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ABSTRACT
Streaming data processing is an exercise in taming disorder: from
oftentimes huge torrents of information, we hope to extract power-
ful and timely analyses. But when dealing with streaming data, the
unbounded and temporally disordered nature of real-world streams
introduces a critical challenge: how does one reason about the com-
pleteness of a stream that never ends? In this paper, we present a
comprehensive definition and analysis of watermarks, a key tool
for reasoning about temporal completeness in infinite streams.

First, we describe what watermarks are and why they are impor-
tant, highlighting how they address a suite of stream processing
needs that are poorly served by eventually-consistent approaches:

• Computing a single correct answer, as in notifications.
• Reasoning about a lack of data, as in dip detection.
• Performing non-incremental processing over temporal sub-
sets of an infinite stream, as in statistical anomaly detection
with cubic spline models.

• Safely and punctually garbage collecting obsolete inputs and
intermediate state.

• Surfacing a reliable signal of overall pipeline health.
Second, we describe, evaluate, and compare the semantically

equivalent, but starkly different, watermark implementations in
two modern stream processing engines: Apache Flink and Google
Cloud Dataflow.
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1 INTRODUCTION
By now, the distinction between event time and processing time,
the disorder induced by the myriad distributed systems involved
in modern data processing pipelines, and the need for intentional
approaches to taming that disorder are well recognized [2]. Less
understood is one of the key tools for taming disorder: watermarks.

The problem is reliably processing multi-source streams in dis-
tributed environments: different producers send events at varying
rates, the events flow along distinct paths, encountering varying
delays, and arriving at different consumers at different times. How
does one efficiently and reliably reason about the completeness of
such input data over time?

Flink and Cloud Dataflow address this problem with watermarks:
quantitative markers associated with a stream that indicate no
future events within a stream will have a timestamp earlier than
their timestamp.

In Section 2, we provide a definition of watermarks and discuss
some of their key uses. In Section 3, we categorize related work
across research and industry, and present initial arguments for why
we believe watermarks are the best known solution. In Section 4,
we explore the semantics of watermarks in detail. In Section 5, we
describe the two very different watermark implementations in Flink
and Cloud Dataflow. In Section 6, we evaluate those implementa-
tions side by side. In Section 7 we briefly discuss future work. And
in Section 8, we summarize our takeaways.

2 BACKGROUND
A watermark represents the temporal completeness of an out-of-
order data stream. The watermark’s current value informs a proces-
sor that all messages with a lower timestamp have been received.
Watermarks are propagated by a stream processing system from
event sources to processors, enabling order-dependent processing
on out-of-order streams throughout a data flow graph.
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Wewill more concretely discuss the applications of completeness
in Section 2.1, but begin with an example: in a case of online auction
processing, a bid processormight wait until it has received all events
which occurred before the end time of an auction. At that point, all
valid bids for that auction should have arrived and a final winner
may be determined, even in a system where events can arrive out-
of-order and with substantial delays. Watermarks are a key building
block for such logic.

Intuitively, a watermark is a correspondence between processing
time and event time (called system time and application time in
SQL:2011 [12], or transaction time and valid time in temporal data-
base literature [11]). Processing time is the time at which events
are observed or processed by a consumer; event time is the time at
which those events occurred in the real world. At every moment in
processing time, the watermark yields a timestamp that represents
a lower bound of the event times of all unreceived events. In other
words, if a watermark of tw is observed, the observer knows that
all records with event times less than or equal to tw have been
received, and all future records will have event times greater than
tw .

More formally, for a node N of a dataflow graph G and a totally-
ordered time domain T , let I be the sequence of input elements
arriving at N . The arrival timing of these elements is given by a
processing time function p : I → T . Each element is tagged with
an event timestamp, given by the function e : I → T . A watermark
for N is a functionw : T → T satisfying the following properties.

• Monotonicity: w is monotone. It must never “move back-
wards”.

• Conformance1: for all i ∈ I , w(p(i)) < e(i). A conformant
watermark must bound event times from below.

• Liveness:w(t) has no upper bound.
These properties require that watermarks eventually make forward
progress, but the watermark lag, t−w(t), can be unbounded. Bound-
ing the lag imposes a constraint on the event sequence that the
delay of all events be limited to some duration b, such that ∀i ∈ I ,
p(i) − e(i) < b.

This definition is sufficient to provide some intuition about how
watermarks function, but elides a number of practical details, par-
ticularly concerning watermark generation, propagation, and uti-
lization. We’ll discuss these topics in more detail in Section 4, and
then describe two implementation approaches in Section 5.

2.1 Key Uses of Completeness
Applications of completeness in stream processing systems typ-
ically boil down to managing one of two important aspects of
computation over an infinite stream: readiness and obsolescence.
Most commonly, we think of readiness and obsolescence in terms
of the streaming computation being performed, but they also play
a key role in monitoring and understanding data pipeline health
over time.

2.1.1 Readiness. For stream processing, readiness refers to the
state of having all necessary inputs available for producing some
output. While eventually-consistent algorithms are the bread and

1Conformant and non-conformant watermarks are sometimes referred to as “perfect”
and “heuristic” watermarks, respectively [2, 3].

butter of stream processing, many real-world use cases lend them-
selves poorly to such approaches where data are processed one at a
time, with results continually evolving along the way. For example:

Notifications & alerting: Even when a computation itself is
incremental (e.g., SUM, COUNT), the consumer of that incremental
computation’s output may not support updates, or the partial result
being computed along the way may be unstable or misleading until
a sufficient amount of input data has been received. A common
example is notification and alerting use cases, where the system
must generate a single notification containing a single correct an-
swer, not a stream of notifications containing incrementally refined
partial results. Watermarks provide a useful completeness signal to
generate a single conclusive result based on inputs from a specific
range of time, e.g., the COUNT of all login attempts in the last hour.

Data absence: An important category of computation where
partial results may be unstable or misleading is use cases which
involve reasoning about a lack of data, such as dip detection (e.g.,
detecting when the total count of visits for a time period is below
an expected threshold). Without a metric of completeness, how is
the computation to distinguish between a real dip in event rate
and lagging inputs in the event source? Watermarks provide such a
metric, making it possible to delay the evaluation of such a predicate
until all necessary inputs for the time period in question have been
observed.

Non-incremental processing: In other cases, the specific com-
putation being performed may simply be non-incremental. One of
the early use cases for MillWheel [1] involved calculating a cubic-
spline timeseries model for detecting anomalies in search query
patterns. It was not possible to incrementally add new data into this
model, so the arrival of additional inputs required fully recomputing
the model. At high data volumes, such recomputation can become
prohibitively expensive and adds little value. By using watermarks,
it is possible to delay computation of the models until all the inputs
for a given time window have arrived, after which the model may
be computed only once.

