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ABSTRACT

Tanium Reveal is a federated search engine deployed on large-scale
enterprise networks that is capable of executing data queries across
billions of private data files within 60 seconds. Data resides at the
edge of networks, potentially distributed on hundreds of thousands
of endpoints. The anatomy of the search engine consists of local
inverse indexes on each endpoint and a global communication
platform called Tanium for issuing search queries to all endpoints.
Reveal enables asynchronous parsing and indexing on endpoints
without noticeable impact to the endpoints’ primary functionality.
The engine harnesses the Tanium platform, which is based on a
self-organizing, fault-tolerant, scalable, linear chain communica-
tion scheme. We demonstrate a multi-tier workflow for executing
search queries across a network and for viewing matching snippets
of text on any endpoint. We analyze metrics for federated indexing
and searching in multiple environments including a production
network with 1.05 billion searchable files distributed across 4236
endpoints. While primarily focusing on Boolean, phrase, and simi-
larity query types, Reveal is compatible with further automation
(e.g., semantic classification based on machine learning). Lastly, we
discuss safeguards for sensitive information within Reveal includ-
ing cryptographic hashing of private text and role-based access
control (RBAC).
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1 INTRODUCTION

A primary challenge for large-scale enterprises is the management
of distributed, sensitive data. Financial institutions manage invest-
ment portfolios of clients, hospitals maintain medical records of
patients, retail stores collect customer profiles, entertainment com-
panies own movie scripts, and technology firms possess intellectual
property. Data breaches pose significant risks and can be costly to
resolve (see e.g., Target [52] and Equifax [63]). To protect against
leaks, an enterprise must first gain visibility over its sensitive infor-
mation among potentially billions of data files distributed across
hundreds of thousands of network endpoints.
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In this paper, we present our experiences designing, building, and
operating Tanium Reveal, a federated search engine for identifying
and managing sensitive data at scale on enterprise networks [74].
Reveal offers a multi-tier cascaded workflow for search queries at
different levels of granularity: (i) across endpoints in a network;
(ii) across data files on each endpoint; (iii) across snippets of text
within data files. In addition to searching for arbitrary keywords and
phrases, Reveal can evaluate compliance with security standards
for data protection, such as those mandated by government regula-
tions and laws. For example, PCI standards help protect personal
credit card payment information [51], HIPAA standards secure
patient health data [17], and GDPR standards safeguard personally-
identifiable information (PII) [23, 81]. Reveal can detect patterns
of sensitive text within unstructured data on endpoints, thereby
identifying regulatory noncompliance.

The design of Reveal relies fundamentally on the Tanium plat-
form, which establishes communication between a central Tanium
server and all endpoints in a network. The platform communi-
cates via self-organizing, fault-tolerant, scalable linear chains of
endpoints (also known as communication orbits) [29, 30]. This com-
munication topology takes advantage of efficient peer-to-peer links
between all endpoints which allows Reveal’s query responses to
be aggregated within 60 seconds. After a search query completes,
Reveal opens direct connections to individual endpoints for fine-
grained browsing of search results.

1.1 What is a Federated Search Engine?

Search engine components support two major functions: indexing
and querying [5, 15]. Indexing includes parsing of text extracted
from files and populating data structures that represent a searchable
index. We consider standard inverted indexing for data retrieval in
this paper [15, 19, 78, 85]. A federated search engine is an architec-
ture in which indexing is conducted at the edge of the network by
each endpoint asynchronously. The search engine relies on a cen-
tral server to issue queries and aggregate query responses from all
network endpoints. Iterative rounds of communication take place
between the server and endpoints. Consequently, the federated
architecture depends on a global communication platform which
must achieve minimal latencies for live search queries.

A federated architecture exemplifies an edge computing para-
digm in which computation and storage are shifted closer to the
edge of networks [9, 40, 60]. For sensitive data discovery in large
enterprise networks, copying data to a central cloud in order to
optimize indexing and provide sub-second query latency can be
infeasible for several reasons such as data protection and access
constraints, regulations and security standards, network bandwidth
limitations, and cloud infrastructure costs. Leaving sensitive data
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Table 1: High-Level Specifications of Search Engines

Search Engine Centralized [8] Federated

Data Volume >100B pages [24] >1B files/enterprise
World Wide Web >100k files/endpoint

>10k endpoints
Indexing

Index Location cloud data center endpoint devices
Index Size >100 PB [24] <10 GB/endpoint
Index Compute cloud compute <5% CPU/endpoint
Network Cost linear in data 𝑂 (1) in data
Index Refresh 3-28 days [59] <12 hours
Search

Query Latency <0.1s [80] <60s
Query Frequency >80k queries/s [36] <100 queries/s
Data

Data At Edge no yes
Sensitive Data no yes

at rest on endpoints can also facilitate remedial action such as the
deletion of a file or quarantining of an endpoint.

1.2 Federated vs. Centralized Search Engines

To provide further context, we compare the federated search archi-
tecture of Reveal with Google’s centralized search architecture [24]
across several categories, as displayed in Table 1.

1.2.1 Data Volume. A typical enterprise network can store over 1B
files on edge devices. As computed in Table 1, a network containing
10k endpoints with an average of 100k files per endpoint stores 1B
files. Large-scale private networks with 500k endpoints can store
50B files. Individually, a server endpoint can store more than 1M
files. Data files contain unstructured heterogeneous data, may differ
in size considerably, and may be duplicated across endpoints. The
total data volume is subject to growth as endpoints save new data
files and new endpoints are brought online.

Google’s search engine, in contrast, indexes “hundreds of billions
of webpages" centrally [24]. Public webpages are available and
reachable on the visible, surface web; i.e., the indexed portion of the
World Wide Web. Across the Internet, public data is copied from
the Web to Google’s data centers and indexed centrally.

1.2.2 Indexing. On each endpoint, Reveal maintains a standard
inverted index for file retrieval [15, 19, 78, 85]. Reveal builds indexes
asynchronously and processes files locally. Several measures are
taken to ensure that indexing does not interfere with the primary
operation of each device. Local updates to the index typically occur
within hours. In real-world deployments, the index size can be
limited to a predefined value such as 4GB. We call Reveal’s indexing
process federated indexing. Importantly, federated indexing does
not require significant network bandwidth since index data remains
on each endpoint and references only local content.

