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ABSTRACT
Microsoft recently introduced Azure Synapse Analytics, which of-
fers an integrated experience across data ingestion, storage, and
querying in Apache Spark and T-SQL over data in the lake, in-
cluding files and warehouse tables. In this paper, we present our
experiences with designing and implementing Hyperspace, the in-
dexing subsystem underlying Synapse. Hyperspace enables users
to build multiple types of secondary indexes on their data, main-
tain them through a multi-user concurrency model, and leverage
them automatically—without any change to their application code—
for query/workload acceleration. Many requirements of Hyper-
space are based on feedback from several enterprise customers. We
present the details of Hyperspace’s underlying design, the user-
facing APIs, its concurrency control protocol for index access, its
index-aware query processing techniques, and its maintenance
mechanisms for handling index updates. Evaluations over standard
industry benchmarks and real customer workloads show that Hy-
perspace can accelerate query execution by up to 10x and in certain
real-world workloads, even up to two orders of magnitude.
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1 INTRODUCTION
The on-going convergence of data lakes and data warehouses is see-
ing the emergence of support for efficiently updatable and versioned
relational data with change tracking [27, 28, 30], and competitive
relational query capabilities at very large scale [2]. We are seeing
out-of-box support for relational tool chains for reporting, data
orchestration, security, sharing, compliance, and governance. At
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the same time, we observe data warehouses expanding their capa-
bilities to support data diversity and scale to match lake capabilities.
This convergence of warehouses and lakes adds value through ser-
vice interoperability and consistent capabilities—including security,
governance, lifecycle management, and cost management—over all
data: in the cloud, on the edge, or on-prem.

Microsoft recently introduced Azure Synapse [2], which offers
an integrated experience across data ingestion, storage, and query-
ing in Apache Spark [15] and T-SQL, over data in the lake and
warehouse tables. Our customers store datasets ranging from a few
GBs to 100s of PBs and utilize several analytical engines to pro-
cess this data. The scope of usage spans traditional data processing
(e.g., ETL), analytical (e.g., OLAP), exploratory (e.g., “needle in a
haystack” queries) and deep learning workloads.

Based on our experience working with customers, we observed
that most enterprise workloads begin with data streaming contin-
uously into the data lake via various means (e.g., telemetry from
edge devices, usage data from business applications, click-stream
data in web apps and search engines). Subsequently, complex ETL
pipelines transform this data for downstream consumption and
make it available to data and business analysts via shared derived
datasets or traditional reporting applications. It is expected that
the underlying data can be updated due to various business re-
quirements (e.g., to enforce privacy policies like GDPR [42], as
part of hybrid transaction/analytical processing pipelines [17], cor-
rections due to accounting errors). To meet critical business and
strict SLA requirements, users spend significant time in optimizing
their pipelines. On one hand, to obtain desired performance, users
spend a lot of time and energy creating several derived datasets
each with their own sort-orders and/or partitioning, hand-tuned /
optimized for their query patterns—increasingly assuming the role
of big data administrators. On the other hand, to handle updates
efficiently and avoid GDPR penalties, enterprise users implement
custom solutions—increasingly assuming the role of big data archi-
tects—and spend significant effort in dataset lifecycle management.

While some of the difficulties around streaming ingestion and
handling updates are addressed by recent work on updatable for-
mats [27, 28, 30], the whole experience of having to manage lifecy-
cle of derived datasets and then having to manually decide which
dataset to use to obtain the required query acceleration is frustrat-
ing, error-prone and a far cry from what traditional databases have
advocated for and provided. We argue that a system that offers a
simple user experience, hides the complexity of building andmanag-
ing these datasets and allows transparent usage in query processing
is critical for any industrial offering such as Azure Synapse. Specifi-
cally, such a system needs to address two challenges in the context
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of data lakes: how to efficiently store a derived dataset, maintain it
and make it available to query engines in the lake, and how to auto-
matically select the best derived dataset during query optimization.

With these in mind, we designed Hyperspace, an indexing sub-
system that we started offering to customers and open-sourced in
2020 [43]. The key idea behind Hyperspace is simple: Users specify
the derived datasets (referred to henceforth as indexes) that they
want to build.1 Hyperspace builds these indexes using an existing
scale-out engine, Apache Spark [15], and maintains metadata in
its write-ahead log that is stored in the data lake. At runtime, Hy-
perspace automatically selects the best index to use for a given
query without requiring users to rewrite their queries. Hyperspace
indexes are exposed to users as an alternative performance enhance-
ment option and are complementary to other query acceleration
mechanisms such as data partitioning [61] available for data lakes.
Our key contributions in this paper are:
• Indexing Subsystem for Data Lakes.We present the details of
an extensible indexing engine, the user experience, the underlying
physical layouts, how we leverage indexes for query acceleration,
and describe the index management lifecycle.
• Serverless Index Management. To lower operational costs,
we propose a novel “serverless” index management strategy. We
also discuss how such a design enables us to provide multi-engine
interoperability and multi-user concurrency.
• Large-Scale Evaluation. We present an evaluation of Hyper-
space using both industry benchmarks and real customerworkloads,
TPC-H, TPC-DS, andCustomer. Overall, we have observed gains
of 40% to 75% for TPC-H, 50% for TPC-DS, and 44% to 94% for
Customer, using commodity hardware. In some cases, we saw
speedups of over two orders of magnitude.

In more detail, there were several considerations that went into
designing Hyperspace:
(1) Agnostic to data formats.Hyperspace is format-agnostic and sup-
ports indexing most popular formats (e.g., CSV, JSON, Parquet [1]).
(2) Indexes are data. The index itself is stored in the lake like any
other dataset in an open and efficient columnar format, Parquet2,
which has the following major benefits. First, in practice many
queries only access subsets of (instead of all) columns from underly-
ing tables. Second, users continue to benefit from a large number of
optimizations being committed by ∼200 developers from the open-
source communities [7, 29]. For example, Parquet’s min-max based
pruning allows skipping irrelevant data blocks; as a result, scanning
Hyperspace indexes can have similar performance benefits offered
by other well-known techniques such as zone maps. Third, users
also benefit from broader community efforts to bring hardware
acceleration via GPUs [4, 51] and FPGAs [5].
(3) Diverse use cases. Developers are provided a flexible framework
to extend and build their own auxiliary structures (e.g., B-tree,
R-Tree) in addition to indexes already supported by Hyperspace.
(4) Serverless and multi-engine indexes.Hyperspace stores the index
and the associated metadata on the lake. The metadata log contains
(a) lineage that allows Hyperspace to enable seamless incremen-
tal index refresh operations and (b) statistics that allow very fast

1Note that we abuse terminology a bit for ease of exposition, as derived datasets can be
more general than indexes in their traditional sense. For example, a materialized view
is a type of derived dataset that is typically not considered an index in the literature.
2Hyperspace can easily be extended to store its indexes in other columnar formats.

pruning of the search space. Since the log is stored in the lake, Hy-
perspace offers a “serverless” index management solution, i.e., users
only need to launch a batch job to refresh the index and can benefit
from scalable computation (to refresh the index). Further, such a
design also enables providing multi-engine index experiences and
integrating Hyperspace into Polaris [13].
(5) Integration with query optimizer. The current experience of Hy-
perspace inside Apache Spark is quite simple and requires no code
change from its users. This was achieved through an integration
with the underlying query optimizer that is agnostic to end users,
allowing the optimizer to make good choices of which indexes to
use to answer a query rather than forcing application developers
to choose indexes, thereby simplifying usability.

