
DISK: A Distributed Framework for Single-Source SimRank with
Accuracy Guarantee

Yue Wang
∗

Shenzhen Institute of Computing

Sciences, Shenzhen University

yuewang@sics.ac.cn

Ruiqi Xu
∗

University of Edinburgh

ruiqi.xu@ed.ac.uk

Zonghao Feng

Yulin Che

HKUST

zfengah,yche@cse.ust.hk

Lei Chen

HKUST

leichen@cse.ust.hk

Qiong Luo

HKUST

luo@cse.ust.hk

Rui Mao
†

Shenzhen Institute of Computing

Sciences, Shenzhen University

mao@sics.ac.cn

ABSTRACT
Measuring similarities among different nodes is important in graph

analysis. SimRank is one of the most popular similarity measures.

Given a graph G(V , E) and a source node u, a single-source Sim-

Rank query returns the similarities between u and each nodev ∈ V .

This type of query is often used in link prediction, personalized

recommendation and spam detection. While dealing with a large

graph is beyond the ability of a single machine due to its limited

memory and computational power, it is necessary to process single-

source SimRank queries in a distributed environment, where the

graph is partitioned and distributed across multiple machines. How-

ever, most current solutions are based on shared-memory model,

where the whole graph is loaded into a shared memory and all

processors can access the graph randomly. It is difficult to deploy

such algorithms on shared-nothing model. In this paper, we present

DISK, a distributed framework for processing single-source Sim-

Rank queries. DISK follows the linearized formulation of SimRank,

and consists of offline and online phases. In the offline phase, a

tree-based method is used to estimate the diagonal correction ma-

trix of SimRank accurately, and in the online phase, single-source

similarities are computed iteratively. Under this framework, we

propose different optimization techniques to boost the indexing

and queries. DISK guarantees both accuracy and parallel scalabil-

ity, which distinguishes itself from existing solutions. Its accuracy,

efficiency, parallel scalability and scalability are also verified by

extensive experimental studies. The experiments show that DISK

scales up to graphs of billions of nodes and edges, and answers

online queries within seconds, while ensuring the accuracy bounds.

PVLDB Reference Format:
Yue Wang, Ruiqi Xu, Zonghao Feng, Yulin Che, Lei Chen, Qiong Luo,

and Rui Mao. DISK: A Distributed Framework for Single-Source SimRank

with Accuracy Guarantee. PVLDB, 14(3): 351-363, 2021.

doi:10.14778/3430915.3430925

∗
Co-first authors.

†
Corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 3 ISSN 2150-8097.

doi:10.14778/3430915.3430925

1 INTRODUCTION
Nowadays, many real world information systems, e.g., social media

and online shopping platforms, use graphs to model different data

objects and their relationships: nodes represent data objects, and

edges represent the relationships among them.Measuring similarity

among data objects plays a key role in data analysis andmining. Sev-

eral link-based similarity measures have been proposed, including

Personalized PageRank(PPR)[12], P-Rank [46], Random Walk with

Restart(RWR)[30], and so on. Among them, SimRank [11] is one of

the most promising, and has a comparable impact to PageRank for

link-based ranking [17, 20].

The intuition behind SimRank is two-fold: a) two nodes are

similar if they are linked by similar nodes; b) two identical nodes

have the similarity of 1. SimRank is defined recursively, thus it

can aggregate similarities of the multi-hop neighbors of the origi-

nal pair of nodes, and produce high-quality results. Consequently,

SimRank has received a lot of research attention since it was first

introduced [6–9, 14–17, 19, 21, 23, 25, 33–37, 40–43, 45]. Given an

unweighted directed graphG(V , E), the SimRank score of two nodes

u,v ∈ V is formulated as follows:

s(u,v) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 (u = v),∑︂
u′ ∈Iu ,v

′
∈Iv

c × s(u
′

,v
′

)

|Iu | |Iv |
(u ≠ v), (1)

where Iu denotes the set of in-neighbors of node u, and c ∈ (0, 1) is
the decay factor which is usually set to 0.6 [20] or 0.8 [11].

Processing and analysing large-scale graphs becomes necessary

due to the large amount of data generated in today’s world. For

example, as of fall 2011, Twitter had over 100 million users world-

wide [2], and there were over 721 million active users on Face-

book [31]. Single-source SimRank queries on such social media are

useful for recommending friends, tweets, groups and so on. While

efficiently dealing with large graph problems is beyond the ability

of a single machine due to the limited memory and concurrency, it

is necessary to develop efficient distributed algorithms for graphs

which are too large to fit into the memory of a single machine.

While most current work propose efficient SimRank algorithms

on a single machine [14, 19, 25, 26, 38], only a few aim to design

efficient and effective algorithms on a shared-nothing model, where

a large-scale graph is partitioned and distributed among multiple

machines. [3] firstly introduces a MapReduce procedure, called

351

https://doi.org/10.14778/3430915.3430925
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3430915.3430925

Delta-SimRank, which uses the node-pair graph structure to itera-

tively compute SimRank. It provides techniques to reduce the data

amount transformed in each map/reduce phase from O(I2

avдn
2) to

O(I2

avдM), whereM is the number of non-zero similarities. How-

ever, it is an all-pairs solution and needs to maintains O(V 2) node

pairs simultaneously, which would lead to high computational cost

and space usage, though MapReduce can dump the data to disk.

In [3], the largest graph processed has only 269 037 edges, it cannot

efficiently process single-source queries over large graphs. Mean-

while, [28] presents UniWalk, which parallelizes random walk sam-

pling over the vertex-centric model. It costs O(RL2) time for a

single-source query, where R is the sample size and L is the path

length. However, UniWalk is only applicable to undirected graph

and does not provide theoretical accuracy guarantee (due to trun-

cated randomwalks). Recently, [18] introduces CloudWalker, which

utilizes Spark to parallelize SimRank computation, however, it does

not have an accuracy guarantee w.r.t. query results. Particularly,

the Jacobi method used in [18] for offline index does not guarantee

the convergence (details in Section 3). Besides, the Monte Carlo

method for online queries does not provide any error bound of

final SimRank scores. As shown in [36], the maximum error of

CloudWalker can be larger than 1.

Moreover, none of the existing distributed solutions provide

any theoretical guarantee of the parallel scalability, i.e., the cost de-
creases with more machines being added. When we turn to multiple

machines, we always want to make use of the additional resources

to speed up the execution of our algorithms. However, parallel

scalability is not always grounded [5]. It is still unknown whether

single-source SimRank queries can be processed accurately and

more efficiently when more machines are available, either from the

theoretical aspect or in experimental results.

We present DISK, a Distributed Framework for processing single-

source SimRank queries. The contributions are as follows.

Accurate. DISK follows the linearized formulation of SimRank, but

it is different to current solutions. To our knowledge, this is the first

distributed solution for single-source SimRank, which is proved to

be accurate. The accuracy is guaranteed by our theoretical result of

combining the errors of the estimated diagonal correction matrix

D̂, and the truncated series of the recursive SimRank equation.

Parallel Scalable. DISK consists of an offline indexing phase and an

online query phase. In the offline phase, we propose a tree-based

method to estimate D̂. The tree-based method differs from current

ones in that the sampled forest is discarded at the end of each

round, and thus we do not need to store them. In the online phase,

the single-source SimRank is processed iteratively across different

workers. Our cost analysis indicates that both the offline phase and

the online phase are parallel scalable.

Optimizations. We propose effective optimizations for DISK. For

the offline indexing, we propose a sample reduction method which

reduces the number of sampled forests. We also boost each round

by adopting the pointer-jumping technique, which is usually used

in a shared-memory model. For online queries, we propose an

early stop technique, which uses the values computed in real time

to reduce the number of iterations. We also present a method of

refining underlying partitions, which mitigates the skewness of the

workload for online queries. The optimization techniques speed

up the computation by 4.2 and 2.4 times on average, in the offline

and online phases, respectively. Besides, they do not undermine the

parallel scalability and accuracy.

Experimental Study. We conduct extensive experiments using real-

life and synthetic graphs. We experimentally verify the accuracy

bounds for both the offline indexing and online queries. We use

graphs with up to 1 billion nodes and 42 billion edges, to test the

efficiency of DISK, along with its optimization techniques, and

then compare DISK with other methods. Results show that the

accuracy and the parallel scalability of DISK are in accord with our

theoretical analysis. In additional, its scalability outperforms the

state-of-the-art competitors while achieving comparable efficiency.

This paper is organized as follows. Preliminaries are in Section 2.

We give an overview of DISK and show its accuracy results in Sec-

tion 3. The offline phase and online phase are presented in Sections 4

and 5, respectively. Optimization techniques for offline indexing

and online query are presented in Sections 6 and 7. Experimental re-

sults are shown in Section 8. We present related works in Section 9

and conclude the paper in Section 10.

2 PRELIMINARIES
In this section, we first give the problem definition, present the

distributed environment for the graph computation, and then dis-

cuss the challenges of designing a distributed solution for SimRank.

Notations and symbols are summarized in Table 1.

2.1 SimRank
Given an unweighted directed graph G(V , E) (|V | = n, |E | = m),

there exists a unique SimRank matrix S for G. According to [45],

the matrix form of Eq. (1) is:

S = cP⊤SP ∨ I , (2)

where ∨ denotes the element-wise maximum operation, I is an
identity matrix, P is the column normalized adjacency matrix of

G, and P⊤ denotes the transpose of P . The difficulty of computing

SimRank lies in that Eq. (2) is recursive and nonlinear [15].We study

the following approximate single-source queries for SimRank.

Definition 2.1 (Approximate Single-source Queries). Given
a node u ∈ G, an error bound ϵ and a failure probability δ , an
approximate single-source SimRank query returns an estimated value
ŝ(u,v) for each v ∈ G, such that

|ŝ(u,v) − s(u,v)| ≤ ϵ, (3)

holds for any v with at least 1 − δ probability.

Since we can always return s(u,v) = 1 when u = v , in this paper,

we only consider the accuracy of ŝ(u,v) when u ≠ v .

2.2 Distributed Graph Computation
We adopt a coordinator-based shared-nothing environment, which

consists of a master (coordinator)W0 and a set of p workersW =

{W1, · · · ,Wp }. The workers (includingW0) are pairwise connected

by bi-directional communication channels. Meanwhile, G is parti-

tioned and distributed across these workers, and fragmented into

F = (F1, · · · , Fp), where each fragment Fi = (Vi , Ei) is a subgraph
of G, such that V = ∪i ∈[1,p]Vi and E = ∪i ∈[1,p]Ei . Each worker

Wi hosts and works on a fragment Fi of G. Let |G | = |V | + |E |. We

also assumeG is evenly partitioned, i.e., maxi ∈[1,p] |Fi | = O(
|G |
p),

352

Table 1: Notations and Symbols
Notation Description

p The number of workers

W A set of workers {W1, · · · ,Wp }
c The decay factor of SimRank

N The number of samples in the offline phase

T The number of truncated terms of linearized SimRank

Iv The set of in-neighbors of v
Ov The set of out-neighbors of v
ei A unit vector whose i-th position is 1

P The column-normalized transition matrix of G
P⊤ The transpose of P
S The SimRank matrix

Su ,∗ The u-th row of matrix S
S∗,u The u-th column of matrix S
D The diagonal correction matrix of SimRank

Fi A fragment which is the subgraph (Vi , Ei) of G
q(t)u the distribution of t -th reverse random walk from u

where |Fi | = |Vi | + |Ei |. We also assume p ≪ |G |, since in practice

the number of machines is much less than the size of a graph.