Google’s index is maintained centrally and populated with public
data mined by web crawlers. Operating in parallel, crawler bots
read and parse billions of pages on theWorldWideWeb, recursively

following links on those pages [6, 10, 50]. The Google index “is well
over 100, 000, 000 gigabytes in size" [24]. The entire index is stored
over thousands of computers in the data center. The index refresh
rate to crawl new websites is usually between 3-28 days [59].

1.2.3 Query Processing. Reveal’s multi-tier interactive workflow
begins by identifying endpoints that contain files matching a search
query. This first step harnesses the Tanium communication plat-
form to obtain live responses from network endpoints within 60s.
After sorting and filtering results according to multiple criteria, a
Reveal operator can then open direct connections to asset-critical
endpoints to view matching files. The operator may also browse
snippets of text within these files that match the original search
query, or refine the query. Reveal is intended for use in private
networks with relatively few concurrent search queries.

The Google search engine, in contrast, accommodates over 80k
search queries per second executed world-wide [36]. Each query is
processed efficiently in less than 0.1s in data centers [80]. Query
processing includes a sophisticated ranking of page results (e.g.,
PageRank [8]). Google also enhances search results with semantic
information drawn from “knowledge graphs" [18].

1.2.4 Private vs. Public Data. Reveal is a search engine suitable for
sensitive data owned by enterprises. Frequently, a Reveal operator
is interested in finding all file matches of a keyword, phrase, or rule.
For instance, to find PII (e.g., names, passwords, and addresses), a
Reveal operator issues precise, targeted queries. For general queries
with broader scope (e.g., finding resumes, financial documents, or
confidential memos), a ranking of search results based on semantic
relevance is helpful. Compared to search engines accessing public
data, Reveal can target search to user-specified groups of endpoints
or files.

1.3 Related Search Engines

1.3.1 Reveal vs. Helios. Highly-scalable, hybrid search engines
such as Helios [54] have demonstrated the advantages of com-
bining cloud and edge paradigms for ingesting, indexing, and ag-
gregating real-time data [13, 14]. Helios ingests petabytes of raw
data (≈12 PB/day) from "hundreds of thousands" of edge machines
within Microsoft’s managed network. Edge machines process raw
data (e.g., utilizing <1.6 GB memory and 15%-65% single CPU) and
upload data blocks to ingestion servers located in the Helios cluster.
Helios computes indexing blocks asynchronously, which contain
pointers to data blocks. Its hierarchical index (e.g., with L0-L3 lay-
ers) provides a fast centralized search comprised of 16 trillion search
keys indexing into a quadrillion events or log lines [54].

As is true for Reveal, a "key factor in Helios’s success is asyn-
chronous index management" [54]. However, due to constraints
on moving and persisting sensitive data, Reveal does not upload
data blocks (or index blocks) to a central cluster. Reveal must build
indexes and resolve queries on autonomous endpoints without
disrupting their primary functionality (e.g., utilizing <5% single
CPU). Reveal does not maintain a central index for sub-second
query processing. Yet, the latency of live network queries is still
<60s. Crucially, Reveal must operate commercially in secure, di-
verse, enterprise networks, whereas Helios is designed to monitor
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Figure 1: A comparison of two network topologies for managing endpoints in large-scale enterprises.

Microsoft’s internal self-managed network. Similar to Helios, Re-
veal can process petabytes of raw data collectively (e.g., >20 GB per
endpoint, 100k endpoints). Compared to Helios’s real-time ingest
of events and logs, Reveal only requires refreshing indexes hourly.

1.3.2 Related Federated Search Engines. A federated search engine
issues a query to multiple information retrieval systems concur-
rently, and aggregates results to present a unified view of informa-
tion [2, 62]. Prior engines includeMuse [48], WebFeat [38], and FOS-
SICK [11]. Search results can be retrieved from "over one-hundred"
search engines [47], multiple databases [61], or digital libraries [43].

Tanium Reveal, in contrast, aggregates data from tens of thou-
sands of endpoints and larger enterprise environments. Reveal must
satisfy several design constraints. Endpoints provide (i) asynchro-
nous, resource-constrained index management; (ii) data security by
processing sensitive files locally; (iii) safeguards for secure opera-
tion in terms of persisting indexes, encrypting queries, and access
control. Reveal must operate in diverse enterprise networks, and
resolve issues pertaining to: (1) network bandwidth constraints; (2)
end-to-end latency specifications for executing live search queries
at scale; (3) iterative coordination and control of endpoints via
efficient communication between a central server and clients.

Compared to enterprise data catalogs, business glossaries, and li-
brary collections (e.g., Alation [1], Lumada [31], andWorldCat [49]),
Reveal indexes and queries unstructured heterogeneous data.

1.4 Overview of Key Contributions

■ Federated Search: Tanium Reveal’s search engine architecture
consists of federated indexing on endpoints (Section 3) and an
interactive workflow for query processing (Section 4) that ex-
ploits the Tanium linear chain communication platform (Sec-
tion 2). Its resource-managed endpoint indexing (3.2) enables
search without propagating sensitive data or interfering with

endpoint operation. Its multi-tier workflow (4.1) allows users to
see sorted, targeted results from billions of searchable files across
all endpoints in seconds and explore those results as they exist
on remote machines in real time.

■ Large-Scale Production Systems: Reveal is a commercial en-
gine proven to function in large-scale enterprise networks. We
validate its design by collecting and evaluating metrics from
two anonymized sub-networks (Section 5). The first sub-network
contains more than 427M files distributed across 1273 endpoints.
The second larger sub-network contains more than 1.05B files
distributed across 4236 endpoints. We also measure search query
latency on five enterprise networks of varying scale.

■ Operational Experiences: We discuss the effectiveness of key-
word, phrase, and rule-based search for identifying sensitive
data pertaining to security standards (e.g., PCI, HIPAA, GDPR).
We highlight several practical issues associated with operating
Reveal in production environments (Section 6).

We also discuss other related technology and future applications of
federated search in next-generation networks (Section 7).

2 TANIUM NETWORK COMMUNICATION

The Tanium platform establishes iterative communication between
a central Tanium server and all endpoints of a network as in Fig-
ure 1a. The communication platform is based on fault-tolerant,
self-organizing, scalable, linear chains of endpoints [29, 30].

2.1 Tanium Server and Clients

2.1.1 Tanium Server and Clients. A Tanium deployment consists of
a single Tanium server [72] that communicates with many Tanium
clients [70], which are services installed on each endpoint. The
Tanium server maintains definitions for various types of content
describing operations to be performed by Tanium clients. Tanium
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Latency Graph Of Basic Queries:

Get computer name from all machines.
Get computer name and operating system from all machines.
Get computer name and installed apps from all machines.
Get computer name and running processes from all machines.
Get computer name and free memory from all machines.
Get computer name and tanium file exists from all machines.