Many streaming systems today provide temporal readiness sup-
port via watermarks. To name a few, Flink [6] and Dataflow [2]
both provide generalized watermarks as a first-class concept in
their APIs, while Kafka Streams [17, 22] uses a non-conformant
watermark (referred to as a “grace period”) to provide final results.

2.1.2 Obsolescence. Obsolescence is the dual of readiness: ensur-
ing that input is not forgotten until all outputs dependent upon it
have been computed. Obsolescence is an important part of many
streaming pipelines, as it allows for stateful computation over infi-
nite streams without infinite storage.

MillWheel and Cloud Dataflow utilize system-time watermarks
to determine when it is safe to garbage collect exactly-once dedu-
plication data on the receiver side of a shuffle between two physical
stages in the pipeline [13]. Apache Beam and Apache Flink use wa-
termarks to garbage collect state allocated by a user’s computation
once no further event can cause it to be observed. Apache Spark’s
Structured Streaming uses a non-conformant watermark algorithm
for garbage collecting intermediate state [8] that is identical to the
grace period Kafka Streams uses for its final results feature: track a
high watermark of the max event time ever seen within a stream,
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then offset that by a static allowed-lateness delta to determine the
trailing horizon of timestamps which may be discarded.

2.1.3 Health Monitoring. Lastly, it’s worth highlighting that a com-
prehensive and well-instrumented watermark system provides a
reliable and general signal of overall pipeline health. Since water-
marks track progress throughout a data processing pipeline, any
issue that impacts the pipeline’s progress will manifest as a delay
in its watermarks. Assuming the stream processing framework
provides sufficiently fine-grained views of the watermarks (for ex-
ample, partitioned across and within physical stages in the pipeline),
it’s often possible to precisely locate an issue in the pipeline by
finding the first delayed watermark.

3 RELATEDWORK
A survey of research and industry shows there are a variety of
approaches to reasoning about completeness. We choose several
salient examples from the literature, group them into broad ap-
proaches to give a sense of how they work, and order them by
increasing generality and complexity.

• Order-agnostic processing: The eventually consistent ap-
proach to streaming computation [9] sidesteps the complex-
ity of disorder and completeness by ignoring these concerns,
but falls short for use cases like those described in Section
2.1 [17]. All streaming systems support this approach to
completeness, so we do not discuss it further.

• Ordered processing: Processing a collection that is already
ordered (usually by time) is a well-established way to guar-
antee completeness [4, 7, 10, 19, 23]. When each element is
processed, the system can assume that no earlier elements
remain unprocessed.

• Watermarks: Event-time watermarks, the approach we ad-
vocate in this paper, are a technique to approximate and react
to completeness in time without holding back elements for
sorting [1, 2, 6, 8, 18, 22]. Instead, elements are processed out
of order, and the watermark indicates an event time before
which no elements will enter the system.

• Timestamp frontiers: Timestamp frontiers, from the Timely
Dataflowmodel [16], are a generalization of watermarks that
allowsmultiple dimensions of time to advance independently.
Timely [14] uses these frontiers as a lightweight coordina-
tion mechanism for the parallel execution of nested iterative
programs.

• Punctuations: Punctuations [20] are a general technique
for indicating that no element satisfying a given predicate
(such as a timestamp less than a specified t ) will appear on
a data stream. They subsume the previous approaches, but
are difficult to implement generally and scalably.

3.1 Ordered Processing
Many stream processing systems assume events enter the system
in order. Examples include complex event processing systems [4,
10, 23] as well as more general-purpose systems like Trill [7]. This
ordering assumption is beneficial for multiple reasons. First, such
systems can be optimized for performance, in both storage and
processing. Second, the processing of the events is computationally
deterministic [19], which facilitates testing and debugging. Finally,

it gives the system predictable completeness semantics where the
arrival of each event guarantees that no earlier event will appear,
simplifying the design of in-order systems significantly.

Assuming ordered processing raises practical problems. First,
real-world sources often do not provide ordered input. Frequently,
events are generated by scattered sources, which makes it challeng-
ing to maintain event ordering. The most straightforward solution
to this problem is to buffer events until some lateness cutoff thresh-
old, then sort them. The cutoff can be decided in a number of ways,
including use of timeouts, estimation, and metadata. However it is
decided, the result is a latency penalty for all events as they wait for
stragglers to arrive. Second, order is not always needed. Many pro-
grams compute order-independent aggregations, like sums, counts,
or averages. These aggregations can proceed while waiting for
stragglers, creating a substantial opportunity to reduce latency.
However, in systems which enforce ordering, all programs are be-
holden to the delays introduced by the ordering process. Finally,
ordering generally requires restrictions on the parallelization of
processing, such as a static set of ordered partitions.

3.2 Watermarks
Instead of delaying and then sorting data, watermarks tame out-of-
order data by tracking the lowest timestamp that may yet appear in
a stream. This approach was originally presented as “heartbeats” by
Srivistava and Widom [18], then as “watermarks" in MillWheel [1],
Dataflow [2], and Flink [6]. These systems allow events to flow out-
of-order, but use a watermark to provide a termination marker. For
example, a system finding a windowed sum can accumulate the sum
until the watermark passes the end of the window, then emit the
sum immediately. Because the watermark can adapt to the data, it is
not necessary to introduce extra latency to account for stragglers. If
incremental semantics are desired, the system can also emit partial
aggregates. This allows programmers to take advantage of the
latency opportunity offered by stragglers: decrease peak load by
spreading out incremental computation while awaiting stragglers.

Unfortunately, out-of-order processing with watermarks brings
its own problems. Compared to ordered processing, processing
with generalized watermarks is more difficult to implement, reason
about, and program for. Debugging and optimizing the resulting
programs is yet more subtle. One approach to managing this com-
plexity is to narrow the scope and complexity of the watermark
system itself. As noted previously, Kafka Streams [22] and Spark
Structured Streaming [8] limit themselves to a simple heuristic
watermark for final results and garbage collection, respectively.

Finally, watermarks do not take full advantage of the latency
opportunities afforded by some kinds of program. Though water-
marks do not delay all input to allow stragglers to arrive, when
stragglers do occur in a pipeline they can delay downstream com-
putation arbitrarily even if those computations do not specifically
depend on the stragglers.

