
3194



view of NVM research beyond the work within the data manage-

ment community. Generally, by introducing NVMs and their huge

potential, we aim to enable researchers from different fields, such

as Edge computing, data analysis, AI, and others, to extend their

work and experience by using NVMs, which is possible by having

better understanding of NVMs and their main challenges, especially

in terms of their limited write endurance and high write energy

consumption. To provide more depth to the presented topics, for

each part we highlight and discuss in more details one or two

representative systems.

Tutorial time and structure. The target length of the tutorial

is 1.5 hours and it is divided into four sections: (1) Introduction

(Section 1): This section introduces the unique characteristics of

NVMs and the salient challenges of low write endurance and high

energy consumption. It also showcases how NVMs are used in

current data management systems. (2) Overcoming low write en-

durance via write amplification reduction (Section 3.1): This section

shows the method that is typically adopted in data management sys-

tems which conflates write amplification reduction with improving

write endurance. We will show how write amplification reduction

helps in overcoming low write endurance and how it misses op-

portunities to improve write endurance further by conflating the

two problems. (3) Overcoming low write endurance via local write

optimizations (Section 3.2): This section consists of storage and

software techniques that are designed specifically to overcome low

write endurance via tecniques that aims at minimizing bit flips in

the NVM device. (4) Overcoming low write endurance via memory-

awareness (section 3.3): This section presents a recent technique

that aims to overcome the problem of low write endurance by judi-

ciously selecting memory locations for new writes with the goal of

reducing bit flips.

3 TUTORIAL OUTLINE

In this work, we present the main concerns, challenges, and lim-

itations of state-of-the-art methods that have utilized NVMs in

their designs by dividing them into three main groups based on

the trends and solutions they propose to solve the problem of low

write endurance. We also identify the short- and long-term research

opportunities in this space.

3.1 Reducing write amplification

Many data storage and indexing solutions target the reduction of

write amplification to optimize the utilization of I/O bandwidth.

This is done via various techniques, including delaying the consoli-

dation of writes [15, 18], caching [2, 5, 26], and others [30]. With

the introduction of NVM to the memory hierarchy, it turns out that

reducing write amplification can have the positive side-effect of in-

creasing NVM write endurance since less data is written. However,

this is not an easy task to do due to the fact that all the existing data

structures and database systems have been designed for DRAMs

and HDDs, where the challenges of the lifespan of memory seg-

ments and the energy consumption of writes are not as significant

in DRAM/HDD as they are in NVM. However, as discussed before,

when it comes to NVMs, write operation needs to be performed

wisely. So, the proposed methods in this group reduce the write am-

plification in an attempt to decrease the average number of updated

cells and as a result increases the lifetime of NVMs.

To achieve this, many methods re-design existing data struc-

tures and database systems to mitigate the write amplification issue

caused by them instead of designing and building new ones from

scratch. The reason behind this is that existing data structures

and database systems have undergone decades of research that

makes them extremely efficient and makes building alternatives

from scratch an arduous task.

Log-Structured Merge-tree (LSM-tree) is one of those data struc-

tures that has been widely adopted for use in the storage layer

of modern NoSQL systems, and as a result, has attracted a large

body of research, from both the database community and the stor-

age systems community, that try to improve various aspects of

LSM-trees by using NVMs [7, 15, 20]. NoveLSM [15] is one of these

methods. This method is a persistent LSM-based key-value stor-

age system designed to take advantage of having a non-volatile

memory in its design. To tackle NVM’s limited write endurance,

NoveLSM comes up with a new design, where only the parts of the

key/value store that do not need to be changed frequently, such as

immutable memtables, are handled by NVM. On the other hand,

other parts, such as mutable memtables, which need constant up-

dates and data movements, are placed on DRAM, which do not

have any restrictions on write operation. WiscKey [20] is another

work, which proposes a persistent LSM-tree-based key-value store,

which has been derived from the popular LSM-tree implementa-

tion, LevelDB. Although, like the other methods in this category,

WiscKey focuses on decreasing write amplification, it achieve this

through a different and simple way, which is separating keys from

values. This method observes that since the indexing is done by

keys, and not values, they do not need to be bundled together when

they are stored in the LSM-tree. So, in this method, only keys are

kept sorted in the LSM-tree, while values are stored separately in

a log. Through this insight, they have reduced write amplification

by avoiding the unnecessary movement of values while sorting.

Although this technique is originally proposed for SSDs, it can be

generalized to storage class memories, which suffer from the same

limitation.

Another data structure that has been redesigned to utilize NVMs

is B+-Trees, which is used widely in K/V data stores [5, 12]. Fin-

gerprinting Persistent Tree (FPTree) [26] is a hybrid SCM-DRAM

persistent and concurrent B+-Tree that is designed specifically for

NVMs. This method aims to decrease write amplification on NVMs.