Figure 2: The latency graph of basic Questions issued to 𝑁 =

1205 available endpoints in a test network.

content consists of Sensors, Questions, Packages, and Actions. The
Tanium server distributes content to endpoints and aggregates
client responses.

2.1.2 Registration. Once installed on an endpoint, the Tanium
client initiates a connection to the Tanium server. During regis-
tration, each client establishes a unique ID and receives the latest
settings, content definitions, and a list of nearby peers. The client
uses this information to create connections with its neighbors ul-
timately forming a linear chain of connected peers. Periodically
at randomized intervals, each client re-registers with the Tanium
server to receive updates (e.g., the current state of its neighbors).

2.2 Linear Chain Network Topology

2.2.1 Self-Organizing Communication Orbits. The assembly of com-
munication orbits occurs in a decentralized way. After registration,
each endpoint maintains a record of local peer machines with which
it communicates directly. Peer connections are continuous, long-
lived connections that the clients use to exchange Taniummessages
and files. Peer-to-peer communication is unidirectional and tran-
sitive, meaning endpoints conform to a stable ordering and only
send messages to subsequent machines. The client peering process
is iterated to form a linear chain of LAN-connected endpoints.

Each message received by a Tanium client includes a request
from the Tanium server and an aggregated response from upstream
peers. The client handles the request locally, incorporates its local
result into the aggregated response, and sends the updated message
to the next downstream peer. An endpoint with no upstream peers
serves as the backward leader of a linear chain, which receives
messages directly from the Tanium server. An endpoint with no
downstream peers is called a forward leader and is responsible for
forwarding data aggregated along the chain back to the Tanium
server. Figure 1a illustrates 3 communication orbits exhibiting the
linear chain topology.

2.2.2 Network Architecture (LAN vs. WAN). The Tanium commu-
nication platform optimizes the use of network resources. Client
peering over local-area network (LAN) results in efficient commu-
nication between peers and significantly reduces both the number
of connections and bandwidth utilization over wide-area network
(WAN) links. Only forward and backward leaders in each communi-
cation orbit maintain connections with the Tanium server, thereby
preventing server overload. Further advantages are gained by com-
pressing the message payload during the aggregation of data along
the linear chain (proprietary to the Tanium platform). By contrast,
the hierarchical "hub-and-spoke" tree topology of Figure 1b is more
reliant on congested WAN traffic and requires additional secondary
servers to scale, which increases latency.

2.2.3 A Fault-Tolerant Network. As illustrated in Figure 1a, the
Tanium linear chains of communication navigate around offline
endpoints, reflect around network blockages such as firewalls, and
accommodate newly available endpoints. As an additional mech-
anism for fault-tolerance, the Tanium server can send multiple
instances of a message along each communication orbit which can
be deduplicated by the client.

2.3 Visibility and Control over Endpoints

The Tanium platform provides both visibility and control over all
endpoints in large-scale enterprise networks. Users are able to view
up-to-the-minute information about the state of their environment
by utilizing structured queries issued by the Tanium server that
leverage Sensors to extract relevant data from each endpoint. Sim-
ilarly, Tanium permits authorized users (personas) to control the
state of endpoints by scheduling Actions.

2.3.1 Sensors andQuestions. Sensors are OS-specific scripts to be
executed on endpoints to gather local information [73]. Sensors
are programmable and can accept input parameters. For example,
there is a Sensor to determine whether a particular file exists on an
endpoint by checking the local file system. Questions are structured
search queries parsed from natural language to execute sensors syn-
chronously on selected endpoints and return results. Figure 2 lists
a few Questions which have associated Sensors to obtain computer
name, operating system, installed applications, running processes,
and available memory (RAM) from each endpoint.

2.3.2 Packages and Actions. Packages serve as containers to deliver
files and tools and usually include instructions (e.g., native OS com-
mand line) to run executable content. Actions deploy Packages to
endpoints, which are then processed asynchronously by the Tanium
client [71]. For example, actions can be used to install, update, or
remove client applications. An Action typically affects the state of
an endpoint (e.g., rebooting a system or installing software). Ac-
tions can be performed once on-demand or scheduled periodically
via a policy to provide persistent maintenance for endpoints.

2.3.3 Targeted Queries and Filtering. The Tanium platform sup-
ports targeting of Questions and Actions through the use of fil-
ters [73]. Described via relational operators, filters are Boolean
operations evaluated by each endpoint based on local sensor re-
sults to determine whether to respond to a particular question or
action. For example, a question to determine CPU usage can target
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Figure 3: The Reveal federated search engine relies on asynchronous, federated indexing of files on endpoints.

machines according to various properties (e.g., computer group,
operating system, installed applications).

2.4 Speed at Scale

2.4.1 Test Network. Figure 2 measures the response times for a few
questions issued to 1205 endpoints in a test network. The latency
graph measures the time taken for the Tanium server to receive
results from all endpoints. Each question invokes a different set of
endpoint sensors, and these sensors complete in different amounts
of time. In particular, the sensors for the current free memory and
for the existence of a particular file take longer for endpoints to
execute than the other sensors, and this is reflected in the observed
latency when those sensors are in use.

2.4.2 Large-Scale Enterprise Networks. Counter-intuitively and re-
markably, the Tanium platform maintains a query latency of less
than 60 seconds even as the network scales to 100, 000 endpoints
and beyond. Due to the linear chain topology, the Tanium server
communicates only with the forward and backward leaders of each
communication orbit. A network of 100, 000 endpoints communicat-
ing via orbits of 100 endpoints each requires only 1000 connections
to and from the Tanium server. This allows the Tanium server to
get the responsiveness of direct communication with endpoints
without the bandwidth cost of having to connect to each endpoint.
As confirmed in Section 5, the latency of a search query remains
less than 60 seconds even in large-scale production networks.

3 REVEAL SYSTEM ARCHITECTURE

As depicted in Figure 3, the major components of a Reveal deploy-
ment include a Reveal server and multiple endpoint agents.

