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ABSTRACT
In 2011 we showed how to use dynamic code generation to pro-
cess queries in a data-centric manner. This execution model can
produce compact and efficient code and was successfully used by
both our own systems and systems of other groups. As the systems
become used in practice, additional techniques were developed for
shortcomings that did arrive, including low-latency compilation,
multi-threading support, and others. This paper gives an overview
of the evolution of our query engine within in the last ten years, and
points out which problem have to be tackled to bring a compiling
system into production usage.
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1 INTRODUCTION
With increasing main memory sizes, it became clear that the perfor-
mance of a query engine will often or even primarily be dominated
by its memory access and its CPU usage [4]. Without I/O, the CPU
basically executes a query as fast as it can. This means that to speed
up query processing, we either have to reduce memory accesses
(which is not always possible) or reduce the number of instructions.
The traditional Volcano-style iterator model has a high interpreta-
tion overhead, which was fine when systems mainly were waiting
for I/O, but which is very noticeable when query processing is CPU
bound. Systems like VectorWise reduce that overhead by using
a vectorized execution model [5] where each operator invocation
produces a large number of tuples. This eliminates the call overhead
of the iterator model, but it introduces additional instructions for
materializing and loading tuples from vectors.

In 2011 we proposed a radically different approach in the context
of our HyPer development [7]: We eliminated the interpretation
overhead by using runtime code generation. And we generated the
code in a way that memory is touched as rarely as possible [16].
This data centric code generation blurs the traditional operator
barriers and focuses on the data flow instead. This leads to compact
and very efficient code. The benefits are particularly pronounced
for OLTP systems, where vector processing is often not beneficial,
but also OLAP systems can benefit from the low instruction count.
That processing approach was very successful, both in our HyPer
system [7], which was acquired by Tableau and now processes
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millions of queries per day as their core data processing engine,
and in other systems like for example [1, 6].

As our system saw more production usage, the system contin-
ued to evolve as we addressed issues that arose. First within HyPer,
and then after HyPer became commercial, within our new Umbra
engine, where we tested even more radical ideas [18]. In this paper,
we give an overview of the necessary steps to bring a compiling
query engine into production and point out common pitfalls and
useful techniques for implementing such a system. We start with
an overview of data-centric code generation in Section 2 and then
discuss the problem of low latency compilation in Section 3. Af-
terwards, in Section 4 we look at the integration of morsel-driven
execution into the compilation framework. Developer productiv-
ity is discussed in Section 5, followed by further extensions of the
compilation model in Section 6.

2 DATA CENTRIC CODE GENERATION
The key idea of data-centric code generation is that we generate
code in a way that minimizes memory access. Ideally, we loop over
all tuples of a materializing operator (or a table scan), load each
individual tuple into CPU registers, process the tuple as needed,
and store it into the next materializing operator. We call such a
source-operator/intermediate-operator(s)/sink-operator sequence
a pipeline. This is illustrated in Figure 1, where the dotted boxes
show the pipeline boundaries. Note that an operator can be part
of multiple pipelines, potentially in different roles. For example,
an in-memory hash join is the sink of its build pipeline and an
intermediate operator of its probe pipeline.

After identifying the pipelines we generate code using a pro-
duce/consume paradigm: The source of a pipeline is asked to produce
values, and each operator calls the consume function of their parent
operators until the tuple reaches the sink. Note that these produce/-
consume calls are only compile-time concepts that describe the data
flow, in the generated code, neither produce nor consume is visible
[16]. The generated (pseudo-)code for the example query is shown
in Figure 2. The brackets correspond to the pipeline boundaries,
and the code consists of tight loops around materialized data, which
is beneficial for modern CPUs.

