about 15% slower.
In the original Morpheus paper [23] Flights did not see slowdowns

Table 4: Runtimes (in seconds) on GraalVM for GraalJS and
GraalPython+FastR.

Graal]S GraalPython + FastR
FR M | St M] St
1 283.72 | 0.89 894.42 9.75
2 515.32 | 1.47 || 1353.53 14.85
3 584.89 | 1.58 || 1788.76 19.24
4 723.11 | 1.75 || 2041.92 21.85
5 873.49 | 2.02 || 2688.39 28.66

but it did see among the lowest speedups. Since it has 3 joins and
not much absolute total FLOPS, the overheads of rewrite rules
dominate. Besides, FastR is also a highly optimized R runtimes; so,
Materialized fares better in relative terms on this dataset.

KMeans sees 5x speedup on Movies, 3X on Yelp, and the low-
est of 1.3x on Flights. GNMF sees slight slowdowns across the
board. There are two reasons for this behavior. First, these datasets
have relative low absolute total FLOPS due to their smaller sizes,
which again cause rewrite overheads to matter. Even PL-specific
MorpheusR had such issues in some cases [23, 37]. Second, and
more pressing for GraalVM developers, is that standard GNU-R
optimization wisdom does not directly apply to FastR because they
are different implementations with different cost models. More
concretely, addition of matrices in the Matrix library seemed to
dominate the runtimes of GNMF on both Trinity and MorpheusR.
But that was not the case with GNU-R. This overhead overshad-
owed the runtime gains from the rewrite rules in both MorpheusR
and Trinity. In future work, we might to automatically capture the
performance of different datatype-op configurations and translate
those in MatrixLib adapters to cast to the right representation at
the right time; currently our implementation depends on know-
ing these a priori from a GraalVM PL developer implementing the
MatrixLib adpater.

Trinity vs MorpheusR. Across the board, Trinity mostly matches
MorpheusR on speedups and is only about 20% slower in the worst
case. In fact, Trinity is slightly faster than MorpheusR for KMeans
on LastFM. We take all this as evidence that Trinity’s higher gener-
ality does not exact too high a price on efficiency. We compare the
runtimes of Trinity and MorpheusR for some LA operators as well
in the technical report [33]. The takeaways are largely similar to the
above discussion; we skip the details here due to space constraints.

6.3 Other Host PLs and Polyglot Execution

Finally, we demonstrate Trinity’s generality with two additional
experiments: a factorized execution in Graal]S, as well as a polyglot
factorized execution straddling GraalPython NumPy and FastR.

6.3.1 Factorized Execution in GraallS. Due to space constraints: we
present results only for LinReg. We fix ng = 10* and dg = 20, TR =
10, and vary FR from 1 to 5. We reduced ng compared to Section
6.1 because model training took much longer in these experiments
than in pure FastR. Table 4 presents the results.

Even though we see a single slowdown with Trinity when the
feature ratio is 1, we see that the speedups of Trinity go up as FR
increases. This validates that Trinity is able to successfully factorize

2928

the LA script execution in Javascript as well automatically using
the same same underlying optimization and runtime infrastructure
that FastR used. The speedups are lower than the corresponding
FastR speedups, however, because GraalVM’s support for Javascript
is in early stages infancy. We expect this issue to get resolved as
GraalVM matures.

6.3.2 Polyglot GraalPython + FastR Execution. To demonstrate that
Trinity works with GraalVM’s polyglot capabilities, we run the Lin-
Reg LA script written in NumPy operating over matrices loaded
in FastR. Before being exported to GraalPython, FastR matrices
are wrapped in a MatrixLib adapter and then when received in
GraalPython, they are wrapped in an adapter that exports the
NumPy interface from the MatrixLib adapter. One can also do
other pairs of host PLs but we chose this combination because
GraalPython is still in active developmental stage and is not as
good as FastR at supporting memory-intensive operations. This
also means that it is not possible to benchmark a Morpheus imple-
mentation in pure Python, such as MorpheusPy [38], while com-
puting over datasets large enough to yield speed-ups for the factor-
ized execution. So this polyglot experiment allows us to side-step
GraalPython’s limitations while also demonstrating Trinity’s appli-
cability in multi-PL settings. We discuss this further in the technical
report [33].