3.1 Reveal Server

The Reveal server is a single centralized process within the network
environment that is responsible for administering endpoint agents
and aggregating data across its environment. It services a web-based
front-end that provides workflows such as ad hoc text search to
privileged users. The Reveal server communicates directly with the
Tanium Server (Section 2.1.1) to orchestrate communication with
endpoints. The server also maintains a database of global content
such as classification rules, data pattern definitions, and aggregated
endpoint statistics. The Reveal service does not perform indexing
or query evaluation, and does not maintain index data.

3.1.1 User Interface (UI). The Reveal server services a web-based
UI available to privileged Reveal operators. The Reveal UI provides
a multi-tier search workflow that provides exhaustive query results
sorted globally by score and allows users to view result details on
arbitrary endpoints. In addition to search, the UI allows user to
view global endpoint and file statistics, author file classification
criteria, validate and refine classification results, andmonitor Reveal
endpoint telemetry.

3.1.2 Role-Based Access Control. Reveal makes use of Role-Based
Access Control (RBAC) provided by the Tanium platform [71]. Op-
erators are granted access to individual features in Reveal’s work-
bench according to their assigned roles. Some Reveal roles provide
the ability to search and view content from any file that is readable
by a Reveal endpoint agent. Only domain users with at least the
same level of read permission are granted such roles.
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Figure 4: The evaluation of rules based on patterns matched

within a file’s contents.

3.2 Reveal Endpoint Agent

The Reveal endpoint agent runs on each endpoint and is responsible
for maintaining a searchable index of files present on that machine.
It runs as a persistent, low-priority, resource limited process man-
aged by the Tanium client. The agent runs as a domain user with
read-only access to local user files. It systematically assigns fea-
tures to local files according to their contents, indexes those files
with respect to their assigned features, and services query requests
against its index data originating from the Reveal server.

The Reveal agent indexes files by reading their contents from
disk and extracting readable text. As diagrammed in detail in Fig-
ure 3, Reveal processes the extracted file contents in multiple ways
to assign features to each file. Features are ultimately composed into
a unified file record mapping a single file to all of its features. The
file record is then inverted, creating a mapping from each unique
feature back to the exhibiting file. Inverted file records are accumu-
lated into a persistent inverted index, a standard data structure for
data retrieval [15, 19, 78, 85].

File features extracted by Reveal fall into three categories: file
metadata, tokens, and rule hits. File metadata includes properties
of the file such as its name, size, and owner. A token corresponds to
a unique word or term that is present within the file text. A rule hit
identifies a file that satisfies a user-defined classification rule.

3.2.1 Text Extraction. Reveal’s indexing operation starts with a file
path provided by an index of the local file system maintained by
the Tanium client. Reveal then attempts to infer the format of the
file contents in order to extract readable text. To infer the format,
Reveal attempts to determine the file’s MIME type [20] based on the
presence of recognizable features within the first few kilobytes of
data. If it determines that the file contents are in a readable format
(eg. raw text, zip-deflated archive, xml-like markup, text-encoded
PDF, etc), Reveal then attempts to extract readable text.

3.2.2 Tokenization. Reveal converts the extracted text into a series
of tokens corresponding to the contiguous terms that are present.
It does this by segmenting the raw text into words according to

Unicode [16] and applies some additional standardization such as
case normalization, Porter Stemming [53], and stop word removal.
The resulting tokens are then encrypted using a one-way crypto-
graphic hash. Each unique encrypted token is added as a searchable
feature to the file record.

Additionally, Reveal stores positional information describing the
sequence of tokens within the file. For certain tabular data formats
(spreadsheets, separator-delimited text, relational databases), Reveal
stores additional positional information describing the row, column,
and table in which the token was found.

Encrypted tokens and positional information make up the bulk
of the index data recorded for most files.

3.2.3 Rule-Based Classification. In addition to tokenization, Reveal
can use the extracted text content to evaluate user-defined classifi-
cation rules. A rule defines one or more Boolean criteria that can be
evaluated against a file’s metadata and/or text content. Files found
to satisfy all of the criteria of a rule are considered hits against that
rule, and rule hits are indexed as searchable file features.

A rule criterion that can be evaluated against the text extracted
from a file is called a pattern. Regular expressions, keyword lists,
and checksums are examples of patterns supported by Reveal. For
example, suppose users of Reveal wanted to identify files containing
credit card numbers [35]. They could first define a pattern using
a regular expression to find 16-digit numbers. Matches found by
the regular expression pattern could then be evaluated against a
checksum pattern to find those that additionally satisfy the Luhn
algorithm [42]. Separately, they could author a pattern to look for an
explicit list of keywords often associated with credit card numbers,
such as "Visa", "billing", and "expiration". Finally, these patterns can
be combined into a rule to look for 16-digit numbers satisfying the
Luhn checksum within 100 characters of a credit card keyword.
Reveal would then classify any file found to satisfy this rule as
containing suspected credit card information.

A rule criterion that is evaluated only against file metadata is
called a rule filter. As shown in Figure 4, Reveal first evaluates
all rule filters against file metadata to determine which rules are
applicable. It then compiles the set of patterns used by at least one
applicable rule. The applicable patterns are then evaluated against
the file contents, and pattern matches are identified within the text.
Finally, applicable rules are evaluated based on the matches found
for their patterns, and a rule hit is added for each rule that is fully
satisfied.

3.2.4 Rule Authoring and Validation. Reveal provides some com-
mon rules and patterns out-of-the-box, but these are intended to
be refined and supplemented by users to improve signal quality
according to their specific use cases. The Reveal UI allows suffi-
ciently privileged users to author patterns and filters [75]. Reveal
maintains metadata for each pattern that includes custom sample
text demonstrating how the pattern was designed to work. This
metadata is editable by pattern authors to aid refinement of pattern
behavior. For example, a user can add examples of observed false
positive or false negative matches to the pattern sample text as a
guide while editing the pattern to account for these edge cases.

Additionally, Reveal provides a validation workflow to refine
classification accuracy based on observed results [76]. Validations
are Boolean clauses that augment existing patterns to exclude false
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matches. When viewing classification results, the user is presented
with any relevant patternmatches in their immediate context within
the extracted file text. If the user determines a pattern match is a
false positive based on a feature present in the text context, they
can author a validation to ignore globally any matches that exhibit
the same feature. For example, suppose a user observes a false
positive credit card number that is the fractional part of a number
in decimal format. They could create a validation to reject any credit
card match immediately preceded by a decimal point to eliminate
this class of false positive globally.