Based on this simple design, we built several features in Hyper-
space to address common customer pain points. First, the ability
to incrementally refresh an index (Section 5.2) in the data lake is
suitable for common streaming workloads. Using lineage mecha-
nisms (Section 3.1), Hyperspace supports even the most advanced
data formats such as Delta Lake [30] that support updates (Sec-
tion 5.3) including their time travel feature. Second, Hyperspace
offers out-of-box support for history tracking through its trans-
action log (Section 4.1), useful in audit logging for security and
compliance. Third, to avoid problems with handling large num-
bers of files, Hyperspace offers an OPTIMIZE command that can
bin-pack index files into a compact representation (Section 5.2). Fi-
nally, Hyperspace allows users to continue to exploit stale indexes3
through its novel hybrid scan mechanism (Section 6.2), without
sacrificing correctness.

Hyperspace offers users a simple framework to optimize the
management and performance of their workloads. While indexing
is not a silver bullet, we have observed significant workload accel-
eration, with some customers reporting speedups as high as two
orders of magnitude. The open-source Hyperspace project [43] en-
ables indexing support in Apache Spark and supports most widely
used data formats such as CSV, JSON, Delta Lake, and Iceberg. It
is currently in use by several enterprises, three of which are large
enterprises including Microsoft. In the rest of this paper we present
the design and implementation of Hyperspace.

Scope. There have been techniques for accelerating query perfor-
mance in big data systems, in particular, by using various types of in-
dexes (e.g., Z-order [47] in Delta Lake [30], R-tree in GeoSpark [65],
Reflections in Dremio [24]). Hyperspace indexes share similar goals
with these techniques in this aspect. However, Hyperspace is not
only a query acceleration technology; rather, its emphasis is more
on the automated lifecycle management of such query accelerators
in the big data and/or data lake world, enabling simplified index cre-
ation/maintenance and automated index utilization. It is in this latter
aspect that we are not aware of existing technology that shares
similar goals. In a sense, Hyperspace is complementary to the above
specific indexing techniques and allows for incorporation of any
type of index into the end-to-end index utilization and management
experience. The extensible and open design of Hyperspace allows
it to take advantage of state-of-the-art in big data technology while
offering simplified end-user experiences to customers and staying
open to community contributions.

3Indexes go stale when the underlying data is modified but the index was not refreshed.
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Availability. Hyperspace has been open-sourced [43] and oper-
ates in Microsoft’s own production environments [44].

Paper organization. This paper is organized as follows. In Sec-
tion 2, we present real-world use cases of Hyperspace in Azure
Synapse Analytics. In Section 3, we discuss the design goals behind
Hyperspace and provide an overview of its capabilities along with
the public APIs. In Section 4, we explain how we implement Hyper-
space as a low-cost indexing subsystem. In Section 5, we present
the incremental index maintenance mechanism in Hyperspace. In
Section 6, we discuss how the query optimizer utilizes Hyperspace
indexes in query processing. In Section 7, we present evaluation
results of Hyperspace. We discuss related work in Section 8, and
present our conclusions in Section 9.

2 HYPERSPACE USE CASES
Hyperspace has been evolving continuously since its inception
almost three years ago based on customer feedback. While Hyper-
space is broadly applicable to any query acceleration scenarios, in
this section, we present some representative patterns leveraged by
customers within Azure Synapse Analytics [44].
High-Concurrency Interactive Analytics and Data Export. A
common scenario we observed in enterprise applications in vari-
ous sectors such as finance, accounting, and sales, is the following:
Users can input some predicates and they can either look at the re-
sults or export the data. Since there are multiple query patterns,
a single layout (e.g., data partitioning, distribution, or sort-order)
may not suffice to meet all SLAs. We observed customers utilizing
Hyperspace to create multiple indexes on their data (~8 TB/day) and
leveraging its index caching mechanism to preemptively load in-
dexes (~700 GB/day) into an active set of nodes (~60). Subsequently,
they would build an intermediate index serving layer that takes in
queries, writes the results into a blob store, and returns a URI to the
end user so they can download. In some cases, customers obtained
speedups of up to two orders of magnitude.
Indexing Privacy Attributes for GDPR Compliance. The Gen-
eral Data Protection Regulation (GDPR) [42] is a protection directive
introduced by the European parliament that requires companies
holding EU citizen data to provide a certain level of protection for
personal data (e.g., biometric data, user activity data, etc.), including
erasing all personal data upon request. This requirement applies to
any product or service that collects user information (e.g., health
and fitness, chat, etc.). We observed customers utilizing Hyperspace
indexes to speed up searches for which data blobs hosted by Azure
Storage (i.e., WASB [11]) contain the given user’s data (via “lookup”
style queries). Once these blobs are deleted, users perform an index
refresh to delete the entries from the index. Since Hyperspace of-
fers incremental refresh with support for deletes, this operation is
efficient (as it only rewrites index blocks that are affected).
Time-series Analytics. Many customers focus on turning IoT
data into actionable insights using products such as Time Series
Insights [45] that allow users to specify the sensors from which to
collect time series data and allow them to slice and dice so they can
derive insights. A common pattern of requests we observed is that
for data spanning multiple years, users issue queries in ways that
do not align with how the data is partitioned/distributed on the

data lake leading to sub-optimal performance. For instance, data
is generally partitioned by timestamp but most queries select by
sensor id instead. To avoid linear scans, we have observed customers
using Hyperspace to create secondary indexes to efficiently answer
such queries. An interesting observation here is that Hyperspace
maintenance works well with any retention rates associated with
the underlying raw data.
Complex View Support over Lake Data. With data from multi-
ple sources flowing into the lake, in near real-time, applications are
increasingly leveraging lake data for operational processing and
analytics. Operational data processing requires support for data ab-
stractions from source operational system and support for complex
read processing. SQL views[13] are a useful way to provide such
abstractions. These abstractions themselves can be complex. For
example, consider a User (or Contact) entity in the lake, which is
composed from multiple source datasets like user core data, user
address data, user profile data, and so on, requiring multi-way joins.
Efficient support for such views requires efficient query processing
over source datasets. Hyperspace can provide support for efficient
query processing over source datasets and over other views, with-
out requiring them to be physically materialized.
Framework for Derived Dataset Maintenance. Many enter-
prise workloads are migrating ETL and data warehouse workloads
to the cloud to simplify their management. In certain use cases,
enterprises take regular snapshots of data in OLTP systems (e.g.,
sales) and join it with other richer sources (e.g., product usage) to
derive other useful insights. We find many of these enterprises still
prefer storing their raw data in CSV files as they do not want to
impose restrictions for downstream pipelines. We observed users
using Hyperspace to define materialized views—a type of derived
datasets/indexes in Hyperspace—as optimized representations of
the raw data. This not only allows downstream pipelines to benefit
from query acceleration but also allows the teams to exploit Hy-
perspace’s maintenance framework to keep everything up-to-date
when the underlying data changes.
Needle-in-a-haystack Queries. Many customers are interested
in text searches in a large set of files on the lake across all columns.
Bloom filter indexes can be used to address the problem. An in-
teresting side-effect would be their benefits in join optimizations,
which we plan to address in future work.