3.3 Timestamp Frontiers
The Timely Dataflow model [16] generalizes watermarks to track
progress along multiple time domains simultaneously. Just like
watermark-based systems, Timely systems allow programs to hold
the minimum timestamp frontier and register for notification when
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the frontier passes a timestamp. Each operator maintains a lower
bound of the timestamps it is capable of emitting, and the system
propagates these bounds between operators. Support for orthog-
onal time domains allows Timely programs to perform certain
tasks, like the simultaneous incremental and iterative processing
of Differential Dataflow [15], with unprecedented performance.

Unfortunately, the timestamps that result from working with
multiple independent time domains are even more difficult to pro-
gram than one-dimensional watermarks. Between out-of-order ele-
ments, state, frontiers, and capabilities, implementing sophisticated
operators in Timely is an intimidating prospect. Fortunately, the
library provides many APIs for conveniently building simple oper-
ators. This facilitates the simple case, but when complex operators
are needed, convenience APIs do not mitigate the complexity de-
scribed above.

3.4 Punctuations
Punctuations [20] are markers inserted into the stream to spec-
ify the end of a subset of data. It is a mechanism for a streaming
operator to declare that no more elements will be produced that
match some predicate. From this perspective, a watermark value
w at some operator is a punctuation declaring that elements with
timestamps less than w will not be produced in the future. Simi-
larly, the release of a Timely capability c is a punctuation that the
releasing operator will not produce elements with timestamp less
than c . Since punctuations work with arbitrary predicates, they can
be used to signal arbitrary completeness. For example, the origi-
nal punctuations paper uses them to identify obsolete state in a
deduplication operator.

Unfortunately, the generality of punctuations is also their weak-
ness. Each operator needs to implement a complex set of functions
for updating and propagating the punctuations through the pipeline,
and implementing these is both critical for correctness and difficult.
Punctuations also introduce an unfortunate coupling between op-
erators. In a general punctuation-based system, an operator may
be expecting predicates over certain properties that upstream op-
erators simply do not implement. Conversely, upstream operators
may produce punctuations that downstream operators cannot use,
creating inefficiencies. Further theoretical insight is needed to mit-
igate the programmatic toil imposed by watermarks, timestamp
frontiers, and punctuations.

3.5 Why Watermarks?
Of the approaches described above, we believe watermarks provide
the best balance of costs and benefits:

• Watermarks allow a system to react dynamically to chang-
ing input disorder, and do not impose a fixed latency cost
as do bounded disorder approaches.

• They allow incremental processing to proceed even as
the system awaits a signal that inputs are complete.

• A general watermarking system may be adapted to a va-
riety of different use cases, with specialized watermark
generation logic tailored to capitalize on unique characteris-
tics of a given input source.

• Shortcomings such as stragglers may often be mitigated by
relaxing the completeness constraints enforced by the
system, as appropriate.

• Although the complexity of a generalized watermark im-
plementation is indeed a very real challenge,much of the
complexity burden falls on the implementation of the
framework itself, not its usage; systems which eschew pro-
viding native completeness primitives simply push the com-
plexity of that task on their users. In Section 5, we discuss
two different implementations of watermark frameworks.

• Meanwhile, more general approaches such as timestamp
frontiers and punctuations bring additional complexity for
arguably diminishing returns, given that most use cases
do not involve iterative computation.

It is for these reasons that we believe watermarks sit in the
proverbial sweet spot of cost/benefit tradeoffs for approaches to
reasoning about completeness in unbounded stream processing.

4 WATERMARK SEMANTICS
In Section 2, we defined watermarks in the context of a single node
in a dataflow graph. In this section, we elaborate on the behavior
that emerges from this local definition when interactions across the
dataflow graph are considered. We begin by defining the system
model and interpreting it in terms of real-world concepts, then
discuss the three ways that users of stream processing systems
interact with watermarks: generating them from time sources, prop-
agating them through the program graph, and consuming them to
determine the completeness of data.

Along the way, we illustrate the concepts we discuss using the
example pipeline in Figures 1 and 2. These diagrams show snapshots
of the same pipeline taken at two successive points in time, thus
allowing us to observe the changes in the system with respect to
watermarks and their side effects as time progresses.

The example itself is a simple streaming analytics pipeline for
a multi-platform team game, aggregating hourly, per-team scores
across two separate platforms, web and mobile. Web events are
logged directly into Apache Kafka, while mobile events are routed
through Google Cloud Pub/Sub. Once consumed by the pipeline,
individual team members’ score events are grouped by team (red
or blue), windowed into hourly tumbling/fixed windows, summed
for each platform individually (web or mobile) as well as globally
across both platforms, then joined together into a single hourly
summary per team. We’ll discuss more details of the pipeline inline
throughout the rest of this section.

4.1 System Model
We model a stream processing system as a dataflow graph, with
a set of nodes and directed edges connecting them. Nodes have
access to local state, receive messages on their incoming edges, and
send messages on their outgoing edges. We assume that all activity
in the dataflow graph occurs within a totally-ordered time domain,
and message order is preserved on all edges. Finally, nodes can
interact with external systems as part of their processing, e.g. by
sending and receiving messages over a network.

Programmers of stream processing systems often rely on a frame-
work to abstract away much of the complexity involved in making
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Figure 1: Example streaming analytics pipeline at time t0, computing hourly per-team score aggregates. Individual score
events for each teammember are represented as circles containing the team name, score, and event time. Watermark updates
are black rectangles. Summary aggregates are rounded rectangles. Sources, watermark generators, and operators are labeled
as such. Faded events with dotted outlines have been processed already by the corresponding operator, and events with dashed
outlines are in-flight; these markings help illustrate progress over time when comparing against Figure 2.

Figure 2: Example pipeline at time t1 > t0. In this figure, time has advanced such that the input watermark has reached 12:00 at
the aggregation operator. As a result, the hourly summaries for the (11:00, 12:00] windows have been emitted downstream, and
the output watermark advanced to 12:00 as well. Sources and watermark generators have progressed, with Kafka offsets and
watermarks increased per partition, and the histogram of pending Pub/Sub timestamps evolved. Some new data has arrived.
Note the late (Blue, 4, 11:59) event in the mobile source, rendering that watermark non-conformant.

such systems scalable and fault-tolerant. Programmers specify their
program in terms of the framework’s high-level APIs. The frame-
work compiles and deploys this specification into a corresponding
dataflow graph. In this section, we avoid the specifics of any indi-
vidual framework for generality; Section 5 describes two particular
implementations.

