626

Core

DDR-T (64B)

XPLine (256B)

[L1, 12,]

I .
LLC - _AA[ZR_ _QQ"_"@]_-DI}

T Y. ... | Figure 2: DCPMM Internal Architecture

Figure 1: Archlitecture of PMEM-enabled Systems: SB is.store memory controller (iMC) are part of the persistence domain. On
buer, ADR is asynchronous DRAM refresh, eADR is en- power failure, all stores that have reached the ADR domain will be
hanced ADR, WPQ is write pending queue, and iMC is in- ushed to the PMEM DIMM. However, the CPU caches are not part
tegrated memory controller. of the persistence domain. So, any data left in the CPU cache will

be lost in the event of power failure. In contrast, in eADR mode,
the CPU caches are also part of the persistence domain (they will
be ushed to PMEM in case of power failure). So, data in cache can
be considered to be persistent, but data in CPU registers and store
bu ers will still be lost.
Optane DCPMM. Optane DCPMM s Intel's PMEM solution which
conforms to our de nition of PMEM and system architecture. Fig-
ure 2 shows its internal architecture. Optane DIMMs operate in
ADR mode but systems designed for eADR can be tested on them
for accurate performance measurements, even though the system
may not be crash-consistent. The CPU memory controller uses the
DDR-T protocol to communicate with DCPMM. DDR-T operates
at cache-line (usually 64B) granularity and has the same interface
) as DDR4 but uses a di erent communication protocol to support
with PMEM. . . . S asynchronous command and data timing. Access to the media (3D-
To summarize, this paper makes the following contributions: XPoint) is at a coarser granularity of a 256B XPLine, which results
* PMidioBench, a micro-benchmark suite for measuring the i 3 read-modify-write operation for stores, causing write ampli -
quantitative impact of PMEM idiosyncrasies (Y3)) cation. The XPLine also represents the error-correcting code (ECC)
A methodical categorization of PMEM idiosyncrasies (Y4) plock unit of DCPMM; access to a single XPLine is protected us-
* Acase study with MongoDB's PMEM storage engineto guide jng hardware ECC. Like SSDs, DCPMM uses logical addressing

rst study guides data placement on non-uniform memory access
(NUMA) systems with PMEM. Using MongoDBY as an exam-

ple, we identify ways to maximize PMEM capacity utilization with
minimal performance impact. The second study guides the design
of lock-free data structures, for both asynchronous DRAM refresh
(ADR) and enhanced ADR (eADR) PMEM systems. We present lock-
free designs for a ring bu er and a linkedlist, two commonly used
data structures in database systems. Our analysis shows the com-
mon pitfalls of prior work on lock-free persistent data structures.

A key insight we make is that some PMEM idiosyncrasies arise
because of the way PMEM is organized in the system and not the
PMEM technology itself. Overall, we nd that our results are often
counter-intuitive and highlight the challenges of system design

data placement on NUMA-enabled systems (Y5) for wear-leveling purposes and performs address translation in-
* A case study with ring bu er and linkedlist to guide the ternally using an address indirection table (AIT). Optane DIMMs

design of lock-free persistent data structures (Y6) also use an internal cache (XPBu er) with an attached prefetcher
* Asetof empirically veri ed technology agnostic recommen- (xpprefetcher) to bu er reads and writes. The cache is used as a

dations to assist storage system developers (Y7) write-combining bu er for adjacent stores and lies within the ADR

Throughout the paper, we have highlighted observations that domain, so updates that reach the XPBu er are persistent.
we feel will be relevant to a broader audience. The most relevant
PMEM idiosyncrasies and system design recommendations have 3 PROPOSED MODUS OPERANDI
been consolidated in tabular form (Tables 1 and 4). To categorize PMEM idiosyncrasies, we rst benchmark the low-

level performance of Intel DCPMM. Based on our results, we iden-

2 PMEM BACKGROUND tify a list of DCPMM idiosyncrasies (see Table 1). Understanding
PMEM System Architecture. We assume a generic PMEM sys- how these peculiarities relate to other classes of PMEM is non-
tem architecture which conforms to current systems with DCPMM trivial and requires a proper understanding of the root cause of
and future systems with other PMEM. Figure 1 shows the generic each idiosyncrasy. If the root cause (hardware component/design)
architecture. We expect the system to consist of one or more identi- is not present in other classes of PMEM, it is not applicable to
cal multi-core NUMA-enabled CPUs. Each CPU has local registers, those devices. Table 2 lists the classes of PMEM we consider in
store bu ers, and caches. The last level cache (LLC) is shared acrossthis paper. To identify the root cause, we propose two techniques.
all cores in a CPU. Each CPU has its own memory (DRAM and The rstis to see whether the idiosyncrasy also exists when the
PMEM) connected to other CPUs through a mesh interconnect. same benchmark is used on DRAM. If it also exists with DRAM, we
The PMEM system can be designed to support one of two persis- can pinpoint some hardware component in the system other than
tence modes ADR or eADR. In ADR persistence mode, the PMEM DRAM and PMEM as the root cause. In such cases, the idiosyncrasy
DIMMs and the write pending queues (WPQ) in the integrated would be applicable to other PMEM classes as well since the root