3 HYPERSPACE INDEXING SUBSYSTEM
In this section, we present an overview of Hyperspace and its APIs,
and discuss the underlying index structures. Hyperspace is designed
to work with multiple query engines, but for concreteness, we
explain the indexing subsystem and its use in the context of Apache
Spark, without loss of generality.

3.1 Hyperspace Indexes
Hyperspace supports traditional non-clustered indexes (i.e., index
is separated from data). Hyperspace indexes have the following
physical properties (see Figure 1):
(1) Columnar: Index is stored in a columnar format (we use Par-

quet, but in principle any other format can be used). This not
only allows us to benefit from community contributed optimiza-
tions and hardware advancements but also leverage techniques
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Figure 1: Hyperspace Indexes. (a) describes the physical layout; (b) and (c) show examples of shuffle and filter acceleration.

like vectorization along with min-max pruning [46] to acceler-
ate scans over indexes.

(2) Hash-Partitioned & (Optionally) Sorted: Index is hash par-
titioned and sorted by the index columns within each individual
partition, based on user-provided index configuration. Index
columns can hold generic data types, e.g., bloom filters. This
allows index scans to reduce the amount of data to be accessed
for filter with equality predicates (i.e., point look-ups) that ref-
erence the indexed columns. If the indexed columns match join
keys and the optimizer chooses to use a shuffle-based join (e.g.,
a hash join or a sort-merge join), then the shuffle stage of the
join can be avoided due to the index being pre-partitioned [3].

(3) (Optional) Lineage Tracking: Every index can also optionally
hold pointers/references to the underlying base table (inciden-
tally, these are also useful for lineage tracking and enforcing
deletes; see Section 5.2). However, since data in the lake does
not typically have a primary key or a clustered index, in Hy-
perspace we exploit the following observation for data lake
implementations [19, 57, 59]: Each file/blob/folder in the under-
lying storage system is addressible through a handle (e.g., URI)
that can be used to efficiently retrieve the underlying data. Users
can create secondary indexes that map the indexed columns to
the handle of a data block that contains the full record. We note
that Hyperspace allows the URI to be either fine-grained (e.g.,
directly pointing to a row-group in Parquet) or coarse-grained
(e.g., pointing to a file or a folder).

Such indexes allow the following key query optimizations:

Replace Table Scans with Index Scans. When the index con-
tains all information required to resolve a query as part of its key
columns (a.k.a., “indexed columns”) and data/payload columns (a.k.a,
“included columns”)—a covering index—they can be tremendously
useful for “index-only” access paths (including for optimizing joins);
see Figure 1(b). For instance, in cases where one or more joins have
appropriate partition-aligned indexes, global shuffles (some of the
most expensive operations in data lakes [54]) can be entirely elimi-
nated. We illustrate these benefits through an empirical study that
we conducted to measure the benefits of avoiding data shuffling
under two scenarios: (i) query engine is aware of the underlying
data distributions of the two tables involved in a join so it can avoid
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Figure 2: Benefits of getting rid of shuffles.
a global distributed shuffle, and (ii) query engine is not aware of the
underlying data distributions so it will perform a full distributed
shuffle. We compare the query execution time as the number of
CPU cores grow, for both cases (i) and (ii) with the following micro-
benchmark query:

SELECT count(*) FROM lineitem, orders
WHERE l_orderkey = o_orderkey.

Here lineitem and orders are the two largest tables in the 1TB
TPC-H benchmark [10]. Notice the difference of up to 2.5x in query
execution time between the two cases. This difference will increase
significantly as the amount of shuffling increases; see Section 7.

Reduce Table Scans with Index Seeks. When the index does not
cover the given query, it may still be useful for reducing the amount
of data accessed by a table scan, as shown in Figure 1(c). During
query optimization, Hyperspace uses such indexes to eliminate por-
tions of the table that can be skipped, based on column selectivity.
Remark. In practice, it is easy to include other types of indexes into
Hyperspace as long as they can be used for index scans or seeks.
Indeed, with this point of view, we are embedding several other
well-known data structures, such as materialized views, Z-ORDER,
data skipping, sketches, inverted lists and even bloom filters, into
Hyperspace [43]. One obvious challenge is how to use these in-
dexes to accelerate query processing, which implies that the query
optimizer needs to be able to rewrite the query plan when such
indexes are available and estimate their execution cost accordingly;
see Section 6. Another challenge is to ensure the freshness of such
indexes when the underlying datasets are updated, which implies
that index maintenance is critical in Hyperspace; see Section 5.
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Figure 3: Overview of Hyperspace Indexing Subsystem.
3.2 Architectural Overview
Figure 3 shows an architectural overview of Hyperspace. At its
core, Hyperspace offers two layers:
Indexing Infrastructure: At a bare minimum, users can utilize
the indexing infrastructure (available as a service or a library) to
create and maintain indexes on their data through the index cre-
ation and maintenance API (discussed in Section 3.4). Since indexes
and their metadata are stored in the data lake (see Section 3.3 for
justification), users can parallelize index scans to the extent that
their query engine scales and their environment/business allows.
Index metadata management is another important part of the in-
dexing infrastructure. Internally, index metadata maintenance is
managed by an index manager. The index manager takes charge of
index metadata creation, update, and deletion when correspond-
ing modification happens to the indexed data, and thus governs
consistency between index and its metadata.

For developers and contributors of Hyperspace, the system also
offers access to the underlying primitive components. Of particular
interest are the following:
• Log Management API: A critical design decision we took in or-
der to support multi-engine interoperability was to store all the
indexes and their metadata in the lake. To track the lineage of
the operations that take place over an index, Hyperspace records
user operations in an operation log (Section 4.1).

• Index Specs: To support extensibility, Hyperspace requires certain
properties from the underlying indexes. These are exposed via
the lifecycle management API and anyone wanting to add an
additional auxiliary data structure must implement this API.

• Concurrency Model: To support multi-user and incremental main-
tenance scenarios, we use optimistic concurrency control mecha-
nisms (Section 4.3).

Query Infrastructure: Without loss of generality, we discuss the
components of the query infrastructure implemented in the Scala
version of Hyperspace. The library is written as an extension of the
Spark optimizer (a.k.a. Catalyst) to make it index-aware, i.e., given
a query along with existing indexes, Hyperspace-enabled Spark can
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<index-directory-1>

...
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1
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Figure 4: Index Organization on the Data Lake.
perform transparent query rewriting to utilize the indexes. The only
step required is to enable Hyperspace’s optimizer extensions via

sparkSession.enableHyperspace()

after creating the Spark session. Since we treat an index as another
dataset on the lake, users can exploit Spark’s distributed nature to
automatically scale out index scans.
Index Tuning. While Hyperspace introduces the notion of index-
ing, an important aspect of big data administration that critically
influences performance is the ability to select indexes to build for a
given query/workload. To decide the right indexes for a workload,
users must be able to perform a cost-benefit analysis of the existing
indexes and any “hypothetical” indexes [21] they have in mind.
Hyperspace’s “what if” functionality [18, 21, 32–34] allows users
to quantitatively analyze the impact of existing or hypothetical
indexes on performance of the system. In addition, Hyperspace also
exposes an implementation of index recommendation [20, 37, 63]
for automating the choice of indexes for query acceleration in big
data workloads. Given certain constraints, such as the maximum
number of indexes allowed and the storage budget, this utility se-
lects the best Hyperspace indexes for an input workload in terms
of percentage improvement of workload execution cost.