4.2 Interpreting Watermarks
Based only upon its formal definition, the idea of a watermark
can seem arbitrary and uninteresting. However, from the intended
use cases, one can infer the contexts in which useful watermarks
arise. As previously noted, a watermark is a measure of a dataset’s
completeness with respect to time, over time. For that idea to make
sense, we must be able to interpret the dataset as follows.
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(1) The elements of the dataset represent events that occurred
in the real world.

(2) The time of those events was measured using one of a set of
adequately synchronized clocks.

(3) That measured time is inscribed as each element’s event time.
(4) Each element is introduced into our stream processing sys-

tem as a message, a process that can delay or reorder the
elements relative to their event time.

Inside the streaming system, one can think of our abstract dataset
as the set of all messages that ever were or will be sent on an edge.
One can interpret the watermark on that edge as information about
which real-world events have not yet been seen by the receiving
node. This is exemplified in Figures 1 and 2, where watermark
updates are only produced once all events known to the source
with event times less than or equal to the watermark are in-flight.
So interpreted, the watermark can be applied as discussed in Section
2.1.

4.3 HowWatermarks are Generated
When a node of a dataflow graph introduces elements to the stream-
ing system from an external event source, it must generate a cor-
responding watermark. To do so, one must take account of the
elements (events) of the dataset and track their introduction into
the streaming system. If an element is delayed, the watermark is too.
If an element is lost (assuming this is tolerable), it must be excluded
from consideration in the watermark. Whenever all elements with
event time less than some timew have been sent as messages, the
watermark for that node can advance tow .

In practice, generating a watermark that satisfies the confor-
mance property (a “conformant” watermark) is challenging. An
event dataset often traverses numerous systems before finally reach-
ing the streaming system, such as the devices on which the events
occur, logging systems, storage systems, and message buses. Sup-
port for this propagation in current systems is limited, so ensuring
that all elements are properly accounted and the information is
propagated through these systems is a challenging engineering
problem.

In Figure 1, web events are logged directly to Kafka by a static
set of frontends, each of them writing events with timestamps
in monotonically increasing order, effectively ensuring that all
necessary ordering information is retained. In this configuration,
it’s possible to compute a conformant watermark as the min of the
largest timestamp thus far encountered in each partition, minus
one, to account for the possibility of the next event having an equal
timestamp to the current max.

Another case where it is feasible to generate conformant wa-
termarks is within the streaming system itself. Some streaming
systems measure the time of events happening within the system,
such as messages being sent or received by the system, state being
read or written, etc. They piggyback those measurements atop other
messages, tracking separate watermarks for system-event times
and application-event times. This results in “system watermarks”,
which are useful for certain types of garbage collection and health
monitoring, as discussed in Section 2.1.

In cases where guaranteeing conformance is impracticable, pro-
grammers must rely on heuristics to predict delays and losses in

a dataset to generate watermarks from within the streaming sys-
tem. When using a non-conformant watermark, the system may
introduce elements older than the watermark. We refer to these
elements as late data. Generally, late data is undesirable, so users
try to balance latency requirements against quantity of late data.

A common watermark heuristic is to assume bounded disorder
in the process of transporting events from sources to the system.
Under this assumption, when an element with an event time t is
introduced to a node, the node advances its watermark to t − ∆,
where ∆ is a configurable constant. Another common heuristic is
the timeout, where thewatermark is advanced to t after waiting for
some constant duration to elapse after the first element with event
time t is introduced. We have found both of these heuristics to be
problematic in practice, as they introduce unnecessary delays when
the system is running well and not enough delay when problems
arise, yielding large amounts of late data.

A more sophisticated heuristic is to statistically model the be-
havior of event sources, and adapt the watermark delay accordingly.
The node calculates a rolling histogram of element lag (similar to
the histograms in Figures 1 and 2), which is the difference between
the arrival time and event time of an element. This histogram ap-
proximates the distribution of the delay between an event and its
introduction to the system. The node fits a statistical model (e.g. a
Gamma distribution) to the histogram and delays the watermark
by the duration corresponding to a quantile chosen according to
application requirements (e.g. 0.999). By re-evaluating the fit peri-
odically, the watermark can adapt to changes in the behavior of the
source, like delays caused by congestion or outages. This kind of
approach takes considerably more effort than the simple heuristics
above, but we have found it to substantially improve watermark
latency while yielding less late data.

In Figures 1 and 2, the watermark generator for mobile events
constructs a histogram tracking all known event times for data
buffered in Pub/Sub and not in-flight downstream. The generator
then uses the timestamp of the smallest non-empty bucket in the
histogram as the basis for its watermark. However, because mobile
events may be arbitrarily delayed, it’s possible for data to arrive
late. We see this in Figure 2, where an event with timestamp 11:59
arrives in Pub/Sub after the watermark generator advances the wa-
termark to 12:00. The source must latch the watermark to 12:00 to
maintain monotonicity, violating conformance. Strategies for deal-
ing with late data due to non-conformant watermarks are discussed
in Section 4.5.

4.4 HowWatermarks Propagate
Assuming all nodes that introduce new elements are able to generate
adequate watermarks, we turn to the question of how to compute
the watermarks of other nodes in the graph. The goal for these
derived watermarks is to advance them quickly without making
any more data late. Here, we discuss the constraints implied by this
goal on the derived watermarks, deferring a discussion of specific
algorithms to Section 5.

It is useful to generalize the definition of watermarks (given in
Section 2) to include edges in the dataflow graph. The definition is
similar to that for a node but restricts the elements considered to
those sent along the edge.
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From their definitions, we can conclude that the watermark for
a node must not be less than that for any of its incoming edges.
The watermark for an edge depends on the messages that its source
node will send in the future, which, of course, depends on the logic
within that node. For arbitrary node logic, that’s as much as we can
conclude, but there are several common patterns that are worth
exploring.

First, consider nodes that perform stateless, element-wise com-
putation, sending messages with unchanged timestamps. The wa-
termark for an edge outgoing from such a node is only constrained
to be no greater than that of its source node. If the watermark of
the source advances, that means that it will receive no messages
with an earlier timestamp, which means the node will not send any
such messages either.