To simplify the algorithm design and analysis, we assume an

edge-cut partitioning strategy. Specifically, if a node v is assigned

to Fi , then its incident edges (incoming and outgoing edges) are

assigned to Fi . Instead of designing a new partitioning strategy

from scratch, we utilize existing ones, such as XtraPuLP[27]. How
to design a partitioner is orthogonal to the design of our algorithms,

and is beyond the discussion of this paper.

We follow the Bulk Synchronous Parallel (BSP) model for com-

puting. Under BSP, computation and communication are performed

in supersteps: at each superstep, each workerWi first reads mes-

sages (sent in the last superstep) from other workers, and then

performs the local computation, and finally sends messages (to be

received in the next superstep) to other workers. The barrier syn-

chronization of each superstep is coordinated byW0. One desired

property of a distributed graph algorithm ρ is parallel scalability,

i.e., Tρ (time taken by ρ) decreases with an increasing p, indicating
the more resources added, the more efficient ρ is. To ensure par-

allel scalability, it is crucial to make the workload of ρ balanced

across different workers. There are specific models for distributed

graph processing, such as the vertex-centric model [24] and its

variant [39]. The reason we choose the BSP model is as follows.

Vertex-centric model simplifies the design of distributed graph al-

gorithms by “thinking like a vertex” and modeling each vertex as a

worker. However, in our application, each worker holds a fragment

of G instead of a single vertex and communication is among these

workers instead of adjacent vertices. Besides, vertex-centric model

follows BSP and our solution can easily be adopted to it.

2.3 Challenges
The challenges of designing a distributed solution for SimRank

queries, lie in that it is hard to maintain the parallel scalability and

the accuracy, simultaneously.

Accurate butNot Parallel Scalable.Most recent algorithms, which

have an accuracy guarantee [19, 29, 32, 38], rely on sampling a

bunch of random walks, either for index or query. The accuracy

is based on the fact that the SimRank score is the probability of

two random walks meeting. It is easy to parallelizing random walk

sampling over a shared-memory model, since samples are indepen-

dent. However, when a graph is partitioned over multiple machines,

running multiple random walks simultaneously leads to congestion

(details in Section 4.2), i.e., some nodes may receive or send large

numbers of messages, which undermines the parallel scalability.

Parallel Scalable but Not Accurate. A promising solution is to

use the linearized technique [15, 18, 23] to remove the non-linearity

of Eq.(2), where retrieving single-source SimRank scores becomes

computing a column of S . It can be further transformed to matrix-

vector multiplications, and simulated by the structure of G. This
method has good parallel scalability. However, none of the current

linearized based methods guarantee the accuracy of the final simi-

larities, due to the multiple sources of errors (details in Section 3).

Besides that, the linearized equation relies on estimating a diago-

nal correction matrix D beforehand, which still challenges parallel

scalability and accuracy.

3 BASIC IDEA OF DISK
We follow the linearized formula to estimate SimRank scores, which

is firstly proposed in [15] to overcome the non-linearity of Eq.(2).

According to [15], S satisfies:

S = cP⊤SP + D =
∞∑︂
t=0

ctP⊤tDP t , (4)

whereD is called the diagonal correction matrix, making up the diag-

onal of cP⊤SP to 1’s. There are two issues when utilizing Eq.(4) for

SimRank computation: (1) D is unknown in advance, and; (2) Eq.(4)

is an infinite series, making it impractical to compute all terms.

Therefore, we make two approximations: we compute an estimated

diagonal matrix D̂, and only compute the truncated version of Eq.(4).

Specifically, let the diagonal matrix D̂ be an approximation of D,
we use the following equation to approximate S :

Ŝ
(T)
=

T∑︂
t=0

ctP⊤t D̂P t . (5)

As a result, the error of Ŝ
(T)

has two factors: one is from the error

of D̂, the other is from the truncated series. To get the final error of

Ŝ
(T)

, we present the following result.

Theorem 1. If ∥D̂ − D∥max < ϵd , then for any v,u ∈ V and

v ≠ u, |Ŝ(T)v ,u − Sv ,u | ≤
c(1−cT)ϵd

1−c + cT+1. □

From above, we can see that as ϵd → 0 and T → ∞, Ŝ
(T)
→ S .

In light of Theorem 1, our method consists of offline and online

phases: in the offline phase, we estimate D̂ with ϵd error bound;

in the online query phase, given a node u ∈ V , we compute its

single-source SimRank by retrieving the u-th column of Ŝ
(T)

. Note

that this is not the first attempt to approximate SimRank scores

using Eq.(5) [15, 18, 23]. However, we are the first to present the

error bound ϵ w.r.t. both ϵd andT , which ensures the final accuracy

of our distributed solution. The linearization technique is also used

in [15, 18, 23], but they all suffer from the accuracy issue. Eq.(4)

is firstly proposed in [15], but they approximate D as (1 − c)I ,
which would lead to the wrong SimRank scores, as pointed out

in [36, 44]. [23] formulates D as the solution to a linear system,

and solves an approximate linear system to get D̂. However, as
analysed in [29], [23] does not provide any formal error analysis

of D̂ and its effects on accuracy of S , and their Gauss-Seidel based

method does not guarantee the convergence. Recently, [18] uses the

353

Table 2: Example: the Jacobimethod for computingD [18] diverges
(T = 10, c = 0.6)

G k 1 2 3 4 5 · · · 10 Truth

dˆ
⎡⎢⎢⎢⎢⎢⎣
1

1

1

1

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
−0.49

−0.49

−0.49

−0.49

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
1.73

1.73

1.73

1.73

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
−1.58

−1.58

−1.58

−1.58

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
3.36

3.36

3.36

3.36

⎤⎥⎥⎥⎥⎥⎦ · · ·

⎡⎢⎢⎢⎢⎢⎣
−21.39

−21.39

−21.39

−21.39

⎤⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎣
0.4
0.4
0.4
0.4

⎤⎥⎥⎥⎥⎥⎦
Jacobi method to compute D̂, using an approximate linear system

based on Eq.(5). Specifically, [18] considers n linear constraints,

i.e., ∀i = 1, · · · ,n, e⊤i Ŝ
(T)ei = 1, which can be compressed into the

following linear system:

(I + cP ◦ P + c2P2 ◦ P2 + · · · + cT PT ◦ PT)⊤dˆ = 1, (6)

then a Jacobi method is used to compute dˆ iteratively. However, the
convergence of dˆ is not guaranteed either. Consider a simple graph

in Table 2, the results of the first 10 iterations of the Jacobi method

indicate the divergence. Besides, Eq.(6) itself is constructed approx-

imately by Monte Carlo sampling. Hence, [18] has no accuracy

bound on either D̂ or Ŝ
(T)

. In short, none of the above linearized

methods guarantee the ϵ error of each SimRank score. Another lin-

earized method is [44]. They present a “varied-D” SimRank model,

which computes a series {D0, · · · ,DT }, and they show the esti-

mated S(T) = DT +cP
⊤DT−1P + · · ·+c

kP⊤D0P has an error bound

cT+1
. However, it requires O(Tmn) time to compute {D0, · · · ,DT },

which is costly for large-scale graphs. Our method directly esti-

mates D̂, and is more efficient and parallel scalable (shown later).

4 DISTRIBUTED D̂ ESTIMATION
In this section, we first review the physical meaning of D, then
present our distributed method for estimating D with an ϵd error

bound, and finally analyse its cost.

4.1 Physical Meaning of D
We rely on the physical meaning of D and the

√
c-walk interpreta-

tion of SimRank, which are firstly introduced in [29].

Definition 4.1. Given a node u ∈ G, an
√
c-walk is a reverse

random walk from u and stops with 1 −
√
c probability at each step.

According to [29], s(a,b) is equal to the probability of two

√
c-

walks from u and v meeting. The following lemma reveals the

physical meaning of D.

Lemma 2. Let dv be the probability that two
√
c-walks fromv that

do not meet after the 0-th step, then dv = Dv ,v .

Based on that, [29] presents the following equation for dv ,

dv = 1 −
c

|Iv |
− c

µ⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟
1

|Iv |2

∑︂
a,b ∈Iv
a≠b

s(a,b) . (7)

Now, consider the following random process for v: (1) Sample a

pair of nodes a and b from Iv ; (2) If a ≠ b, perform two

√
c-walks

from a and b. Let X be a random variable which indicates whether

these two

√
c-walks meet or not, it can be verified that E[X] = µ.

Suppose N samples are generated from v , then dv is estimated as:

dvˆ = 1 −
c

|Iv |
− cµ̂, (8)

(a) A Toy GraphG
(b) A Bunch of Random Walks
Lead to Congestion

(c) An Example of T for Updat-
ing dˆv for ∀v ∈ V

Figure 1: Examples of G, RandomWalks and T

where µ̂ = 1

N
∑︁N
i=1

Xi . Therefore, making |dv − dˆv | < ϵd is equal

to making |µ − µ̂ | < ϵd
c .

Lemma 3 (Hoeffding Ineqality [10]). Let A1, · · · ,AN be in-
dependent random variables where each Ai is strictly bounded by the
interval [ai ,bi], let Ā = 1

N (A1 + A2 · · · + AN), then for any ϵ > 0,

Pr {|Ā − E[Ā]| ≥ ϵ} ≤ 2e
−2N 2ϵ2∑︁N
i=1
(bi −ai)2 .

According to Lemma 3, to achieve the ϵd bound, we can set

N = c2

2ϵ 2

d
ln

2

δd
. Even though above sampling process can be used

to estimate D [29], it is still challenging for distributed computation

w.r.t. parallel scalability, as shown in the next section.

4.2 The Design of Distributed Indexing
In this section, we first discuss the difficulty of computing D̂ on a

shared-nothing model, and then present our solution in detail.

It seems easy to parallelize the computation of D̂, since each dˆv
can be estimated simultaneously, and the N pair of samples gen-

erated for a specific v are independent. This leads to two parallel

solutions. The first one contains N rounds: at each round, each

node v ∈ V samples a pair of

√
c-walks at the same time, and up-

dates dˆv based on the sampling result. However, this naive method

would lead to congestion, which undermines the parallel scalability.

Particularly, since random walks from different sources are running

simultaneously, it is possible that certain nodes are visited by many

walks at the same time. These nodes then become the hubs of the

walks, and the hubs have to communicate with their neighbors at

a high communication cost. The same issue of the congestion in

conducting random walks from different sources simultaneously, is

also reported in PageRank computation [22].