3.3 Index Organization on the Lake
To meet the design goals outlined in the introduction, we decided
to store all index metadata in the lake, without any external depen-
dencies (details in Section 4). Figure 4 shows the organization of the
index metadata on the data lake file system. Each index (listed under
/indexes/*/<index name> in Figure 4) has two components:

(1) the directory named _hyperspace_log that contains the
operational log of the index, i.e., the list of all operations that
happened on this index since its inception;

(2) the actual contents of the index.
Notice that the contents are captured through multiple directories.
This is to support functionality such as concurrent index manage-
ment (e.g., snapshot isolation) and incremental maintenance (e.g.,
the latest index is a union of the contents of multiple directories).

3.4 Usage API & Customization Knobs
Hyperspace offers a list of public APIs that can be grouped into the
following categories:
Index maintenance APIs such as create, delete, restore, vacuum,
refresh, and cancel. The delete API performs a “soft delete,” which
tells the optimizer to not consider this index during optimization.
The actual index is not deleted, thus allowing the user to recover
the deleted index using the restore API. Alternately, the user can
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permanently delete the index (already in a soft-delete state) using
the vacuum API. Users can cancel on-going index maintenance
operations using the cancel API; this is useful if the user suspects
that the maintenance job is stuck or has failed.
Utility APIs for debugging and recommendation such as ex-
plain,whatIf, and recommend. The explainAPI allows users to obtain
various useful information from the optimizer, e.g., which part of
the plan was modified, which indexes were chosen, why they were
chosen, etc. The whatIf API allows users to provide the indexing
subsystem with hypothetical index configurations and get an expla-
nation of how useful it would be if the indexes in the hypothetical
configuration were built. The recommend API allows users to get a
ranked recommendation of indexes that can be built for a workload.
Storage and query optimizer configuration to allow the user
to override the behavior of the query optimizer and index man-
agement. For instance, by default, every index that gets created
will be discoverable. If this is not acceptable, the user can choose
private index locations and namespaces to create their indexes and
provide hints to the query optimizer so that it will only consider
these indexes during query optimization.

4 INDEX MANAGEMENT
Our primary goal was to implement Hyperspace as a low-cost in-
dexing subsystem that allows for concurrent index maintenance
operations on an index that can be leveraged by multiple engines. In
this section, we start with an important design decision taken to sim-
plify the implementation, which was to make index management
“serverless,” i.e., there is no standalone server (in an Apache Spark
cluster or more broadly in an Azure Synapse Analytics workspace)
dedicated to managing indexes. We achieve this by storing all in-
formation pertaining to the index (e.g., metadata, operations on an
index) in the data lake, and capturing changes to an index through
an operation log. We discuss how we handle concurrent updates
using optimistic concurrency control.

4.1 Foundation: Metadata in the Lake
Interoperability is complex as it requires every query engine to
agree on what constitutes an index; this requires agreement be-
tween developers (and organizations/companies) working in dif-
ferent silo-ed ecosystems. Since the latter problem is much harder
in reality, we prioritized finding a low-friction design for exposing
index-related metadata (e.g., contents, state etc.) in a way that al-
lows for easy integration. Exposing the state of an index or the list
of operations invoked on an index through traditional means, such
as a catalog service or a transaction manager service, guarantees
strong consistency. However, this approach has a few major oper-
ational implications. First, it brings in service dependencies and
live-site support overheads. Second, it makes integration complex
since now every new engine has to depend on a third-party service.
Finally, it introduces operational costs of running the service.

We decided to trade-off metadata consistency for easier opera-
tional maintenance, i.e., we store the ground truth of information of
an index in the data lake. Figure 5(a) shows the full specification of
the information we store for a given index, and Figure 5(b) provides
a concrete example of an index metadata entry. The specification is
divided into the following regions:

• Contents, which captures the type and type-specific informa-
tion of the derived dataset that is useful in instantiating appropriate
index interpretation logic, such as name, kind, configuration (e.g.,
indexed and included columns plus their types), content (e.g., phys-
ical location and layout);
• Lineage, which captures information required to track lineage
of the derived dataset, e.g., HDFS data source being indexed, in-
formation needed to refresh the index with minimal information
from the user, information needed to perform index selection, and
descriptive history of an index;
• State, which captures state pertaining to the derived dataset, e.g.,
global information such as Active and Disabled, and transient
information such as Creating and Deleted.

4.2 Index State Management
Index state management is at the center of serverless index man-
agement for stateful index operations such as index creation and
deletion. Figure 6 presents the details of the index state transition
diagram under the Hyperspace index manipulation APIs:
• Creating: When a user invokes the Hyperspace create() API,
the index being created enters the Creating state; if the user can-
cels index creation by issuing the Hyperspace cancel() API, then
the index goes back to the DNE (meaning ‘Do Not Exist’) state.
• Active: The index has been created successfully and is ready to
use. Note that the index is not visible when it is in the Creating
state until its state turns to Active.
• Refreshing: A user can refresh an existing index via the Hyper-
space refresh()API upon data updates. However, refreshing does
not block index visibility—readers can keep accessing the current
active copy of the index until refreshing is finished.
• Restoring: A user can restore an index that has been deleted
via the Hyperspace restore() API. Again, the index is not visible
when it is in the Restoring state.
• Deleting: A user can delete an index using the delete() API.
Recall that deletion in Hyperspace is soft and therefore fast. The
state of the index moves from Active to Deleted after deletion
and the index becomes invisible. Existing readers, however, will
not be affected, similar to Refreshing. A deleted index can be
vacuumed to free its storage space via the vacuum() API.
• Optimizing: A user can further choose to optimize the index
via the Hyperspace optimize() API. This is an API call reserved
for incremental refreshing. For example, one optimization is index
compaction, where (small) index blocks generated incrementally
will be merged into larger ones to improve index read efficiency.

Note that the states in the above list are transitioning, while the
other states Active, Deleted, and DNE are stable.

Clearly, some index states conflict with each other. For exam-
ple, if an index state is Deleting, Refreshing, or Optimizing
(in one user session), it cannot be Restoring at the same time (in
another concurrent user session), because the index can only move
to Deleting, Refreshing, or Optimizing from Active whereas
it can only enter Restoring from Deleted (as shown in Figure 6).
If two Hyperspace APIs can lead to conflicting index states, then
they are incompatible. Table 1 shows the compatibility matrix of Hy-
perspace APIs—incompatible entries are marked with ‘N’ whereas
compatible ones are marked with ‘Y.’
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Operation Log

... ... ... ... ... ... t

Contents

Lineage

State

Root

properties Engine specific properties e.g., logicalPlan, signature

name Name of the index

content Location that contains data pertaining to the derived dataset

root Base path

directories[] Set of locations constituting the snapshot of the derived dataset

path Specific directory path

filenames[] List of files (for light-weight validation)

timestamp Timestamp when this derived dataset was modified
source Encapsulates where and how this derived dataset was constructed

plan Serialized representation of the plan that produced this derived dataset

kind The engine that produced this plan e.g., Spark, Polaris

data[] Description of the sources used for deriving this derived dataset

kind The type of this data source e.g., HDFS, SQL Server

properties Data source specific properties e.g., HDFS � [path, files, signature]

state Current state of the entity e.g., CREATING, ACTIVE etc.

enabled Flag indicating whether the optimizer can exploit this entity

extra Extra fields for future use
specVersion Version of this specification

Signature (for light-weight validation)signature

derivedDataset Information for semantic interpretion of the derived dataset

kind Kind e.g., non-clustered index, bloom filter index, stats, views

version Version for the specific type
properties Type-specific configuration e.g., indexed/included cols for covering index

version Version for the specific engine

version Version for the specific source type

id Id of the log operation

(a)