Second, consider nodes that aggregate messages using a node’s
local state (e.g. a some type of a node-local store, serving as a
temporary processing memory). This pattern is common when
implementing JOIN, GROUP BY, or PARTITION BY operators. As
messages arrive at a node, it stores them or a partial aggregate
in its state until the watermark indicates that all messages in an
aggregate have arrived, at which point the final aggregate is sent.
This final aggregate usually has an event time that is a function of
the event times of the messages that comprise it, like max or min.
Here, the watermark must be held back by applying the timestamp
aggregating function to the stored data (either buffered messages
or partial aggregates) and the node’s watermark. For example, if
the function is max, the watermark for outgoing edges must not
exceed max({w} ∪ S), wherew is the node’s watermark and S is the
set of event times in the node’s state. We see this in Figures 1 and 2,
where the aggregation operator holds the watermark to the min of
its input watermarks and the start times for all incomplete hourly
windows buffered in state.

In general, frameworks cannot automatically infer watermark
propagation constraints. The use of pattern-specific methods is
preferred when possible, as direct manipulation of the watermark
is error prone.

4.5 HowWatermarks are Consumed
At this point, we have explained how to compute watermarks for
every node and edge in a dataflow graph. The remaining question
is “How should they be used?”

The most general answer is that nodes can read the watermark
and incorporate its value into their processing. A typical interface
for this functionality is to allow programmers to schedule callbacks
when a node’s watermark reaches or exceeds a certain value. We
call such callbackswatermark timers by analogy with traditional,
real-time timers. For example, if a node is computing the number
of messages with event time between t0 and tf , it can store a run-
ning count of the number of such messages seen, and register a
watermark timer for tf . When the watermark reaches or exceeds
tf , the callback sends the current value of the counter on an out-
bound edge, which is guaranteed to include all messages within
the interval.

This is another pattern that can be captured by higher-level APIs:
if a program is aggregating a set of elements whose timestamps have
a known upper bound, a framework can automatically schedule

watermark timers for each aggregate and send the final aggregate.
Such aggregates are known as “windows” in Apache Beam and
Apache Flink, overloading the term as used in SQL and complex
event processing. We see this in Figures 1 and 2, where watermark
timers are set for the end of each hourly window. Upon triggering,
the corresponding aggregates are emitted downstream.

Non-conformant watermarks complicate processing that de-
pends on watermarks. They weaken the guarantee of completeness,
turning it into an educated guess from the data source, and leading
to the production of late data. Despite the added complexity in
downstream code, the use of non-conformant watermarks can be a
worthwhile trade-off. A number of techniques are known to deal
with late data which are typically easier than instrumenting data
sources with completeness information.

The most basic technique is to simply ignore late data and
compute an approximate result. This technique is useful because it
makes a non-conformant watermark conformant, which relieves
downstream nodes from having to take late data into account. But
there are substantial downsides. The results of such programs are
not guaranteed to be correct, and likely depend on the timing of
input elements. Use cases that do not require highly accurate results
can often tolerate these disadvantages. However, it is prudent to
vet the heuristics used to compute the watermarks of a pipeline’s
sources and instrument the pipeline to monitor how much late
data is dropped; the next best thing to having accurate results is
knowing their inaccuracy.

Another technique is to recompute results when late data
change them. This creates two challenges: increased resource con-
sumption and complexity. The increased resource consumption
comes from retaining results while waiting for late data to arrive
and the additional processing when they do. The complexity comes
from converting program logic into an incremental form that can
react to late data correctly and efficiently. Some frameworks, such
as Differential Dataflow, can do this conversion automatically, but
most, including Beam, Kafka Streams, Flink, and Spark rely on pro-
grammers to ensure the program is correctly incrementalized. Once
these challenges are overcome, the resulting program is robust
to late data while still benefiting from the heuristic completeness
provided by non-conformant watermarks.

5 IMPLEMENTATIONS
For the rest of the paper, we turn our focus to the watermark imple-
mentation in two modern stream processing systems, Apache Flink
and Google Cloud Dataflow. These two systems are particularly
interesting because they support essentially identical, sophisticated
watermark semantics, but do so via markedly different approaches.
In Flink, watermarks are computed and propagated through the
pipeline along the data path, whereas in Cloud Dataflow water-
marks are computed and propagated out of band via an external
aggregator.

Additionally, both systems are well supported by Apache Beam,
a framework and protocol for defining data processing pipelines in
several programming languages,2 for execution on one of several

2Currently Java, Python, SQL, and Go.
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data processing engines.3 This affords us the opportunity to evalu-
ate the execution of an identical Apache Beam pipeline using both
Flink and Cloud Dataflow.

In this section, we compare the watermark implementations in
Beam, Flink, and Cloud Dataflow from an architectural perspective.
Then in Section 6, we compare Flink and CloudDataflow empirically
by running a suite of Apache Beam benchmarks on both.

5.1 Watermarks in Beam
The main usage of Apache Beam in this paper is to provide a com-
mon mechanism for defining a pipeline for evaluation on Flink and
Cloud Dataflow. But there are some interesting aspects of Beam’s
watermark implementation that are worth calling out before diving
into a comparison of those two systems.

Firstly, to provide portability across engines, Beam includes its
own generalized definition and protocol for managing watermarks
and their affect on aggregation steps. To execute user-defined steps
in a Beam pipeline, a data processing engine sends RPCs to a Beam
SDK harness, which is a UDF server that performs computations
and emits watermark-related metadata.

Secondly, a unique feature of Beam is the so-called Splittable
DoFn: data sources which are not roots of the data processing graph,
but intermediate nodes. For example, a user-defined data processing
step may accept a stream of URLs indicating a dynamic set of event
streams to be read and produced downstream. The Beam protocols
allow individual input elements to result in unbounded outputs,
while maintaining checkpoints and updating watermarks. Thus, the
Beam UDF server is intimately involved in watermark processing.

5.2 Watermarks in Flink & Cloud Dataflow
Apache Flink and Google Cloud Dataflow are distributed data
stream processors that both implement a watermark mechanism
supporting event-time processing semantics and have much in
common architecturally. Flink and Cloud Dataflow programs are
defined as directed, acyclic graphs. Graph nodes represent stateful
data processing operators and directed edges represent the data
channels between operators. Each operator in the dataflow graph
is translated in one or more execution nodes, which are distributed
throughout a cluster of servers. Node state and input data are parti-
tioned across these nodes to be processed in parallel. The execution
nodes send and receive messages via communication edges.

Despite this similarity, the two systems diverge significantly in
their watermark implementations: Flink represents watermarks as
metadata inside the data streams themselves, while Cloud Dataflow
computes and propagates watermarks out-of-band via a separate
aggregator node. We elaborate on the two approaches by looking
at how they generate, propagate, and consume watermarks.