Table 2 describes a test in a lab of 121 endpoints of which 2 were
seeded with files containing sensitive credit card data. Starting with
the default credit card pattern, false positives were eliminated by
adding cumulative user-directed validations to reject matches that
were (1) 16 digits preceded by decimal or (2) groups of 4 digits
separated by spaces, (3) tabs, or (4) semicolons. Adding validations
such as (2) may reduce false positives but increase false negatives.

Table 2: Reducing False Positives using Validations

Validations Added 0 1 2 3 4

Endpoints Found 25 14 7 4 2
Files Matched 134 26 21 18 16
Text Matches 2820 1694 684 345 335

3.2.5 Machine Learning Based Classification. In production de-
ployments, Reveal allows users to author rule sets (i.e., rule-based
classifiers) for targeting and identifying specific sensitive data (Sec-
tion 3.2.3). Reveal’s architecture is also compatible with machine
learning (ML) technology and the application of ML-based classi-
fiers. After text extraction (Section 3.2.1), feature vectors distilled
from text content may be evaluated with respect to pre-trained ML
models. Standard classifier models for text classification [4] include
support vector machines [28] and deep neural networks [46].

For binary classification tasks such as distinguishing between
sensitive vs. not-sensitive text, and for general semantic tasks (e.g.,
classifying files as résumé, financial document, or legal text), ML-
based classifiers provide helpful automation. However, to train
highly accurate ML models with few false positives and false nega-
tives, it is beneficial to have adequate amounts of labeled data. A
full treatment of various issues (e.g., class imbalance, customer data
access) is outside the scope of the present systems-level paper.

3.2.6 Endpoint Resource Management. Under the federated search
model, there is nontrivial processing that must take place locally on
the endpoints where relevant files reside. These are machines like
workstations and file servers that serve important functions that
have nothing to dowith Reveal. Reveal must control its utilization of
local resources so as not to interfere with the primary functionality
of the device. To control endpoint impact, the Reveal agent runs at
low CPU priority and imposes configurable limits on its usage of
local compute, memory, disk I/O, and storage resources as follows:
■ Compute: The Reveal agent limits its CPU usage to a config-
urable fraction of the available compute. Compute is enforced
using a look-behind throttle in which Reveal performs a discrete
unit of work and then sleeps for a fixed multiple of the compute

used. Given a compute limit 𝑐 ∈ [0, 1], if 𝑡 is the compute used
by Reveal work, Reveal sleeps for 𝑏 = 𝑡 1−𝑐𝑐 . Discrete work units
are bounded and typically complete in under 100𝑚𝑠 .

■ Disk I/O: Disk read and write operations are limited in terms
of maximum data size. Large I/O operations are broken up into
operations no larger than themaximum read/write size and added
to a throttled I/O queue. File handles are not retained between
operations. Reveal employs a unidirectional streamwhen reading
user files, ensuring that each bit is read at most once. User files are
never modified or deleted by Reveal. Additionally, all of Reveal’s
persistent data adheres to a write once paradigm, meaning Reveal
files can be deleted, but cannot be modified after they are written.

■ Memory: The Reveal agent limits memory usage by imposing
caps on the amount of working memory available during content
extraction as well as the total amount of extracted content per
file. If either of these limits is reached when processing a user
file, Reveal will stop extracting content and record that the file
was too large to process fully. Additionally, Reveal limits the
amount of index data that can be buffered in memory before
being written to disk.

■ Storage: Reveal enforces a maximum size for its persistent data
on disk and a minimum amount of free space in the volume on
which it is installed. If either of these limits is breached, Reveal
will not write new data to disk and deletes document records
until the footprint is brought into compliance.
The preceding controls for resource utilization are designed to

keep Reveal from adversely impacting the endpoints on which it
runs. If Reveal fails to operate within the configured parameters
on an endpoint, it will notify Reveal administrators for remedia-
tion. Additionally, Reveal records live telemetry documenting its
performance and usage of local resources over time.

3.3 Data Security

Reveal’s risk of exposing sensitive user data is reduced by following
a "data at rest" paradigm: index data only ever exists onmachines on
which that content was found. Access to the index data is restricted
to only the Reveal domain user.

3.3.1 Encryption of Queries. By necessity, a Reveal query gener-
ates network traffic including at least the tokens being queried
and the query results from each endpoint. As a security measure,
all token values used by Reveal are encrypted using a one-way
cryptographic hash. Encryption is applied during indexing on the
endpoint and during query creation in the Reveal UI. Internally,
queries are processed using only encrypted token values, and un-
encrypted content is never persisted or transmitted. Thus, even if
a Reveal index or search query were compromised, it would not
expose sensitive user content.

For the tokens to be compatible, the full tokenization process
including encryption must be identical across the environment. To
enforce token compatibility, each query request includes a descrip-
tor value that is computed deterministically as a comprehensive
checksum of the tokenization process used to generate the query
tokens. The Reveal endpoint agent computes the same token de-
scriptor and includes it as a searchable file feature during indexing.
The Reveal endpoint agent will only evaluate an incoming query
against its indexed files if the descriptors match.
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Figure 5: Reveal’s multi-tier interactive workflow for query processing consists of endpoint, file, and text search.

3.3.2 Salt Values. An hash salt is a randomly generated value
incorporated into a hashing operation that deterministically influ-
ences the result [3, 22, 65]. Reveal’s token encryption incorporates
a shared secret salt value that is unique to the Reveal deployment.
The salt value influences the token descriptor by virtue of influenc-
ing the encryption hash, so tokens generated with different salt
values will have different descriptor values andwill not be evaluated

against each other. This means tokens are not compatible between
environments, so Reveal data is not reversible by transplantation
into a compromised Reveal environment.

4 QUERY PROCESSING

The search engine architecture described in Section 3 accommo-
dates different types of search queries and levels of detail for search
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results. All search queries are generated by the Reveal service and
evaluated by Reveal endpoint agents.

4.1 Multi-Tier Hierarchical Workflow

Amulti-tier workflow for query processing is illustrated in Figure 5.
For this specific example, we describe a workflow for investigating
the results of an ad hoc search for the keyword "Confidential".

4.1.1 Endpoint Search. In the first tier of query processing, immedi-
ately after a user invokes a keyword search query via the front-end
UI, Reveal creates a Tanium question corresponding to the query
and deploys it to all endpoints. Each endpoint agent processes the
query to generate numeric score values for its indexed files, and
then uses these file scores to compute a single endpoint score value
to include in the query response. Endpoint score can be computed
in a variety of ways depending on the query type and user needs,
for example as the sum of the file scores, the maximal file score, or
the number of files with scores above a threshold. Endpoint search
results are displayed to the user as a list of endpoints in descending
order by endpoint score. Figure 5 shows the top 3 of 42 matching
endpoints in a test network sorted by the number of files found
(i.e., file hits) containing the term "Confidential".