Sample Non-Clustered Index

name: myNonClusteredIndex

content

root: /synapse/workspace/john/idx1

directories[]

path: dir-0
filenames: [1,2,3]

timestamp: 2019-12-12 00:00:00
source

plan

data[]

kind: Hdfs

kind: Spark

properties

state: Active

cols

schemaddl: "`a` INT, `b` INT, `c` INT"

indexed: ["a", "b"]

included: ["c"]

numBuckets: 200, stats: {}

rawPlan: base64Plan
signature: md5Hash(base64Plan)

signature: xy61726zaqw

derivedDataset

kind: NonClusteredIndex

version: 0.1

properties: 

version: 0.1

version: 0.3.1
properties

directories[]

path: dirLocation1
filenames[]: [f1,f2,f3, ...]

signature: md5Hash(fileProps)

id: 2

(b)

Figure 5: (a) Specification for a single metadata entry of a derived dataset (e.g., non-clustered index); (b) Sample index entry.
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Figure 6: Index State Machine

API C D O RF RS V
C Y N N N N N
D N Y Y Y N N
O N Y Y Y N N
RF N Y Y Y N N
RS N N N N Y N
V N N N N N Y

Table 1: Compatibility matrix of Hyperspace index APIs: (1)
‘C’ for ‘create’, (2) ‘D’ for ‘delete’, (3) ‘O’ for ‘optimize’, (4) ‘RF’
for ‘refresh’, (5) ‘RS’ for ‘restore’, and (6) ‘V’ for ‘vacuum’.

4.3 Multi-user Concurrency Control
Hyperspace allows multiple users to manipulate the same index
simultaneously. Hyperspace ensures the correctness of the index
(based on the index state transition diagram in Figure 6) using
optimistic concurrency control. In the following, we provide a brief
overview of the Hyperspace concurrency model.

We employ the operation log depicted in Figure 5(a) that supports
the following log operations (Figure 7):
• LogOp(), which simply records the index manipulation (by a
single user) that is going to happen;
• Validate(), which validates whether the index is in a suitable
state that allows for the desired manipulation (e.g., one cannot
delete an index that does not exist);

Verify expected state,

semantic checks

Create <id=latest+1> 

w/ transitioning state

Run specified operation

(e.g., index creation)

Create <id=latest+1> 

w/ final stable state

Validate()

Begin()

RunOp()

Commit()

Requires cancel() + cleanup()

Requires cancel()

No-Op
x

x

x

write id.temp

atomic rename

id.temp � id

Next Op

(success)

Abort

(failure)

Commit Protocol

LogOp()

Figure 7: Log Operation
• Begin(), which assigns an id to the index manipulation with
the corresponding transitioning state;
• RunOp(), which records that the manipulation is now running;
• Commit(), which records the id of the finished index manipula-
tion with the corresponding final stable state.

Hyperspace relies on the atomicity of renaming a file in a cloud
file system (including HDFS, Azure Storage, or Azure Data Lake)
to ensure that altering index state from a transitioning state to a
stable state during Commit() is atomic. If during Commit() Hy-
perspace detects that the corresponding file that stores the index
transitioning state has been renamed, Hyperspace can simply abort
the ongoing index manipulation. The user can choose to retry the
index manipulation upon receiving an abort message.

Hyperspace currently supports multiple writers using the above
concurrency control mechanism, and multiple readers. Readers sim-
ply choose a stable snapshot of the index data that has been commit-
ted. To ensure consistency between the index and the corresponding
data being indexed, Hyperspace further employs a signature-based
mechanism (see Figure 5(a)) where the latest timestamps of the
data files are used to generate a signature for the index. During
query processing (see Section 6), it is possible that a query may
touch a table as well as its indexes simultaneously. Using the signa-
ture of the data that is stored in the index metadata, the optimizer
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can ensure that the index is not stale. However, ensuring external
consistency remains as a challenge, as Hyperspace is a serverless
indexing service that does not manage the data. For example, it is
possible that a query is accessing data that has been updated since it
validated the consistency of the index, as Hyperspace does not hold
any lock over the data during query execution. External consistency
is beyond the scope of functionalities that Hyperspace currently
supports. Some coordination mechanism across data lake users is
required to ensure external consistency. One naive approach could
be to enforce that each user has their own workspace and cannot
access other users’ workspaces. This prevents inconsistency but
also restricts any possible data sharing.

5 INCREMENTAL INDEX MAINTENANCE
Hyperspace enables index maintenance over mutable datasets re-
gardless of the underlying data format. In this section, we discuss
the use cases and incremental index maintenance features.

5.1 Mutable Datasets and Semantics
Enterprise datasets get modified over time. The following are com-
mon patterns we have observed with our customers:
(1) Streaming ingestion. Teams that need to deploy data stream-

ing pipelines [41, 64] would collect data into data lakes parti-
tioned by a certain key, e.g., timestamp, writer-id, etc. This data
is then consumed by downstream pipelines and modified to fit
their needs. More frequently, a number of users query these
raw datasets in ways that force linear scans.

(2) GDPR Compliance. To comply with data privacy regulations
such as GDPR [42], enterprises have to delete data correspond-
ing to a particular user, when requested to do so (typically
through features like Forget-Me [42]).

(3) Data corrections. Data may need to be updated due to errors
in data collection or late-arriving data or simply user satisfac-
tion (e.g., in cases where users are charged due to a software
bug, it is typical in cloud providers to issue refunds).

Typically, each data team has their own mechanisms to apply these
updates to data lake datasets ranging from maintaining custom
secondary indexes to blobs that are then used to update appropriate
portions to using more recently introduced ACID table formats [27,
28, 30]. Since in-place update semantics are not so common [11],
nearly all solutions to handling updates use some form of journaling
(e.g., versioning, delete-and-append, etc.).

5.2 Index REFRESH & OPTIMIZE
Hyperspace captures detailed metadata of the underlying data
source at the time it indexes them. This includes information such
as filename, modified time, and file size. While appends to original
datasets can be supported without any special metadata, to handle
deletes, users need to create an index with lineage tracking enabled
that tracks which source file a particular record originates from.

To accommodate a variety of enterprise workloads, Hyperspace
supports multiple index maintenance modes captured in Table 2.
Full Refresh. The simplest mode is a full rebuild of the index that
re-scans the original data to build a new version of the index. This is
particularly efficient if the underlying source data is relatively stable
and the index is being heavily used. We observed this mode being

typically used by customers who capture snapshots of their data in
the data lake. In these cases, the underlying data is entirely rewritten
to the point where incremental indexing is not very beneficial (as
it anyways rewrites the entire index).
Incremental Refresh. If the user is infrequently appending/delet-
ing large amounts of data to the underlying source, it is beneficial
to use the incremental refresh mode, where Hyperspace operates as
follows. First, Hyperspace scans the underlying source and records
the list of appended and deleted files/partitions by comparing it
against the lineage information recorded in its metadata (recall that
Hyperspace stores the filename, last modified timestamp and file
size at the time of index creation). Second, for the appended files,
Hyperspace starts an indexing job to sort only that portion of the
data. To handle deletes, it utilizes index lineage to detect which
portions of the data these affected index blocks were generated
from and simply rewrites those index blocks. Third, all the new
index blocks are committed as a new incremental version of the
index. Finally, the metadata is updated to reflect the latest snapshot.
Quick Refresh. If the user frequently appends small amounts of
data to the underlying source, it may not be cost-efficient to keep
running indexing jobs since the benefit from partially sorting this
newly added data may be negligible. For such cases, Hyperspace
supports a quick refresh mode where it simply scans for the list
of files appended/deleted and updates the metadata to capture this
information. At query time, Hyperspace resorts to its hybrid scan
operator (see Section 6.2) to derive the latest index.
Optimize. If a user invokes incremental or quick refresh too often,
the index may get fragmented (similar to indexes in traditional
DBMS systems). To handle this scenario, Hyperspace allows users
to optimize their indexes by compacting smaller index files based
on user-provided criterion (e.g., compact files less than 10 MB).