627

Table 1: PMEM Idiosyncrasy Categorization. *Impact is worse than other classes *Also applicable to PMEM using PCM/ ash

ID Idiosyncrasy Root Cause(s) Applicability Figure

11 Asymmetric load/p-store latency CPU cache Clc4 Fig. 3(a)

12 Asymmetric load/p-store bandwidth iMC contention & 3D-XPoint latency *C4 Fig. 3(b),(c)
I3 Poor bandwidth for small-sized random 1O Access granularity mismatch C3,C4 Fig. 4

14 Poor p-store bandwidth on remote NUMA PMEM Mesh interconnect & XPPrefetcher CLCBZ4 Fig.5

I5 Store bandwidth lower than p-store bandwidth XPPrefetcher Cc2,C4 Fig. 6

16 Sequential 10 faster than random 1O CPU & XP Prefetchers CI1a32C4 Fig. 7(a),(b)
17 P-stores are read-modify-write transactions XPBu er design C4 Fig. 7(d)

Table 2: Classes of PMEM considered in this paper. Note that
the classes are not mutually exclusive. For instance, DCPMM
is alsoin C2 and C3.

Class Description

C1l NVDIMM/Battery-backed DRAM

Cc2 PMEM with internal cache and prefetcher

C3 PMEM with access granularity mismatch

C4 Intel DC Persistent Memory Module (DCPMM)

cause is not related to the PMEM technology. The exact component
can be veri ed by considering the impact of each component in
Figure 2 and micro-architectural numbers. The second technique is
to look at DCPMM hardware counters to identify the exact internal
architectural component responsible for the peculiarity. In such
cases, the peculiarity would be applicable to other classes of PMEM
which have the same component too. We use these two techniques
to understand the applicability of the most relevant DCPMM per-
formance characteristics. We only focus on characteristics which
defy conventional wisdom or have the most impact on performance.
To the extent possible, we keep the discussion agnostic to the CPU
architecture.

Metrics. We use three metrics to understand the performance char-
acteristics of PMEM systems e ective write ratio (EWR), e ective
bandwidth ratio (EBR), and read-write ratio (RWR). EWR is a met-
ric speci ¢ to PMEM with a mismatch in access granularity, rst
proposed in 3. It is the ratio of bytes written to the iMC and the
bytes written to the 3D-XPoint media, essentially the inverse of
write ampli cation. Along similar lines, we propose EBR as a PMEM
technology independent metric. It is the ratio of average achieved
PMEM bandwidth and the peak bandwidth. Unlike EWR, EBR has
no direct relation to write ampli cation but only to achieved band-
width and is also meaningful when there is no write ampli cation.
RWR is the ratio of bytes read and bytes written to either the iMC
or 3D-XPoint media in case of DCPMM. Our analysis shows that
these metrics are useful in gaining an in-depth understanding of
performance trends. EWR and EBR are useful in identifying sub-
optimal access size, pattern, and concurrency. RWR is useful in
determining workload type as read or update heavy.

Terminology. We use nt-store to indicate an optimized non-
temporal store instruction that bypasses the cache hierarchy. We
de ne persistent store (or p-store) as a store instruction which is
persistent. A p-store comprises of a regular store followed by a
cache-line ush and store fence or a nt-store followed by a store

628

fence. We de ne persistence barrier as an instruction which guar-
antees durability of data (cache-line ush + store fence). In our
evaluation, we use cache- ush instructions which invalidate the
cache-line instead of write-back instructions which do not invali-
date cache-lines because write-back instructions are not fully im-
plemented on Intel CPUs yet [53].