4.1.2 File Search. In the second tier of query processing, the user
can select one of the matching endpoints to explore its results (i.e.,
affected files) in greater detail. A direct two-way encrypted network
connection is opened between the Reveal service and the Reveal
agent on the selected endpoint. Figure 5 shows that the user selects
the endpoint "M156-Ubuntu" with IP address 192.168.1.0. Using
its direct connection, Reveal invokes a search query for the same
keyword "Confidential" at the granularity of files. The endpoint
returns a list of matching files in descending order by file score.
Figure 5 shows the top 4 of 66 matching files sorted by the number
of times "Confidential" appears (i.e., snippet hits).

4.1.3 Text Search. In the third tier of query processing, the user can
select one of the matching files to view matching text in the file. Fig-
ure 5 shows that the user selects the file authorization_code.py.
Using its established direct connection once again, Reveal issues a
search query to the endpoint to extract matching snippets of text
from the selected file. Figure 5 depicts 1 of 2 snippets of text that
contain the keyword "Confidential".

As mentioned in Section 3.3, due to encryption applied to to-
kens, it is not possible to reconstitute file text from a Reveal index.
Therefore, Reveal must handle the fine-grained browsing of text
(Tier 3 of Figure 5) differently. The Reveal endpoint agent reads the
selected file directly from disk and searches its contents in memory.
Snippets of file text are returned directly from the endpoint to the
Reveal service via the existing encrypted direct connection and
forwarded directly to the UI of the user performing the search. In
this way, we ensure that search results are up-to-date, and that
potentially sensitive information is available only to the authorized
user who requested it.

4.1.4 Multi-Tier Search Filtering. As shown in Figure 5 highlighted
in red, when constructing a search query, the user can optionally
include search parameters to specify which endpoints to search
according to their responses to Tanium sensors and which files

to consider on those endpoints based on the file metadata. For
example, a user could limit their search only to machines with
a Windows operating system, located in the United States, with
Google Chrome installed; and only consider files under C:\Users
that have been modified within the last week and classified as
"sensitive" by a Reveal rule. Quantitatively, for the test network in
Figure 5, restricting to .PDF format and further narrowing search to
Windows machines resulted in 13 and 4 endpoint hits respectively.

The grid of endpoint and file search results can also be indepen-
dently sorted and filtered as highlighted in Figure 5 Tier 1, 2.

4.2 Query Types Used In Production

Reveal can evaluate different types of search queries that are highly
effective and practical in real-world commercial deployments.

4.2.1 BooleanQuery. A Boolean query looks for the presence or
absence of specific file features. The keyword query for the word
"Confidential" in Figure 5 is one prime example. In addition, Boolean
queries can be composed (e.g., in conjunctive normal form) with
other Boolean queries, and can include files hit by (i.e., matching) a
particular rule. Algebraically combined Boolean queries are evalu-
ated by applying set operations to sets of files matching each of the
requested file features. Typically, Reveal’s evaluation of generalized
Boolean queries is very efficient.

4.2.2 PhraseQuery. A phrase query looks for two or more terms in
a specific sequence within the file text. The evaluation of a phrase
query requires positional information about the tokens in a file.
Thus, the indexing process described in Section 3.2 must extract
and store positional information. As one example of a phrase query
in Reveal, a user may search for the phrase "top secret". Since this
query requires sequential constraints to be satisfied in addition to
verifying the presence of individual tokens, it is more computation-
ally expensive to evaluate compared to a Boolean query.

4.2.3 Similarity Query. Reveal’s architecture supports a form of
similarity search [67]. A similarity query is expressed as a weighted
vector of file features and is evaluated relative to the feature vector
for each indexed file. Weights associated to file features may be
defined in variousways; e.g., based on term frequency values𝑇𝐹𝑓 (𝑡)
and global domain frequencies 𝐷𝐹 (𝑡) for each token 𝑡 (expressed
here without a denominator for normalization):

𝑇𝐹𝑓 (𝑡) = number of times 𝑡 appears in local file 𝑓 .
𝐷𝐹 (𝑡) = number of files in which 𝑡 appears globally.

The Reveal service uses statistical methods to generate a global
dictionary of estimated domain frequency values based on random
samples taken from endpoints. Reveal can then score files relative
to each other by applying standard techniques (e.g., TF-IDF, BM25,
cosine similarity scoring algorithms [26, 27, 64, 77]). Cosine sim-
ilarities can be evaluated efficiently by computing dot-products
between feature vectors. Sorted scores provide a ranking of results.

5 EVALUATION AND EXPERIMENTS

Since Reveal is designed to be deployed in massively distributed
production environments, it is important to analyze experiments
conducted on individual endpoint devices, and also understand
metrics collected from large-scale, live, production networks.
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5.1 Individual Endpoint Experiments

Table 3: Baseline Disk Usage For Different OS

Operating Files Data Content Index
System Indexed Read Extracted Size

MacOS 10.10 343k 950 MB 660 MB 445 MB
Windows 10 147k 670 MB 310 MB 200 MB
CentOS 7.3 41k 140 MB 130 MB 83 MB

Table 4: Data Parse Rates On A Single Core 2GHz CPU

CPU Parse CentOS Win Mac Churn
Cap Rate Parse Parse Parse Capacity
(%) (MB/s) Time Time Time (MB/Hr)
5% 0.03 - 0.07 35 min 130 min 275 min ≈ 145
25% 0.14 - 0.25 10 min 40 min 75 min ≈ 650
75% 0.40 - 1.0 3 min 12 min 25 min ≈ 2000

Reveal’s search and indexing system must operate as a back-
ground process on computers that still need to accomplish their
primary function. Reveal must be a good steward of system re-
sources and should be mostly invisible to the endpoint’s user. As
described in Section 3.2.6, Reveal must be tuned not to be obstruc-
tive. The following endpoint parameters can be tuned to control
Reveal’s impact on endpoint resources:

• max_CPU_usage: [default: 5%] The maximum percentage of
CPU time available to Reveal across all available cores.

• max_database_size: [default: 4 GB] The maximum local
storage space allowed for Reveal’s persistent data.