This core concept works well for a wide range of uses cases,
but nevertheless, our implementation evolved over time. For exam-
ple, in Umbra we no longer generate one function per query but
instead generate roughly one function per pipeline and organize
the pipelines in a state machine [18] (except for some special cases
where we can prove that the number of tuples is low, e.g., for OLTP).
The advantage of that is that we can easily suspend and resume a
query without blocking a thread, which is useful for scheduling and
I/O handling. Using a state machine instead of a simple list allows
us to handle complex plans like, e.g., WITH RECURSIVE or clus-
tering algorithms. Also, the explicit produce calls were eliminated,
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Figure 1: Example plan with visible pipeline boundaries for
select * from r1, (select z, count(*) from r2 where y=3
group by z), r3 where a=b and c=z and x=7 (from [16]).

initialize memory of B𝑎=𝑏 , B𝑐=𝑧 , and Γ𝑧
for each tuple 𝑡 in 𝑅1
if 𝑡 .𝑥 = 7
materialize 𝑡 in hash table of B𝑎=𝑏

for each tuple 𝑡 in 𝑅2
if 𝑡 .𝑦 = 3
aggregate 𝑡 in hash table of Γ𝑧

for each tuple 𝑡 in Γ𝑧
materialize 𝑡 in hash table of B𝑧=𝑐

for each tuple 𝑡3 in 𝑅3
for each match 𝑡2 in B𝑧=𝑐 [𝑡3 .𝑐]
for each match 𝑡1 in B𝑎=𝑏 [𝑡3 .𝑏]
output 𝑡1 ◦ 𝑡2 ◦ 𝑡3

Figure 2: Compiled query for Figure 1.

instead each pipeline registers which other pipelines have to be
evaluated first, potentially with additional reordering constraints.
This gives us degrees of freedom in scheduling, for example, to
reduce memory pressure or to improve the repeated evaluations of
WITH RECURSIVE statements. And value handling becomes more
sophisticated over time. At compile time, each pipeline abstraction
keeps track of which IUs (a generalization of columns and computed
values, see [15]) is available where in the pipeline and optimizes its
placement. Usually, we want to load a value as late as possible and
keep it in registers until we reach the sink. But in some cases, for
example, when executing a cascade of outer joins that uses function
calls to avoid code explosion, we voluntarily materialize earlier to
reduce register pressure. These optimizations are hidden within
abstraction layers and are usually not visible when implementing
operators, but internally the materialization logic is quite complex.

A great strength of a compiling query engine is that we can
use nice high-level abstractions without affecting query execution
time. This observation is something that Christoph Koch called
“abstraction without regret” [21]. At compile time, we can have
composable layers of abstraction that allow for very high-level
programming, but in the generated code, all these layers are gone,

and get the good performance of straightforward code. Some people
think that compiling engines are difficult to build (we will discuss
this further in Section 5), but in practice, the implementation of, e.g.,
a hash join can be more high level and more abstract in a compiling
engine than in a traditional query engine, as we do not have to pay
the performance price of these extra abstraction layers.

3 LOW LATENCY COMPILATION
While dynamic code generation allows for very efficient execution
plans, its key weakness is the compile time of the query. In the very
beginning, HyPer experimented with generating C++ code, but that
was clearly a terrible idea due to multi-second compilation times.
We then switched to using the LLVM compiler backend, which is
significantly faster: We could compile TPC-H queries in 40-90ms.

For prepared OLTP queries or long-running OLAP queries, these
compilation times were perfectly fine, but nevertheless, they be-
came a problem in practice. As Martin Kersten pointed out in a
workshop discussion, end-to-endMonetDB could easily outperform
HyPer on small data sets due to the high compilation time. Even for
TPC-H SF1 the query compilation time was often higher than the
query execution time. We are very grateful for that comment, as it
forced us to think more about compilation time early on. This be-
came even more urgent when we saw real-world customer queries,
as often customers run complex queries on relatively small data
sets. Thus offering low latency compilation is essential in practice
when using a compiling engine.