3.1 PMldioBench

Understanding and categorizing PMEM characteristics is non-
trivial. This is because existing benchmarks only provide the ability
to evaluate performance characteristics but not isolate their root
cause. To fully understand the nuanced behavior of PMEM, we
designed a micro-benchmark suite calleldioBench . The suite
consists of a set of targeted experiments to evaluate PMEM per-
formance and identify its idiosyncrasies. There is one benchmark
for every idiosyncrasy shown in Table 1. The benchmarks are de-
signed to measure the latency or bandwidth of PMEM access under
di erent scenarios, thread counts, and access sizes. PMIdioBench
pins threads to cores, disables cache prefetching (when required),
and primes the CPU cache to produce accurate and precise perfor-
mance measurements. It also includes two tools to help identify
the main reason behind performance anomalies and bottlenecks
one to examine relevant hardware counters and display useful
metrics (such as EWR, EBR, and RWR) and the other to generate
benchmark trace and distill gathered information in the form of a
ame graph [20. PMIdioBench can be used not only to verify and
reproduce the results presented in this paper, but also to calculate
the quantitative impact of the idiosyncrasies on future PMEM.
Limitations. PMIdioBench only contains targetted experiments
to identify idiosyncrasies that have been observed with DCPMM.
If the PMEM being evaluated has some unique characteristic not
observed earlier, then PMIdioBench can not identify it. In addition,
PMIdioBench requires PMEM hardware counters to be available at
the granularity of cache-lines. Without access to these counters, it
is not possible to identify the root cause of some idiosyncrasies.

3.2 Experimental Testbed

Our experimental testbed consists of a Linux (3.10) server equipped
with two Cascade Lake CPUs (8280L@2.70GHz), 384GB DRAM (2
X 6 x 32GB DDR4 DIMMs), 6TB PMEM (2 x 6 x 512GB DCPMMs)
con gured in App Direct mode, and a 1TB Intel P4510 Flash SSD.
Each CPU has 28 cores and 38.5MB of L3 cache (LLC). All available
PMEM is formatted as twafs DAX lesystems, each utilizing the
memory of a single CPU socket as a single interleaved namespace.

80 35 2.5
— —u- |oad - ~=—load store + clwb —&—nt-store e read
G % 30 @20 i
2000 @ 60 store + clwb @ o5 @< write
2 -=-PMEM Load €| - nt-store g o
>.1500 PMEM P-Store| g £20 =15
9 ~=-DRAM Load 540 B E
1000 -«DRAM P-Store| =] S 1.0
5 220 210 k=
500 ——— a 3 s D A A 805
000 02 04 06 08 10 064 128 256 512 1024 2048 4096 064 128 256 512 1024 2048 4096 078 16 32 61 138 256
LLC Hit Ratio 10 Size (bytes) 10 Size (bytes) 10 Size (KB)
(a) PMEM and DRAM Load/P-Store Latency (b) DRAM Load/P-Store Bandwidth (c) PMEM Load/P-Store Bandwidth (d) Flash Read/Write Bandwidth

Figure 3: (a) Asymmetric load/p-store latency - 11, (b), (c), and (d) Asymmetric load/p-store bandwidth - 12

©

DRAM loads is signi cant. However, this di erence decreases dras-

ge 1(2, tically as the LLC hit ratio is increased. As more loads are serviced
% L08 from the cache, their latency decreases and converges to the cache
-‘;’4 306 latency. However, store latency is dominated by cache ush latency
22 o zeqd z: Seq and is una ected by the increased cache hit rate. At a hit ratio of
"o 64 128 256 ansu 00 128 256+ Ra?u 1, DRAM has a 6.7x di erence between load and p-store latency,
10 Size (bytes) 10 Size (bytes) while PMEM has a 23.3x di erence. Since this trend is observable
(a) PMEM Write Bandwidth (b) PMEM EWR for both PMEM and DRAM, it is generalizable. This result is sig-
ni cant because it shows that under real-world use cases, where a
Figure 4: Poor bandwidth for small-sized random 1O - I3 majority of PMEM accesses are cache hits, p-stores are much slower

than loads. Thereforghere is bene t in avoiding unnecessary
All code was compiled using gcc 9.2.0. PMIKJ[1.8 was used ~ p-stores and keeping relevant data in cache .
across all evaluations to keep comparisons fair. Hardware counters

were obtained using a combination of Intel VTune Pro le2g, 4.2 Asymmetric load/p-store bandwidth

Intel PCM B2, and Linux perf utility. DCPMM hardware counters e measure the bandwidth of DRAM, PMEM, and Flash for di erent
were collected using thépmwatch utility, a part of the VTune IO sizes. Results are shown in Figures 3(b), 3(c), and 3(d). PMEM
Pro ler. load bandwidth (max 30GB/s) is only 2.5x worse than DRAM (max

Reproducibility. The experimental analysis in this paper was done 76GB/s) but PMEM store bandwidth (max 8GB/s) is 5.2x worse
while keeping reproducibility in mind. All of the benchmarks, per- than DRAM (max 42GB/s). In general, store bandwidth is lower
formance analysis tools, and systems used in this paper are open than load bandwidth because of the slow write latency of non-
source. Further, code for PMidioBench as well as our lock-free ring yolatile storage, an e ect previously observed in ash memor; |
bu er and linkedlist implementations have been open-sourced. A 57] However, the asymmetry is more pronounced for PMEM. There
document with detailed steps to reproduce all gures in this paper jsonly a 1.7x and 2.3x di erence in peak DRAM and Flash read/write
is included with the code. bandwidth but the di erence for PMEM is 3.7x. The reason for
4 IDIOSYNCRASY CATEGORIZATION this additional di erence is contention at the iMC (also discussed

in [63). Therefore, we expect that PMEM designed with other
In this section, we list and categorize PMEM idiosyncrasies through memory technologies with characteristics similar to DCPMM (such
targeted experiments. A summary of the idiosyncrasies with their as PCM Bg and ash) will manifest this asymmetry, but not to the
root cause and applicability can be found in Table 1. same extent as DCPMM.