We use the same synthetic data setup as for GraalJS but instead
have only 2 warm-up rounds and average over the next 5 training
loops. We did this because GraalPython was unstable in our experi-
ments and would sometimes fail with a segmentation fault when
running for too long. Table 4 shows the results.

The speedup behavior here is strangely dramatic, growing from
9% for FR = 1 to 28X for FR = 5. While monotonic growth is to
be expected, these numbers are far above the commensurate RR.
For instance, FR = 5 leads to no more than RR = 6. That means
28x speedup clearly did not come from just the FLOPS savings of
our rewrite rules. We believe this anomaly is due to GraalPython’s
current instability for memory-intensive workloads, which some-
times manifests in unexpected segmentation faults and may lead
to overzealous garbage collection pauses or other background in-
terference. Under these circumstances, the Materialized approach,
which allocates much more memory than Trinity’s Normalized
Matrix, would obviously suffer from greater memory interference.
Although GraalPython was unable to allocate larger matrices, these
results still demonstrate that using Trinity and MatrixLib can enable
a host PL to reap the benefits of factorized ML benefits by utilizing
another PL’s matrix representation.

6.4 Current Limitations

We have built a first-of-its-kind working prototype for a polyglot
framework for factorized ML. We made a few assumptions for
tractability sake. We recap our current major limitations.

(1) We chose GraalVM as our polyglot runtime; so, Trinity is
tied to its host PLs and issues. But to the best of our knowledge,
GraalVM is unique in its generality.

(2) We focused on star schemas (and snowflakes reduced to stars).
But nothing in Trinity prevents generalizing it to support M:N joins
or other join schemas like in MorpheusR [23].

(3) We target LA-based statistical/ML algorithms like Morpheus,
not tree-based methods or deep learning. As such, deep learning
requires GPU runtimes. We leave it to future work to extend Trinity
to support tree-based ML too. Likewise, we leave it to future work to
expand MorpheusDSL to add rewrite rules for non-linear operations
such as feature interactions from MorpheusFI [37].

(4) Both Morpheus and MorpheusFI found that factorized execu-
tion is slower at very low TR and/or FR and proposed simple cost
models to threshold on these to decide when to use Materialized
instead. Trinity currently does not support such cost models; the
user is expected to handle them out of band, e.g., before deciding
to construct the Normalized Matrix. Additionally, and as we ex-
plained for the GNMF results, the runtimes of a Matrix adapter
implementation is constrained by how well the author understands
the PL’s datatype-to-op runtime cost. It may be possible to auto-
mate such cost models in MorpheusDSL using GraalVM’s more
advanced capabilities; we leave such extensions to future work.

(5) Trinity does not integrate with DBMS, but this might be
possible as GraalVM can target OracleDB stored procedures [19].

7 RELATED WORK

Factorized ML and LA. We extend a recent line of work in the
DB world on factorized ML, which we split into 3 groups based on
setting and target workloads: specific ML algorithms [34, 47, 50],
in-RDBMS execution [20, 35, 49], and LA systems [23, 32, 36, 37].
Our work is complementary to all these prior works and builds on
their ideas. The novelty of our Trinity is in its generality: it is the
first to support factorized ML style ideas in a polyglot setting. Our
work enables such novel DB+ML query optimization ideas to be
implemented once but made available to multiple PL/LA systems
in one go. While this paper focused on rewrite rules from Mor-
pheus [23], our approach is generic enough to allow future work to
easily augment MorpheusDSL with more rewrite rules from these
other works above. Overall, we believe Trinity’s generality can
empower more such ideas from the DB+ML systems world to be
adopted into industrial data science products such as GraalVM and
ultimately, help benefit real-world data science users.

