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ABSTRACT
Today cloud companies offer fully managed Spark services. This
has made it easy to onboard new customers but has also increased
the volume of users and their workload sizes. However, both cloud
providers and users lack the tools and time to optimize these mas-
siveworkloads. To solve this problem,we designed SparkCruise that
can help understand and optimize workload instances by adding a
workload-driven feedback loop to the Spark query optimizer. In this
paper, we present our approach to collecting and representing Spark
query workloads and use it to improve the overall performance on
the workload, all without requiring any access to user data. These
methods scale with the number of workloads and apply learned
feedback in an online fashion. We explain one specific workload
optimization developed for computation reuse. We also share the
detailed analysis of production Spark workloads and contrast them
with the corresponding analysis of TPC-DS benchmark. To the best
of our knowledge, this is the first study to share the analysis of
large-scale production Spark SQL workloads.
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1 INTRODUCTION
Spark [4] is a widely popular data processing platform that is used
for a variety of analytical tasks, including batch processing, interac-
tive exploration, streaming analytics, graph analytics, and machine
learning. At Microsoft, Azure HDInsight [26] offers managed Spark
clusters that allow users to start processing their data processing
without worrying about managing the underlying infrastructure.
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However, once the data processing tasks are deployed as produc-
tion workflows, users are largely responsible for optimizing their
workloads to achieve better performance at lower costs. This is fast
emerging as a major pain in cloud data services, more so due to
the lack of DBAs in the cloud environments [21], leading to several
recent efforts for building new platforms and features that optimize
end to end workloads in the cloud [22, 27, 29, 30].

Performance improvements in Spark have come a long way over
the last decade. It started with the initial proposal of resilient dis-
tributed datasets (RDDs) in 2010 for improving the performance of
multiple parallel operations by reusing a working set of data [33].
Later, Shark [31] was proposed in 2013 to run declarative Hive
queries (SQL-on-Hadoop) interactively using the Spark processing
backend. The Shark project evolved into Spark SQL [13] for do-
ing relational data processing along with a query optimizer, called
Catalyst, in 2015. While Catalyst was rule-based in the beginning,
query costing and cost-based query optimization was later added
to Spark in 2017 [1]. Most recently, given the broader realization
that it is often hard to make the right query optimization choices
at compile time [16], adaptive query execution was introduced in
Spark in 2020 [3]. However, given the breadth of applications and
deployment scenarios that are typically seen in modern data pro-
cessing systems like Spark, it is still hard to pre-build the right set
of optimizations in the system itself. This has led to a new wave of
thinking to instance optimize a data processing system to a given
workload [23, 30]. In fact, the presence of hundreds of configu-
rations in current Spark codebase aligns with the above line of
thinking that a Spark deployment could be tuned to different work-
load needs. Unfortunately, it is incredibly hard, if not impossible, to
manually tune these configs or adapt the system to a given work-
load. Interestingly, modern cloud deployments of data processing
systems offer an unprecedented opportunity to observe and learn
from large volumes of workloads. As a result, we could build a
workload-driven feedback loop to automatically (and continuously)
tune the system from the workloads seen at hand.

We presented our overarching vision on how to improve cloud
query engines in [21]. In this paper, we describe SparkCruise, the
next big step in optimizing Spark workloads that we have built for
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Spark clusters in Azure HDInsight. SparkCruise exposes a work-
load optimization platform that leverages massive cloud workloads
and provides a feedback loop to the Spark engine for improving
performance and reducing costs. We demonstrated an early ver-
sion of the SparkCruise system earlier [28]. Since then we have
added newer techniques for plan log collection, introduced a scal-
able telemetry pipeline that runs daily, explored data cleaning and
integration techniques to improve the quality of our common work-
load representation, analyzed production workloads to characterize
the Spark workloads in HDInsight, provided a notebook for cus-
tomers to derive insights from their own workloads, and pushed
one concrete feature for automatic computation reuse all the way to
production. We describe the overall system design and extensibility
of SparkCruise, the opportunities for compute reuse in production
Spark workloads, the deployment of SparkCruise in HDInsight,
and the experiences from our production journey.

Our key contributions can be summarized as follows:

• We present the SparkCruise platform for adding workload-
driven feedback loop in Spark, and discuss how it transforms
Spark engine from optimizing one query at a time to opti-
mizing end to end workloads. (Section 3)

• We describe a query plan telemetry pipeline for collecting
anonymized Spark SQL plans with low overheads and at
production scale. (Section 4)

• We introduce a denormalized workload representation for
Spark that combines both the compile-time and run-time
characteristics of the workload and could be used for a va-
riety of optimization features. We discuss the data quality
challenges in creating this workload representation and show
cleaning techniques to overcome them. (Section 5)

• We present detailed insights from production Spark work-
loads at Microsoft, including distributions of inputs, applica-
tions, queries, operators, cardinalities, selectivities, and plan
shapes such as width and height. (Section 6)

• We describe a workload insights notebook that we have built
and released for customers in HDInsight to discover insights
from their own workloads. (Section 7)

• Finally, we drill down into automatic computation reuse as a
concrete workload optimization in Spark that we have built
and released for customers in HDInsight. We discuss the
reuse mechanisms and various online and offline policies for
view selection and materialization. (Section 8)