5.2.1 Generating Watermarks. Flink: A Flink program can gen-
erate watermarks in its source nodes or in dedicated watermark
generation nodes. Source nodes may compute watermarks based on
the ingested elements or leverage metadata provided by the system
fromwhich they read their input elements, such as system-managed
partitions, offsets, or timestamps. Dedicated watermark generation
3Currently there exist production runners for Apache Spark, Apache Flink, Apache
Samza, Apache Nemo, Hazelcast Jet, Twister2, Google Cloud Dataflow, and IBM
Streams. Draft runners exist for Apache Tez, Apache Hadoop MapReduce, and JStorm

nodes can compute watermarks only based on the timestamps of
the input elements they have observed.

Flink features two mechanisms to publish watermarks. Nodes
can continuously maintain a watermark and publish it periodically
based on a configurable watermark interval. Alternatively, nodes
may directly publish watermarks, possibly for every input record
they process. Flink guarantees the strict monotonicity of water-
marks by only forwarding watermarks that are larger than the
previous watermark.

CloudDataflow: Cloud Dataflow relies on Beam’s source frame-
works, namely UnboundedSource and SplittableDoFn, to gener-
ate watermarks. UnboundedSource provides the means for estab-
lishing watermarks at root nodes of the pipeline graph, whereas
SplittableDoFn affords the ability to establish (or re-establish)
watermarks at any point in the pipeline. The Beam protocol for
setting the watermark uses watermark holds, timestamps stored in
a node’s state that prevent its watermark from advancing.

Cloud Dataflow utilizes a single mechanism for publishing water-
marks, more akin to the first approach in Flink: nodes continuously
maintain a local watermark and publish it periodically based on
a system-wide watermark interval to a global watermark aggre-
gator. As in Flink, Cloud Dataflow ensures strict montonicity of
watermarks.

5.2.2 Propagating Watermarks. Flink: Flink nodes propagate wa-
termarks by emitting them as special metadata messages alongside
regular data output. Since Flink’s communication edges preserve
the order of sent messages, a receiver node ingests watermarks and
data messages in the same order in which they were emitted by the
sender node.

Each node keeps track of the maximum watermark received on
each of its input edges. The watermark of a node is computed by
taking its smallest input-edge watermark. When a node receives
a new watermark message, it updates the corresponding input-
edge watermark and checks whether it needs to update its node
watermark.

Flink’s processing nodes do not persist watermark metadata.
When a node is restarted to recover from a failure, its watermark is
set to a low-valued constant. The watermark is set once the node
receives a new watermark message on all of its input edges.

Cloud Dataflow: Cloud Dataflow is dynamically load balanced.
Instead of static partitioning, each operator’s data stream is dynam-
ically range partitioned, producing an evolving data flow graph
where nodes can split, merge, and move between workers. Each
node keeps track of the current sets of unprocessed records and
watermark holds. These are summarized into histograms, which
are both kept in memory and stored persistently. The watermark
for a node is computed as the minimum of the lower bound of these
histograms and the watermarks of input edges.

Each node periodically reports the current watermark to a central
system that aggregates the watermark reporting over all nodes. This
central system is partitioned by one or more operators, and so can
handle a substantial reporting load. The watermark for an operator
is computed as the minimum over all of its node watermarks. This
aggregated operator watermark is sent to nodes with input edges
from that operator, where it is used as the input-edge watermark.
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5.2.3 Reacting to Advancing Watermarks. Flink and Cloud Data-
flow both reduce all watermark-based processing into executing
watermark timer callbacks. A node sets timers according to its ap-
plication requirements, either explicitly via watermark timer APIs,
or implicitly via windowing and watermark trigger APIs. When
a node’s watermark advances, it processes all unprocessed timers
with timestamps less than the watermark’s new value, invoking the
corresponding callback for each timer. These callbacks may send
messages or modify state. This process is essentially identical in
both systems. Once timers have been processed, the newwatermark
value is propagated to all successive nodes.

5.2.4 Design Tradeoffs. The two differing approaches to water-
mark implementations in Flink and Cloud Dataflow result in some
interesting design tradeoffs. We discuss a few of these here, as well
as some challenges to which both approaches are susceptible.

Watermark reporting latency is slightly higher for Cloud
Dataflow due to the extra network hop required for watermark
updates to reach the central watermark aggregator, as well as the
time spent on persisting watermark progress to persistent state.
This contrasts with Flink’s approach of embedding watermark up-
dates within data streams and never persisting them.

Fault recovery is slower in Flink than in Cloud Dataflow due
to the finer granularity at which Cloud Dataflow’s state (including
watermark progress) is checkpointed. When a single Cloud Data-
flow node fails, a replacement node must be brought online, after
which it can read its state to initialize watermark values. In contrast,
when a single Flink node fails, a replacement node must be brought
online, and the entire pipeline must halt, rewind, and resume from
the last completed checkpoint before the failure occurred. Water-
marks are reset to the beginning of time and must be propagated
once more from sources before processing can resume.

These design choices were the direct result of environmental
assumptions made about where each system would typically be
run: Cloud Dataflow’s processing core runs on Google’s Borg [21]
cluster manager, where priority-driven preemption of running tasks
is the norm, whereas Flink jobs were designed for execution on
bare metal hardware or public cloud VMs (or a container manager
running thereon), where preemption is non-existent or rare.

Consistency semantics are more complex to ensure in Cloud
Dataflow due to the dynamic range partitioning and coordination
with the external watermark aggregator. Cloud Dataflow relies
upon a distributed ownership protocol to ensure only one worker
may report watermark updates for a given processing key range
at any one time. In contrast, Flink piggybacks on its existing work
ownership protocols for data streams. And because Flink nodes
ingest data messages andwatermarkmessages from the same queue,
no additional synchronization is required to prevent concurrent
processing of data elements and timers.

Idle workers require special handling in Flink. A source node
without watermark progress can affect the progress of the whole
program. To mitigate the problem of a source task without input
data, Flink source nodes can declare themselves as idle, which
means that their output channels are temporarily excluded when
subsequent nodes update their watermark. Source nodes become
active again as soon as they continue to emit elements. Cloud Data-
flow watermark updates continue even in the absence of data, and

a source node that currently has no data to deliver will publish a
watermark which continues to track current system time.

Bottlenecks are problematic for both systems. The speed at
which the watermark of a node advances depends on the watermark
update speed of its slowest predecessor. This means that, depending
on the program, a single overloaded or bottle-necked node can
obstruct the progress of all downstream nodes in the graph.