DSLs for ML and LA. There is much prior work on these. We
discuss a few closely related exemplars from the PL/compilers
worlds. OptiML and the larger Delite framework [22, 53, 54] op-
timize high-level ML code to achieve high performance and par-
allelism on specialized hardware. Diesel [26] exposes a high-level
language for LA and neural network construction that is efficiently
compiled for GPUs using polyhedral compilation techniques. In
GraalVM, the grCuda DSL exposes GPUs to a host PL, allowing
data scientists to invoke GPU kernels with ease [7, 8]. All these
DSLs and systems are complementary to our work, since they focus
on physical data independence, while Trinity focuses on logical data
independence for multi-table datasets. ParallelJulia is a numerical
computation embedded DSL (eDSL) providing a compiler-based ap-
proach for optimizing array-style Julia code [21]. Conceptually, we
build on their principle of non-invasive DSLs by designing Trinity
to require only as few visible changes to the host PL’s programming
models as possible. IFAQ [51] develops an end-to-end optimizing
DSL for ML over relational data. But their approach depends on

2929

programming with the new IFAQ DSL, while we chose to augment
pre-existing LA systems and PLs to reduce developability overhead.

Interoperability in Multi-PL VMs. We build on many years
of interoperability tooling research on GraalVM [41, 48]. That said,
other language VMs offer varying degrees of language interoper-
ability such as .NET, via its Common Language Runtime, and the
Parrot VM [1, 14, 40]. JVM-based languages, such as Scala, Kotlin,
Clojure, often expose Java interoperability primitives as a selling
point [39]. Other JVM-based language re-implementations such as
JRuby or Jython have access to similar benefits [11, 42].

Extensible and domain-aware runtimes. There is much work
on extending runtimes and compiler frameworks with domain-
aware optimizations [27, 43, 55, 58]. In the case of GraalVM, Trinity
is, to the best of our knowledge, the first contribution of this kind
to this community. We develop new abstractions on top of their
interoperability service to pave the way towards more polyglot, but
domain-aware, optimization techniques. It is also due to GraalVM
that we did not need to develop a custom IR for data analytics such
as in Weld [45, 46]. Still, Weld is also complementary to our work
because its IR can also be encoded as a GraalVM language and
combined with Trinity’s optimizations that focus specifically on
factorized LA/ML.

8 CONCLUSION AND FUTURE WORK

Factorized ML techniques help reduce ML runtimes over normal-
ized data. But all implementations of such techniques so far are tied
to one specific ML/LA system in one particular PL. This makes it
highly tedious to reap the benefits of factorized ML across different
LA systems and PLs in the fast-growing polyglot data science arena,
since each PL/LA system may require its own extensive, cumber-
some, and costly manual development effort. We take a first step
towards mitigating this developability challenge by representing
key factorized LA/ML rewrite rules as an emebddable DSL in a
cutting-edge industrial polyglot virtual machine, GraalVM. Our
system, Trinity, is a first-of-its-kind PL-agnostic and LA system-
agnostic implementation of Morpheus, a prior factorized LA frame-
work. In doing so, Trinity supports 3 axes of generality—multiple
statistical/ML algorithms, multiple PLs/LA systems, and several
rewrite optimizations—all in one unified framework. Experiments
with many normalized datasets show Trinity is often significantly
faster than materialized execution and largely matches the effi-
ciency of a prior single PL-specific tool, MorpheusR.

As research at the intersection of DB, PL, and ML systems grows,
we believe Trinity offers a helpful platform for researchers devising
new cross-algebraic optimization techniques to more easily transfer
their ideas to industrial data science users across PLs with much
less manual development effort. In future work, apart from relaxing
the limitations in Section 6.4, we aim to explore code-generation in
Trinity to bypass polyglot-induced overheads. Another avenue is
to optimize other end-to-end data science workloads beyond ML
training, e.g., data preparation and ML debugging.

ACKNOWLEDGMENTS

This work was supported in part by research gifts from Oracle and
Google. We thank the members of UC San Diego’s Database Lab
for their feedback on this work.

REFERENCES

(1]

(18]

)
S

[21

[22]

[23]

[24

[25

[26]

[27

[28]

[n.d.]. Common Language Runtime (CLR) overview - NET Framework. https:
//docs.microsoft.com/en-us/dotnet/standard/clr. Accessed: 2020-03-01.

[n.d.]. Embed Languages with the GraalVM Polyglot APL. https://www.graalvm.
org/docs/reference-manual/embed/. Accessed: 2020-03-01.

[n.d.]. Fallback (GraalVM Truffle Java API Reference). https://www.graalvm.org/
truffle/javadoc/com/oracle/truffle/api/dsl/Fallback.html. Accessed: 2020-03-01.
[n.d.]. FastR GitHub Repository. https://github.com/oracle/fastr/. Accessed:
2020-03-01.

