The End of Moore’s Law and the Rise of The Data Processor

Niv Dayan Moshe Twitto Yuval Rochman
Pliops Pliops Pliops
Ramat Gan, Israel Ramat Gan, Israel Ramat Gan, Israel
nivd@pliops.com moshet@pliops.com yuvalr@pliops.com
Uri Beitler Itai Ben Zion Edward Bortnikov
Pliops Pliops Pliops
Ramat Gan, Israel Ramat Gan, Israel Ramat Gan, Israel
urib@pliops.com itaib@pliops.com ebortnik@pliops.com
Shmuel Dashevsky Ofer Frishman Evgeni Ginzburg
Pliops Pliops Pliops
Ramat Gan, Israel Ramat Gan, Israel Ramat Gan, Israel
shmueld@pliops.com oferf@pliops.com evgenig@pliops.com
Igal Maly Avraham (Poza) Meir Mark Mokryn
Pliops Pliops Pliops
Ramat Gan, Israel Ramat Gan, Israel Ramat Gan, Israel
igalm@pliops.com pozam@pliops.com markm@pliops.com
Iddo Naiss Noam Rabinovich
Pliops Pliops
Ramat Gan, Israel Ramat Gan, Israel
iddon@pliops.com noamr@pliops.com

ABSTRACT

With the end of Moore’s Law, database architects are turning to
hardware accelerators to offload computationally intensive tasks
from the CPU. In this paper, we show that accelerators can facilitate
far more than just computation: they enable algorithms and data
structures that lavishly expand computation in order to optimize
for disparate cost metrics. We introduce the Pliops Extreme Data
Processor (XDP), a novel storage engine implemented from the
ground up using customized hardware. At its core, XDP consists
of an accelerated hash table to index the data in storage using less
memory and fewer storage accesses for queries than the best alter-
native. XDP also employs an accelerated compressor, a capacitor,
and a lock-free RAID sub-system to minimize storage space and
recovery time while minimizing performance penalties. As a result,
XDP overcomes cost contentions that have so far been inescapable.

PVLDB Reference Format:

Niv Dayan, Moshe Twitto, Yuval Rochman, Uri Beitler, Itai Ben Zion,
Edward Bortnikov, Shmuel Dashevsky, Ofer Frishman, Evgeni Ginzburg,
Igal Maly, Avraham (Poza) Meir, Mark Mokryn, Iddo Naiss, and Noam
Rabinovich. The End of Moore’s Law and the Rise of The Data Processor.
PVLDB, 14(12): 2932 - 2944, 2021.

doi:10.14778/3476311.3476373

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 12 ISSN 2150-8097.
doi:10.14778/3476311.3476373

2932

1 INTRODUCTION

A storage engine is the software component that lays out data on a
storage device on behalf of a database system. For decades, storage
engines have benefited from Moore’s law, which has accurately
predicted that computer chips would double in speed every two or
so years on account of a doubling in transistor density [50]. Over
the past decade, however, Moore’s law has stagnated [37]. This
means that storage engine designers can no longer rely on CPU
advances to alleviate computational overheads.

More recently, the rise of SSDs brought a thousandfold improve-
ment in storage bandwidth. Hence, CPU overheads are no longer
negligible relative to storage access. In addition, SSDs have idiosyn-
crasies that must be carefully managed [2]: writes are slower than
reads, and random writes are particularly slow (as they lead to in-
ternal garbage-collection). Furthermore, writes wear out the device.
It has therefore become important to avoid random writes, and
to economize the use of writes in general. These trends pose new
challenges for modern storage engines and their users [11, 34].
Challenge 1: Data Structure Trade-Offs. In order to optimize
computation and storage writes, recent storage engines [3,46,48,51,
52] employ an index+log architecture, which is in turn inspired by
Log-Structured File Systems [49]. Index+log flushes all application
writes to a log in storage and maps each entry to its location in the
log using an in-memory index, typically a hash table. Compared
to more traditional storage engines based on B-tree [10, 15, 44] or
LSM-tree [5, 6, 27, 33, 45], index+log exhibits lower write costs and

https://doi.org/10.14778/3476311.3476373
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3476311.3476373

is less compute-heavy due to the hash table access. However, it
requires a hefty memory footprint for the index. To reduce memory
footprint, some variants map fingerprints instead of keys in the
index, but this introduces false positives and thus redundant storage
I/Os for queries [13]. The deeper problem is that any data structure
design choice that prioritizes certain performance metrics tends to
also penalize others [8].