To do so, in this method, leaf nodes are persisted in SCM while

inner nodes are placed in DRAM and rebuilt upon recovery.

Hash-based indexing structures have also been good candidates

to utilize NVMs due to their nature of typically causing high write

amplification and that they are vastly used in various applications

and systems [13, 22, 28, 30]. A lot of effort has been made to im-

prove hash-based indexing structures for byte-addressable persis-

tent memory, and almost all of them focus on decreasing the write

amplification to reach their goal. Path hashing [30] is an example of

these hash-based indexes, which is designed specifically for NVMs.

The basic idea of path hashing is to leverage a position sharing

method to resolve the hash-collision problem, which usually results

in a high number of extra writes or write amplifications.

3195



In [3], the authors designed new data structures based on the

idea of pointer distance. In this method, instead of building a doubly-

linked list, for instance, XOR linked lists are used, which allows each

node to store only the XOR between the previous and next node

instead of storing the previous and next nodes. Storing the XOR of

two pointers, which are likely to contain similar higher-order bits,

can lead to reducing the number of bit flips.

3.2 Local write optimizations

In the NVM storage community, this method has been one of the

simplest and most effective in dealing with the limitations of NVMs.

So, there has been a large body of research that uses various types

of this method in their works. In this category, there are various

techniques, such as caching [2, 5, 26] and the Read-Before-Write

(RBW) technique [29], to decrease the number of bit flips.

RBW is one of the most popular techniques, which has been

widely utilized by various approaches [1, 6, 8, 14, 27], to reduce the

number of bit flips is the Read-Before-Write (RBW) technique [29],

in which the content of an old memory block is read before it is

overwritten with the new data. This technique replaces each NVM

write operation with a more efficient read-modify-write operation.

Reading before writing allows comparing the bits of the old and

new data, updating only the bits that differ.

Flip-n-Write (FNW) [6] is one of the most popular methods and

became the building block of many other techniques in this area.

This method compares the current content of the memory location

(the old data) with the content to-be-written (the new data). This

enables FNW to decide whether to write the new data in its original

format or to flip it before writing it if that leads to reducing the

number of bit flips. (A flag is used so that future operations know

whether to flip the content before reading.) This method guarantees

that the number of bit flips in NVM is always less than half the

total number of written bits (excluding the flag bit).

DCW [8] finds common patterns and then compresses data to

reduce the number of bit flips in NVM. Like Flip-N-Write, DCW

replaces a write operation with a read-modify-write process. It

starts comparing the new data and the old data from the first bit

to the last one. The most significant difference between DCW and

Frip-N-Write is that in DCW, the maximum number of bit flips is

still N (the word width).

Captopril [14] is another recent proposal for reducing bit flips

in NVMs. This method masks some “hot locations”, where bits are

flipped more, to reduce the number of bit flips. In this method, the

authors compare every write with 4 predefined sequences of bits

to decide which bits need to be flipped and which ones need to be

written in their original form. This method suffers from relatively

high overhead. More importantly, it is rigid and would only work

on predefined applications.

Flip-Mirror-Rotate [27] is another method that is built upon Flip-

N-Write [6] and FPC [1] to reduce the number of flipped bits. Like

Captopril, this method uses only predefined patterns to mask some

bits, which means it would only work on predefined applications.

MinShift [21] proposes reduces the total number of update bits to

SCMs. The main idea of this method is that if the hamming distance

falls between two specific bounds, the new data is rotated to change

the hamming distance. Although this method is simple, it suffers

from high overhead.

In [9], the authors use a combination of MinShift and Flip-N-

Write to decrease the number of written bits. They compute the

minimum amount of some possible states to choose a pattern to

encode the data. This method has advantages and disadvantages of

both methods.

All these methods offer different advantages and disadvantages.

These methods invite exploring how they can be integrated with

existing data management systems to enable them to improve the

lifetime of NVMs. Some of these methods are independent from the

application (and often implemented as a hardware method) which

means that augmenting them within existing data management

systems is a straight-forward task. Other approaches—especially

ones based on masking—require domain knowledge on the appli-

cation using them. There is an opportunity for data management

researchers to find ways to adapt these methods to work with ex-

isting data management systems. This would entail learning the

write patterns of data management systems and translating this

knowledge into appropriate masking techniques that are based on

the methods presented above.

3.3 Memory-awareness

Although reducing write amplification is a promising way to extend

the NVMs’ lifespan, it does not necessarily lead to the best opportu-

nities to reduce bit flipping and increasing write endurance [3, 16].