• min_available_disk_space: [default: 8 GB] The amount
of free disk space required for Reveal to perform indexing.

• max_content_size: [default: 32 MB] The maximum amount
of text content that Reveal is permitted to extract per file.
Remaining content will be ignored beyond this limit.

• max_file_parse_size: [default: 32 MB] The maximum
amount of additional memory available for the purpose of
extracting content. For example, this limits the amount of
compressed data that can be buffered for decompression.

• file_buffer_size: [default: 8 KB] The maximum data size
per disk I/O operation.

• max_merge_docs: [default: 10000] The maximum number of
inverted file records that can be written to the inverse index
as a single operation. This limits the amount of index data
that can be buffered in memory before being written to disk.

5.1.1 Baseline File Count. We’ve tested and gathered statistics on
the behavior of the Reveal endpoint agent on 3 virtual machines,
each provisioned with an out-of-the-box operating system and a
small set of additional seed files. On each machine, we ran the
Reveal endpoint agent until it had indexed everything on the local
drive. Table 3 shows for each machine the number of files that
ended up in the Reveal index, the total amount of user data read
from disk, the total amount of text extracted from that data, and the

Table 5: Wikipedia Index Statistics

Description Indexing the Wikipedia Corpus

Corpus Contents 5,325,951 Files
Corpus Size 122 GB (131,187,937,280 bytes)
Text Extracted 18 GB (19,733,555,872 bytes)
Files Indexed 5,305,603 (20,348 failed)
Index Size 46 GB (50,144,695,764 bytes)
Unique Tokens 1,849,541 (615,585 in multiple files)
Indexing time 9 Hours (31,596 Sec) @ 10% CPU
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Figure 6: The number of unique tokens (y-axis) appearing

at each domain frequency (x-axis) within theWikipedia cor-

pus, logarithmically scaled.

resulting size of the Reveal index on disk. This provides a baseline
for Reveal’s index data footprint and how this relates to the amount
of data represented.

5.1.2 Parse Rate and Indexing Rate. A primary metric by which we
can observe how Reveal is performing on an endpoint is the rate
at which Reveal indexes files. We measure indexing rate as the
number of files indexed divided by the time spent indexing. The
indexing rate influences how long it takes Reveal to index all of the
files on an endpoint and how long it takes to reflect file changes.
The indexing rate is typically proportional to the amount of CPU
Reveal is allowed to use.

The time it takes Reveal to index a file can vary based on many
factors such as the underlying endpoint capabilities, properties of
the file being indexed, and Reveal’s local configuration. In addition
to the direct cost of indexing files, there is additional overhead that
influences the indexing rate such as time taken initializating the
indexer, determining which files to index, and writing to disk.

Similar to indexing rate, we can measure the rate with which
Reveal indexes text. We measure parse rate as the total amount of
text content extracted in bytes divided by the time spent indexing.
In practice, parse rate is often a more robust metric than indexing
rate due to normalizing some of the variability between files.

Either of the above metrics can be used to estimate the time it
will take Reveal to fully index a system and how much file data
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Table 6: Reveal Federated Indexing Statistics For Two Large-

Scale Enterprise Sub-Networks

Statistics Enterprise A Enterprise B

Reveal Endpoints 1273 4236
Files Indexed 427 Million 1.05 Billion
Reveal Index Size Distribution A Distribution B

0-10MB 222 (17.4%) 42 (1.0%)
10-100MB 16 (1.3%) 47 (1.1%)
100-500MB 79 (6.2%) 53 (1.3%)
500MB-1GB 94 (7.4%) 300 (7.1%)
1-2GB 259 (20.3%) 1777 (41.9%)
2-5GB 603 (47.4%) 2017 (47.6%)
Incomplete Data

With Dropped Files 3 (0.2%) 90 (2.1%)
Without Dropped Files 1270 (99.8%) 4146 (97.9%)

churn Reveal can handle. If it is too slow, Reveal will not be able to
keep up with file changes taking place on the endpoint. We define
churn capacity as the maximum rate at which file data can change
without the Reveal indexer falling behind. Reveal is considered
healthy if it does not interfere with the endpoint’s primary use
and the rate of file data churn does not regularly exceed the churn
capacity. See Table 4 for various churn capacities associated with
our test endpoints.

5.1.3 Full Scan Performance. Reveal occasionally has to build its
index data from scratch. A full scan occurs at installation and fol-
lowing significant changes to Reveal’s requirements, such as when
rules are added. As shown in Table 4, even at 5% CPU all test ma-
chines were able to complete a full system scan in under 5 hours of
parse time.

On a virtual machine with a single 2 Ghz CPU and 500 MB
of RAM, we tested 3 different CPU caps: 5%, 25%, and 75%. We
observed that indexing rate decreases by an order of magnitude
when there is a small set of files that need to be parsed, suggesting
that significant compute is being used by overhead required by
the Reveal indexer. Table 4 shows observed parse rate ranges on a
virtual machine on a shared server.

5.1.4 Wikipedia Corpus. To evaluate the behavior of the Reveal
indexer on a large corpus, we used the Reveal agent to index all
English language articles in Wikipedia as of March 2019. The entire
Wikipedia corpus consists of approximately 5 million articles and
49 million wiki pages, comprising over 100 GB of uncompressed
data [83]. We populated a drive with one file for each article using
Wikipedia’s default XML format. We then used a Reveal agent to
generate a Reveal index for this corpus. Reveal ignored all XML
markup and tokenized the article text as described in Section 3.2.2.

Table 5 shows that Reveal was able to extract 18 GB of text
content from 5 million files and generated 46 GB of indexed file
data after 9 hours running at 10% CPU. This translates to a indexing
rate of about 168 files per second and a parse rate of about 2 GB
per hour.

Of the unique tokens present in the corpus, 2/3 appeared only in
a single article (i.e., domain frequency of 1). As shown in Figure 6,

Table 7: Network Scale at the time queried for Figure 7

Enterprise A B C D E

Available Endpoints 1326 4262 15142 21940 161333
Reveal Enabled 1325 4236 8987 13317 3439

Figure 7: Latency of Reveal queries in production.

the number of unique terms with a particular domain frequency
conforms to a power law distribution. The number of unique terms
𝑡 that each appear in exactly 𝑛 articles conforms to 𝑡 = 𝑎𝑛−𝑘 for
some fixed 𝑎, 𝑘 ∈ (0,∞).