5.3 Support for ACID Data Formats
An inherent complexity inside Hyperspace is caused by the mecha-
nisms to determine if the underlying data source is up-to-date and if
it is not, determining what changed since the time the data source
was indexed. Recent systems such as Linux Foundation’s Delta
Lake [30], Apache Hudi [27], and Apache Iceberg [28] have defined
data formats and access protocols to implement transactional oper-
ations on cloud object stores. These systems maintain a transaction
log that records all operations that have taken place on the data
being managed. When indexing such data formats, Hyperspace
can exploit the respective transaction logs to skip some expensive
metadata checks. For instance, when Hyperspace is indexing data in
Delta Lake format, it relies on the latter’s transaction log to quickly
obtain the list of partitions/files that have been added/removed and
updates the Hyperspace log appropriately.

6 QUERY PROCESSING USING INDEXES
During query optimization, Hyperspace explores potential benefits
of leveraging indexes by making the query optimizer “index-aware.”
For example, for the case of Apache Spark, Hyperspace has incorpo-
rated new optimizer rules into Catalyst — Spark’s rule-based query
optimizer [23]. In this section, we present the design and implemen-
tation of this “index-aware” query optimizer extension. We also
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Full Rebuild Quick Query Fast Refresh
Append Characteristic Slowest refresh/fastest query Slow refresh/fast query Fast refresh/moderately fast query

API refreshIndex(mode="full") refreshIndex(mode="incremental") refreshIndex(mode="quick")

What it does? Rebuilds the index Builds index on newly added data Captures metadata for appended
files and leverages hybrid scan

When to use? Underlying source data is
relatively stable

Infrequently appending large
amounts of data

Frequently appending small
amounts of data

Delete Characteristic Creates a new index (by
reshuffling the source data) Slow refresh/fast query Fast refresh/moderately fast query

API refreshIndex(mode="incremental") refreshIndex(mode="quick")

What it does? Drops rows from index immediately; Avoids
shuffling the source data using index lineage

Captures file/partition predicates
and deletes entries at query time

When to use? Infrequently deleting large
amount of data

Frequently deleting small
amounts of data

Optimize Faster Optimize Speed Slower Optimize Speed
API optimizeIndex(mode="quick") optimizeIndex(mode="full")

What it does?
Best-effort merge of small index files
within a partition;
DOES NOT refresh the index

Create a single file per partition
by merging small & large files;
DOES NOT refresh the index

When to use? When perf starts degrading When perf starts degrading
Table 2: Index maintenance modes. Since workloads vary by requirements, Hyperspace supports multiple index maintenance
mechanisms to allow customers to choose the options that will help them meet their business SLAs.

propose hybrid scan, a novel access path that allows Hyperspace to
utilize an index for query processing even if it is not up to date.

6.1 Index-aware Optimizer Extension
6.1.1 A Generic Framework. Figure 8 presents the architecture of
the query optimizer extension made by Hyperspace. The input
to optimizer is now the query and the set of available candidate
indexes. The optimizer then considers all indexes from the given
candidates that could be utilized to accelerate query performance
to select the best ones. To fulfill this, Hyperspace employs index
strategy to perform index selection. The index strategies are cus-
tomized for different query optimizers, and we will present their
implementations in Apache Spark shortly. After applying the index
strategies, the resulting query plans (with indexes) are sent to the
plan ranker, which will compare/rank the plans and pick the best
one (e.g., with the lowest execution cost). The estimation of the
execution cost of a plan is delegated to a component called “what
if” utility that is shared with the index recommender. The “what
if” utility [21] is an extended version of the usual query optimizer
cost model that takes index access costs into consideration. It can
take both actual indexes (as in Figure 8) and hypothetical indexes
as in the context of index recommendation [20].

6.1.2 Hyperspace Index Strategies in Spark. Since Catalyst is a rule-
based query optimizer, Hyperspace implements two index strategies
as optimizer rules, FilterIndexRule and JoinIndexRule, that tar-
get accelerating filter and join operators in Spark query execution
plans using Hyperspace indexes. Hyperspace indexes may also be
beneficial for other operators, such as aggregates on top of group-
bys, which could be interesting directions for future work.

Indexing Rule for Filters. The FilterIndexRule works as follows.
If a table scan has a filter f on top of it, we replace it by a Hyperspace
index I if the following conditions meet:
• The leading column in the indexed (key) columns of I is refer-
enced by some predicate in f ;
• All columns referenced by predicates in f are covered by I , i.e.,
appear in either the indexed or included columns of I .
We implement the condition checking using pattern matching [8].

Hyperspace 

Indexes

Input

Query Plan

Best Query Plan

(with lowest cost)

Query Plan Optimization Plan Ranker

Index Strategies

Covering

Non-Covering (Partitions)

Non-Covering (Bloom Filter)

"What If" Utility

Cost Model

Stat Collection

Figure 8: Hyperspace query optimizer extension
Indexing Rule for Joins. The JoinIndexRule works in a similar

manner by looking for candidate indexes via pattern matching.
However, unlike the FilterIndexRule, we are not able to match
a specific pattern except for merely matching individual join op-
erators. We then examine that for each matched join operator, it
satisfies the equi-join condition, i.e., the join condition is restricted
to be a conjunction of equality predicates between join columns.

After matching an eligible join operator O with join condition c ,
the next step is to find usable indexes for O . Given that both the
left and right sub-plans are linear, we only have two base tables
in the plan tree under O . For each base table T , we then check the
following conditions for each candidate index I on top of T :
• All join columns inT that are referenced by c should be the same
as the indexed columns of I ;
• All other columns referenced by the left or right sub-plan that
accesses T are contained by the included columns of I .
Let Il and Ir be the candidate indexes found for the left and right
sub-plan, respectively. If more than one index pair (Il , Ir ) ∈ (Il ,Ir )

exists, Hyperspace currently picks the one that would result in the
least execution cost based on the following criteria:

(1) If there exist index pairs (Il , Ir ) such that Il and Ir have the
same number of partitions, then pick the index pair with the
largest number of partitions.

(2) Otherwise, if no such index pair exists, then pick an arbitrary
index pair from the eligible pairs.

The rationale is the following. First, when two indexes have the
same number of partitions, there is no shuffling when performing
the (sort-merge) join; if the number of partitions differ, one index
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gets reshuffled into the number of partitions equal to the other.
Second, in general more number of partitions can lead to better
parallelism in join execution, assuming no resource constraint.