Challenge 2: Compression. Compression has become painful to
manage due to the recent hardware trends. On one hand, it improves
storage bandwidth, lifetimes and utilization as fewer bits in the SSD
are written for any unit of application data [56]. On the other hand,
it can be a heavy CPU bottleneck [38].

Challenge 3: Resilience. Similarly painful cost contentions have
emerged with respect to resilience. (1) The various RAID designs,
which stripe data along with error correction codes across SSDs,
must hold mutexes at a considerable CPU cost to provide atom-
icity. (2) Recovering a failed SSD using RAID entails overwriting
a whole new SSD at considerable write cost and degradation to
the overall storage bandwidth, even if some parts of the original
SSD were empty or comprised of invalid data. (3) With respect to
safe-guarding against power failure, write-ahead logging (WAL)
and double-write buffering both impose runtime penalties by con-
tributing to SSD write-amplification and CPU usage [32].

Hardware Accelerators. With Moore’s law slowing down, hard-
ware accelerators such as FPGAs, ASIC and GPUs have become
attractive means of alleviating CPU bottlenecks. Such accelerators
exhibit intrinsic parallelism, and they are cheaper and more energy-
efficient than commodity CPUs. However, they require more ef-
fort and know-how to program. They can be used to speed up
a variety of compute-intensive database operations [29], includ-
ing selection [43], projection [42], aggregation [26], etc. Dedicated
compression accelerators are also becoming common-place [1]. We
observe that until today, accelerators have been applied mostly as
bionic limbs that offload specific compute-heavy tasks from the
CPU. In this paper, we argue that accelerators can have a more
profound impact on storage engine design.

Insight 1: Using Compute to Solve Non-Compute Problems.
Trade-offs in storage engines and in computer science in general
are often intrinsic and inescapable. Optimizing for one metric (e.g.,
memory or I/O) usually requires a sacrifice on another (e.g., com-
putation). Our insight is that hardware accelerators offer a way out.
They make it possible to design algorithms that lavishly expand
computation while in exchange guaranteeing a smaller overhead on
other competing metrics than ever before. While such algorithms
would have been prohibitively expensive on commodity CPU, care-
fully crafted hardware accelerators make them viable. We show that
this design philosophy addresses a host of storage engine problems,
including the challenges above.

Insight 2: A Unified Box. The number of physcial interfaces on a
motherboard is limited. This, in turn, limits the number of devices
(e.g., accelerators, NVRAM, SSDs, etc.) that can be plugged in. More-
over, with a greater number of devices plugged in, the overheads
of CPU orchestration, data movement, and system administration
increase. Our second insight is that by encapsulating as much func-
tionality as possible within one device, we can increase the number
of tasks offloaded from the CPU while simultaneously scaling their

2933

orchestration and administration overheads. The unified whole
becomes more useful than the sum of parts that it replaces.

The Pliops Extreme Data Processor (XDP). We introduce XDP,
a novel storage engine designed from the ground up lend itself to
hardware acceleration. XDP consists of a thin software component
in the host and a hardware device connected to the host through a
PCle port. XDP is interoperable with any commodity SSDs, which
it visualizes as a RAID sub-system. XDP addresses each of the
above-mentioned challenges using customized hardware.

Contribution 1: Alleviating Data Structure Contentions. XDP
implements an index+log architecture. While index+log offers good
SSD write performance and longevity, its core problem, as men-
tioned above, is a high memory footprint for the index. XDP tackles
this problem in three ways. (1) It succinctly encodes the difference
between fingerprints within a hash bucket instead of storing the
actual fingerprints. This not only saves memory but also eliminates
false positives to keep average and tail latency for queries low.
(2) XDP partially sorts data in storage to reduce the size of pointers.
(3) XDP uses a dense hash bucket format to keep overflow chains
rare. While these techniques are computationally costly, we show
that hardware acceleration makes them viable. The outcome is that
XDP requires 10x less memory than popular index+log systems
used in industry [52], all while outperforming them by eliminating
false positives from queries.