[n.d.]. GraalJS GitHub Repository. https://github.com/graalvm/graaljs. Accessed:
2020-03-01.

[n.d.]. GraalVM Python Implementation GitHub Repository. https://github.com/
graalvm/graalpython. Accessed: 2020-03-01.

[n.d.]. grCuda Documentation. https://github.com/NVIDIA/grcuda/blob/master/
docs/language.md. Accessed: 2020-03-01.

[n.d.]. grCuda GitHub Repository. https://github.com/NVIDIA/grcuda. Accessed:
2020-03-01.

[n.d.]. Interactive Matrix Programming With SAS IML Software. https://www.
sas.com/en_us/software/iml.html. Accessed: 2020-03-01.

[n.d.]. InteropLibrary (GraalVM Truffle Reference). https://www.graalvm.org/
truffle/javadoc/com/oracle/truffle/api/interop/InteropLibrary.html. Accessed:
2020-03-01.

[n.d.]. Jython Project Homepage. https://www.jython.org/. Accessed: 2020-03-01.
[n.d.]. Math.js Project Homepage. https://mathjs.org/. Accessed: 2020-03-01.
[n.d.]. MATLAB Homepage. https://www.mathworks.com/products/matlab.html.
Accessed: 2020-03-01.

[n.d.]. ParrotVM Documentation - HLLs and Interoperation. http://docs.parrot.
org/parrot/latest/html/docs/book/draft/chXX_hlls.pod.html. Accessed: 2020-03-
01.

[n.d.]. The R Project for Statistical Computing. https://www.R-project.org/.
Accessed: 2020-03-01.

[n.d.]. SimpleLanguage GitHub Repository. https://github.com/graalvm/
simplelanguage/blob/master/language/src/main/java/com/oracle/truffle/sl/
nodes/expression/SLAddNode.java. Accessed: 2020-03-01.

[n.d.]. Specialization (GraalVM Truffle Java API Reference). https://www.graalvm.
org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html. Accessed:
2020-03-01.

[n.d.]. TruffleLibraries Documentation. https://github.com/oracle/graal/blob/
master/truffle/docs/TruffleLibraries.md. Accessed: 2020-03-01.

[n.d.]. Walnut Project Homepage on Oracle Labs. https://labs.oracle.com/pls/
apex/f?p=LABS:project_details:0:15. Accessed: 2020-03-01.

Mahmoud Abo Khamis, Hung Q. Ngo, XuanLong Nguyen, Dan Olteanu, and Max-
imilian Schleich. 2018. In-Database Learning with Sparse Tensors. In Proceedings
of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (Houston, TX, USA) (SIGMOD/PODS ’18). Association for Computing Ma-
chinery, New York, NY, USA, 325-340. https://doi.org/10.1145/3196959.3196960
Todd A. Anderson, Hai Liu, Lindsey Kuper, Ehsan Totoni, Jan Vitek, and Tatiana
Shpeisman. 2017. Parallelizing Julia with a Non-Invasive DSL. In 31st Euro-
pean Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017,
Barcelona, Spain (LIPIcs), Peter Miiller (Ed.), Vol. 74. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 4:1-4:29. https://doi.org/10.4230/LIPIcs. ECOOP.2017.4
Hassan Chafi, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.
Atreya, and Kunle Olukotun. 2011. A domain-specific approach to heterogeneous
parallelism. In Proceedings of the 16th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP 2011, San Antonio, TX, USA, February
12-16, 2011, Calin Cascaval and Pen-Chung Yew (Eds.). ACM, 35-46. https:
//doi.org/10.1145/1941553.1941561

Lingjiao Chen, Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. 2017.
Towards Linear Algebra over Normalized Data. PVLDB 10, 11 (2017), 1214-1225.
https://doi.org/10.14778/3137628.3137633

Lin Clark. [n.d.]. WebAssembly Interface Types: Interoperate with All the Things!
- Mozilla Hacks - the Web developer blog. https://hacks.mozilla.org/2019/08/
webassembly-interface-types/. Accessed: 2020-03-01.