Example. Consider a toy graph in Figure 1a, suppose each node

samples a

√
c-walk simultaneously, Figure 1b shows the first 5 steps

of those walks. At step 3, all 5 walks pass through v1, giving v4 a

high communication cost (5 messages) at step 4, thoughv4 has only

2 out-neighbors and 1 in-neighbor. Note that we cannot simply

merge random walks when they are visiting the same node, since

each walk contains the information of the source node, for updating

the meeting results later. Here we only show one walk for each

node. In reality, each node needs to generate 2

√
c-walks at each

round, which would lead to more congestion.

Another parallel strategy consists of |V | rounds: at each round, a

specified node v ∈ V generate N pairs of

√
c-walks simultaneously,

and dˆv is computed at this round. However, in this case, the source

node v itself becomes a hub, since all walks start from v and pass

through Iv . The failure of the above two attempts lies in that those

354

random walks are memorable, i.e., each random walk has to carry

the information of the source node ID (the first method), or the

sample ID (the second method), during walking over G.

Algorithm Overview. We present a parallel scalable tree-based

method, which contains N rounds. In each round, a forest T is

built acrossW from leaves to roots, level by level , and then we

color the leaves such that two leaves are of the same color iff they

are in the same tree. Each node v ∈ V can query the leaves in T

simultaneously to get a sample result, and update the corresponding

dˆv . That is, T is shared by all nodes in V in the round, and is

destroyed at the end of this round. In addition, the building, coloring,

and querying phases are all parallel scalable. We build T as follows.

The set of nodes in each level T are a subset of V . Denote by Hl
the set of nodes at level l . Initially, H0 = V , Hl is generated from

Hl−1
as follows: each node v ∈ Hl−1

: (1) Samples an in-neighbor a

with probability

√
c
|Iv |

, and we set v’s parent to a; (2) Does nothing

with the other (1 −
√
c) probability. The forest keeps growing until

Hl = ∅ for some l > 0. Since any node v may appear on different

levels, we use v(l) to denote v’s copy on level l ∈ [0,+∞), and the

sampling process determines whether v(l) may belong to Hl or

not. A key property of T is that, the path from v(0) to its root can

be viewed as a sampled

√
c-walk from v , and any two paths are

sampled independently before they merge. Therefore, if we want to

check whether two

√
c-walks from a and b meet, we only need to

check whether a(0) and b(0) are in the same tree of T . After coloring

the leaves with their roots, to update dˆv according to Eq.(8), we

check the colors of two randomly selected nodes in Iv .

Example. Figure 1c shows a sampled T from the toy graph of

Figure 1a, Initially,H0 = {v1,v2,v3,v4,v5}, then each node samples

an in-neighbor randomly with

√
c probability: v0,v2 selects v1,

v1 selects v4, v3 selects v0, and v4 does not sample (with 1 −
√
c

probability), so H1 = {v1,v4,v0}. This process continues until

H5 = ∅, when v4 in level 4 chooses to stop sampling. We then label

each leaf with its root as its color, by top-down propagation, then

v0,v2 have the same color (with rootv
(3)

0
),v1,v3 has colorv

(4)

4
, and

v4 has color v
(0)

4
. Leaves of the same color meet when a

√
c-walk

is issued from each of them. To get a sample result for v3, it first

samples two of its in-neighbors, e.g., v1 and v0, since they are of

different colors, dˆv3
is updated correspondingly.

Algorithm Detail. Algorithm 1 has N rounds, in each round, a

status variablev .cnt (initialized in line 4), which counts the number

of meeting times for v , is updated for each node v (line 39). Finally,

each dˆv is calculated based on Eq.(8) (line 42). For the storage, each

node v maintains its multiple occurrences v(l) for a different l by a

hash map, and checking whether v(l) appears in Hl can be done in

O(1) time. Besides that, v(l) has several fields:

• v(l).parent records the parent of v(k), it is nil if v(l) is root.

• v(l).children is a set storing the children of v(l) in T ;

• v(l).color stores the root of the tree where v(l) resides.

Each round has three phases: (1) Build a forest T from leaves to

roots (lines 7-24); (2) Label roots for leaves (lines 26-33); (3) Update

v .cnt for each node v (lines 36-39). While building T , H0 contains

all nodes inV (line 9), then the forest grows in a bottom-up manner:

each node in Hl samples an in-neighbor a with

√
c probability

Algorithm 1 Parallel Scalable Computation of D̂

Input: F = {F1, · · · , Fp }, c , ϵd , δd
Output: dˆv for ∀v ∈ V

1: N ← c2

2ϵ2

d
ln

2

δd

2: for all F ∈ F in parallel do
3: for all v ∈ F do
4: v .cnt ← 0

5: for all i = 1, 2, · · · , N do
6: /* Phase 1: build a forest Ti in parallel */

7: for all F ∈ F in parallel do
8: for all v ∈ F do
9: add v (0) to H0

10: l ← 0 ▷ the level counter

11: while Hl ≠ ∅ do
12: for all F ∈ F in parallel do
13: for all v ∈ F do
14: v (l) .parent ← nil
15: v (l+1) .children ← ∅
16: for all F ∈ F in parallel do
17: for all v ∈ F and v (l) ∈ Hl do
18: θ ← a random number in [0, 1]

19: if θ <
√
c then

20: a ← a randomly selected node from Iv
21: v (l) .parent ← a(l+1)

22: add a(l+1)
to Hl+1

23: a(l+1) .children .add (v (l))
24: l ← l + 1

25: /* Phase 2: label leaves with roots in parallel */

26: while l > 1 do
27: l ← l − 1

28: for all F ∈ F in parallel do
29: for all v ∈ F do
30: if v (l) ∈ Hl and v

(l) .color is unset then
31: v (l) .color ← v (l)
32: for all x ∈ v (l) .children do
33: x .color ← v (l) .color
34: /* Phase 3: update dˆv in parallel */

35: for all F ∈ F in parallel do
36: for all v ∈ F do
37: sample a pair of nodes (a, b) from Iv
38: if a ≠ b and a(0) .color = b (0) .color then
39: v .cnt ← v .cnt + 1

40: for all F ∈ F in parallel do
41: for all v ∈ F do
42: dˆv ← 1 − c

|Iv |
− c · v .cnt

N

(lines 17-20), indicating node a appears the (l+1)-level of Ti (line 22).
We then set the corresponding parent-child relationship between

v(l) and a(l+1)
(line 21-23). The building process is continued until

no new node is generated for (l + 1)-level of Ti (line 11). Next, we
turn to the root finding phase. A top-down approach is used to label

roots. Starting from the roots of each tree (line 30-31), we iteratively

pass the labels v .color to v’s children level by level (line 33), until

the leaves are labeled (line 26). We then query the sample results

for each v ∈ V using colors of leaves in T , and update v .cnt if the
colors of the sampled neighbors are the same (line 39).

4.3 Cost Analysis

Number of Supersteps. When building T , since only
√
c portion

of Hl generate the nodes for Hl+1
on average, the expected height

of each T is O(logn). Therefore, both the building phase and the

labeling phase take O(logn) supersteps. Besides, updating dˆv takes

2 supersteps: one superstep is where each node samples two in-

neighbors and requests their colors; the other is the sampled in-

neighbors response to the request. Hence, in one round, it takes

O(logn) supersteps. The total number of supersteps is O(N logn).

Computation Cost. We analyse the maximum local computation

cost of any fragment in any superstep.We first analyse the local cost

in the manner of “think like a vertex”. Each nodev has O(1) compu-

tation cost for lines 4, 9, 14-15, 17-21, 31, 33, 37, 39 and 39. Besides

355

that, v has at most O(|Ov |) children to be added at any superstep

of building T (line 23), and has O(|Ov |) children to propagate the

color information at any superstep of labeling colors (line 32), and

has O(|Ov |) responses to the the requests of the color information

(line 38). Therefore, at any superstep, a node v has at mostO(|Ov |)
local computation cost, and the local cost for each fragment Fi is

O(
∑︁
v ∈Vi |Ov |) = O(|Ei |) = O(

|E |
p).

Communication Cost. We analyse the maximum local computa-

tion cost of any fragment in any superstep. Now consider the local

communication for each node first. Communication only happens

on the instructions labeled in red in Algorithm 1. In line 22, ifv and

a are not in the same fragment, v will send O(1) message a, and a
receives at most O(|Oa |) messages to update the children (line 23).

Similarly, there are at most O(|Ov |) messages sent from v(l) to its

children (line 32-33), and there are O(1) messages received by each

child. In line 38, each node v sends at most 2 messages to request

the colors of a and b, and each a receives at most O(|Oa |)messages.

Therefore, any node v ∈ Fi can send and receive at most O(|Ov |)
messages at any superstep, and the communication cost for each

fragment is: O(
∑︁
v ∈Fi |Ov |) = O(|Ei |) = O(

|E |
p).

Space Cost. At each round, each node v needs to maintain its mul-

tiple copies (v(0), · · · ,v(l), · · ·) at different levels, which is O(logn),

and for each v(l), it has at most O(|Ov |) children and O(1) par-

ent, so the space cost for v is O(logn |Ov |). The space cost of Fi is

O(
∑︁
v ∈Fi logn |Ov |) = O(logn |Ei |) = O(

|E | logn
p).

Using trees for indexing random walks are a common technique

in SimRank computation. [6] first introduces fingerprint trees, by

encoding the first meeting time, which can be retrieved by comput-

ing the depths of two nodes. However, the fingerprint trees can only

compress truncated randomwalks with no stop probabilities, which

affects the precision. [25] presents the one-way graph structure,

which compresses the random walks for all nodes, but brings in

dependency among samples and thus influences the accuracy. [14]

designs SA forests, whose structure is similar to T , but has a trun-

cated height, leading to a loss in accuracy [34]. Our method differs

from the above in the following aspects. First, while the above tree-

based methods are used to estimate SimRank scores directly, we

use T for updating all dˆv s. A forest in [6, 14, 25] is used once as

one sample of a single SimRank query, while one T in Algorithm 1

is used as one sample for updating the whole D̂ once. Second, all

previous methods need to store the sample forests for later queries,

which leads to large space cost (O(N |V |) in [6, 25] and O(tN |V |)
in [14]) when G is big or high precision is required (large sample

size). On the contrary, we drop the sampled forest at the end of

each round, and our off-line index D̂ only costs O(
|V |
p) for each

fragment. Third, our solution is based on the shared-nothing model,

which assumes G and T are partitioned over workers and chal-

lenges the parallel scalability w.r.t. computation/communication,

while previous works are based on the shared-memory model.