2 SPARK BACKGROUND
The Spark data processing platform supports a variety of analytical
applications including batch or interactive analytics over structured
or unstructured data, streaming analytics over constantly arriving
data, graph analytics over linked data, iterative machine learning
algorithms, and the newer data science applications. Structured
data processing, in particular, has increasingly gained enterprise
level adoption in the last few years with several large companies
running their key ETL workloads using Spark. This has resulted
in several trends. First, Spark has become the most active Apache
project that is visited on GitHub [18], with a vibrant open source
community of 83 committers [19] and numerous meet-ups around
the world [12], Second, there is in-house Spark development at

several large enterprises such as LinkedIn [24], Facebook [11], and
IBM [8], and Third, there are managed Spark services from all major
cloud providers, including Amazon Web Services [5, 9], Microsoft
Azure [6, 7, 26], and Google Cloud [10].

At Microsoft, Azure HDInsight allows customers to run popular
open source frameworks — including Apache Hadoop, Spark, Hive,
Kafka, and more [26]. Essentially, it abstracts the complexities in
setting up and maintaining the cluster, and providing a more man-
aged experience for customers to quickly get started with their
analytical tasks. For Spark, this means that users can leverage the
latest Spark distributions, easily configure their cluster for different
application needs, and monitor and tune the performance and costs.
As a result of this better Spark infrastructure experience, we find
a large fraction of HDInsight customers running their recurring
ETL workloads. Others prominent use of HDInsight Spark is for
interactive notebooks that have become very popular for ad-hoc
analysis. Interestingly, workload optimization is relevant to both
these usage types: for saving total costs in ETL workloads and for
reducing the time to insights in interactive workloads.

Spark workloads are made up of applications, each of which
consist of one ormore queries running in the Spark session.Multiple
applications can run in parallel on the same cluster. We focus on
Spark SQL queries, i.e, all analytics that compile down to Spark
dataframes and go through the Catalyst query optimizer, while
ignoring the programs written directly against the RDDs. This is
because declarative Spark SQL workloads are more amenable to
characterization and feedback in the query optimizer layer (without
affecting the user expectation on how the programs should be
executed, as with RDDs), not to mention they also form the majority
of our workloads.

In the remainder of the paper, we first provide an overview of
SparkCruise, our workload optimization platform for Spark, before
describing each of its components and discussing the features we
have shipped in HDInsight.

3 SPARKCRUISE OVERVIEW
SparkCruise adds a workload-driven feedback loop to Spark to
instance optimize its performance for a given workload. Figure 1
shows the overall architecture. As mentioned before, we focus on
Spark SQL queries that run through the Catalyst query optimizer
and that users expect the system to optimize, as opposed to RDD
programs that are almost like physical execution plans handcrafted
by the users. There are four sets of components in Figure 1 that are
worth highlighting and we discuss them below.

First, SparkCruise provides an elaborate query plan telemetry
that captures Spark SQL query plans in a scalable manner. This
includes an additional plan log listener to collect plans in JSON
format, adding identifiers called signatures at each node in the
query plan, anonymizing the plans from any personally identifiable
information (PII), and collecting the resulting log in both structured
and semi-structured format with varying degree of retention. The
query plan telemetry is enabled simply via a configuration change
and once collected it could be used for a variety of further analysis
by both the service provider and well as the customer themselves.

Second, the workload collected above goes through a set of pre-
processing to generate a common workload representation that
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Figure 1: SparkCruise Architecture

could be used for running the actual workload optimization al-
gorithms. This includes linking the operators in the logical and
physical query plans with the stages in the Spark jobs execution,
and cleaning the workload logs for missing or invalid values. The
resulting workload is represented as a denormalized workload table.
The workload preprocessing is run over large volumes of workloads
in a distributed manner, i.e., using Spark itself for scaling out the
preprocessing tasks. Furthermore, the preprocessing is done once
and shared across all of the downstream analyses and optimizations.

Third, theworkload table generated above could be used to derive
better understanding and insights. Such insights are helpful for both
the service operators as well as the customers. SparkCruise provides
a workload insights notebook to quickly analyze the workload table
generated for their workloads. The notebook also comes with a
number of pre-canned queries to easily capture the shape, size,
performance, and cost of the workload.

Finally, the workload table is also used to run optimization al-
gorithms such as materialized view selection [20]. By providing a
common workload representation consisting of both the compile-
time and run-time characteristics, SparkCruise democratizes the
development of newer workload optimization algorithms based on
a variety of opportunities, e.g., learning cardinality models from
past workloads. We serialize the optimization output into a feed-
back file and provide that to be loaded into the Catalyst optimizer
for future optimization. The actual optimization action is performed
by adding extra optimizer rules using the Spark extensions API,
thus turning it into a self-tuning system.

In the following sections, we delve into each of the above four
components of SparkCruise in more detail.

4 QUERY PLAN TELEMETRY
Workload optimizations in SparkCruise are rooted in analyzing
and improving the Spark SQL query plans. Therefore, collecting
Spark SQL query plans is at the core of SparkCruise. Our design
requirements for adding this observability are five-fold:

(1) We do not want to make changes in the core Spark codebase.
This is because we want the query plan telemetry to be easily

collected with open-source Spark as well as with multiple
deployments in different Microsoft products.