Michael L. Van de Vanter, Chris Seaton, Michael Haupt, Christian Humer, and
Thomas Wiirthinger. 2018. Fast, Flexible, Polyglot Instrumentation Support
for Debuggers and other Tools. CoRR abs/1803.10201 (2018). arXiv:1803.10201
http://arxiv.org/abs/1803.10201

Venmugil Elango, Norm Rubin, Mahesh Ravishankar, Hariharan Sandanagob-
alane, and Vinod Grover. 2018. Diesel: DSL for linear algebra and neural net
computations on GPUs. In Proceedings of the 2nd ACM SIGPLAN International
Workshop on Machine Learning and Programming Languages, MAPL@PLDI 2018,
Philadelphia, PA, USA, June 18-22, 2018, Justin Gottschlich and Alvin Cheung
(Eds.). ACM, 42-51. https://doi.org/10.1145/3211346.3211354

Grégory M. Essertel, Ruby Y. Tahboub, Fei Wang, James M. Decker, and Tiark
Rompf. 2019. Flare & Lantern: Efficiently Swapping Horses Midstream. Proc.

VLDB Endow. 12, 12 (2019), 1910-1913. https://doi.org/10.14778/3352063.3352097
Michael Furr and Jeffrey Foster. 2008. Checking type safety of foreign function

calls. ACM Trans. Program. Lang. Syst. 30 (07 2008). https://doi.org/10.1145/

2930

[29

[30

[31

[32

[33

(34]

[36

[37

[46

[47

S
&

[49

1377492.1377493

Matthias Grimmer, Roland Schatz, Chris Seaton, Thomas Wiirthinger, and Mikel
Lujan. 2018. Cross-Language Interoperability in a Multi-Language Runtime. ACM
Trans. Program. Lang. Syst. 40, 2 (2018), 8:1-8:43. https://doi.org/10.1145/3201898
Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wiirthinger, and
Hanspeter Méssenbock. 2015. High-performance cross-language interoperability
in a multi-language runtime. In Proceedings of the 11th Symposium on Dynamic
Languages, DLS 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015,
Manuel Serrano (Ed.). ACM, 78-90. https://doi.org/10.1145/2816707.2816714
Matthias Grimmer, Chris Seaton, Roland Schatz, Thomas Wiirthinger, and
Hanspeter Mdssenbock. 2015. High-performance Cross-language Interoper-
ability in a Multi-language Runtime. SIGPLAN Not. 51, 2 (Oct. 2015), 78-90.
https://doi.org/10.1145/2936313.2816714

Dylan Hutchison, Bill Howe, and Dan Suciu. 2017. LaraDB: A Minimalist Ker-
nel for Linear and Relational Algebra Computation. In Proceedings of the 4th
ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond
(Chicago, IL, USA) (BeyondMR’17). Association for Computing Machinery, New
York, NY, USA, Article 2, 10 pages. https://doi.org/10.1145/3070607.3070608
David Justo, Shaoqing Yi, Lukas Stadler, Nadia Polikarpova, and Arun Kumar.
[n.d.]. Towards A Polyglot Framework For Factorized ML. Technical Report. Tech.
rep. https://adalabucsd.github.io/papers/TR_2021_Trinity.pdf.

Arun Kumar, Mona Jalal, Boqun Yan, Jeffrey Naughton, and Jignesh M. Patel.
2015. Demonstration of Santoku: Optimizing Machine Learning over Normalized
Data. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1864-1867. https://doi.org/10.14778/
2824032.2824087

Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2015. Learning Gener-
alized Linear Models Over Normalized Data. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,
USA, 1969-1984. https://doi.org/10.1145/2723372.2723713

Andreas Kunft, Asterios Katsifodimos, Sebastian Schelter, Sebastian Breundefined,
Tilmann Rabl, and Volker Markl. 2019. An Intermediate Representation for
Optimizing Machine Learning Pipelines. Proc. VLDB Endow. 12, 11 (July 2019),
1553-1567. https://doi.org/10.14778/3342263.3342633

Side Li, Lingjiao Chen, and Arun Kumar. 2019. Enabling and Optimizing Non-
linear Feature Interactions in Factorized Linear Algebra. In Proceedings of the 2019
International Conference on Management of Data, SIGMOD Conference 2019, Ams-
terdam, The Netherlands, June 30 - July 5, 2019, Peter A. Boncz, Stefan Manegold,
Anastasia Ailamaki, Amol Deshpande, and Tim Kraska (Eds.). ACM, 1571-1588.
https://doi.org/10.1145/3299869.3319878

Side Li and Arun Kumar. [n.d.]. Morpheuspy: Factorized machine learning
with numpy. Technical Report. Tech. rep. https://adalabucsd. github. io/paper-
s/TR_2018_MorpheusPy. pdf.