This is because—unlike flash—NVM cells are written individually,

which means that the number of flipped bits is more important to

optimize than the number of written words [3]. Therefore, focusing

on reducing bit flips is a viable solution that can both save energy

and extend the life of NVMs. Although focusing on bit flipping

reduction technique seems a reasonable choice, the methods in this

category (Section 3.2) fail to achieve its full potential because the

existing methods miss a crucial opportunity. Prior methods pick

the memory location for a write operation arbitrarily (new data

items select an arbitrary location in memory, and updates to data

items overwrite the previously-chosen location.) This misses the

opportunity to judiciously pick a memory location that is similar

to the value to be written. When the new value and the value to

be overwritten are similar, this means that the number of bit flips

is going to be lower. Reducing the number of bit flips increases

write endurance and reduces power consumption. This approach is

called memory awareness.

The first memory-aware method that has been proposed to ex-

tend the lifespan of NVMs is called Predict and Write (PNW) [16],

which is a K/V store that is designed specifically for NVMs. This

method uses a clustering-based approach to extend the lifetime of

NVMs using machine learning. Writes are directed to clusters with

similar content to reduce the number of bit flips. Like the previous

methods in Section 3.2, PNW also targets bit flip reduction but

through software techniques. PNW decreases the number of bit

flips for PUT/UPDATE operations by determining the best memory

location an updated value should be written to. This method lever-

ages the indirection level of K/V-stores to freely choose the target

memory location for any given write based on its value. In this

method, NVM addresses are organized in a dynamic address pool

3196



clustered by the similarity of the data values they refer to. In this

paper, it has been shown that, by choosing the right target memory

location for a given PUT/UPDATE operation, the number of total

bit flips and cache lines can be reduced significantly.

Another method that leverages memory awareness in its struc-

ture is called Hamming-Tree [17], which is an auxiliary data struc-

ture that can be augmented with existing indexes. Hamming-Tree is

a data structure that organizes free memory locations based on their

hamming distance. It can be built upon any existing tree-based data

structure—whether they are designed for NVM or not—to improve

their performance in terms of NVM write endurance. One of the

unique qualities of this method, which makes it highly adoptable

by any existing key/value stores, is its ability to be augmented with

a data indexing structure from B+-tree to LSM-based persistent K/V

stores to cache optimized NVM index, and write-friendly hashing

schemes. In this method, the data indexing structure handles the

regular indexing of keys and values, and Hamming-Tree handles

the mapping of free memory locations for future writes and updates.

This method also reduces bit flipping considerably.

4 OUTLOOK

There is an opportunity now for researchers in data management

systems to adopt solutions to overcome these limitations of NVMs

that would be essential for their adoption and success. Specifically,

in this tutorial, we present the low-hanging fruits and approaches of

augmenting existing techniques from the NVM storage community

to be adopted in data management systems. Also, we outline future

opportunities in the area of memory-awareness that promises to

increase the efficacy of existing techniques to improve the lifetime

and energy efficiency of NVM devices.

5 BIOGRAPHICAL SKETCHES

Saeed Kargar is a doctoral student at the University of California

at Santa Cruz. His current research work is in the areas of data man-

agement on emerging non-volatile memory technology, machine

learning and deep learning, and big data analytics.

Faisal Nawab is an Assistant Professor of Computer Science at

the Computer Science Department at the University of California

Irvine. He is interested in building efficient distributed data manage-

ment systems that span edge and cloud infrastructures. Relevant to

this tutorial, Faisal studies the design of data management systems

that enable edge components to have a longer lifetime and better

energy efficiency [16]. He also worked on the design of indexing

technology over emerging memory technology [19, 23–25].

REFERENCES
[1] Alaa Alameldeen and David Wood. 2004. Frequent pattern compression: A

significance-based compression scheme for L2 caches. Technical Report. University
of Wisconsin-Madison Department of Computer Sciences.

[2] Joy Arulraj et al. 2015. Let’s talk about storage & recovery methods for non-
volatile memory database systems. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data. 707–722.

[3] Daniel Bittman et al. 2019. Optimizing Systems for Byte-Addressable {NVM}
by Reducing Bit Flipping. In 17th {USENIX} Conference on File and Storage Tech-
nologies ({FAST} 19). 17–30.

[4] Adrian M Caulfield, Arup De, Joel Coburn, Todor I Mollow, Rajesh K Gupta,
and Steven Swanson. 2010. Moneta: A high-performance storage array architec-
ture for next-generation, non-volatile memories. In 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture. IEEE, 385–395.
[5] Shimin Chen and Qin Jin. 2015. Persistent b+-trees in non-volatile main memory.

Proceedings of the VLDB Endowment 8, 7 (2015), 786–797.
[6] Sangyeun Cho and Hyunjin Lee. 2009. Flip-N-Write: A simple deterministic

technique to improve PRAMwrite performance, energy and endurance. InMICRO
2009. 347–357.

[7] Yifan Dai, Yien Xu, Aishwarya Ganesan, Ramnatthan Alagappan, Brian Kroth,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2020. From wisckey to
bourbon: A learned index for log-structured merge trees. In 14th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 20). 155–
171.