Watermark skew is another common problem. For example,
two source nodes can read different partitions of the same source
or from completely unrelated sources. In either case, watermark
progress is limited to the source node with the lowest watermark
and slowest progress. Unaligned source watermarks can lead to a
significant increase in state size to buffer in-flight data. Flink and
Cloud Dataflow both utilize skew-control synchronization mecha-
nisms across nodes that can be used to coordinate data ingestion
such that faster source nodes hold data back in the source system
to keep their watermarks more closely aligned.

6 EVALUATION
In this section, we evaluate the results of running a single Apache
Beam pipeline on both Flink and Cloud Dataflow using a number of
different configurations. Our experiments are meant to verify that
the implementations of watermarks scale reasonably as the under-
lying data processing workload scales. What are the implications on
latency as a function of scale? There are many possible dimensions
of scale, but the most important in practice are (a) the number
of workers in a job, (b) the amount of throughput handled by
the job, and (c) the depth of the job’s topology. Our experimental
configurations are chosen to hold one or more of the dimensions
constant while varying the others. The details of the pipeline logic
don’t affect watermark propagation; only the overall load on the
system has an effect.

Our experimental setup consists of a Beam pipeline4 that:
(1) Generates and assigns message timestamps at the beginning

of the pipeline at a constant rate. The messages are times-
tamped to wall-clock time - this is done to avoid extraneous
delays associated with sources from affecting our measure-
ments.

(2) Shuffles messages uniformly across a set of 1000 distinct
keys.

(3) Windows the messages into 1-second windows after the
shuffle, and delivers individual window results when water-
mark advancement indicates that a given window has closed.
Note that since the messages are generated internally to the
pipeline, this is a conformant watermark, and there will be
no late messages.

(4) Repeats the shuffle-and-window steps another two times.
(5) Measures the difference between each window’s maximum

timestamp and the time it was produced. This difference is
the latency induced by the watermark system when propa-
gating watermarks from one window task across a shuffle
stage to the next window task.

The pipeline was implemented with Apache Beam 2.27.0 and
executed with Beam’s runners for Flink and Cloud Dataflow. Ex-
periments were run in three configurations:
4Code available at: http://s.apache.org/watermarks-paper-beam-pipeline
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• Number of workers varied.
• Throughput varied.
• Pipeline depth varied.

Results5 measure the median and 95th-percentile latencies of
window materialization caused by watermark advancement at dif-
ferent stages of the job.

We ran our Flink experiments with Apache Flink 1.12.1 on
Google Compute Engine. Each worker was configured with a single
processing slot and ran on an n1-standard-2 node with 2 vCPUs
and 7.5GB RAM. We enabled unaligned checkpoints and configured
a checkpointing interval of ten seconds, i.e., every ten seconds a
full copy of the pipeline’s state and in-flight data was taken.

We ran our Cloud Dataflow experiments in early February with
Apache Beam 2.27. Each user worker also ran on an n1-standard-2
node using Cloud Dataflow’s Streaming Engine service.

In these experiments, we are onlymeasuringwatermark propaga-
tion latency; end to end latency of data being available downstream
depends on a number of factors including how disordered the input
streams are and whether the sinks require waiting for checkpoints
to produce output.

6.1 Watermark Latency vs. Worker Count
In our first configuration, we measured observed changes to water-
mark latency as worker count was varied from four to 128 workers,
with throughput held constant at 1000 messages per second, 24
bytes per message, and pipeline depth of three shuffles.

Figure 3 shows the results for the Flink and Cloud Dataflow ver-
sions of the pipeline, respectively, with median and 95th-percentile
latencies captured following each of the three shuffle stages.

Flink: In Flink, each shuffle stage adds approximately 100 msme-
dian latency. The increasing number of workers has only a marginal
effect on median and 95th-percentile latencies, but the numbers do
show an upwards trend as worker count increases.

Dataflow: In Cloud Dataflow, each shuffle stage adds approxi-
mately 500-1000 ms median latency. Conversely to Flink, increasing
the number of workers decreases the latency of window materializa-
tion. This is expected since as we increase the number of workers
while holding the throughput constant, we increase available paral-
lelism, spreading out the work. This also demonstrates that with
the currently-tested scale, we do not enter into a region where the
number of workers starts to noticeably affect the additional delay
due to watermark aggregation.

6.1.1 Cloud Dataflow Constants and Shuffle Latency. As a brief
aside, we discovered two interesting corollary results with Cloud
Dataflow as part of these experiments.

Firstly, initial experiments showed no variation at all with scale.
However we quickly found that this was the side-effect of default
turnings in Cloud Dataflow’s watermark aggregation batching be-
ing set too conservatively. Cloud Dataflow has tunings around
the periodicity of aggregation and bucketization of timestamps
that err on the side of higher latency to avoid potential scalability
drawbacks. With the default tunings, all configurations resulted
in a latency around 3 seconds per shuffle+window, which was ef-
fectively measuring the sum of the periodicity and bucketization

5Raw data available at: http://s.apache.org/watermarks-paper-evaluation-data

Flink

Cloud Dataflow

Figure 3: Latency vs. Worker Count

tuning parameters. Adjusting all of the relevant tunings down to
10ms values yielded better results that demonstrated the effect
of scale on latency. Similar parameter tunings will be pushed to
production in the future.

Secondly, when we measure the latency of window material-
ization in Cloud Dataflow, we are also measuring the latency of
the associated GroupByKey shuffle, so for additional insight, we
measured and compared those numbers independently.6

Here we note that the window materialization latency closely
tracks the higher-percentiles of shuffle latency - being generally
close to the 95th percentile of shuffle latency. This is expected,
since all data for a window must be shuffled before the window
can be materialized. This also shows that the latency of window
materialization is dominated by the latency of the shuffle and the
additional latency of aggregating and broadcasting watermarks is
comparatively insignificant.

6Since Flink propagates watermarks inlinewith data, it is not possible to report separate
latencies for data shuffle and watermark updates.
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6.2 Watermark Latency vs Throughput
In our second configuration, we measured observed changes to
watermark latency as throughput was varied from 10,000 to 100,000
messages per second at 24 bytes per message, with worker count
held constant at 128 worker nodes and three shuffles.

Flink

Cloud Dataflow

Figure 4: Latency vs. Throughput

Figure 4 shows the results for the Flink and Dataflow versions
of the pipeline, respectively, with the median and 95th-percentile
latencies captured for shuffle stages between two consecutive win-
dow tasks. For Dataflow, watermark latency tracked closely with
shuffle latency just as in the Watermark Latency vs Worker Count
experiment. We have already accounted for this effect in the previ-
ous experiment so we omit the separate data on shuffle here.