(2) Collecting plan telemetry should have minimal overheads to
avoid impact on query performance. This means we should
be reusing existing telemetry events and only add additional
information wherever required.

(3) We need to identify patterns in the query plans in order to
learn from past workloads and apply them in future queries.
This requires to annotate query plans with signatures that
could be used to identify and match interesting patterns.

(4) Query plans could contain sensitive information, particularly
in the column and table names. Therefore, we need to scrub
all such information and protect customer privacy.

(5) Finally, we need to support multiple scenarios where the
query plans could be leveraged, from local debugging within
the cluster to global workload analysis by the cloud provider.

Note that in contrast to the recently described Diametrics bench-
marking platform at Google [15], SparkCruise captures a rich set of
query plans (not just the SQL queries) along with associated meta-
data (run-time statistics to learn from the past behavior of those
query plans), without copying the customer data. This is because
in contrast to Diametrics, SparkCruise is not limited to internal
customers and workloads and so access to customer data is not
possible without explicit customer approval.

In the remaining of this section, we first describe query plan lis-
tener, plan annotations, and plan anonymization, before describing
the telemetry pipeline.

4.1 Plan Listener
The first step in adding workload optimization capability to Spark
is to collect the workload traces. Spark already collects telemetry
at the level of both applications and tasks, however, the query plan-
level details are incomplete. Specifically, the event logs contain
Spark SQL query plans in text format, same as the one output by
the EXPLAIN command, that is hard to parse and consume later on.
Furthermore, many of the lines in the text plans are trimmed in case
they are too long. So we need a more reliable format for query plan
telemetry. Fortunately, the LogicalPlan object in Catalyst contains

3124



a method to serialize a query expression in JSON format. We have
leveraged this by implementing a custom listener that logs the Spark
query plans in JSON. The listener is invoked at the end of every
query execution (i.e., SparkListenerSQLExecutionEnd event). Our
listener emits the JSON plans from all four stages, namely the parsed
plan, analyzed plan, optimized plan, and the physical execution plan.
Later on, the workload optimization algorithms ingest workload
traces and provide feedback to the query optimizer.

The above plan listener has very low overhead, e.g., in the order
0.5 seconds for TPC-DS queries. Still, we discovered that customers
sometimes end up machine generating very large Spark SQL plans
in their production workloads. These large plans could contain 10s
of thousands of nodes in the parsed query plans, that lead to out of
memory errors in one specific case. Therefore, we added additional
checks to limit the plan logging for extremely large query plans. For
example, if parsed and analyzed plans are found to be too big then
we attempt to log only the subsequent plans (optimized, physical)
as they are typically smaller than the initial plans.

4.2 Plan Annotations
Given that the goal of SparkCruise is to learn from the past Spark
workloads and apply feedback to future queries, we want to identify
patterns in query plans for future feedback. Therefore, we annotate
every node in the query plan with identifiers, called signatures,
that can be used for providing targeted feedback to future queries.
Signatures are recursive hashes of the query plan nodes that capture
both the node-level details as well as the query plan structure. We
could further decide on which nodes and what levels of details
in those nodes to include in the signature hash, thus capturing
different kinds of query plan patterns. We describe the two kinds of
signatures that we provide by default, although, our design allows
to easily add newer signatures: (1) Strict Signatures capture the
complete information at the node level and its children. At the leaf
level it also includes the dataset version. (2) Recurring Signatures
also capture the information at the node level and its children.
However, it ignores the literal values and the dataset version.

4.3 Plan Anonymization
SparkCruise only analyzes workload metadata, with no access to
customer data. Still, the filenames, table names, and column names
could potentially contain keywords or identifiers relevant to dif-
ferent customer businesses. Therefore, SparkCruise anonymizes
Spark SQL query plans by obfuscating the column and table names.
Furthermore, we also obfuscate any literal values in the query
predicates (filter or join predicates) to avoid leaking any customer
identifiable information. We apply the same obfuscation to parsed,
analyzed, optimized, and physical plans. However, we preserve the
column reference ids that track columns within a query plan from
leaf to the root of the plan.

4.4 Telemetry Pipeline
We feed the annotated and anonymized query plans into a teleme-
try pipeline consisting of several end points, each for different set
of scenarios, as shown in Figure 1. The annotated and anonymized
query plans are emitted as Spark events that are captured by the
SparkFirehoseListener and converted into rows, with one row for

each event and all plans and other metadata as JSON values in that
row. We then push these event rows into several backends: (1) an
optional user defined Azure Blob Filesystem location for users to
run their own workload analysis later on, (2) Azure Data Explorer
tables for interactive analysis, typically by the service operators,
with a smaller retention window, and (3) Cosmos storage (com-
pressed formats) for historical analysis over larger time windows.
The above Spark events are also collected in the application log
on the local cluster, for any real-time debugging or analysis by the
users themselves.

5 WORKLOAD REPRESENTATION
In this section, we describe the steps to transform raw events into a
shared workload representation. A shared workload representation
removes the time consuming step of data collection and integration
from each optimization algorithm. We also explain the relational
format of the workload representation and why it has been widely
adopted by downstream optimization algorithms.