Wing Hang Li, David Robert White, and Jeremy Singer. 2013. JVM-hosted
languages: they talk the talk, but do they walk the walk?. In PPPJ ’13.

Todd M Malone. 2014. Interoperability in Programming Languages.

Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2019. Towards polyglot
adapters for the GraalVM. In Conference Companion of the 3rd International
Conference on Art, Science, and Engineering of Programming, Genova, Italy, April
1-4, 2019. ACM, 1:1-1:3. https://doi.org/10.1145/3328433.3328458

Charles O Nutter, Thomas Enebo, Nick Sieger, and Ian Dees. 2011. Using JRuby:
Bringing Ruby to Java. Pragmatic Bookshelf.

Georg Ofenbeck, Tiark Rompf, Alen Stojanov, Martin Odersky, and Markus
Piischel. 2013. Spiral in scala: towards the systematic construction of generators
for performance libraries. In Generative Programming: Concepts and Experiences,
GPCE’13, Indianapolis, IN, USA - October 27 - 28, 2013, Jaakko Jarvi and Christian
Kastner (Eds.). ACM, 125-134. https://doi.org/10.1145/2517208.2517228

Travis E Oliphant. 2006. A guide to NumPy. Vol. 1. Trelgol Publishing USA.
Shoumik Palkar, James Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul
Palamuttam, Parimajan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk,
Saman Amarasinghe, Samuel Madden, and Matei Zaharia. 2018. Evaluating
End-to-End Optimization for Data Analytics Applications in Weld. Proc. VLDB
Endow. 11, 9 (May 2018), 1002-1015. https://doi.org/10.14778/3213880.3213890
Shoumik Palkar, J. Thomas, A. Shanbhag, D. Narayanan, H. Pirk, M. Schwarzkopf,
Saman P. Amarasinghe, M. Zaharia, and Stanford InfoLab. 2016. Weld : A Common
Runtime for High Performance Data Analytics.

Steffen Rendle. 2013. Scaling Factorization Machines to Relational Data. Proc.
VLDB Endow. 6, 5 (March 2013), 337-348. https://doi.org/10.14778/2535573.
2488340

Alexander Riese, Fabio Niephaus, Tim Felgentreff, and Robert Hirschfeld. 2020.
User-Defined Interface Mappings for the GraalVM. In Conference Companion of
the 4th International Conference on Art, Science, and Engineering of Programming
(Porto, Portugal) ("20). Association for Computing Machinery, New York, NY,
USA, 19-22. https://doi.org/10.1145/3397537.3399577

Maximilian Schleich, Dan Olteanu, Mahmoud Abo Khamis, Hung Q. Ngo, and
XuanLong Nguyen. 2019. A Layered Aggregate Engine for Analytics Workloads.
In Proceedings of the 2019 International Conference on Management of Data (Ams-
terdam, Netherlands) (SIGMOD ’19). Association for Computing Machinery, New