Finally, JoinIndexRule replaces table scans with corresponding
index scans on top of the best index pairs found.
6.2 Hybrid Scan
Since refreshing an index is modeled as an indexing job (so it can
scale), it may not always be beneficial to keep running refresh jobs
(e.g., when only a small amount of data is appended/deleted). How-
ever, if an index is not refreshed, Hyperspace will detect that the
index has gone stale since the underlying data has changed. For
most of our customers, this was quite unreasonable (in fact, some
have asked that we allow using a stale index as it provides sig-
nificant acceleration). To circumvent these problems, Hyperspace
provides hybrid scan that allows users to leverage indexes even
when they have gone stale.

1
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7
8

v1 v2 v3

v1 Initial dataset {1,2,3,4,5,6}

v2 Index created {1,2,4,5,6}

X X

X

v3 Dataset updated {1,2,5,6,7,8}

User queries dataset @v3

(1): Compute diff since indexed
[{4, deleted}, {7, added}, {{8, added}]

(2): Rewrite Table Scan as Hybrid Scan

Table A Table B

Index Scan
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Figure 9: Hyperspace Hybrid Scan.
⋃︁
H is a special partition-

aware physical union operator implemented inHyperspace.

The key idea behind the hybrid scan technique is to utilize the
existing index and then apply the changes observed in the under-
lying data source. At query time, if Hyperspace detects that the
index has gone stale, it first obtains a list of files/partitions that
have been appended/deleted from the underlying data source. Next,
it modifies the query plan to exclude the deleted rows and “merge”
the appended data in the following way (see Figure 9):
• Handling Appends. Since indexes are hash partitioned, any newly
appended files should be partitioned the same way and then merged
(i.e., union-ed) with the existing index data to avoid a full shuffle. To
do this, we introduce a new partition-aware union operator, which
detects that the two sides are partitioned, sorts within partitions,
and performs a merge. Note that the sort is cheap since data is
mostly sorted and we use Timsort [16], which has linear running
time for mostly sorted data.
• Handling Deletes. Since we capture lineage information in in-
dexes (i.e., which file a particular row originates from), the hybrid
scan operation can modify the query plan to introduce a filter that
eliminates all rows belonging to the files that have been deleted.
While hybrid scan allows users to exploit stale indexes, its perfor-
mance is dependent on the extent of staleness of the index, i.e., if the
underlying dataset has undergone too many changes, hybrid scan
might end up causing regressions. To alleviate this issue, we have
user-configurable properties that allow the optimizer to disable
hybrid scan when the staleness has exceeded a certain threshold.
We leave automatically determining this aspect to future work.

Compute Cluster Settings
Type Nodes VM Cores RAM SSD
Driver 2 D12V2 8 28 GB 200 GB
Worker 16 D14V2 256 112 GB 800 GB
Storage Settings
Type WASB Storage (general purpose v1)
Repl Locally-redundant storage replication (LRS)

Table 3: Compute and storage characteristics
Support of “Time Travel”. As described in Section 5.3, Hyperspace

supports ACID data formats such as Linux Foundation’s Delta
Lake [30]. An interesting feature offered by such data format is the
ability to “time travel,” i.e., users can query point-in-time snapshots
or roll back erroneous updates to their data. Time travel brings
interesting challenges to index management. For instance, during
optimization, Hyperspace should be able to detect that version of the
underlying dataset that is being queried and should decide the best
index to use (recall that Hyperspace supports multiple snapshots
of indexes, i.e., every time the user invokes a full refresh, there is
a new version of the index that is generated). Hybrid scan forms
the core backbone for supporting data formats offering time travel.
Once the best index is determined, Hyperspace utilizes hybrid scan
to reconstruct the latest state by comparing the transaction logs.

Delta Lake

Hyperspace

v1
a

v2
a

v3

v1

v4
a

User queries snapshot @ v4

Hyperspace chooses:

- Index(v1) + Scan(DeltaLake(v4 - v2))

v5
a

v2

User queries snapshot @ v6

Hyperspace compares:

- Index(v2) + Scan(DeltaLake(v6 - v5))

- Index(v3) + Scan(DeltaLake(v6 - v7))

r

d
v6
a

v3
r

v7
a

Legend: a - append; d - delete; r - index refresh

Figure 10: Hyperspace support for Time-travel Queries.
Since multiple index snapshots can be used, Hyperspace
compares the cost of hybrid scan over those snapshots.

Figure 10 shows an example of how Hyperspace co-exists with
ACID data formats. In formats like Delta Lake, every time a user
appends (denoted by a) or deletes (denoted by d) files, a new version
is created. Subsequently, user can specify the version of the dataset
they want to time-travel to during query time. When Hyperspace
is enabled, it determines the list of indexes that are applicable to
this Delta Lake source and relies on simple cost comparisons (e.g.,
number of files linearly scanned for a specific index version) to pick
the best index. For instance, if the user queries the data snapshotv4,
Hyperspace has only one option whereas if they choose to query
snapshotv6, Hyperspace performs the appropriate cost comparison
between using its own index at v2 and v3.

7 EVALUATION
We evaluate the performance of Hyperspace using both industry
benchmarks and real customer workloads. We start by discussing
index creation time, present the gains achieved for queries over
each of the datasets, and finally study the utility of indexes.
7.1 Experimental Environment
We present results obtained using Apache Spark [15, 66] for both
index creation and utilization. Our experimental setup has a combi-
nation of D12V2 and D14V2 instances in Azure. The details of the
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Figure 11: (a) Index creation time; (b) Performance gains on TPC-H with respect to increasing number of base table chunks; (c)
Performance gains on TPC-H with respect to fixed number of index partitions (i.e., 200) and increasing number of CPU cores.

Dataset CSV
Size

Parquet
Size

Index
Count

Index
Size

TPC-H 1.2 TB 391 GB 16 691 GB
TPC-DS 1.0 TB 510 GB 37 1315 GB
Customer 60 GB 18 GB 13 52 GB

Table 4: Dataset and Hyperspace index characteristics
memory and storage configuration of each of these VM instances
are provided in Table 3; D12v2 instances power the job submission
endpoint while D14v2 instances are used for running the Spark
driver and workers. We store all our datasets on Azure Storage
(WASB [11]) configured for locally-redundant storage (LRS) replica-
tion. We pre-generated data for two standard industry benchmarks,
TPC-H (22 queries) [10] and TPC-DS (99 queries) [9], and a real-
world customer workload Customer (15 queries). Compared to
TPC-H and TPC-DS, the Customer workload is relatively sim-
ple as its’ queries contain fewer joins. For all datasets, we also
pre-generate the necessary indexes output by our index recom-
mendation engine. The details of these datasets along with their
index configurations are provided in Table 4. We run each query
five times consecutively, discard the first iteration (to warm up the
storage cache), and average the remaining runs.

7.2 Index Creation Time
We begin by answering the simplest question raised by the majority
of our customers: How long does it take to create Hyperspace indexes?
Figure 11(a) shows the index creation time for TPC-H (16 indexes)
and TPC-DS (50 indexes) when varying the numbers of CPU cores.
The indexes are selected based on the index recommendation com-
ponent of Hyperspace. An index creation job reads the underlying
base tables, performs any necessary projections and shuffles, and
sorts the output based on the key columns determined by the index
recommendation algorithm. Based on the results, we observe a
linear speedup with increasing number of CPU cores.

We note that index creation remains an area in Hyperspace
that is worth further improvement, since it requires scanning the
underlying table once, repartitioning/shuffling the data based on
the indexed columns (for generating the buckets), and then writing
the index to cloud storage (Azure Storage in our case). We leave
this as one interesting direction for future work.