5.1 Plan Linking
At the end of query execution, SparkCruise collects different plans
related to query processing, namely parsed plan, analyzed plan, op-
timized plan, physical plan, and executed plan. Each plan in this list
is derived from the previous plan. However, Spark does not preserve
the provenance information between individual nodes of the differ-
ent plans. This makes it impossible to get the runtime cardinalities
and costs for logical operators. Specifically, SparkCruise applies
view materialization and reuse based on signatures computed on
optimized logical plan, but the cost-based view selection needs to
consider the cost of logical operators as well. So, we attempt to link
the nodes from different plans during workload preprocessing.

We include two plan linking algorithms for logical and physical
query plans: (1) Top-down heuristic based - This method starts from
the root node and links nodes from two query plans using a set
of predefined heuristics. For example, this method skips the Ex-
change operator that is present in physical plans but not in logical
query plans. Similarly, a logical Join operator can be converted
into Exchange, Sort, and SortMergeJoin physical operators. This
method uses lexical similarity when matching nodes in logical
plans and their corresponding physical implementations such as
Aggregate and HashAggregate. (2) Bottom-up similarity based - We
extended Cupid [25], a generic schema matching system for SQL
tables, to match query plans. Cupid uses weighted lexical similarity
and structural similarity score for every pair of sub-trees in logical
and physical plans to find the best match between nodes. We use
the same set of rules for lexical similarity as the top-down heuristic
method. From our experience, we have found (1) to be preferable,
especially as it is easier to debug. Going ahead, we would like to
maintain the provenance information inside the Spark optimizer
itself to avoid this post-processing linking of plans.

The next linking between nodes in Spark physical plans and
executed plans involves a simple tree traversal. Figure 2 shows
an example of the links between optimized logical plans and the
executed plan. After the plans linked together, we can assign sig-
natures computed on optimized logical plans to the cost of the
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Figure 2: Linking of nodes in optimized logical plan (left)
and executed plan (right).

Figure 3: Linking different entities in Spark workloads.

corresponding physical operator. This allows us to develop cost-
based workload optimization algorithms and apply feedback during
query optimization using signatures.

5.2 Data Cleaning
At the end of query execution, Spark reports runtime metrics such
as cardinality, time, and memory. However, these metrics are mostly
at the stage level (multiple operators combined together) and few
metrics are reported for individual operators. Thus, even after link-
ing query plans we do not have metrics for most of the logical
operators. To solve this problem we perform a few data imputation
steps to assign metrics to individual operators. We describe two
imputation strategies for row cardinalities and running time –

(1) Spark provides runtime cardinality metrics at different nodes
in the query plans, generally for operators where cardinality
changes such as scan, filter, aggregates, and joins. To get
the cardinalities for remaining operators, we perform a post-
order traversal of query plans and, if cardinality is missing,
then we copy the cardinalities from the child node. For some
operators such as Join, in case of missing cardinality, we take
the maximum cardinality among all child nodes.

(2) Spark reports the running time for every stage in query plan.
We divide the stage-level running time among the operators
with missing running times in the stage node . With the im-
puted running time per operator, we can calculate the serial
time cost of a subexpression in plan as the sum of times from
individual operators. The serial time of subexpressions along
with output cardinality is used by the cost-based view selec-
tion algorithms to select views with high savings potential
and low materialization costs.

5.3 Workload Table
Workload table is the foundation for workload optimization al-
gorithms. The workload table combines different entities in Spark
applications, such as application metadata, query metadata, metrics,
query plans, and annotations to create a tabular representation of
the workload. In this section, we will describe the steps performed
to create the workload table from raw events.

As explained in Section 4.4, the anonymized telemetry data can
be stored in multiple locations (from storage accounts to databases)
depending on the type of analysis. The collected telemetry is trans-
formed to workload table by the Workload Parser Spark job. The
Workload Parser job has connectors to read and write the data
from different sources. Workload Parser can independently process
the telemetry belonging to each Spark application. This allows the
Workload Parser job to scale with the number of applications in
the workload.

The Workload Parser job recreates the hierarchy of entities in a
Spark workload. Figure 3 shows the typical entities in a Workload
that include Applications, Queries, Plans, Metadata, and Metrics.
These entities are parsed from the events in JSON format. For ex-
ample, the preorder traversal of query plans is serialized in JSON
format and the Workload Parser job recreates the query plan graph
from the serialized format. The Workload Parser also performs the
necessary plan linking and data imputation steps. Then, these linked
entities in the workload are exported as a denormalized workload
table. The workload table has one row per physical operator. Each
row of the workload table contains the details of physical opera-
tor, application-level metadata, query-level metadata, linked logical
operator details, and compile-time and run-time statistics. Table 1
shows a subset from the workload table. There is a lot of repeated
metadata information in the workload table. We have found that
having a single denormalized workload table with all the available
information removes the need for complex data processing steps by
downstream workload optimization algorithms. After this step, the
workload table is available for processing by workload optimization
algorithms and for visualization via Workload Insights Notebook.