XDP also has a hardware-accelerated indexing layer drawing
from [19, 21-23, 39] to support richer storage engine operations
(e.g., range reads), but we leave its description to a future article.

Contribution 2: Removing Compression Contentions. XDP
compresses data as it arrives using ZSTD, a compute-heavy algo-
rithm that achieves top-of-the-line compression rates. Our hard-
ware implementation prevents ZSTD from burdening the CPU
while still dramatically reducing SSD writes and space utilization.

Contribution 3: Penalty-Free Resilience. XDP takes exclusive
control of the storage devices and only issues large sequential writes.
This allows us to implement a customized RAID sub-system that
does not hold mutexes, resulting in substantially lower CPU over-
heads. Furthermore, our RAID sub-system recovers a failed SSD
using XDP’s mapping of the underlying data to only copy valid data
to a replacement SSD while ignoring empty space or invalid data.
This, compounded with the fact that data is smaller due to compres-
sion, implies quicker and less obtrusive recovery after an SSD fails.
In addition, XDP streamlines new data to a capacitor-backed mem-
ory module to support durable commits without issuing double
writes to storage (e.g., WAL).

Contribution 4: Seamless Integration. XDP can expose a key-
value interface or a block device interface to applications running
on top. While the key-value interface gives better performance, the
block device interface allows applications to seamlessly integrate
with XDP without having to reformat their data. As XDP is lean
and hardware accelerated, it does not amplify CPU overheads or
memory footprint as a rich layer of indirection normally would.

2 HIGH-LEVEL OVERVIEW

This section presents XDP’s high-level index+log architecture, shown
in Figure 1. For now, we leave out details on how and where each

App writes/reads
. B n
XDP @rrlval Buffea—??(Index)—5»(GC info) (GC buffers)
2 4|C 6 7
SSDs (block clusters)

Figure 1: Logical system overview and write/read paths.

of the components in the figure is implemented, focusing instead
on their functions and highlighting some important properties.
Application data arrives in the form of key-value entries. XDP
compresses and inserts them into an in-memory arrival buffer (Ar-
row 1). When this buffer reaches capacity, XDP sorts its constituent
entries based on the hash of their keys and flushes them to storage
as a contiguous area called a block cluster (Arrow 2). For every entry
in a new block cluster, XDP maintains a mapping entry within the
in-memory index, and as we show later, sorting data within a block
cluster allows to reduce the index size. The block cluster size is
configurable, though we treat it as 2GB in this paper.

Index Design. Some index+log designs store the full key of every
data entry in their index along with a pointer to its location in
storage [3, 51]. This requires a lot of memory. Other designs store
a smaller fingerprint, which is a hash digest of a key, instead of
storing the key itself [4, 13]. This, however, leads to redundant
storage accesses during reads on account of coincidentally matching
fingerprints that belong to other keys, i.e., false positives.

To eliminate false positives while driving memory footprint far-
ther down, we devise a novel structure called Delta Hash Table
(DHT). DHT encodes only the first bit that differentiates between
the fingerprints of entries that collide within the hash table. For ex-
ample, consider three 5-bit fingerprints 10000, 00010 and 00000 that
fall into the same hash table slot. DHT only materializes enough
information to signify that the first fingerprint differs from the
other two in terms of its first bit (underlined) while the remaining
two fingerprints differ in terms of their fourth bit (overlined). XDP
encodes these fingerprint deltas as a succinct trie, which occupies
much less space than the full fingerprints. Moreover, since it differ-
entiates between all colliding fingerprints, no false positives can
take place. To drive memory footprint even lower, DHT employs
a novel and highly dense bucket format. It also exploits the fact
that block clusters are sorted to index them using smaller address
pointers. A DHT bucket must be parsed bit-by-bit, and so it is com-
putationally expensive to access. Our parallel customized hardware
implementation, however, makes it viable. Section 4 describes DHT
and how it implements the XDP index in detail.

Index Maintenance. As entries in the arrival buffer get flushed
to storage (Arrow 2), XDP checks whether each of them has a
previous version in storage (Arrows 3 and 4). We refer to this as a
fetch-existing-entry operation (fee-op), and it involves one index
access and one storage read I/O. If an older version of the entry
exists, we change its mapping address within the index to point
to the new version. If the entry is new, however, we insert a new
mapping entry to the index. This further reduces the index size (i.e.,
relative to other designs that continue to index obsolete versions
of entries until garbage-collection [13, 25]).