We solved this problem by introducing adaptive compilation [12]:
Instead of always compiling queries using LLVM, we introduced our
own intermediate representation (IR), which is similar to the LLVM
IR but is optimized for compile-time and includes database-specific
operations. This allowed us to have different backends for query
execution, including a LLVM based backend like we had before, and
a virtual machine (VM) based backend to which we could compile
very quickly. Then, at query execution time, we first compiled the
query to the VM backend, which took very little time, and started
executing the query. We then took measurements to predict the
remaining execution time. In pipelines where we predicted that
the remaining execution time justified the higher compile time of
LLVM we compiled the code for that pipeline with LLVM in the
background and then switched over to the LLVM generated code.
Because all backends conceptually execute exactly the same code,
switching is easy and does not lose any progress.

We later refined that approach by introducing an additional
backend that directly produced x86_64 machine code [9]. Even
though that might sound daunting at first, it is not very different
from producing code for our register machine VM when the low-
level details of machine code generation are hidden behind an
emitter library like asmjit. With that backend, we can generate fast
machine code very quickly, and we only rarely ever trigger the
LLVM backend, as the still superior quality of the LLVM generated
machine code rarely justifies the significantly higher compilation
time. We can now compile the TPC-H queries in 1-2 ms, which
is competitive even on small data scales, and we can still produce
highly optimized machine code if needed.

Our experiences with using LLVM as a code generator have
been a bit mixed. LLVM produces excellent, high-quality machine
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code, but it has the unfortunate tendency to use super-linear time
algorithms, for example, when computing the lifetimes of values.
This is very problematic for large, generated queries. We have seen
real-world queries [22] with 300,000 disjunctions of non-trivial
terms, and the compile-time of LLVM tends to explode for such
huge code fragments. Our adaptive compiler correctly predicts these
super-linear effects, and thus avoids calling LLVM if the compile-
time is unreasonable. We need lifetime analysis as basis for register
allocation in our backends, too, both for the VM backend and for the
asmjit backend, but wemade sure to use only linear-time algorithms
for analysis [17]. In particular Ramalingam’s loop identification
algorithm works very well [20], and allows us to quickly compute
tight lifetime bounds, which is useful for all kinds of optimizations.
As a stress test, we ran a query with 10,000 joins, which Umbra
can compile and execute in about 5s. Most of that time is spent
in the query optimizer and not in the code generation part. When
compiling exactly the same code with the LLVM backend, LLVM
does not terminate within two hours.

4 MORSEL-DRIVEN EXECUTION
The core count of current CPUs is quite high, 16 cores are affordable
even in the consumer range, and single-socket machines with 64
cores are available for less than 6K$. Therefore query execution
will nearly always be multi-threaded, and the query engine must
be built accordingly. Both HyPer and Umbra use a morsel-driven
execution model for parallelization [13], where the work is split
into a large number of small tasks that can then be scheduled by the
engine. The systems use a 1:1 mapping between cores and threads,
which means that we can explicitly assign work to a certain core if
desirable for locality reasons. When running out of local work, the
threads start stealing morsels from other threads, which helps in
balancing out differences in execution speed.

This execution model was introduced early in the development
of HyPer, but nevertheless, it evolved over time. The original model
was that the query executer registered a job with the scheduler (e.g.,
execute one pipeline of the current query), and the worker threads
would then repeatedly ask the job object for work morsels and
execute them until the job was finished. In Umbra, we split that in-
teraction with the job into two methods, one pickMorsel would just
compute the description of a work morsel, and executeMorselwould
then process a morsel that was picked earlier. The advantage of that
split is that the two functions can be executed on different threads:
When starting a new query many or even most threads will be
sleeping. Instead of waking them all up and producing contention
on the job object, the starting thread can pick morsels for all sleep-
ing threads and then wake them with an explicit starting morsel
assigned to them. This greatly reduces contention on systems with
high core counts.