5 ONLINE SINGLE-SOURCE QUERY
In this section, we first present our distributed single-source so-

lution in detail, and then analyse its cost. After obtaining D̂, the
single-sources scores w.r.t. u can be retrieved easily, by computing

Algorithm 2 Parallel Scalable Single-source SimRank

Input: F = {F1, · · · , Fp }, c ,T , D̂ , u
Output: ŝ(v , u) for ∀v ∈ V
1: u .q[0] ← 1

2: /* Phase 1: compute {q(1)u , · · · , q(T)u } */

3: for all t = 1, · · ·T do
4: for all F ∈ F in parallel do
5: for all v ∈ F and v .q[t − 1] ≠ 0 do
6: for allw ∈ Iv do

7: w .q[t] ← w .q[t] + v .q[t−1]

|Iv |

8: /* Phase 2: compute {g(1)u , · · · , g(T)u } */
9: for all t = 1, · · ·T do
10: for all F ∈ F in parallel do
11: for all v ∈ F and do
12: v .д[t] ← dˆv · v .q[t]
13: if t = T then
14: v .sim ← v .д[t] ▷ Initialize estimated SimRank score

15: /* Phase 3: compute ŝ(∗, u) */
16: for all t = T , · · · 1 do
17: for all F ∈ F in parallel do
18: for all v ∈ F and v .д[t] ≠ 0 do
19: for allw ∈ Ov do
20: w .sim ← w .д[t − 1] + c · v .sim

|Iw |
21: u .sim ← 1

u-th column of Ŝ
(T)

, i.e.,:

Ŝ
(T)
∗,u = Ŝ

(T)eu =
T∑︂
t=0

ctP⊤t D̂P t eu . (9)

Computing Ŝ
(T)
∗,u directly involves O(T 2) matrix-vector multipli-

cations. Therefore, we use the following alternative, let vector

q(t)u = P t eu (the distribution of t-th step reverse random walk

from u), and vector g(t)u = D̂q(t)u , then:

Eq.(9) = g(0)u + cP
⊤(g(1)u + · · · cP

⊤(g(T−1)
u + cP⊤g(T)u) · · ·), (10)

which has only O(T)matrix-vector multiplications. The trade-off is

that we need to maintain {g(0)u , · · · , g
(T)
u }, which costs extra space.

However, in a distributed environment, it is always practical to

reduce the number of rounds, which can reduce the overheads of

synchronization. Besides, each g(t)u is also distributed and main-

tained locally by each node, which can make use of the sparsity of

the vector when T is small.

Algorithm Detail. Our solution is in Algorithm 2. The idea is to

use the graph topology for simulating sparse matrix-vector multi-

plication. Each node v ∈ V maintains the following data locally:

• v .q is a hash table: v .q[t] is the v-th coordinate of q(t)u ;

• v .д is a hash table: v .д[t] is the v-th coordinate of g(t)u ;

• v .sim is the estimated SimRank score ŝ(v,u).

The algorithm first computes the series of vectors {q(1)u , · · · , q
(T)
u }

iteratively (line 1-7). It then computes {g(1)u , · · · , g
(T)
u } by multiply-

ing each PT eu by D̂ (line 9- 14). Finally, it updates Ŝ
(T)
∗,u iteratively

by Eq.(10) (line 16-20).

Cost Analysis. Each phase in Algorithm 2 has O(T) rounds, and
each round has at most O(1) supersteps. Then the total number of

supersteps is O(T). At any step, each nodev only accesses its neigh-

bors or does local computation, so the computation cost for v is at

most O(|Iv |+ |Ov |). Therefore, the total cost for each fragment Fi at

any superstep is O(T
∑︁
v ∈Fi |Iv |+ |Ov |) = O(

|E |
p). Communication

only occurs when v andw are not in the same fragment (line 7, 20).

356

Since each node v only communicates with its in-neighbors/out-

neighbors, its communication cost is either O(|Iv |) or O(|Ov |). The

communication cost for Fi at any superstep is O(
|E |
p). Since each

node maintains O(T) fields, the space cost for each fragment is

O(
∑︁
v ∈Fi T) = O(T |Vi |) = O(

T |V |
p).

6 OPTIMIZING OFFLINE INDEXING
There is redundant computation in the offline indexing. Firstly, the

leaf coloring phase (phase 2) in each round of Algorithm 1 actually

colors all nodes in the sampled forest, which is unnecessary. Second,

currently dˆv is estimated according to Eq.(7), the information in

term µ is not fully utilized, since oncewe knowa ≠ b, we can further
expand it using Eq.(1), and thus redundant samples are dropped.

We present two techniques, the first one boosts leaf coloring, the

second one is sample reduction.

6.1 Boosting Leaf Coloring
In this section, we introduce techniques for optimizing Phase 2 of

Algorithm 1, i.e., labeling roots for leaves, which applies a top-down
propagation manner and requires O(logn) rounds. Here we adopt a
bottom-up strategy, which uses O(log logn) rounds. The strategy is
based on the following observations: (1) We only need to color the

leaves, and colors of nodes on other levels are not necessary, but

the top-down approach (phase 2) in Algorithm 1 labels all nodes,

which leads to redundant computation; (2) After building T , each

node knows its level information, which is not utilized in top-down

propagation. Our idea is to adopt the pointer jumping technique [13]
for root finding, which is a basic tool for parallel algorithms over

shared-memory models, to the shared-nothing environment. Given

a tree, initially, each node v has a pointer p(v) to its parent, and the
root points to itself. The idea of pointer jumping is: at each iteration,

each node v updates p(v) to p(p(v)). The process terminates when

p(v) = p(p(v)) for all nodes. Finally, all nodes point to the root.

Example. Figure 2 shows an example of root finding by pointer

jumping, on the sampled forest in Figure 1c. At step 0, the three

rootsv
(0)

4
,v
(3)

0
andv

(4)

4
point to themselves, while other nodes point

to their parents. At step 1, each node points to its grandparent, e.g.,
v
(0)

1
points to v

(2)

0
and v

(2)

2
points to v

(4)

4
. At round 2, all nodes in T

point to their corresponding roots. While the top-down propagation

needs 4 steps to finish, the pointer jumping method only has 2 steps.

However, directly applying the pointer jumping technique still

has computation and scalability issues. First, we only need to label

leaves, while throughout pointer jumping, every node is updated,

which leads to redundant computation and communication. Con-

sidering the example in Figure 2, the updates for v
(1)

1
,v
(1)

0
,v
(1)

4
are

not necessary, since their updates make no contribution towards

leaf color. Second, the pointer jumping may violate the scalability.

In previous analysis, the communication scalability is guaranteed

by the fact that each node only communicates with its neighbors at
each round. However, this does not hold for pointer jumping, since

the structures of trees evolve over time. Consider the case where all

descendants of node v ask v for p(v) simultaneously, the fragment

which holds v would receive a large volume of messages.

Algorithm Detail. In Algorithm 3. initially, we set the color of

each node v in T to its parent if the v .parent exists, otherwise,
it is set to v itself (line 3-10). Next, at each iteration r , we only

Figure 2: An Example of Pointer Jumping for Root Finding

update nodes at level k · 2r for some k ≥ 0 (line 15-18), instead of

updating all nodes as pointer jumping. The reason is that we are

only concerned about the leaf color, and want to make sure the

colors of nodes in levels which are multiples of 2
r
are up-to-date.

Cost Analysis. The initialization phase of Algorithm 3 takes 1

superstep, and the expected height of T is O(log(n)), thus the total
number of supersteps is O(log log(n)). Communication only hap-

pens in line 18 of the labeling phase. where node v(l) asks for the

parent of its current parent x = v(l).color , and x returns x .color to

v(l). At each superstep, each node has made at most O(1) requests

to its parent. At the same time, each node may receive multiple

requests. However, it can be verified that the number of requests a

node receives is at most the size of its leaves, which can be bounded

by the following results.

Theorem 4. The expected size of leaves for any tree in T is
bounded by ∥S ∥1.

Proof. Given any specific nodeu ∈ V , then for anyv ∈ V , letZv
be an indicator random variable, indicating whether v(0).color =

u(0).color . Then event Zv = 1 is when u and v are in the same

tree, which indicates two

√
c walks from u and v meet. Hence, we

can conclude E[Zv] = s(u,v), and the random variable

∑︁
v ∈V Zv

indicates how many leaf nodes share the same color with u. By
the linearity of expectation, we get: E[

∑︁
v ∈V Zv] =

∑︁
v ∈V E[Zv] =∑︁

v ∈V s(u,v) ≤ ∥S ∥1. □

In practice, ∥S ∥1 is very small, since a node is similar to only

a few nodes, and most node pairs are dissimilar. In other words,

T consists of numbers of small trees, instead of large giant trees.

Similar findings are also reported in [25], which shows that sampled

one-way graphs are highly disconnected, indicating most nodes are

dissimilar. Due to each node only needing to maintain its parent in-

formation, and not needing to store the information of the children,

then the space cost of each worker is reduced to O(
|V | logn

p).

6.2 Sample Reduction
In this section, we present a method to reduce the number of sam-

pled forests in Section 4, i.e., N . We re-formulate Eq.(7) to the fol-

lowing equation for dv :

dv = 1 −
c

|Iv |
−

c

|Iv |2

∑︂
a,b ∈Iv
a≠b

s(a,b) = 1 −
c

|Iv |
−

c2(1 −
1

|Iv |
)

1

|Iv |2 − |Iv |

∑︂
a,b ∈Iv
a≠b

1

|Ia | |Ib |

∑︂
x ∈Ia ,y∈Ib

s(x,y).

⏞ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄⏞
η

(11)

357

Algorithm 3 Bottom-up Leaf Coloring

Input: F = {F1, · · · , Fp }, a sampled forest T

Output: v (0) .color for ∀v ∈ V
1: L ← the height of T
2: /* Initialization */

3: for all F ∈ F in parallel do
4: for all v ∈ F do
5: for all L ∈ [0, L] do
6: if v (l) ∈ Hl then
7: if v (l) .parent ≠ nil then
8: v (l) .color ← v (l)
9: else
10: v (l) .color ← v (l) .parent
11: /* Bottom-up Labeling */

12: for all r = 1, 2, · · · , ⌈log
2
L⌉ do

13: for all F ∈ F in parallel do
14: for all v ∈ F do
15: for all l ∈ [0, L] and l mod 2

r = 0 do
16: if v (l) ∈ Hl and then
17: x ← v (l) .color
18: v (l) .color ← x .color

Now, consider the following random process for v: (1) Randomly

select a node a from Iv ; (2) Randomly select a node b from Iv \ {a};
(3) Randomly select two nodes x and y from Ia and Ib ; (4) Sample

two

√
c-walks from x andy, respectively. LetY be a random variable

indicating whether the two

√
c-walks generated above meet or not,

then it can be easily verified that E[Y] = η. Therefore, we can

generate N samples from v , and dv can be estimated as:

dˆv = 1 −
c

|Iv |
− c2(1 −

1

|Iv |
)η̂, (12)

where η̂ =
∑︁N
i=1

Yi . According to Eq.(12), to make |dˆv − dv | < ϵd ,

it is sufficient to make |η̂ − η | < ϵd
c2(1− 1

|Iv |
)
. Based on Lemma 3,

given the error bound ϵd , it is sufficient to set the sample size

N =
c4(1− 1

maxv∈V |Iv |
)2

2ϵ 2

d
ln

2

δd
, due to that Yi ∈ [0, 1]. Therefore, the

sample size is smaller than that of Section 4. The probabilistic

interpretation of Eq.(11) is different from that of Eq.(7). Consider

step 3 of the above random process, there is no longer a 1−
√
c stop

probability for selecting x and y, thus there is a minor modification

in building each T : when generating Hl+1
from Hl , there is no

stop probability when l = 0, otherwise, there is a 1 −
√
c (line 19 in

Algorithm 1). This modification does not affect the cost, since the

expected height of T is still O(logn).