2934

XDP performs fee-ops asynchronously, and so they do not con-
tribute to write latency. Note that fee-ops are not unique to XDP;
all fingerprint-based index+log designs use them for index mainte-
nance and for garbage-collection bookkeeping (as described below).
Some designs, like XDP, perform fee-ops on the write path [52].
Other designs perform them during garbage-collection [13, 25]. The
overhead in terms of read I/Os is the same.

Garbage-Collection (GC). The garbage-collector identifies and
reclaims block clusters with mostly invalid data by relocating any
remaining valid data. The reclaimed space can be used to store
new application data. Many index+log designs perform circular GC,
whereby the block cluster that was written the longest time ago is
reclaimed [13]. The rationale is that the oldest block cluster is likely
to contain the least amount of valid data. This approach, however, is
known to perform poorly in the presence of non-uniformly updated
data. The reason is that colder data winds up mixing with hot data
on the same block clusters and has to be reclaimed at a significant
overhead yet without yielding much space in return [52].

To alleviate this problem, XDP employs counters to keep track
of the exact amount of valid data (measured in bytes) at each block
cluster so that the one with the least amount of valid data can
always be chosen as a reclamation victim. These counters are main-
tained via fee-ops, which access outdated versions of entries and
can thus identify the block cluster containing them and subtract
every outdated entry’s size from the correct counter (Arrow 5).
Furthermore, XDP maintains a separate GC buffer to rewrite data
to storage as a result of GC (Arrows 6 and 7). This broadly separates
cold and hot data and thus reduces write-amplification. As entries
are migrated during GC, their corresponding pointers within the
index are updated to reflect their new locations (Arrow 8).

Read Path. An application read first checks if the arrival buffer
contains the target entry (Arrow A). If not, it checks the index
(Arrow B) and then the appropriate storage location (Arrow C).

3 PHYSICAL SYSTEM OVERVIEW

We now elaborate on XDP’s physical architecture. As shown in
Figure 2, each of the components previously illustrated in Figure 1
consists of multiple physical substructures, each of which resides
on the host or on embedded SRAM, DRAM, or flash modules.

The XDP device contains customized hardware that operates on
all the substructures shown in Figure 2 to offload work from the
host CPU. Figure 3 outlines some of the more notable hardware
operations and ranks them based on their computational intensity.
We proceed to elaborate on these substructures and operations
roughly in the order that data flows through the system.

PCIe Channel. The XDP device connects to the host through a
PCle channel. This is the core system bottleneck as all reads and
writes pass through it. To keep this channel consistently saturated,
XDP materializes as many parallel hardware engines as needed for
each of the operations shown in Figure 3 to ensure that none of
them is a bottleneck relative to the channel’s bandwidth.

Fast Commits Using SRAM. As application data arrives, it is first
placed within the Welcome-Buff, a small internal capacitor-backed
SRAM module. SRAM is extremely fast, and so it allows XDP to
make new data persistent and acknowledge to the host that it had
been committed extremely quickly.

Arrival Buffer Index GC info GC buffers
SRAM DRAM DRAM DRAM DRAM/host DRAM/host DRAM DRAM flash/DRAM| DRAM DRAM
Welcome- Sorted- . GC Validity input output
Buff Seq-Buff] Hash—Buff] Buff] [Global] [Local] [Extenswns] Clounters] Maps] [biitfers] buitfer]

Figure 2: The different XDP physical substructures and where they reside.

computational intensity

Figure 3: Accelerated XDP operations.
Compression. XDP compresses the value of every data entry us-
ing ZSTD, a compute-intensive compression algorithm known to
achieve high compression rates [28]. ZSTD is often passed over in
favor of less compute-heavy algorithms to reduce CPU pressure
(e.g., LZ4 [14] or Snappy [31]). Our customized hardware, however,
implements multiple parallel ZSTD engines to prevent bottlenecks
and thus to achieve a high compression rate while still operating
at channel bandwidth. Compression expands the underlying SSDs’
storage capacity by a factor of the compression ratio (i.e., the original
data size divided by the compressed data size).