On the programming side the compile-time pipeline abstraction
allows for convenient and type-safe registration of query-global and
thread-local state, which simplifies implementing multi-threaded
operators. Themental model there is that, if possible, we treat global
state as read-only and only modify our thread-local state, except for
well-defined synchronization points where the thread-local state
is merged into the global state. This mode avoids any problems
with race conditions. There are some exceptions to that rule, for

void Select :: consume(ConsumerContext& context) const {

// Check filter condition

If::build(context.deriveTruth (*op.condition), [&]() {

// Pass qualifying tuples to consumer

ConsumerContext innerContext(context);

innerContext.consume ();

});

}

Figure 3: Code generating code for selections.

example, outer joins use atomic operations to mark tuples that did
find a join partner, but there are so few of them that we rarely had
problems with racy behavior.

5 INCREASING PRODUCTIVITY
Compiling database engines have a reputation of being hard to

build, but we think that is not really true. The main difficulty is get-
ting the initial infrastructure in place: A nice, type-safe mechanism
for generating IR code [9] and an automatic build-time mechanism
to expose the data structures of the engine in the IR, including data
layout and function signatures. Once we have that, we can generate
code in a high-level way that does not look very different from
runtime code. The code generation for select is shown in Figure 3.
It is nearly identical to how a standard select operator would look
like. The only subtlety here is that we start a nested context within
the if body, as the contexts cache computed values and we are not
allowed to reuse values beyond the if that were computed within
the if. But that is largely an implementation detail.

While generating code is not very difficult, debugging generated
code is more challenging, as there are multiple levels involved: The
compile time of the database engine, compile-time of the query,
and the execution of the query. Therefore we developed several
techniques to helpwith analyzing that connection. Some of them are
simple, like attaching debug information to the generated code that
allows for stepping through the generated code while inspecting the
corresponding IR code. Or providing a C backend that translates the
IR into C code, which has terrible compile times, but is nevertheless
useful due to the wide range of debug tools and sanitizers available
for C. But by far, the most interesting question when debugging
generated code is, who generated that line and why. The “who”
question is still relatively simple to answer, in debug builds we use
the C++ source_location feature to keep track of the originator of
an IR instruction and attach that to the IR program, which makes
it visible in a debugger. The “why” question is more complex, but
can be answered, too: By using a time-traveling debugger, we can
switch from debugging the execution of a query to the moment
in time that specific instruction was generated [10]. This allows
for inspecting the full state of the compiler, which significantly
simplifies finding the root cause of a specific code fragment. Similar
layer problems arise when profiling query execution. Sometimes
we want to see the performance counters on a per-instruction basis,
sometimes on a per-operator basis, and sometimes per pipeline. By
automatically keeping track in which context an instruction was
generated, we can maintain mappings between the different layers
[3], which allows for performance analysis on any of the layers we
are interested in.
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6 FURTHER CONCERNS
When building a compiling query engine, there are of course, many
other design aspects that have to be taken into account. For example,
it is attractive to decompose relational operators into more low-
level operations [11], as this allows for much greater flexibility
and easier code reuse. Other interesting questions are how tuples
should be processed: Usually, we want to avoid unnecessary tuple
materialization. But sometimes, we can hide cache misses better
by buffering a small number of tuples, which leads to the idea
of relaxed operator fusion [14]. Bringing higher-level logic into
the query engine is attractive, too. Systems like Weld allow to
combine application logic and query processing into an execution
plan [19], which is a very good idea. Just like stored procedures
help to improve the performance of OLTP systems greatly, we
expect that in the future, integrating parts of the application query
processing will significantly help with complex analytical tasks [2].

7 CONCLUSION
Using runtime code generation is attractive, as it allows for gener-
ating very compact and efficient code for any given query. At least
conceptually, a compiling engine is superior to any other approach,
as it can easily emulate whatever the other system is doing, minus
the runtime overhead of interpreting data type, as our comparative
analysis paper [8] showed. Therefore it is not surprising that code
generation has been employed by many systems, such as Spark
or Neo4j. The price we pay for that flexibility is increased system
complexity. But proper abstraction layers, decomposing high-level
operations into low-level steps that can be optimized independently,
and proper tooling support make building a compiling query engine
tractable. The integration of application logic into the compiled
query is an interesting problem that we want to look at in the
future.
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