7 OPTIMIZING ONLINE QUERY
There is inefficiency in online queries. Firstly, the number of iter-

ations T in Algorithm 2 is determined by Theorem 1, which uses

∀t ∈ [1,T], ∥q(t)u ∥∞ ≤ 1 to bound the results, which is loose. Sec-

ond, Algorithm 2 has both forward and backward iterations, thus

requires both in-edges and out-edges balanced in each fragment

to achieve the parallel scalability. However, currently there is no

edge-cut partitioner designed for this. In this section, we introduce

two optimization techniques. One is early stop, which reduces the

number of iterations by utilizing computed information at running

time. The other is a partition refiner, which aims to further balance

the workload among workers after the graph is partitioned by some

existing partitioners.

7.1 Early Stop
In our distributed query method (Algorithm 2), the number of

roundsT is predefined and determined by Theorem 1, which shows

(a) A toy graphG

F1 F2

(b) A skewed partition ofG

Figure 3: Examples of G, and Skewed Partition

a general accuracy boundw.r.t.T and ϵd . However, during the query

phase, as the transition probability vectors, i.e., q(t)u (t ≥ 1), are

generated, we can make the accuracy bound more specific, which

can further reduce T in practice. We show the following accuracy

bound w.r.t. {q(1)u , · · · , q
(T)
u }.

Theorem 5. Given ϵd and {q(0)u , · · · , q
(T)
u } for source u, for any

node v ∈ V that v ≠ u, |Ŝ(T)v ,u − Sv ,u | < ϵd
∑︁T
t=1

ct ∥q(t)u ∥∞ + cT+1.
□

Since ∥q(t)u ∥∞ ≤ 1 for any t ≥ 1, Theorem 5 is tighter than

Theorem 1. Our early stop strategy dynamic decides T during com-

puting {q(1)u , · · · } in phase 1 of Algorithm 2. Specifically, the coor-

dinatorW0 keeps an accumulated variable accu, holding the value

of (c ∥q(1)u ∥∞ + · · · + ct ∥q
(t)
u ∥∞). At the end (line 7) of each round

t , each fragment Fi declares a local variable bi = maxv ∈Fi v .q[t],
and sends it toW0. After receiving all bi for ∀i ∈ [1,p],W0 selects

maxi ∈[1,p] bi and updates accu accordingly. If ϵd · accu + c
t+1 ≥ ϵ ,

W0 notifies workers to move to the next round; otherwise,W0 sets

T = t and Algorithm 2 turns directly to phase 2. The early stop but

reduces the number of rounds T in practice.

7.2 Graph Partition Refinement
For online queries, to achieve efficiency and parallel scalability, we

require each fragment Fi to be approximately equal-sized, and share

an equal amount of computation cost in each superstep. Particularly,

in Algorithm 2, iterative computation is firstly performed forward

(phase 1), and then backwards (phase 3). The cost on a fragment in

a superstep for the forward iteration (resp. backward iteration) is

O(Σv ∈Fi (|Iv |)) (resp. O(Σv ∈Fi (|Ov |))). Therefore, it is essential to
keep both in-edges and out-edges balanced across different work-

ers. Unfortunately, most existing edge-cut partitioners only ensure

balanced vertices for each fragment, and can be heavily-skewed

w.r.t. Σv ∈Fi (|Iv |) or Σv ∈Fi (|Ov |). Skewness is particularly evident

in graphs with skewed degree distribution, e.g., power-law graphs

[1, 4]. To our knowledge, no previous work balances the load of

Σv ∈Fi (|Iv |) and Σv ∈Fi (|Ov |) at the same time, which makes the

load balancing optimization for online query non-trivial.

Example. Consider the toy graph illustrated in Figure 3a. The

graph is partitioned into two fragments F1 and F2, with cut edges

shown in dashed lines and mirror vertices colored in gray, shown

in Figure 3b. These two partitions are balanced w.r.t. to both vertex

load and edge load, as there are 2 and 2 non-mirror vertices, and

4 and 3 edges, in F1 and F2, respectively. However, its workload

for online queries is not balanced. For instance, during backward

iteration, the workload of F2 is proportional to Σv ∈F2
(|Ov |), and

F2 becomes idle as it possesses no outgoing edges.

Instead of designing a new partitioner from scratch, we propose

a partition refiner, which refines a given edge-cut partition, and

makes it more balanced w.r.t. both Σv ∈Fi (|Iv |) and Σv ∈Fi (|Ov |). As
seen in Algorithm 4, the algorithm takes as input 1) p fragments,

358

Algorithm 4 Partition Refinement

Input: F = {F1, · · · , Fp }, balance factor ϵp , threshold γ
Output: v .part for ∀v ∈ V
1: for all Fi ∈ F in parallel do
2: for all v ∈ Fi do
3: v .part← i
4: WI [i] ← Σv∈Fi (|Iv |);WO [i] ← Σv∈Fi (|Ov |)

5: Wmax =
1+ϵp
p |E |;Wmin =

1−ϵp
p |E |

6: for all Fi ∈ F in parallel do
7: swapi ← 0

8: for all v ∈ Fi do
9: ifWI [v .part] >Wmin ∧WO [v .part] >Wmin then
10: continue

11: cand← {j |WI [j] <Wmax ∧WO [j] <Wmin }
12: v .part← argj∈cand max | {u | ∧ u .part = j } ∩ (Iv ∪Ov) |
13: if v .part is updated then
14: updateWI [·],WO [·] locally; swapi ++
15: synchronizeWI [·],WO [·] globally
16: repeat lines 6, 15

17: until (WI [·] <Wmax ∧WO [·] <Wmax) or Σswapi < γ |V |

partitioned from a graph using any existing vertex partitioning

tools; 2) a user defined balance factor ϵp , and 3) a user defined

threshold γ ∈ (0, 1). The algorithm iteratively reduces the sizes

of overloaded fragments until near convergence. The algorithm

first initializes the partition label for each vertex, denoted as v .part
(lines 1-4). After initialization, the algorithm iteratively swaps ver-

tices out of overloaded partitions (lines 6-15). It terminates when

either the balance goal is achieved, or part of less than γ |V | vertices
are updated in the previous iteration (line 17).

The algorithm declares two load thresholdsWmin andWmax ac-

cording to the input ϵp (line 5). Partition-i is 1) overloaded, if both
WI [i] andWO [i] are larger thanWmax; or 2) underloaded, if both

WI [i] andWO [i] are smaller thanWmin. The algorithm picks a ver-

tex from a partition that is not underloaded (lines 9-10), and swaps

it to a partition in its neighbor with the most frequency, which

is not overloaded (lines 11-12). At the end of each iteration, the

loadsWI [·] andWO [·] are globally synchronized (line 15). At each

iteration, each fragment has the computation and communication

cost of O(
|E |
p). In practice, the number of iterations till termination

is usually less than 20 according to our experimental study.

8 EXPERIMENTS
In this section, we conduct experiments with the aim of answering

the following research questions:

(1) Is the accuracy of our framework bounded?

(2) Do our optimization techniques work for boosting offline

indexing and online queries?

(3) Is our solution parallel scalable, i.e., taking less time when

more computation resources are used?

(4) Does our solution scale well with large-scale graphs?

(5) Does our method outperform other solutions?

We use 8 real-life datasets, which are commonly used in the liter-

ature [14, 34]. The statistical information of these datasets is shown

in Table 3. All of them can be downloaded from SNAP
1
or LAW

2
.

We equip and compare the basic version of DISK (Sections 4 and 5)

with different optimization techniques. For offline indexing, we

have Sample Reduction (SR) in Section 6.2 and Pointer Jumping (PJ)
in Section 6.1. For online queries, the optimizations are Early Stop

(ES) in Section 7.1 and Partition Refiner (PR) in Section 7.2. For the

ground truth of SimRank, we compute the exact SimRank matrix

1
https://snap.stanford.edu/data/index.html

2
http://law.di.unimi.it/datasets.php

Table 3: Datasets
Name |V | |E | Type

ca-GrQc(GQ) 5242 14 496 undirected

Small ca-HepTh(HT) 9877 25 998 undirected

p2p-Gnutella06(GT) 8717 31 525 directed

com-LiveJournal(LJ) 3 997 962 34 681 189 undirected

twitter-2010(TW) 41 652 230 1 468 365 182 directed

Large com-friendster(FS) 65 608 366 1 806 067 135 undirected

uk-2007-05(UK) 105 895 555 3 738 733 648 directed

clueweb12(CW) 978 408 098 42 574 107 469 directed

DISK DISK+SR ε
d
-bound

1⋅10
-3

1⋅10
-2

2.5⋅10
-3

 5⋅10
-3

1⋅10
-2

2⋅10
-2

4⋅10
-2

Max Error

(a) Varying ϵd (GQ)

1⋅10
-3

1⋅10
-2

2.5⋅10
-3

 5⋅10
-3

1⋅10
-2

2⋅10
-2

4⋅10
-2

Max Error

(b) Varying ϵd (HT)

1⋅10
-3

1⋅10
-2

2.5⋅10
-3

 5⋅10
-3

1⋅10
-2

2⋅10
-2

4⋅10
-2

Max Error

(c) Varying ϵd (GT)

Figure 4: Offline Indexing: Impact of ϵd on Accuracy

DISK DISK+ES ε-bound

1⋅10
-4

1⋅10
-3

1⋅10
-2

2.5⋅10
-3

 5⋅10
-3

1⋅10
-2

2⋅10
-2

4⋅10
-2

Max Error

(a) Varying ϵ (GQ)

1⋅10
-4

1⋅10
-3

1⋅10
-2

2.5⋅10
-3

 5⋅10
-3

1⋅10
-2

2⋅10
-2

4⋅10
-2

Max Error

(b) Varying ϵ (HT)

1⋅10
-5

1⋅10
-4

1⋅10
-3

1⋅10
-2

2.5⋅10
-3

 5⋅10
-3

1⋅10
-2

2⋅10
-2

4⋅10
-2

Max Error

(c) Varying ϵ (GT)

Figure 5: Online Query: Impact of ϵ on Accuracy

1⋅10
3

1⋅10
4

0.01 0.02 0.03 0.04 0.05

Time (s)

DISK+SR+PJ
DISK+SR
DISK+PJ

DISK

(a) Varying ϵ (Offline)

 5

 10

 15

0.01 0.02 0.03 0.04 0.05

Time (s)

DISK+ES+PR
DISK+ES
DISK+PR

DISK

(b) Varying ϵd (Online)

Figure 6: Impact of Accuracy on Efficiency (TW)

S , using the original algorithm of [11] with 100 iterations, which

guarantees the error is less than 10
−22

. Due to its expensive compu-

tational and space cost, the ground truth is only computed for the

small datasets. Using the exact S , we also obtain the ground truth of

D by the equationD = S −cP⊤SP . By default, we set c = 0.6 (as sug-
gested in [20]), δ = 0.01 and p = 128. For the partition optimization

algorithm in Section 7.2, we refine an edge-cut partition generated

by XtraPuLP[27], with ϵp = 0.1 and γ = 0.001. The algorithms

are implemented with C++11 and OpenMPI. All experiments are

performed on a cluster of 64 linux machines, and each machine has

two Intel(R) Xeon(R) CPU E5-2640v4 @2.40GHz processors (each

with 10 cores) and 64GB RAM, running Ubuntu18.04. All machines

are connected via a Gigabit network. The p processes are randomly

scattered across the cluster.