Identifying Entries. XDP identifies every entry in the system
using a 16B hash digest, referred to as an hkey. An hkey is generated
based on the entry’s user key, referred to as its ukey. 16B hkeys are
large enough to make the probability of any two hkeys colliding for
different ukeys negligible. To generate hkeys, XDP uses murmur
hash [7] as it is simple to implement on customized hardware [36],
and it is adept at creating uniformly random hash keys.
Buffering in DRAM. New entries are eventually moved from
the Welcome-Buff to an append-only capacitor-backed 2GB buffer
called Seq-Buff in DRAM. To support queries for entries within Seq-
Buff, the hkey of each of these entries is added to a hash table called
Hash-Buff that maps the location of each entry within Seq-Buff.
Bucket-Sort. The Hash-Buff bucket-sorts [17] entries based on
their hkeys. It consists of multiple buckets, and it inserts mapping
entries into these buckets based on the most significant bits of their
hkeys. Within each bucket, it truncates common hkey prefixes and
sorts mapping entries based on the remaining bits of their hkeys.
An important property of bucket-sort is that its run-time is linear
when applied over uniformly distributed data [18] (i.e., as opposed
to, say, merge-sort, which is more robust for non-uniform data but
also more expensive). This allows XDP to sort incoming data with
minimal computational pressure on the customized processor.
Flushing to Storage. XDP in fact contains multiple pairs of Seq-
Buff and Hash-Buff. Once one pair fills up with data, it is sealed
and all subsequent arriving data goes into the next pair. A block
cluster is then created from the sealed pair by copying entries from
Seq-Buff in the sorted order of hkeys in Hash-Buff to another buffer
called Sorted-Buff. At the end, Sorted-Buff is flushed as a sorted
block cluster to storage, and the three buffers are cleared.
Structure in Storage. Figure 4 illustrates the layout of a block
cluster (BC). A BC begins with one 4KB page containing metadata
such as the number of data entries within the BC. It is followed by
a physical to logical mapping (P2L). P2L is an array of fixed-sized

2935

Figure 4: Block Cluster Structure.
pairs sorted by hkey, where each pair consists of an hkey of one of
the data entries within the BC as well as the corresponding data
entry’s size. The metadata block and P2L are used during recovery
to quickly reconstruct the index without having to traverse the
whole data set. P2L is followed by a data area, whereon data entries
sorted by hkey are laid out contiguously across the remaining space
in the BC as slotted 4KB database pages.
Global and Local Indexes. As shown in Figure 2, the index con-
sists of three substructures. The Global Index is a hash table that
maps each entry to the ID of the block cluster that contains it. For
every BC, there is a Local Index, which maps the hkey of every entry
in the BC to the data page/s that contain the entry (an entry may
span one or more pages). The reason for having a separate local in-
dex for each BC (i.e. as opposed to mapping the full page address of
each entry from the Global Index) is to reduce memory footprint. A
local index takes advantage of the fact that data is sorted within its
BC to encode page address offsets as opposed to full page addresses.
The global and local indexes are both implemented using the novel
Delta Hash Table. As such, they do not contain the full hkeys of
constituent entries but only enough information to distinguish be-
tween hkeys that coincide in the same hash table slot. The third
substructure is an array of extension buckets, which may be utilized
if some of the buckets in the global or local indexes overflow. The
detailed index design is given in Section 4.
Using Host Memory. While the XDP device’s customized proces-
sor is in charge of operating on the local and global indexes, Figure 2
shows that there are two options for where to store these indexes:
on the XDP device’s internal DRAM or on the host’s memory. The
former option leads to lower latency as it keeps these structures
closer to the customized processor. On the other hand, since the
sizes of the global and local indexes depend on the number of entries
in the system, storing them on the host gives more flexibility with
respect to the maximum number of entries (or conversely, the min-
imum entry size) that the system can support. Users can configure
the system either way depending on their workload characteristics
and performance needs.
Garbage-Collection Bookkeeping. As discussed in Section 2,
XDP maintains a counter for each BC to facilitate GC victim selec-
tion. In addition, XDP maintains a validity map for each BC that
marks which of the entries on the BC are valid. These maps are
maintained through fee-ops, and they get accessed during garbage-
collection to determine which entries to reclaim. In fact, the validity
maps are also used to recover XDP from power failure (as described