6 PRODUCTION INSIGHTS
In this section, we show insights from production Spark work-
loads at Microsoft with the goal to understand the volume, shapes,
sizes, costs, and other aspects of production Spark SQL queries.
Later in the next section, we contrast these with TPC-DS queries, a
popular benchmark for analytical workloads. We consider a large
subset of daily workloads from HDInsight consisting of 176 clus-
ters from 114 Azure subscriptions, and consisting of 34,834 Spark
applications with 349,366 Spark SQL query statements (a mix of
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Table 1: Illustrating a subset of attributes and rows from the workload table for TPC-DS workload. Each row in workload table
corresponds to a physical operator. The columns include application-level metadata, query-level metadata, linked logical
operator details (e.g., Signatures), compile-time (e.g., EstCard, RowLen) and run-time statistics (e.g., ActualCard, OpTime).

AppName AppTime QueryID QueryTime OpName OpID Logical StrictSignature EstCard ActualCard RowLen OpTime
tpcds-q19 76360 1 49336 HashAggregateExec 3 Aggregate 4399905266039605409 0 2788 64 21733
tpcds-q61 106706 1 73540 FilterExec 42 Filter 7691322187098102260 250 71 420 2
tpcds-q85 95508 1 60751 BroadcastHashJoinExec 21 Join 18446744071904119269 6485337 1265878 124 18223

(a) CDF of tenants per subscription (b) CDF of applications per tenant (c) CDF of queries per application

Figure 4: Distribution of tenants, applications, and queries among HDInsight customers.

(a) CDF of input cardinalities (b) CDF of sum of input cardinalities per query (c) CDF of filter selectivities

Figure 5: Input and filter cardinalities for Spark workloads.

streaming and non-streaming queries) and a total 1,438,411 query
sub-expressions. Note that we already segregate all catalog queries,
and so the above workload consists of purely the DML operations.
We applied the same workload steps to this workload as described
in the previous section, i.e., plan linking and data cleaning, and de-
rive several insights from the resulting workload table. To the best
of our knowledge, this is the first study showing detailed analysis
from large-scale production Spark SQL workloads.

6.1 Subscriptions, Tenants, Applications
HDInsight customers with Azure subscriptions can create one or
more tenants (or clusters). Each tenant can run multiple applica-
tions, and application can have multiple Spark SQL queries. Figure 4
shows the CDFs for the number of tenants per subscriptions, ap-
plication per tenants, and Spark SQL queries per application. We
can see that while most customers work with just one tenant per
subscription, about 30% have multiple tenants for each subscription

(see Figure 4a). We see a similar skew in the number of applications
per tenant (see Figure 4b). Many tenants have very few applications,
yet almost 30% tenants have 100𝑠 of applications per tenant and 5%
have 1000𝑠 of applications per tenant. Finally, the number of queries
per application demonstrates the largest skew (see Figure 4c). Most
applications have less than 10 queries and only 5% have queries
in double digits. It is interesting to note that the bulk of workload
consists of shorter (in number of queries) applications.

6.2 Inputs
We now analyze the size of the inputs that are processed by the
Spark SQL queries. Figure 5 shows the CDFs for input table cardi-
nalities, per-query input cardinalities, and cardinalities after any
filtering. From Figure 5a, we see that just over 10% of the input
tables have more than 1𝑀 rows. This is interesting because Spark
is often preferred for more interactive query processing and so
many of the inputs processed by Spark are small. In fact, almost
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30% of the inputs tables have less than 1𝐾 rows. Interestingly, if we
consider the sum of all input table rows processed by each query,
then Figure 5b shows that almost 60% of the queries process 10𝐾 or
more rows. Thus, even though individual tables might be smaller,
Spark processes several inputs in most queries. Finally, Figure 5c
shows the filter selectivities in Spark SQL queries. We observe that
80% of the queries have selectivity of more than 20%, i.e., very few
queries have highly selective filters. Many filters in the workload
are passthrough like null checks on each record.

6.3 Operators
We now dig into the operators seen in our Spark SQL workloads.
Figures 6a and 6b shows the distribution of logical and physical
Spark SQL operators in the workload (Note that we skip the leaf
level scans for Figure 6, and InputAdapter andWholeStageCodegen
operators for Figure 6b). While Project is the most frequent logical
operator, consisting of 27% of all operators, interestingly, Aggregate
is the secondmost popular operator, comprising of more than 18% of
all operators. This is followed by Filters, Limits, and Joins. Note that
updates are very rare here. While the logical operators give a sense
of what of kind of queries users are writing, physical operators
(see Figure 6b) give a sense of how those queries are processed. We
see that hash aggregation and shuffle are the two most common
physical operators, followed by filter and projection respectively.
This gives us an idea of what operations to optimize when trying to
improve the overall performance and reduce costs. Indeed, internal
teams at Microsoft have found such insights useful to make data-
driven decisions when building new features.