8.1 Accuracy

Offline Phase.We test the accuracy of the estimated diagonal cor-

rection matrix D̂. We vary ϵd from 2.5 × 10
−3

to 4 × 10
−2
, with the

scaling factor of 2. The accuracy is evaluated by themaximum error,
i.e.,ME = maxv ∈V |dˆv −dv |. The results are shown in Figure 4a-4c.

359

https://snap.stanford.edu/data/index.html
http://law.di.unimi.it/datasets.php

DISK DISK+SR DISK+PJ DISK+SR+PJ

0⋅10
0

3⋅10
3

6⋅10
3

9⋅10
3

16 32 64 128 256

Time (s)

(a) Varying p (LJ)

0⋅10
0

4⋅10
4

8⋅10
4

16 32 64 128 256

Time (s)

(b) Varying p (TW)

0⋅10
0

3⋅10
4

6⋅10
4

9⋅10
4

16 32 64 128 256

Time (s)

(c) Varying p (UK)

0⋅10
0

5⋅10
4

1⋅10
5

2⋅10
5

16 32 64 128 256

Time (s)

(d) Varying p (FS)

0⋅10
0

1⋅10
6

2⋅10
6

16 32 64 128 256

Time (s)

(e) Varying p (CW)

0⋅10
0

3⋅10
4

6⋅10
4

1.8B 3.1B 4.4B 5.8B 7.0B

Time (s)

(f) Varying |G |

Figure 7: Offline Indexing: Parallel Scalability and Scalability

DISK DISK+ES DISK+PR DISK+ES+PR

0⋅10
0

5⋅10
-1

1⋅10
0

2⋅10
0

16 32 64 128 256

Time (s)

(a) Varying p (LJ)

0⋅10
0

2⋅10
1

4⋅10
1

16 32 64 128 256

Time (s)

(b) Varying p (TW)

0⋅10
0

2⋅10
0

4⋅10
0

6⋅10
0

16 32 64 128 256

Time (s)

(c) Varying p (UK)

0⋅10
0

5⋅10
1

1⋅10
2

16 32 64 128 256

Time (s)

(d) Varying p (FS)

0⋅10
0

1⋅10
2

2⋅10
2

16 32 64 128 256

Time (s)

(e) Varying p (CW)

 0

 10

 20

 30

1.8B 3.1B 4.4B 5.8B 7.0B

Time (s)

(f) Varying |G |

Figure 8: Online Query: Parallel Scalability and Scalability

The accuracy of PJ is omitted since PJ boosts the leaf coloring with-
out affecting the accuracy . To make the results more readable, we

also draw an ϵd -bound line which is a dotted black line. We find

that the MEs of both DISK and DISK +SR are at least 13% smaller

than a given ϵd over all datasets. This verifies the accuracy of our

distributed solutions for estimating D̂, and is consistent with our

analysis in Sections 4 and 6.2.

OnlineQueries.We test the accuracy of estimated SimRank scores.

For each dataset, we randomly select 100 query nodes. We set ϵd =
1 × 10

−3
, and vary ϵ from 2.5 × 10

−3
to 4 × 10

−2
, with a scaling

factor of 2. For each method, we use the maximum error to evaluate

its accuracy, i.e.,ME = maxu ∈Q ,v ∈V |ŝ(u,v) − s(u,v)|, where Q is

the set of query nodes, ŝ(u,v) and s(u,v) are the approximate and

the exact SimRank score, respectively. The results are shown in

Figure 5a-5c. The results of PR are omitted since it does not affect

the output of the algorithm. Similarly, we also draw an ϵ-bound
line as a dotted black line. We find that for all datasets the MEs of

both DISK and DISK +ES are at least 77% less than a given ϵ . This
justifies the correctness of Theorems 1 and 5. We also observe that

sometimes the MEs of DISK +ES are larger than basic DISK, e.g.,
ϵ = 2.5 × 10

−2
on CG and HT. This is because ES trades off the

precision for efficiency, while the final accuracy is still bounded.

8.2 Efficiency
Next, we test the impact of 1) ϵd and ϵ , 2) the number of processor

cores p, 3) different optimization techniques and 4) the size of graph

|G |, on the efficiency of DISK, for both offline indexing and online

queries. For each setting, the average elapsed time of 100 randomly

selected query nodes is reported for the online phase.

8.2.1 Impact of Accuracy on Efficiency. We test the efficiency of the

offline phase under different precisions. Using the dataset TW, we

vary ϵd from 1 × 10
−2

to 5 × 10
−2
, with the step of 1 × 10

−2
. The

indexing time of different methods is shown in Figure 6a. We find

that the indexing time of all methods increases with a decreasing ϵd ,
as more samples are required. We can see both optimizations work.

After being equipped with SR, the indexing time is significantly

decreased by 2.8 times. This is consistent with our analysis in

Section 6.2, i.e., the number of samples is around a c2
portion of

the naive method. Applying PJ also saves the indexing time, as

it reduces the total number of iterations in one sampling round.

Besides, DISK +PJ +SR has the smallest indexing time, indicating

PJ and SR are orthogonal, and can be used together.

For online queries, using the dataset TW, we set ϵd to 1 × 10
−3

and then vary ϵ from 1 × 10
−2

to 5 × 10
−2
, with the step of 1 × 10

−2
.

The query time of different methods are shown in Figure 6b. We

find that both optimizations improve the efficiency. After adding ES
and PR techniques, the query time decreases correspondingly, by

54% and 27% on average. We also find when ϵ increases from 0.04

to 0.05, the query time of DISK does not change, due to the iterative

synchronization nature of online query. That is, different precisions

within small gaps may share the same number of iterations. DISK

+ES also shows a similar stair-shape pattern, but its iterations are

still less than basic DISK. DISK +ES +PR has the has the smallest

query time, showing ES and PR are orthogonal.

8.2.2 Parallel Scalability. Here we test the parallel scalability of

our methods, i.e., the change in the cost w.r.t. a varying p of workers.

We first test the parallel scalability of the offline phase. We set

ϵd to 1 × 10
−2
, and then vary p from 16 to 256, with a scaling factor

of 2. We test different methods on the large datasets. The results

are shown in Figures 7a-7e. We can find that over all datasets, the

indexing time of all of our methods (including the basic version and

the optimized versions) decreases with an increasing p, indicating
the more workers which are added, the faster the indexing phase

is. For example, on the dataset UK, when the number of workers

increases from 16 to 256, the the indexing time of DISK decreases

from 9.3 × 10
4
s to 1.3 × 10

4
s, achieving around 7.2X time speed-up.

This is consistent with our theoretical cost analysis in previous

sections. Besides, we can also find that under optimizations of PJ
and SR, the parallel scalability still holds. Using p = 256, DISK is

able to index CW within 1.1 × 10
5
seconds. DISK failed to process

CW when p ≤ 32, because the portion of graph data assigned to a

single worker grows when p decreases. It then eventually exceeds

the memory volume of a machine.

360

Table 4: Comparison of Different Methods (OOM denotes Out Of Memory).

Dataset

Time (seconds)

READS SLING ProbeSim PRSim SimPush UniWalk DISK

Preproc. Query Preproc. Query Query Preproc. Query Query Query Preproc. Query

LJ 6.1 × 10
2

0.86 1.2 × 10
3

0.14 1.6 8.5 × 10
1

0.15 0.12 0.02 3.4 × 10
2

0.15

TW OOM OOM 9.0 × 10
2

5.7 × 10
3

3.5 3.4 - 4.9 × 10
3

5.0

UK OOM OOM OOM 1.4 × 10
3 0.18 0.27 - 2.9 × 10

3
0.53

FS OOM OOM OOM 2.7 × 10
3

1.0 0.25 0.05 6.4 × 10
3

7.9

CW OOM OOM OOM OOM OOM - 1.1 × 10
5 23

We then test the parallel scalability for the online phase. We

set ϵd = 1 × 10
−2

and ϵ = 2 × 10
−2
, and then vary p from 16 to

256, with the scaling factor of 2. We test different methods on the

large datasets. The results are shown in Figures 8a-8e. We can find

that as p increases, the query time of different methods decreases

over all datasets. The average speed-ups when p varies from 16 to

256 are 4.3 for LJ, 4.9 for FS, 3.9 for TW and 4.3 for UK. Another
observation is that the online optimizations i.e., ES and PR, always
work over a varying p. For example, over the dataset TW, the opti-

mized version (DISK +ES +PR) is always at least 2X faster than the

basic version. This reveals that the online optimization techniques

does not undermine the parallel scalability, this is also consistent

with our analysis in Section 7. As for CW, a graph with 1 billion

vertices and 42 billion edges, DISK is able to answer queries when

p ≥ 64, and responds in 23 seconds when p = 256. This shows DISK

efficiently answers queries over massive datasets, whose volume

can not fit in a single machine.

8.2.3 Scalability. We test the scalability of our methodsw.r.t. graph
size |G |. We develop a generator to produce synthetic graphs con-

trolled by the number of nodes |V | and edges |E |. We vary |V | from
6.5 × 10

7
to 2.5 × 10

8
and the corresponding |E | from 1.8 × 10

9
to

7 × 10
9
. We set ϵd = 5 × 10

−3
, ϵ = 1 × 10

−2
and p = 256. The offline

indexing time of different methods is shown in Figure 7f. We can

find that the indexing time of all of our proposed methods grows

linearly with the graph size |G |. That is, it takes 3.1X more time

to index, when |G | grows 3.9 times larger.This is consistent with

our previous cost analysis in Sections 4 and 6. We can observe after

equipping DISK with SR and PJ, the indexing time dramatically

decreases, i.e., the speed of growth of indexing time w.r.t. |G | is
slower than basic DISK, and the scalability is still guaranteed.