7.3 Query Execution Performance
Figure 12 shows the gain achieved for each query from the three
workloads. Overall, we observe gains of 75.0% for TPC-H, 50.6% for
TPC-DS, and 89.9% for Customer when the underlying datasets
are in CSV format, and 39.8% for TPC-H, 50.5% for TPC-DS, and
43.6% for Customerwhen the underlying base table datasets are in
Parquet format. We now deep dive into two representative TPC-H
queries to explain where the gains come from.

(TPC-H Q6) It scans the lineitem table, applies range selection
predicates on l_shipdate, l_discount, and l_quantity, and
performs an aggregation on a projection of a few columns to calcu-
late revenue.When scanning lineitem, Spark pushes all predicates
down into the Parquet file reader. Without Hyperspace indexes, the
pushed-down filters are ineffective as Spark has to fetch all row
groups, as the records are randomly arranged in Parquet files. With
Hyperspace, Spark can use an index on l_shipdate that helps
skip fetching more than 67% of data, resulting in 2x to 3x speedup.
(TPC-H Q17) The lineitem table is first filtered and aggregated
to find average l_quantity per l_partkey (AGG). It then joins
lineitemwith filtered part on l_partkey and p_partkey (JOIN).
The results are further joinedwith filteredAGG results on part_key.
Spark chose to use a shuffled hash-join for JOIN; as a result the tables
need to be shuffled on l_partkey and p_partkey. Although the fil-
ter on part is highly selective, all records of lineitem – the largest
table – are shuffled (179 GB). AGG computation is done through
hash aggregation, which includes shuffling partially aggregated
lineitem records on l_partkey before the global aggregation.
This is another large shuffle (168 GB) during query execution. With
Hyperspace, for both AGG and JOIN Spark exploits Hyperspace
indexes on lineitem and part to eliminate the shuffles.

7.4 Hybrid Scan
While Hyperspace supports incremental refresh, one of the most
popular customer requests has been to allow exploiting indexes to
the extent possible. However, allowing stale indexes will lead to
correctness issues in production and unexpected complaints from
customers whomay not fully understand why they are being served
results from stale indexes. To address this, Hyperspace implements
hybrid scan that allows exploiting a stale index to the extent possible
and then adjusts for any appends/deletes to the underlying datasets.
By far, the most frequently asked question was: is hybrid scan
performant? how can one understand its characteristics?.

We study these question by simulating a real-world customer
workload. Our customer has a large table into which they stream
updates (which include appends and deletes). Deletes are quite in-
frequent (few batches a day) but appends are frequent (thousands of
files being added into the dataset daily). To simulate this workload,
we use the lineitem from TPC-H as the large table and run all the
22 queries as we continue to maintain (i.e., append/delete) it. As
we perform this experiment, there are four situations to consider:
our baseline performance without indexes, performance with partial
indexes (i.e., since the dataset was updated, Hyperspace will inval-
idate any indexes built on lineitem), performance with hybrid
scan, and finally, performance with indexes fully refreshed.

Figure 13 shows the performance of hybrid scan in comparison
to the baseline, partial indexes, and fully up-to-date indexes. Each
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Figure 12: Average gain for (a) 1 TB TPC-H workload; (b) 1 TB TPC-DS workload; (c) Customer workload.
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Figure 13: Efficiency of Hyperspace’s Hybrid Scan
of the tuples of the form (a,b, c) in the x-axis denotes the number
of files in the base dataset, number of files appended and deleted
respectively. Since the base dataset contains a large number of files,
Hyperspace offers significant acceleration (as high as 5x) as can
be observed from the fully up-to-date indexes bar. Notice, however,
that the performance of partial indexes approaches the baseline
since Hyperspace is unable to utilize the most valuable indexes.
There are several observations one can make from the performance
of hybrid scan. First, when the number of updates is small relative
to the number of files in the base dataset, e.g., (50k, 200, 0), (99.9k,
0, 100), and (99k, 0, 1k), the performance of hybrid scan is close
to that obtained using fully refreshed indexes. The performance
starts deteriorating when the number of files appended starts in-
creasing significantly, as in the case of (75l, 25k, 0). In the worst
case, e.g., more than 50% data got appended as in (100k, 50k, 0), the
performance approaches that of the partial indexes (but still better).

8 RELATEDWORK
Indexing is a standard performance acceleration technique in clas-
sic database systems. Examples include tree-based techniques (e.g.,
B-tree [22], LSM tree [50], R-tree [31], quad-tree [58]), hash-based
techniques (e.g., extendible hash [26], linear hash [39]), and bitmap-
based techniques [48], among others. In the past decade, column-
stores [60] have become increasingly popular, especially for read-
heavy OLAP workloads. Major database vendors such as Microsoft
SQL Server [6] now provide column-stores as an alternative index-
ing technique in addition to traditional ones, e.g., B+ tree or hash
indexes. Our design of Hyperspace indexes is inspired from both
traditional and column-store indexes, with adaptations to big data
query processing systems (e.g., partitioning on indexed columns).

Indexing support in modern big data systems remains limited,
especially for OLAP-style data analytics workloads. Recently, Delta
Lake [14] proposed using Z-order [47] to optimize for queries with

multi-dimensional range filtering predicates. by requiring that the
table itself be re-organized. Hyperspace instead supports Z-Order
secondary indexes [43] which allows users to build several such in-
dexes for different query patterns. Needless to say, this would raise
new challenges in index recommendation when choosing between
Z-order and other types of indexes. Moreover, our incremental
index maintenance and hybrid query processing mechanisms are
inspired from Helios [52], which targets indexing massive data
injected into the cloud from the edge in a timely manner.

In the context of Spark, recent work by Uta et al. [62] showcases
the use of in-memory cTrie indexes [53] to accelerate graph process-
ing queries. GeoSpark [65] considers indexing support (e.g., R-tree,
quad-tree, and KDB-tree) for querying spatial data. Hyperspace is
in many ways complementary to these efforts in that we are not
proposing new index structures but an extensible framework that
can support these different types of indexes.

There have also been various other techniques that aim for ac-
celerating query performance in big data and/or data lake sys-
tems. For example, data partitioning and partition pruning [40, 49],
data shuffling [54], as well as materialized views and view selec-
tion [35, 36]. Hyperspace is complementary to these technologies
by focusing on the indexing and index management aspect. There
has also been much work devoted to polystores [25] in recent years
where data is located on multiple heterogeneous data stores, where
cross-platform query processing techniques have been developed
(e.g., [12, 38]). It will be interesting to see how Hyperspace indexes
could be further applied in polystore scenarios given that Hyper-
space was designed with multi-engine use cases in mind.

9 CONCLUSION
We have presented Hyperspace [43, 44, 55, 56], the indexing sub-
system of the Azure Synapse Analytics service from Microsoft. In
the spirit of heterogeneity in data lakes, our goal is to democra-
tize indexes and their management by storing all index-related
data/metadata in the lake, allowing users to reuse them across mul-
tiple engines. We discussed Hyperspace’s indexing infrastructure,
its incremental maintenance mechanisms, and its query processing
architecture. We presented evaluation results that show it improves
query execution by 2x to 10x for complex workloads. Compared to
existing indexing technologies in the big data world, Hyperspace
offers not only query performance acceleration but also an auto-
mated lifecycle management framework that significantly improves
user experience related to index usage.
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