Figure 7 shows the distributions of different logical and physi-
cal operators per-query. From Figure 7a, we see that most queries
(almost 80%) have multiple joins, while some queries (around 20%)
have many more projections, filters, and aggregates (up to 10 per
query). From Figure 7b, we see more than 80% queries have 2 or
more broadcast hash join operators. This is also true for broadcast
exchange operators. The prevalence of broadcast operators indi-
cates that many joins have small inputs on one side, that results
in broadcasting that side. This is further confirmed in Figure 8a
that shows that almost 90% of the joins are executed as broadcast
hash joins, as compared to just over 8% that are executed as sort
merge joins. Finally, Figure 8b shows the sizes of the intermediate
data that gets shuffled. Surprisingly, 95% of queries shuffle less than
1𝑀𝐵 of data. This is because many of these shuffles are aggregate
shuffles that only move the partial aggregates around. Few per-
cent of shuffles still move more than 100𝐺𝐵 of data. Overall, data
movement is not really a concern for this type of workload.

6.4 Queries
Let us now look at the plan shapes of the Spark SQL queries. Fig-
ure 9a shows the distribution of the number of operator per query.
We can see that almost all queries have less than 20 operators.
Furthermore, roughly 80% have 5 or less operators. Note the this
is in contrast to batch processing systems like SCOPE [14] that
allows users to write a sequence of SQL-like statements in a script
and executes them as a single giant DAG of operators. Spark SQL
queries on the other hand consists of much smaller operator DAGs.
Figure 9b further illustrates the distribution of plan depth and width

in Spark SQL queries. We see that 90% of queries have a depth of 10
or less. Plan width, on the other hand, ranges from 1 to 4 operators.

7 INSIGHTS NOTEBOOK
Given that generating and analyzing theworkload table could reveal
several interesting insights, we have made this process easier for
customers by making a Workload Insights Notebook available in
HDInsight 1. Key features of this notebook include generating the
workload table, analyzing this table using PySpark queries, pre-
canned queries that could help get started quickly, e.g. identify
workload shape, size, recurrence, etc. The notebook also shows
prospective cost/benefits of workload optimization features such as
statistics on selected views and their costs if they were reused. Users
can now run the same analysis, as shown in the previous section, on
their own local workloads. They can even use the notebook medium
to write their own exploratory queries. Thus, the workload insights
notebook can help users understand their specific workload and
make data-driven decisions on how to optimize it.

Below we revisit some of the insights discussed in the previous
section, and contrast them with corresponding insights on TPC-DS
(1𝑇𝐵 scale), a popular benchmark for decision support systems.
The goal is to illustrate how different workloads can lead to very
different insights for different customers.
Inputs. Interestingly, the input table sizes and the inputs sizes after
filtering have very similar distributions in TPC-DS (see Figures 10a–
10c) as also seen in the production workloads (see Figures 5a–5c).
The filter selectivity, in particular, shows a strikingly similar plateau
at around 20%, i.e., a large fraction of filters select almost everything.
Operators. Figure 11 shows the logical and physical operator dis-
tribution in TPC-DS. Surprisingly, these are very different from the
operator distributions seen in production queries in Figure 6. Con-
sidering logical operators, we see that the fraction of Projects go up
from 27% to 40%, while the percentage of Aggregates come down by
almost 3𝑥 , from 18.8% to 6.5%. TPC-DS also has more than 3 times
the joins than in production workloads, from 5.3% to 18.9%. The
fraction of Filters though remains relatively comparable (15.1% and
23.9%). Considering the physical operators, we see that while hash
aggregate was the most frequent in production workloads, it comes
after projection, filter, and shuffle exchange in TPC-DS. Similarly,
filter and shuffle exchange swap their places in relative frequencies.
Finally, Figure 11c shows the distribution of join operator imple-
mentations in TPC-DS, compared to those shown in production
workloads in Figure 8a. We can see that while broadcast hash join
still remains the dominant join implementation, the percentage of
sort merge join goes up 3𝑥 from 8.7% in production workloads to
25.3% in TPC-DS. Thus, we see that different workloads can have
very different characteristics and the workload insights notebook
can help customers understand their workloads better.
Queries. Figure 12 shows the shuffle and plan sizes in TPC-DS
queries. Interestingly, we see that the fraction of large shuffles
is higher in TPC-DS compared to production workloads; 30% of
shuffles move more than 100𝐺𝐵 in TPC-DS, compared to only per-
centages in production workloads. While the actual data movement

1https://github.com/Azure-Samples/azure-sparkcruise-
samples/blob/main/SparkCruise/WorkloadInsights_HDI_v0.4.ipynb
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(a) Frequency of logical operators (b) Frequency of physical operators

Figure 6: Frequency of operators in Spark workloads.

(a) Logical operators per query (b) Physical operators per query

Figure 7: Frequency of per-query operators in Spark workloads.

(a) Different join implementations

(b) Shuffle sizes

Figure 8: Distribution of join operators and shuffle sizes in Spark workloads.

size can vary with the TPC-DS scale factor, it is interesting to see
that the shuffles sizes in TPC-DS are much more prominent. Fig-
ure 12b shows the distribution of the number of operators per query.

We see that TPC-DS queries are much larger, with 20% queries hav-
ing 50 or more operators compared to just 4 or more operators for
production workloads. Likewise, we found many more projects,
filters, and joins per query in TPC-DS. Finally, Figure 12c shows
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(a) CDF of operator count per query (b) CDF of plan depth and width

Figure 9: Optimized logical plan sizes in Spark workloads.