Under the same setting, the query time of different methods

is shown in Figure 8f. We find that our methods take more time

when |G | grows, and can answer an online query in 5.0 seconds

when |G | is up to 7 billion. The optimized version of DISK +ES +PR
achieves the lowest responding time. This shows our optimization

techniques do not undermine the scalability, and all of our methods

scale well with the graph size. This is consistent with our previous

analysis in Sections 5 and 7.

8.3 Comparison with Other Algorithms
In this section, we compare DISK with other algorithms, including:

(1) READS [14]: a tree-based single-source solution using sam-

pling; (2) SLING [29]: an index-based method which indexes the

hitting probability of each node and supports shared-memory par-

allelism for indexing; (3) ProbeSim [19]: an index-free method

which finds the potential meeting nodes around the source node;

(4) PRSim [38]: an efficient single-source solution for power-law

graphs; (5) SimPush [26]: an index-free statistic based single-source

method (6) UniWalk [28]: an index-free distributed method for

undirected graphs (7)DISK equipped with optimization techniques.

We did not compare DISK with CloudWalker [18], whose result ac-

curacy is unbounded (pointed out in Section 3 and [29]). As shown

in [36], the ME of CloudWalker can be larger than 1, which is

no better than randomly returning a real number in [0, 1]. We set

ϵ = 2 × 10
−2
. Distributed methods UniWalk and DISK are deployed

on the cluster, withp = 256, while other methods run on a single ma-

chine. For parallel SLING, we use all 20 available cores of a machine

for its indexing phase. For UniWalk, we only run it on undirected LJ
and FSwith default parameters in [28], as it can not handle directed

graphs. We use the default setting in [28] for UniWalk, and set the

sampling number R = 10000 and path length L = 5. The results are

summarized in Table 4. From the results we can see 1) DISK is the

most scalable method of all, it successfully builds index and answers

queries over all tested datasets. Other methods fail to handle CW
due to a lack of memory. READS and SLING even fail to process TW
and UK due to their excessive memory consumption. 2) For offline

indexing, DISK is comparable with other index-based methods. For

instance, it is 1.8 and 3.6 times faster than READS and SLING over

LJ, and at most 4 times slower than PRSim. 3) For online query

answering, DISK is comparable with other methods on directed

graphs. Over TW and UK, it is on average 2.2 and 1.7 times slower

than PRSim and SimPush. On undirected LJ, its responding time

is 0.17, 0.99 and 0.09 of READS, SLING and ProbeSim. UniWalk

performs the best on undirected graphs, and is insensitive to the

size of graphs, which is in accord with [28]. This is because UniWalk

adopts a sampling method, whose complexity is independent of

|G |. However, it has no accuracy guarantee. That is, it provides no

guideline of how to set R and L for an ϵ , and thus the quality of

results is unbounded.

Summary of Findings. We summarize our findings in experi-

ments as follows: (1) Both the offline phase and the online phase

of DISK guarantee the accuracy, and the maximum errors are on

average 46% and 16% of the theory bound for ϵd and ϵ , respectively;
(2) DISK scales wellw.r.t. the number of processors p. When p varies

from 16 to 256, it speeds up the algorithm 5.9 and 4.5 times, for

offline indexing and online queries, respectively; (3) DISK scales

well w.r.t. the size of graph |G |. It can index graphs up to 42 billion

edges, and answers online queries in 23 seconds; (4) The optimiza-

tion techniques significantly boost the offline indexing and online

queries, on average by 4.2 and 2.4 times, respectively; (5) Among

tested SimRank methods, DISK is the most scalable one. Compared

with other methods, it takes a comparable time for both offline

indexing and online query answering over directed graphs.

9 RELATEDWORKS

Single-source SimRank Algorithms. In addition to tree-based

methods [6, 14, 25] and linearization based methods [15, 23] dis-

cussed previously, there are also other algorithms for single-source

361

SimRank. [19] introduces ProbSim, which is an index-free method

for queries over dynamic graphs. ProbSim firstly samples a bunch

of

√
c-walks from the source node, and then finds potential meeting

nodes using these walks, and the query time is O(nϵ 2
logn). [38]

proposes PRSim, which uses an index of size O(m). The complex-

ity of PRSim is related to the reverse PageRank of G, which is

the same as ProbSim on worst-case graphs, and is sub-linear on

real-world power-law graphs. [26] proposes SimPush, which firstly

identifies a small subset of nodes in G that are most relevant to the

query, then computes important statistics and performs graph tra-

versal starting from attention nodes only. Recently, [32] proposes

ExactSim for probabilistic exact single-source SimRank queries,

with O(
logn
ϵ 2
+m log

1

ϵ) cost. It utilizes the linearization formula,

and computes D on the fly based on the distribution of l-hop PPR

scores. ExactSim is highly parallel on shared-memory model, since

it relies on sparse matrix-vector multiplication and independent

random walk sampling. While above methods are based on the

shared-memory model, where the random access to the whole graph

is permitted, DISK is a distributed solution on the shared-nothing
model, which challenges the parallel scalability w.r.t. local computa-

tion and communication. For example, running multiple random

walks simultaneously to achieve parallelism is applicable on shared-

memory model [29, 32], but leads to congestion on shared-nothing

model (discussed in Section 4.2), undermining parallel scalability.

Parallel SimRank Computation. In addition to the distributed

methods discussed in Section 1, there are also other parallel methods

for SimRank computation. [8] introduces a parallel algorithm for all-

pairs SimRank, which firstly formulates SimRank to a homogeneous

first-order Markov chain, and then utilizes iterative aggregation

techniques for parallel computation on GPUs. However, there is

no accuracy guarantee for this method since it approximates D as

(1−c)I . Furthermore, this method is not applicable for large graphs

since n2
coordinates are materialized in the memory. Recently, [33]

proposes a parallel method for all-pairs SimRank, by formulating

exact SimRank as a solution of a linear system, and introducing a

local push basedmethod. In practice, thememory usage is much less

than O(n2) due to the asynchronous update. The above methods

differ from our work in that (1) they return an all-pairs SimRank

matrix (dense or sparse) instead of single-source SimRank queries

and (2) they parallelize SimRank computation on a single machine,

using GPUs or multi-core CPUs, while our solution is distributed.

10 CONCLUSION
In this paper, we present DISK, a framework for processing single-

source SimRank queries on a shared-nothing environment. DISK

follows the linearized SimRank formulation, and consists of of-

fline and online phases. In the offline phase, a tree-based method

is used to estimate the diagonal correction matrix D̂. We propose

two optimization techniques for the offline indexing: one is sample

reduction, the other is boosting leaf coloring by adopting pointer

jumping. In the online phase, single-source similarities are com-

puted iteratively, and we propose two optimization techniques. One

is early stop which reduces the number of iterations, the other is a

partition refiner, which aims to balances the number of in-edges

and out-edges simultaneously in each worker. The accuracy, ef-

ficiency, scalability and parallel scalability of DISK are verified

theoretically and experimentally. In the future, we plan to design

efficient distributed algorithms for other SimRank-based queries,

such as single-pair queries and top-k queries.

ACKNOWLEDGMENTS
This work is partially supported by National Key R&D Program

of China (Grant No. 2018AAA0101100 and 2018YFB1003201), the

Hong Kong RGC GRF Project 16214716, CRF Project C6030-18G,

C1031-18G, C5026-18G, AOE Project AoE/E-603/18, Guangdong Ba-

sic and Applied Basic Research Foundation (No. 2019A1515110473

and 2019B151530001), China NSFC (No. 62002235, 61729201 and

62072311), HongKong ITC ITF grants ITS/044/18FX and ITS/470/18FX,

Microsoft ResearchAsia Collaborative ResearchGrant, Didi-HKUST

joint research lab project, andWechat andWebank Research Grants.

APPENDIX

Proof of Theorem 1. From the definition of S and Ŝ
(T)

, we have:

Sv ,u − Ŝ
(T)
v ,u = e⊤v (S − Ŝ

(T)
)eu =

T∑︂
t=0

ct e⊤v P
⊤t (D − D̂)P t eu⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞
A

+

∞∑︂
t=T+1

e⊤v c
tP⊤tDP t eu⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄⏞
B

. (13)

Considering part A of Eq.(13), since v ≠ u, we can get:

A =
T∑︂
t=1

ct e⊤v P
⊤t (D − D̂)P t eu =

T∑︂
t=1

ctP⊤tv ,∗(D − D̂)P
t
∗,u

≤

T∑︂
t=1

ct ∥D̂ − D∥max =
c(1 − cT)ϵd

1 − c
. (14)

Considering part B of Eq.(13), we get:

B =
∞∑︂

t=T+1

e⊤v c
tP⊤tDP t eu = e⊤v

(︁ ∞∑︂
t=T+1

ctP⊤tDP t
)︁
eu

= cT+1e⊤v P
⊤T+1

(︁ ∞∑︂
t=0

ctP⊤tDP t
)︁
PT+1eu = cT+1e⊤v P

⊤T+1SPT+1eu

= cT+1P⊤T+1

v ,∗ SPT+1

∗,u ≤ cT+1∥S ∥max = c
T+1. (15)

We finish the proof by combining the two inequalities.

Proof of Theorem 5. We follow the similar proof of Theorem 1.

However, instead of using Eq.(14) to bound the part A of Eq.(13),

we present the following inequality:

A =
T∑︂
t=1

ctP⊤tv ,∗(D − D̂)q
(t)
u ≤ ϵd

T∑︂
t=1

ctP⊤tv ,∗q
(t)
u

< ϵd

T∑︂
t=1

ct ∥P t∗,v ∥1∥q
(t)
u ∥∞ < ϵd

T∑︂
t=1

ct ∥q(t)u ∥∞, (16)

based on that P⊤t is a row-normalized matrix, and that x⊤y ≤
∥x∥1∥y∥∞. Our proof is complete by combining Eq.(16) and (15).

REFERENCES
[1] Florian Bourse, Marc Lelarge, and Milan Vojnovic. 2014. Balanced graph edge

partition. In SIGKDD. 1456–1465.

362

[2] Michael Busch, Krishna Gade, Brian Larson, Patrick Lok, Samuel Luckenbill, and

Jimmy Lin. 2012. Earlybird: Real-time search at twitter. In ICDE. 1360–1369.
[3] Liangliang Cao, Brian Cho, HyunDuk Kim, Zhen Li, Min-Hsuan Tsai, and Indranil

Gupta. 2012. Delta-simrank computing on mapreduce. In BigMine.
[4] Rong Chen, Jiaxin Shi, Yanzhe Chen, and Haibo Chen. 2015. PowerLyra: Differ-

entiated Graph Computation and Partitioning on Skewed Graphs. In EuroSys.
1:1–1:15.

[5] Wenfei Fan, Kun He, Qian Li, and Yue Wang. 2020. Graph algorithms: paral-

lelization and scalability. SCIENCE CHINA Information Sciences 63, 10 (2020),

203101:1–203101:21. https://doi.org/10.1007/s11432-020-2952-7

[6] Dániel Fogaras and Balázs Rácz. 2005. Scaling link-based similarity search. In

WWW.