5.2 Production Deployments

In this section, we present data gathered from Reveal deployments
at two anonymized live production environments.

5.2.1 Reveal Index Size. Table 6 shows comparative statistics about
Reveal deployments gathered using a live Tanium question. This
reflects the state of each environment at the time the question was
asked, meaning only machines that were online and responsive at
that time are represented. Enterprise-wide, they reported corpora of
no less than 427 million and 1.05 billion indexed files respectively.

Table 6 includes the distribution of index size on disk from the
endpoints available at the time of our query. This yields a total
Reveal index footprint in the terabytes in each case. Based on our
observations in Table 3, we’d infer that the total scale of indexed
content is at the same order of magnitude.

Most endpoints in both environments have indexes larger than
1 GB. The Reveal data size is capped at 4 GB per endpoint in both
of these environments. Table 6 shows that 2.1% of endpoints in
Enterprise B have reached the disk usage limit and have had to
drop document records from their indexes.

5.2.2 Individual Operation Latency. Reveal’s index is designed for
efficient searching, but evaluating a query carries a nonzero cost.
Operations that require user input, notably ad hoc text queries,
cannot be cached ahead of time and must be evaluated on demand.
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The time taken by endpoints to evaluate a query influences its
overall latency.

Figure 7 shows the latency of ad hoc queries in production envi-
ronments. In each case, more than 97% of responses were received
within 60 seconds, in keeping with the expected scalability of the
Tanium platform[69]. As observed, this behavior scales to tens of
thousands of Reveal enabled endpoints without increased latency.

6 OPERATIONAL EXPERIENCES

Since its commercial release in 2019, Tanium Reveal has been li-
censed on over 3 million endpoints and has been deployed in pro-
duction to client networks across a variety of sectors. In this section
we discuss several lessons learned based on customer experiences
operating Reveal in the field.

• Sensitive Data Discovery: Many Reveal customers use this tech-
nology to monitor various types of sensitive data. One common
use case has been institutional compliance with data privacy
regulations such as PCI [51], GDPR [81], and HIPAA [17]. While
Reveal does not modify user data on endpoints, many customers
use it as part of a risk remediation workflow to report on their
overall compliance posture, identify data security problems, and
verify when remediation has taken place. Compliance users have
made effective use of Reveal’s rule based classification to identify
instances of noncompliance and of Reveal’s ad hoc text search to
respond to GDPR data removal requests.
One of the most common challenges faced by Reveal users has
been the development of effective rule and pattern content for
sensitive data discovery. This has driven much of the design
for the tooling around authoring and testing of classification
content as described in Section 3.2.4, as well as the exploration
into incorporation of other technologies such asmachine learning
classifiers as mentioned in Section 3.2.5.

• Data Age: As observed in Section 5.2.2, Reveal processes queries
and returns results within about a minute, so the age of the data is
effectively determined by how quickly file changes are picked up
by the indexer on each endpoint. In practice, Reveal is generally
able to surface those changes within a few hours. In some cases,
users wanted certain changes to be reflectedmore quickly, such as
after remediating a critical vulnerability. In response, we provided
a mechanism for users to prioritize specific files for re-indexing.

• Endpoint Impact: Reveal’s endpoint agent process contends for
resources with any number of critical operations. Therefore, jus-
tifiably, endpoint impact is a valid and significant concern for
Reveal users. While resource usage issues are rare, the Reveal end-
point agent has a conspicuousness that warrants active monitor-
ing. Effective endpoint telemetry has been extremely important,
even though the practical measures described in Section 3.2.6
for controlling endpoint impact have been sufficient in general.
Telemetric information has been valuable not only for managing
Reveal agents (e.g., tuning configuration parameters, surfacing
unhealthy agents, identifying software bugs, etc.), but also as a
tool to demonstrate that Reveal is operating appropriately when
unrelated problems occur.

7 RELATED TECHNOLOGY

• Centralized Web Search: Throughout the history of the Inter-
net [58], centralized search architectures have provided speedy
access to ubiquitous information (e.g., Google’s hypertexual Web
search engine in 1998 [8]). Search engines have augmented text
search with visual search (e.g., Microsoft Bing [34]), and have
adopted data structures such as knowledge graphs [18] to rep-
resent the semantic web of data [32]. The ethics of monopoly
over centralized data have been debated [37], and have resulted
in calls for government regulations on data [23, 81].

• Social Search: The use of social interactions for search has pro-
liferated [33]. Amazon’s recommendations and search results
are based on popular items [41]. Facebook’s graph search is sup-
ported by optimized data structures for social graphs [44, 66].
Social search engines benefit from machine learning algorithms
applied on centralized data, but have data privacy challenges [21].

• Peer-to-Peer File Search: Peer-to-peer systems do not require cen-
tral coordination of network nodes [57, 68]. BitTorrent’s file
search [55, 56], Freenet [12], and YaCy [82] employ distributed
hash tables (DHTs) [84] for data accessibility at scale. While
decentralized, DHTs cannot guarantee that data remain local.

• IoT and 5G Wireless: With the roll-out of 5G wireless networks,
the emerging Internet-of-Things (IoT) is projected to connect
billions of endpoint devices [25, 39]. Next-generation wireless
networks are designed for ultra low-latency communication. Re-
veal’s federated search and resource-management on devices
could potentially inform the design of an IoT Search Engine [79].

• Federated Machine Learning: Federated machine learning can be
applied without propagating private data due to the exchange,
sharing, and updating of privacy-preserving models (e.g., multi-
layer neural network models) [7, 45]. Similarly, Reveal does not
propagate sensitive data, adopting a "data-at-rest" approach.

8 CONCLUSION

We have designed, engineered, and analyzed an operational fed-
erated search engine called Tanium Reveal which harnesses the
Tanium platform for network communication. Reveal is capable
of indexing and searching the contents of billions of unstructured
heterogeneous data files distributed on endpoints in enterprise
networks. Reveal’s index information about private data remains
on the machine where that data resides. Unencrypted sensitive
information is neither persisted nor transmitted by Reveal.

Our experiments, results, and analysis show that federated index-
ing and search are achievable at scale in production. Specifically, we
demonstrated federated indexing of 1.05 billion files stored across
4236 endpoints in one sub-network, and measured search query la-
tency within 60s for that corpus. Having presented the performance
and operational aspects of Reveal, and having demonstrated the
efficacy of several types of search queries in this architecture, we
believe the next horizon is to automate the search process further
by implementing general semantic search capabilities.
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