(a) CDF of input cardinalities (b) CDF of sum of input cardinalities per query (c) CDF of filter selectivities

Figure 10: Input and filter cardinalities in TPC-DS workload.

(a) Frequency of logical operators (b) Frequency of physical operators (c) Different join implementations

Figure 11: Frequency of operators in TPC-DS workload.

distribution of query plan depth and width. Again, we find deeper
(depth 18 or more for 20% of the queries) and wider (width of 10 or
more for 20% of the queries) plans in TPC-DS.
Redundancies. Figure 13 shows common subexpressions grouped
by their root operators. These common subexpressions are can-
didates for view selection. We see that in TPC-DS workload, 58%
of Filters are repeated more than once with an average repeat
frequency of 5.69%. Not surprisingly, the percentage of common
subexpressions decrease among operators that are closer to the root
level of query plans. For example, only 12% of joins are repeated

across queries with an average repeat frequency of 3.92%. However,
since joins are generally expensive, they might be preferred over
more frequent filters by the view selection algorithm.

To summarize, carefully studying the query workload character-
istics can reveal interesting insights for better understanding and
potential optimizations, and workload insights notebook can help
customers achieve those insights quickly.
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(a) Shuffle sizes (b) CDF of operator count per query (c) CDF of plan depth and width

Figure 12: Shuffle and plan sizes in TPC-DS workload.

Figure 13: Repeat frequency of operators across queries in
TPC-DS workload.

8 AUTOMATIC COMPUTATION REUSE
In this section, we describe a concrete workload optimization,
namely reusing common computations across a variety of Spark
SQL workloads, that we have built and made available for HDIn-
sight customers to try out on their workloads 2. Customers can first
analyze their workloads and identify opportunities for reuse, they
can then run the view selection algorithms and generate feedback
for their workloads, and finally future Spark SQL queries automat-
ically pick up that feedback for reusing common computations.
While TPC-DS results and reuse mechanisms were highlighted in
the earlier system demonstration [28], we quickly recap them be-
low for completeness. The more interesting aspect in this paper,
however, is our discussion over three workload scenarios, derived
from our production experiences, and the conclusions on whether
or not they are likely to benefit from computation reuse.

8.1 Workloads
SparkCruise supports both recurring and ad-hoc query workloads
for computation reuse. Recurring workloads could consist of repet-
itive queries that are executed periodically with new input datasets
and query parameters. For recurring workloads, we can run work-
load optimizations on the past query logs and generate feedback

2https://docs.microsoft.com/en-us/azure/hdinsight/spark/spark-cruise

for future queries. However, there is another growing class of appli-
cations that use Spark for ad-hoc or exploratory analysis [2]. These
workloads are non-recurring and we need online algorithms that
can adapt with new queries. To illustrate the opportunity in popular
workloads, Figure 13 shows the repeat frequency of operators in
TPC-DS workload. We can see that numerous aggregates, filters,
joins, projections, and even sorts repeat across queries. In fact, more
than half of the filters repeat across queries, while 16% of the ag-
gregates and 13% of the joins also repeat across multiple queries.
Thus, analytical workloads typically have significant opportunities
for computation reuse. This has been also shown in several earlier
works in this area [20, 22, 32].

8.2 View Feedback
Once the workload table is generated via the workload representa-
tion process described in previous sections, SparkCruise provides
view selection algorithms to select the most useful computations to
materialize and reuse in a cost-based manner. The workload table
contains strict and recurring signatures that capture the details
of the subexpressions, or candidates for computation reuse. The
strict signatures are used by the view selection algorithm to detect
common computations across queries. The view selection algo-
rithm consists of a set of heuristic rules to select views with high
reuse potential and low materialization cost. The list of selected
selected views are uploaded to a shared location via a feedback
file or service. This list contains the recurring signatures and some
metadata associated with each view. The recurring signatures en-
ables SparkCruise to detect future occurrences of the same view
patterns when the workloads are submitted again with new inputs
or parameters.

8.3 Reuse mechanics
We have extended the Spark optimizer with two rules — Online
Materialization and Computation Reuse that can read the feedback
and modify the logical query plans. These two rules transform the
traditional Spark query optimizer to a workload-aware optimizer.
The Online Materialization rule materializes the results of a sub-
query if the workload-based feedback exists for the subquery and
it has not been materialized. Similarly, the Computation Reuse re-
places the sub-query with the scan of the materialized view to avoid
its computation cost. Figure 15 shows automatic materialization
of a common join by Query 42 and the subsequent reuse of the
materialized view by Query 52 of TPC-DS benchmark.
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Figure 14: Query performances with offline and online ma-
terialization.

8.4 Case Studies
We presented our early results on TPC-DS benchmark in [28]. In the
remaining section, we describe how SparkCruise operates under
three different workload conditions. Materialized views generally
have three phases: (1) view selection, and (2) view materialization,
and (3) view matching and reuse. Traditionally, view selection and
materialization are considered to be offline (i.e., interesting views
are selected and materialized when the system is idle before the
actual workload arrives), and view matching/reuse could be done
either manually by having users modify their queries or automati-
cally by the system. In SparkCruise, we only consider automatic
view matching and reuse, since it is not trivial for users to make
manual changes to their queries. However, we consider different
permutations of view selection and materialization being offline or
online.