[7] Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, and Makoto Onizuka.

2013. Efficient search algorithm for SimRank. In ICDE.
[8] Guoming He, Haijun Feng, Cuiping Li, and Hong Chen. 2010. Parallel SimRank

Computation on Large Graphs with Iterative Aggregation. In KDD (Washington,

DC, USA). 10. https://doi.org/10.1145/1835804.1835874

[9] Jun He, Hongyan Liu, Jeffrey Xu Yu, Pei Li, Wei He, and Xiaoyong Du. 2014.

Assessing Single-pair Similarity over Graphs by Aggregating First-meeting Proba-

bilities. Inf. Syst. 42 (June 2014), 107–122. https://doi.org/10.1016/j.is.2013.12.008

[10] Wassily Hoeffding. 1963. Probability Inequalities for Sums of Bounded Random

Variables. J. Amer. Statist. Assoc. 58, 301 (1963), 13–30. http://www.jstor.org/

stable/2282952

[11] Glen Jeh and Jennifer Widom. 2002. SimRank: a measure of structural-context

similarity. In KDD.
[12] Glen Jeh and Jennifer Widom. 2003. Scaling personalized web search. In WWW.

[13] Joseph JéJé. 1992. An introduction to parallel algorithms. Reading, MA: Addison-

Wesley.

[14] Minhao Jiang, Ada Wai-Chee Fu, Raymond Chi-Wing Wong, and Ke Wang. 2017.

READS: A RandomWalk Approach for Efficient and Accurate Dynamic SimRank.

PVLDB 10, 9 (2017), 937–948.

[15] Mitsuru Kusumoto, Takanori Maehara, and Ken-ichi Kawarabayashi. 2014. Scal-

able Similarity Search for SimRank. In SIGMOD (Snowbird, Utah, USA). 12.

https://doi.org/10.1145/2588555.2610526

[16] Cuiping Li, Jiawei Han, Guoming He, Xin Jin, Yizhou Sun, Yintao Yu, and Tianyi

Wu. 2010. Fast Computation of SimRank for Static and Dynamic Information

Networks. In EDBT (Lausanne, Switzerland). 12. https://doi.org/10.1145/1739041.

1739098

[17] Pei Li, Hongyan Liu, Jeffrey Xu Yu, Jun He, and Xiaoyong Du. 2010. Fast single-

pair simrank computation. In SDM. SIAM, 571–582.

[18] Zhenguo Li, Yixiang Fang, Qin Liu, Jiefeng Cheng, Reynold Cheng, and John C. S.

Lui. 2015. Walking in the Cloud: Parallel SimRank at Scale. PVLDB 9, 1 (2015),

24–35.

[19] Yu Liu, Bolong Zheng, Xiaodong He, Zhewei Wei, Xiaokui Xiao, Kai Zheng,

and Jiaheng Lu. 2017. ProbeSim: Scalable Single-Source and Top-k SimRank

Computations on Dynamic Graphs. PVLDB 11, 1 (2017), 14–26.

[20] Dmitry Lizorkin, Pavel Velikhov, Maxim Grinev, and Denis Turdakov. 2010. Ac-

curacy estimate and optimization techniques for SimRank computation. VLDB J
19, 1 (2010), 45–66.

[21] Juan Lu, Zhiguo Gong, and Xuemin Lin. 2017. A Novel and Fast SimRank

Algorithm. TKDE 29, 3 (2017), 572–585. https://doi.org/10.1109/TKDE.2016.

2626282

[22] Siqiang Luo. 2019. Distributed pagerank computation: An improved theoretical

study. In AAAI, Vol. 33. 4496–4503.
[23] Takanori Maehara, Mitsuru Kusumoto, and Ken-ichi Kawarabayashi. 2014. Effi-

cient SimRank Computation via Linearization. CoRR (2014).

[24] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: a system for large-scale

graph processing. In SIGMOD. 135–146. https://doi.org/10.1145/1807167.1807184

[25] Yingxia Shao, Bin Cui, Lei Chen, Mingming Liu, and Xing Xie. 2015. An Efficient

Similarity Search Framework for SimRank over Large Dynamic Graphs. PVLDB
8, 8 (2015), 838–849.

[26] Jieming Shi, Tianyuan Jin, Renchi Yang, Xiaokui Xiao, and Yin Yang. 2020. Real-

time Index-Free Single Source SimRank Processing on Web-Scale Graphs. PVLDB
13, 7 (2020), 966–978.

[27] George M Slota, Sivasankaran Rajamanickam, and Kamesh Madduri. 2017.

PuLP/XtraPuLP: Partitioning Tools for Extreme-Scale Graphs. Technical Report.
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

[28] J. Song, X. Luo, J. Gao, C. Zhou, H.Wei, and J. X. Yu. 2018. UniWalk: Unidirectional

Random Walk Based Scalable SimRank Computation over Large Graph. TKDE
30, 5 (May 2018), 992–1006. https://doi.org/10.1109/TKDE.2017.2779126

[29] Boyu Tian and Xiaokui Xiao. 2016. SLING: A Near-Optimal Index Structure for

SimRank. In SIGMOD (San Francisco, California, USA). https://doi.org/10.1145/

2882903.2915243

[30] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast Random Walk

with Restart and Its Applications. In ICDM. 613–622. https://doi.org/10.1109/

ICDM.2006.70

[31] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. 2011. The

anatomy of the facebook social graph. arXiv preprint arXiv:1111.4503 (2011).
[32] Hanzhi Wang, Zhewei Wei, Ye Yuan, Xiaoyong Du, and Ji-Rong Wen. 2020. Exact

Single-Source SimRank Computation on Large Graphs. In SIGMOD. ACM, 653–

663. https://doi.org/10.1145/3318464.3389781

[33] Yue Wang, Yulin Che, Xiang Lian, Lei Chen, and Qiong Luo. 2020. Fast and

Accurate SimRank Computation via Forward Local Push and Its Parallelization.

TKDE (2020). https://doi.org/10.1109/TKDE.2020.2976988

[34] Yue Wang, Lei Chen, Yulin Che, and Qiong Luo. 2019. Accelerating Pairwise

SimRank Estimation over Static and Dynamic Graphs. VLDB J 28, 1 (Feb. 2019),
99–122.

[35] Yue Wang, Zonghao Feng, Lei Chen, Zijian Li, Xun Jian, and Qiong Luo. 2019.

Efficient Similarity Search for Sets over Graphs. TKDE (2019). https://doi.org/

10.1109/TKDE.2019.2931901

[36] Yue Wang, Xiang Lian, and Lei Chen. 2018. Efficient SimRank Tracking in

Dynamic Graphs. In ICDE. 545–556.
[37] Yue Wang, Zhe Wang, Ziyuan Zhao, Zijian Li, Xun Jian, Lei Chen, and Jianchun

Song. 2020. HowSim: A General and Effective Similarity Measure on Hetero-

geneous Information Networks. In ICDE. 1954–1957. https://doi.org/10.1109/

ICDE48307.2020.00212

[38] Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Yu Liu, Xiaoyong Du, and

Ji-Rong Wen. 2019. PRSim: Sublinear Time SimRank Computation on Large

Power-Law Graphs. In SIGMOD. 1042–1059.
[39] Da Yan, James Cheng, Yi Lu, and Wilfred Ng. 2014. Blogel: A block-centric

framework for distributed computation on real-world graphs. PVLDB 7, 14 (2014),

1981–1992.

[40] Weiren Yu, Xuemin Lin, and Wenjie Zhang. 2013. Towards efficient SimRank

computation on large networks. In ICDE. 601–612. https://doi.org/10.1109/ICDE.

2013.6544859

[41] Weiren Yu, Xuemin Lin, and Wenjie Zhang. 2014. Fast incremental simrank on

link-evolving graphs. In ICDE.
[42] Weiren Yu, Xuemin Lin, Wenjie Zhang, Lijun Chang, and Jian Pei. 2013. More is

Simpler: Effectively and Efficiently Assessing Node-Pair Similarities Based on

Hyperlinks. PVLDB 7, 1 (2013), 13–24.

[43] Weiren Yu and Julie A. McCann. 2015. Efficient Partial-Pairs SimRank Search for

Large Networks. PVLDB 8, 5 (2015), 569–580.

[44] Weiren Yu and Julie Ann McCann. 2015. High Quality Graph-Based Similarity

Search. In SIGIR (Santiago, Chile). 10. https://doi.org/10.1145/2766462.2767720

[45] Weiren Yu, Wenjie Zhang, Xuemin Lin, Qing Zhang, and Jiajin Le. 2012. A

space and time efficient algorithm for SimRank computation. WWW (2012).

https://doi.org/10.1007/s11280-010-0100-6

[46] Peixiang Zhao, Jiawei Han, and Yizhou Sun. 2009. P-Rank: a comprehensive

structural similarity measure over information networks. In CIKM.

363

https://doi.org/10.1007/s11432-020-2952-7
https://doi.org/10.1145/1835804.1835874
https://doi.org/10.1016/j.is.2013.12.008
http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952
https://doi.org/10.1145/2588555.2610526
https://doi.org/10.1145/1739041.1739098
https://doi.org/10.1145/1739041.1739098
https://doi.org/10.1109/TKDE.2016.2626282
https://doi.org/10.1109/TKDE.2016.2626282
https://doi.org/10.1145/1807167.1807184
https://doi.org/10.1109/TKDE.2017.2779126
https://doi.org/10.1145/2882903.2915243
https://doi.org/10.1145/2882903.2915243
https://doi.org/10.1109/ICDM.2006.70
https://doi.org/10.1109/ICDM.2006.70
https://doi.org/10.1145/3318464.3389781
https://doi.org/10.1109/TKDE.2020.2976988
https://doi.org/10.1109/TKDE.2019.2931901
https://doi.org/10.1109/TKDE.2019.2931901
https://doi.org/10.1109/ICDE48307.2020.00212
https://doi.org/10.1109/ICDE48307.2020.00212
https://doi.org/10.1109/ICDE.2013.6544859
https://doi.org/10.1109/ICDE.2013.6544859
https://doi.org/10.1145/2766462.2767720
https://doi.org/10.1007/s11280-010-0100-6

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 SimRank
	2.2 Distributed Graph Computation
	2.3 Challenges

	3 Basic Idea of DISK
	4 Distributed D=DDDD Estimation
	4.1 Physical Meaning of D
	4.2 The Design of Distributed Indexing
	4.3 Cost Analysis

	5 Online Single-source Query
	6 Optimizing Offline Indexing
	6.1 Boosting Leaf Coloring
	6.2 Sample Reduction

	7 Optimizing Online Query
	7.1 Early Stop
	7.2 Graph Partition Refinement

	8 Experiments
	8.1 Accuracy
	8.2 Efficiency
	8.3 Comparison with Other Algorithms

	9 Related Works
	10 Conclusion
	Acknowledgments
	References