[8] David B Dgien et al. 2014. Compression architecture for bit-write reduction in
non-volatile memory technologies. In NANOARCH 2014. IEEE, 51–56.

[9] Wei Dong et al. 2015. Minimizing update bits of NVM-based main memory
using bit flipping and cyclic shifting. In HPCC 2015, CSS 2015, and ESS 2015. IEEE,
290–295.

[10] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj
Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System software for persistent
memory. In Proceedings of the Ninth European Conference on Computer Systems.
1–15.

[11] Fazal Hameed et al. 2017. Efficient STT-RAM last-level-cache architecture to
replace DRAM cache. In MEMSYS 2017. 141–151.

[12] Jiangkun Hu et al. 2020. Understanding and analysis of B+ trees on NVM towards
consistency and efficiency. CCF Transactions on High Performance Computing
(2020), 1–14.

[13] Kaixin Huang, Yan Yan, and Linpeng Huang. 2020. Revisiting persistent hash
table design for commercial non-volatile memory. In 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE). IEEE, 708–713.

[14] Majid Jalili and Hamid Sarbazi-Azad. 2016. Captopril: Reducing the pressure of
bit flips on hot locations in non-volatile main memories. In DATE 2016. IEEE,
1116–1119.

[15] Sudarsun Kannan et al. 2018. Redesigning LSMs for nonvolatile memory with
NoveLSM. In 2018 {USENIX} Annual Technical Conference ({USENIX}{ATC} 18).
993–1005.

[16] Saeed Kargar, Heiner Litz, and Faisal Nawab. 2021. Predict and Write: Using
K-Means Clustering to Extend the Lifetime of NVM Storage. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 768–779.

[17] Saeed Kargar and Faisal Nawab. 2021. Hamming Tree: The Case for Memory-
Aware Bit Flipping Reduction for NVM Indexing. (2021).

[18] Wenjie Li et al. 2020. HiLSM: an LSM-based key-value store for hybrid NVM-
SSD storage systems. In Proceedings of the 17th ACM International Conference on
Computing Frontiers. 208–216.

[19] David B Lomet and Faisal Nawab. 2015. High performance temporal indexing on
modern hardware. In 2015 IEEE 31st International Conference on Data Engineering.
IEEE, 1203–1214.

[20] Lanyue Lu, Thanumalayan Sankaranarayana Pillai, Hariharan Gopalakrishnan,
Andrea C Arpaci-Dusseau, and Remzi H Arpaci-Dusseau. 2017. Wisckey: Sepa-
rating keys from values in ssd-conscious storage. ACM Transactions on Storage
(TOS) 13, 1 (2017), 1–28.

[21] Xianlu Luo et al. 2014. Enhancing lifetime of NVM-based main memory with bit
shifting and flipping. In RTCSA 2014. IEEE, 1–7.

[22] Zhulin Ma, Edwin H-M Sha, Qingfeng Zhuge, Weiwen Jiang, Runyu Zhang, and
Shouzhen Gu. 2020. Towards the design of efficient hash-based indexing scheme
for growing databases on non-volatile memory. Future Generation Computer
Systems 105 (2020), 1–12.

[23] Faisal Nawab, Dhruva Chakrabarti, Terence Kelly, and Charles Morrey. 2015.
Zero-Overhead NVM Crash Resilience. In Non-Volatile Memories Workshop.

[24] Faisal Nawab, Dhruva R Chakrabarti, Terence Kelly, and Charles B Morrey III.
2015. Procrastination Beats Prevention: Timely Sufficient Persistence for Efficient
Crash Resilience.. In EDBT. 689–694.

[25] Faisal Nawab, Joseph Izraelevitz, Terence Kelly, Charles B Morrey III, Dhruva R
Chakrabarti, and Michael L Scott. 2017. Dalí: A periodically persistent hash map.
In 31st International Symposium on Distributed Computing (DISC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik.

[26] Ismail Oukid et al. 2016. FPTree: A hybrid SCM-DRAM persistent and concurrent
B-tree for storage classmemory. In Proceedings of the 2016 International Conference
on Management of Data. 371–386.

[27] Poovaiah M Palangappa and Kartik Mohanram. 2015. Flip-Mirror-Rotate: An
architecture for bit-write reduction and wear leveling in non-volatile memories.
In GLSVLSI 2015. 221–224.

[28] Fei Xia et al. 2017. Hikv: A hybrid index key-value store for dram-nvm memory
systems. In USENIX ATC 17. 349–362.

[29] Byung-Do Yang et al. 2007. A low power phase-change random access memory
using a data-comparison write scheme. In ISCAS 2007. IEEE, 3014–3017.

[30] Pengfei Zuo and Yu Hua. 2017. A write-friendly hashing scheme for non-volatile
memory systems. In Proc. MSST.

3197