Flink: In the Flink pipeline, the watermark latency grows only
moderately from 105 ms to 140 ms when increasing the throughput
from 10,000 to 100,000 messages per second.

Cloud Dataflow: In the Cloud Dataflow pipeline, we observe
that the window materialization latency does increase in the ex-
periment where we hold the number of workers constant and vary

throughput. Here too though, the latency is dominated by shuffle
latency, and the effect of higher throughput on watermark aggre-
gation appears negligible.

6.3 Watermark Latency vs. Pipeline Depth
Finally, we measured the effect of increasing the number of shuffle
stages in the pipelines. In Dataflow, we observed no significant
change in latency based on the number of shuffles, but in Flink,
there was a clear relationship where higher numbers of workers and
shuffles resulted in higher latency, as shown in Figure 5. We verified
that the effect is not caused by a saturated network, checkpointing
overhead, or backpressured tasks and hypothesize that it might be
due to the watermark processing subsystem being overloaded by
the overall volume of watermark traffic.

Figure 5: Flink Latency vs Pipeline Depth

6.4 Takeaways
Finally, an important contrast between the implementations is that,
overall, the Dataflow latency numbers are somewhat higher. This
is due to the different implementations of checkpointing. Cloud
Dataflow checkpoints messages that are being shuffled "in-line,"
meaning that the latency here includes the latency of the writes
associated with the checkpointing of the data. On the other hand,
Flink globally checkpoints data periodically.

7 FUTUREWORK
One key part of incorporating watermarks into a system is the
method of watermark generation for the data sources in a pipeline.
Currently, in Apache Beam, this is done on an ad-hoc basis for
each type of source. For example, when reading from an ordered-by-
partition source like Kafka, we can assume ordering of timestamps
per partition and use the minimum of the latest timestamp seen
across partitions. However, this makes writing new sources difficult,
as this logic needs to be designed and implemented separately for
each new source. Future work could address this by finding common
patterns across sources which can be generalized easily to new ones.
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Another area of future work is to quantify the differences in fault-
tolerance of the watermark systems between Flink and Cloud Data-
flow. In Section 5.2.4, we discussed these differences qualitatively,
but the precise costs are not completely known.

8 SUMMARY
Watermarks represent the temporal completeness of an out-of-order
data stream. Reasoning about the completeness of infinite streams is
one of most critical challenges faced by stream processing systems.
It’s also one of the least understood and least adequately addressed.
Compared to other approaches for dealing with completeness of
unbounded data streams (order-agnostic processing, ordered pro-
cessing, timestamp frontiers, punctuations), we believe watermarks
provide the best balance of cost/benefit tradeoffs.

Watermarks allow the system to support important streaming
use cases that require providing a single authoritative answer (such
as notifications), require reasoning about a lack of data (e.g., dip
detection), or require expensive or non-incremental processing (e.g.,
MAX of a SUM of signed integers). They provide important signals
that allow a streaming system to efficiently and safely garbage
collect unneeded inputs and state. And they act as a remarkably
general first-alert system for issues occurring within data stream-
ing pipelines, often highlighting when and where a problem is
occurring, regardless of the underlying root cause.

Watermarks afford all of this in the face of dynamically changing
input disorder, and while still allowing incremental processing to
proceed as the system awaits a completeness signal. They may be
applied very generally to a broad class of input source types using
heuristic or statistical algorithms, or fine-tuned with specialized
watermark generation logic tailored to the unique characteristics
of a given source.

Watermarks do have their shortcomings. A common pain point
is watermark generation algorithms which are overly conserva-
tive, resulting in unwanted delays. But such issues can often be
addressed either by fine-tuning the watermark implementation, or
relaxing the completeness constraints enforced by the watermark
generator or system. Another common criticism of watermarks is
their complexity, but we believe this is a false argument, as systems
which opt out of tackling the challenges of completeness them-
selves simply push that complexity onto their users; far better for
us as system builders to solve the problems of completeness within
the framework itself, and relieve our users of that burden.

Furthermore, we believe that when properly understood, water-
marks are not so scary and complex. Simply put, a watermark’s
current value informs a processor that all messages with a lower
timestamp have been received. From an architectural perspective,
there are just three core pieces of a functional watermark imple-
mentation: generation, propagation, and consumption.

Watermark generation is by far the most challenging of the three,
due to the relatively open-ended nature of computing a complete-
ness signal for unbounded streams of data. Approaches vary from
simple heuristics (e.g., “max event time ever seen plus timeout de-
lay” high watermarks available in Kafka Streams, Spark Structured
Streaming, and one of Flink’s watermark generator implementa-
tions), to more sophisticated algorithms (e.g., Adaptive Watermarks
for Flink [5]), to custom logic hand-tuned to a specific input source’s

unique characteristics (e.g., a conformant watermark generator for
a Kafka topic whose static set of partitions are known to contain
monotonically increasing timestamps, or Cloud Dataflow’s bespoke
watermark generator for Google Pub/Sub [3]).

Once generated, watermark propagation is a classical distributed
systems exercise: aggregate and deliver watermark updates through
the pipeline in an efficient, scalable, and reliable manner. Inter-
estingly enough, Flink and Cloud Dataflow provide two distinct
approaches to this endeavor: one in-band with the data streams
themselves, another out-of-band via an external aggregator.

Of course, a watermark signal is of no use unless it’s acted upon.
Of the three architectural pieces, watermark consumption is the
most straightforward. In most cases, it involves invoking an action
after a watermark advances beyond a target timestamp.

Taken together, these three pieces are all a system needs in
order to provide a robust and flexible mechanism for reasoning
about completeness. And as our experimental evaluation shows,
the differing approaches taken by by Flink and Cloud Dataflow both
yield respectable watermark latencies in the 100s of milliseconds
range, even in the face of scaling worker counts and throughput.

There are differences between the two approaches. Cloud Data-
flow tends to have slightly higher latencies (due to the extra network
hop and persistent storage writes for checkpointing watermark
progress); Flink latency appears to grow super-linearly as both
pipeline depth and worker count increase (likely due to the in-
creased volume of watermark traffic and a hidden inefficiency in
the watermark subsystem). But the overall shape of the user expe-
rience provided by the two systems is remarkably similar, which
again hints at the idea that sophisticated watermark systems are in
fact quite tractable to build.

For Flink and Cloud Dataflow, watermarks have proven to be an
indispensable tool that allows our users to tame some of the trickiest
problems in stream processing. It is our hope that this paper helps
shed some light and understanding on this misunderstood beast,
and we look forward to seeing how the broader stream processing
community continues to evolve watermarks over the coming years.
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