8.4.1 Offline view selection, offline view materialization. For re-
curring workloads, we can run the view selection algorithm in
an offline manner using the recurring signatures of query subex-
pressions. The view selection algorithm can then select the most
promising recurring signatures for reuse and that are expected to
remain consistent even with some changes in the workload. Further-
more, recurring workloads could have a slack between the arrival of
data and workload start time, e.g., a log data is cooked and prepared
daily and there are enough spare cycles during the day before the
cooked data starts getting consumed by other queries. In such cases,
we can use consider using offline cycles to materialize the views
in advance. Every query that contains the view can benefit from
reading the materialized view instead.

Figure 14 shows the the running time of TPC-DS queries 42
and 52 when both use a pre-materialized view to speed up their
processing times, by 34% each compared to the baseline.

8.4.2 Offline view selection, online view materialization. Instead
of materializing views offline in spare cycles, we can select views
offline but materialize them in an online fashion, as part of query
processing. The first query to hit the candidate view pays the over-
head to materialize, but the subsequent queries can directly scan
the materialized view. Figure 15 illustrates the query plans of the

materialization subquery by TPC-DS query 42 and its subsequent
reuse by Query 52. Figure 14 shows the the running time of Query
42 that materializes a view has increased, but interestingly, the
overall workload time is still improves by 9.3%, since the reduction
in running time of Query 52 is significant.

Online view materialization does not require offline cycles to
materialize views. This makes a good fit for serverless systems
where users spin up cluster on-demand, or for recurring workloads
that are scheduled immediately after the input becomes available —
typical scenarios in a production setting.

8.4.3 Online view selection, online view materialization. The scenar-
ios considered so far target only the recurring workloads. Another
class of workload that is growing is interactive/notebook applica-
tions that run as a session. In this scenario, we do not have prior
runs of the complete workload. However, we have information
from the previously executed queries within the same session. We
utilize this information from these executed queries, to select views
for materialization and reuse for future, yet unseen queries in the
same session. The following changes are required in SparkCruise
to handle this online view selection.

First, we incrementally update the workload table with telemetry
from the last executed query. Then, we run view selection algorithm
after a fixed number of queries to select views for future queries. The
optimizer rules will apply the updated feedback to materialize and
reuse views in an online fashion as before. We implemented a new
online view selection algorithm for this scenario. The algorithm,
like BigSubs [20], maintains a bijective graph between queries and
the subexpressions seen so far. As new queries and subexpressions
arrive they are added to the graph. The probability of a new subex-
pression being selected depends on its score (either frequency or
utility) and interaction with existing materialized subexpressions
(e.g., if it is contained within another subexpression). Similarly,
the subexpressions can be evicted from the materialized set if the
storage budget is exceeded.

We ran this new algorithm on TPC-DS, with queries executed se-
rially one after another. For TPC-DSwe observed that it was difficult
to tune the algorithm because many subexpressions were repeated
only few times, so any delay in selection would reduce the future
opportunity for reuse in the same session. And if we aggressively
select views, then the materialization cost exceed the reuse ben-
efits. So we considered an alternative benchmark IDEBench [17],
which is designed for interactive data exploration. We used the
benchmark to generate one denormalized table of 500M rows and
40 queries. Figure 16 shows the ratio of running time with online
view selection and baseline where we cache results from both com-
mon subexpressions and queries. Overall, the algorithm was able
to reduce the running time by 9.6%. This could be further improved
by predicting the future query properties, e.g. drill-down queries.
Note that the online view selection algorithm could be used in con-
junction with offline view selection to handle a mix or recurring
and ad-hoc workloads.

In summary, we see that while different workload scenarios can
have different amount of speedups, computation reuse is applicable
quite broadly and can improve user experience and reduce costs.
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(a) Materialization of join operator output by Query 42. (b) Reuse of materialized join output by Query 52.

Figure 15: The figure shows query plans of a materialization sub-query (left) and the reuse of materialized output by a subse-
quent query (right).

Figure 16: Online view selection and materialization on
IDEBench.

9 CONCLUSIONS
In this paper, we presented the SparkCruise platform for adding
workload-driven feedback loop to Spark query engine. Our key
advancements are — (1) a scalable telemetry pipeline to collect plan

information from production Spark deployments, (2) preprocessing
stages to transform raw telemetry events into a tabular representa-
tion of workload that is more easy to analyze and derive insights
from, (3) workload-based optimization algorithms to enable com-
putation reuse, and (4) feedback mechanism to make Spark query
optimizer workload-aware. We also took this system all the way to
production in Azure HDInsight with the automatic computation
reuse feature. Our experiences in production influenced the design
choices for the system, such as preserving privacy of the users,
having low overheads, and implementing all of the steps without
modifying Spark code. The scale of Azure HDInsight enabled us to
analyze production Spark SQL queries and contrast the differences
with common benchmarks. There are many more optimization op-
portunities across workloads. Going ahead, we plan to build more
workload-aware algorithms on top of SparkCruise platform. These
workload-aware algorithms will enable us to instance optimize the
Spark performance for a given workload and will reduce the total
cost for our users.
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