https://docs.microsoft.com/en-us/dotnet/standard/clr
https://docs.microsoft.com/en-us/dotnet/standard/clr
https://www.graalvm.org/docs/reference-manual/embed/
https://www.graalvm.org/docs/reference-manual/embed/
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Fallback.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Fallback.html
https://github.com/oracle/fastr/
https://github.com/graalvm/graaljs
https://github.com/graalvm/graalpython
https://github.com/graalvm/graalpython
https://github.com/NVIDIA/grcuda/blob/master/docs/language.md
https://github.com/NVIDIA/grcuda/blob/master/docs/language.md
https://github.com/NVIDIA/grcuda
https://www.sas.com/en_us/software/iml.html
https://www.sas.com/en_us/software/iml.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/interop/InteropLibrary.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/interop/InteropLibrary.html
https://www.jython.org/
https://mathjs.org/
https://www.mathworks.com/products/matlab.html
http://docs.parrot.org/parrot/latest/html/docs/book/draft/chXX_hlls.pod.html
http://docs.parrot.org/parrot/latest/html/docs/book/draft/chXX_hlls.pod.html
https://www.R-project.org/
https://github.com/graalvm/simplelanguage/blob/master/language/src/main/java/com/oracle/truffle/sl/nodes/expression/SLAddNode.java
https://github.com/graalvm/simplelanguage/blob/master/language/src/main/java/com/oracle/truffle/sl/nodes/expression/SLAddNode.java
https://github.com/graalvm/simplelanguage/blob/master/language/src/main/java/com/oracle/truffle/sl/nodes/expression/SLAddNode.java
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html
https://www.graalvm.org/truffle/javadoc/com/oracle/truffle/api/dsl/Specialization.html
https://github.com/oracle/graal/blob/master/truffle/docs/TruffleLibraries.md
https://github.com/oracle/graal/blob/master/truffle/docs/TruffleLibraries.md
https://labs.oracle.com/pls/apex/f?p=LABS:project_details:0:15
https://labs.oracle.com/pls/apex/f?p=LABS:project_details:0:15
https://doi.org/10.1145/3196959.3196960
https://doi.org/10.4230/LIPIcs.ECOOP.2017.4
https://doi.org/10.1145/1941553.1941561
https://doi.org/10.1145/1941553.1941561
https://doi.org/10.14778/3137628.3137633
https://hacks.mozilla.org/2019/08/webassembly-interface-types/
https://hacks.mozilla.org/2019/08/webassembly-interface-types/
https://arxiv.org/abs/1803.10201
http://arxiv.org/abs/1803.10201
https://doi.org/10.1145/3211346.3211354
https://doi.org/10.14778/3352063.3352097
https://doi.org/10.1145/1377492.1377493
https://doi.org/10.1145/1377492.1377493
https://doi.org/10.1145/3201898
https://doi.org/10.1145/2816707.2816714
https://doi.org/10.1145/2936313.2816714
https://doi.org/10.1145/3070607.3070608
https://doi.org/10.14778/2824032.2824087
https://doi.org/10.14778/2824032.2824087
https://doi.org/10.1145/2723372.2723713
https://doi.org/10.14778/3342263.3342633
https://doi.org/10.1145/3299869.3319878
https://doi.org/10.1145/3328433.3328458
https://doi.org/10.1145/2517208.2517228
https://doi.org/10.14778/3213880.3213890
https://doi.org/10.14778/2535573.2488340
https://doi.org/10.14778/2535573.2488340
https://doi.org/10.1145/3397537.3399577

[50]

[51]

[52]

[53

[54

[55

[56]

York, NY, USA, 1642-1659. https://doi.org/10.1145/3299869.3324961
Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning Linear
Regression Models over Factorized Joins. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 3-18. https:
//doi.org/10.1145/2882903.2882939

Amir Shaikhha, Maximilian Schleich, Alexandru Ghita, and Dan Olteanu. 2020.
Multi-Layer Optimizations for End-to-End Data Analytics. In Proceedings of the
18th ACM/IEEE International Symposium on Code Generation and Optimization
(San Diego, CA, USA) (CGO 2020). Association for Computing Machinery, New
York, NY, USA, 145-157. https://doi.org/10.1145/3368826.3377923

Daniel Smilkov, Nikhil Thorat, Yannick Assogba, Ann Yuan, Nick Kreeger, Ping
Yu, Kangyi Zhang, Shanqing Cai, Eric Nielsen, David Soergel, Stan Bileschi,
Michael Terry, Charles Nicholson, Sandeep N. Gupta, Sarah Sirajuddin, D. Sculley,
Rajat Monga, Greg Corrado, Fernanda B. Viegas, and Martin Wattenberg. 2019.
TensorFlow.js: Machine Learning for the Web and Beyond. Palo Alto, CA, USA.
https://arxiv.org/abs/1901.05350

Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Tiark Rompf, Hassan Chafi,
Martin Odersky, and Kunle Olukotun. 2014. Delite: A Compiler Architecture
for Performance-Oriented Embedded Domain-Specific Languages. ACM Trans.
Embedded Comput. Syst. 13, 4s (2014), 134:1-134:25. https://doi.org/10.1145/
2584665

Arvind K. Sujeeth, Austin Gibbons, Kevin J. Brown, HyoukJoong Lee, Tiark
Rompf, Martin Odersky, and Kunle Olukotun. 2013. Forge: generating a high
performance DSL implementation from a declarative specification. In Generative
Programming: Concepts and Experiences, GPCE’13, Indianapolis, IN, USA - October
27 - 28, 2013, Jaakko Jarvi and Christian Kastner (Eds.). ACM, 145-154. https:
//doi.org/10.1145/2517208.2517220

Ruby Y. Tahboub and Tiark Rompf. 2020. Architecting a Query Compiler for
Spatial Workloads. In Proceedings of the 2020 International Conference on Man-
agement of Data, SIGMOD Conference 2020, online conference [Portland, OR,
USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-
Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 2103-2118.
https://doi.org/10.1145/3318464.3389701

Anthony Thomas and Arun Kumar. 2018. A Comparative Evaluation of Systems
for Scalable Linear Algebra-Based Analytics. Proc. VLDB Endow. 11, 13 (Sept.
2018), 2168-2182. https://doi.org/10.14778/3275366.3284963

2931

[57] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler

[58

[59

[60

[61

[62

Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser,
Jonathan Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jar-
rod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern,
Eric Larson, CJ Carey, Ilhan Polat, Yu Feng, Eric W. Moore, Jake Vand erPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R Harris, Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedregosa,
Paul van Mulbregt, and SciPy 1. 0 Contributors. 2020. SciPy 1.0: Fundamen-
tal Algorithms for Scientific Computing in Python. Nature Methods (2020).
https://doi.org/10.1038/s41592-019-0686-2

Fei Wang, Daniel Zheng, James M. Decker, Xilun Wu, Grégory M. Essertel, and
Tiark Rompf. 2019. Demystifying differentiable programming: shift/reset the
penultimate backpropagator. Proc. ACM Program. Lang. 3, ICFP (2019), 96:1-96:31.
https://doi.org/10.1145/3341700

Christian Wimmer and Thomas Wiirthinger. 2012. Truffle: a self-optimizing run-
time system. In Conference on Systems, Programming, and Applications: Software
for Humanity, SPLASH 12, Tucson, AZ, USA, October 21-25, 2012, Gary T. Leavens
(Ed.). ACM, 13-14. https://doi.org/10.1145/2384716.2384723

Thomas Wiirthinger, Christian Wimmer, Christian Humer, Andreas W68, Lukas
Stadler, Chris Seaton, Gilles Duboscq, Doug Simon, and Matthias Grimmer. 2017.
Practical partial evaluation for high-performance dynamic language runtimes.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert
Cohen and Martin T. Vechev (Eds.). ACM, 662-676. https://doi.org/10.1145/
3062341.3062381

Thomas Wiirthinger, Christian Wimmer, Andreas Wé8, Lukas Stadler, Gilles
Duboscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko.
2013. One VM to rule them all. In ACM Symposium on New Ideas in Programming
and Reflections on Software, Onward! 2013, part of SPLASH ’13, Indianapolis, IN,
USA, October 26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Robert
Hirschfeld (Eds.). ACM, 187-204. https://doi.org/10.1145/2509578.2509581
Thomas Wiirthinger, Andreas Wo8, Lukas Stadler, Gilles Duboscq, Doug Simon,
and Christian Wimmer. 2012. Self-optimizing AST interpreters. In Proceedings
of the 8th Symposium on Dynamic Languages, DLS ’12, Tucson, AZ, USA, October
22, 2012, Alessandro Warth (Ed.). ACM, 73-82. https://doi.org/10.1145/2384577.
2384587

https://doi.org/10.1145/3299869.3324961
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/3368826.3377923
https://arxiv.org/abs/1901.05350
https://doi.org/10.1145/2584665
https://doi.org/10.1145/2584665
https://doi.org/10.1145/2517208.2517220
https://doi.org/10.1145/2517208.2517220
https://doi.org/10.1145/3318464.3389701
https://doi.org/10.14778/3275366.3284963
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1145/3341700
https://doi.org/10.1145/2384716.2384723
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/3062341.3062381
https://doi.org/10.1145/2509578.2509581
https://doi.org/10.1145/2384577.2384587
https://doi.org/10.1145/2384577.2384587