4.1 Asymmetric load/p-store latency 4.3 Poor bandwidth for small-sized random 10

When considering PMEM latency, it is important to consider the In this experiment, we measure the bandwidth of small-sized (64
e ects of caching. Prior studies3s, 62, 63 only consider direct 512B) |0 on PMEM. Figure 4(a) shows the results for both sequential
PMEM latency which does not re ect the latency perceived by ap- and random |O. We nd that sequential bandwidth is mostly the
plications. In this study, we measure cached latency, which reveals same across all 10 sizes but random bandwidth is signi cantly
the asymmetric nature of PMEM latency. Our experiment uses a lower at 64B and 128B |0 sizes. The reason for this behavior is the
region of PMEM equal to the LLC size. We prime the LLC by access- 256B size of the internal ECC block (XPLine) in DCPMM. Any IO
ing a fraction (f) of the cache-lines using CPU loads. Finally, we smaller than the block size results in write ampli cation, reducing
do load or p-store operations on the mapped region with 8 threads bandwidth. This e ect is less apparent with sequential 10 because
and measure operation latency. By changifigwe can e ectively DCPMM uses an internal write-combining bu er to merge adjacent
control the LLC hit ratio. Figure 3(a) shows the results of this ex- writes to the same ECC block. To verify this behavior, we measure
periment with both DRAM and PMEM. First, we nd the p-store EWR while running this experiment (shown in Figure 4(b)). Results
latency for PMEM is 3.4x worse than DRAM but load latency isonly clearly show the write ampli cation issue at 64B and 128B for
up to 2.2x worse for PMEM. The reason for this is the poor write random |O. For access sizes of 256B or larger, there is no write
bandwidth of PMEM. Second, we observe that when all accesses ampli cation because there are no partial XPLine writes. The fact
directly go to memory, the latency di erence between PMEM and that small-sized 10 results in poor bandwidth is well known and

629

10 11 6.7 176 9.5 95 104 152 119 15.0 222
-1.2 -0.1 5.6 20.0

01 04 7.0 155

19.6 17.7 17.1 22.4 26.8
17.8 153 163 22.5 24.9
17.0 17.2 16.6 22.0 249
17.3 169 17.3 22.0 265
16{17.7 17.5 183 243 36.8
28113.0 13.6 16.4 343 48.0
28 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096
10 Size (bytes) 10 Size (bytes) 10 Size (bytes)

(a) DRAM Seq (b) DRAM Rand (c) PMEM Seq (d) PMEM Rand

88 84 93 138 11.6 184 28.0

® &N e
© BN =
©® BN e

1.4

Threads

Threads

Threads
Threads

16
28

16
281 -0..

128 256 512 1024 2048 4096
10 Size (bytes)

Figure 5: Poor p-store bandwidth on remote NUMA - 14. Heatmap is annotated with the percentage di erence between local
and remote NUMA bandwidth. A positive value indicates that remote access is worse while a negative value indicates the

opposite.

1107 07 -05 07 -7.7 -121 -17.1 1{ 10 01 58 -27 08 -61 -195 - 20 88 141 7.1 158 7.3 1120 04 40 -03 60 124 106
2{-14 23 27 -45 -12.8 -19.1 -22.9 2/ 19 17 28 36 -18 -13.1 -24.8 = 45 -14 150 21.2 251 235 2{-09 11 40 22 101 210 245
§ 4{-11 -18 -16 -46 -12.1 -13.8 -18.8 § 4/ 04 02 41 -28 -10 -88 -19.0 ﬁ {‘3 4103 23 67

£ 8l12 17 10 36 87 -67 68 £gl08 05 50 16 03 47 54 £ £ 800 40 141 6
Fl6l-06 10 06 12 03 28 31 Fl6/33 43 86 20 20 09 -08 - T 53.4 53.3
28]-15 -08 -17 -05 17 30 27 28] 41 79 111 69 28 39 24 28
64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096 64 128 256 512 1024 2048 4096 128 256 512 1024 2048 4096

10 Size (bytes) 10 Size (bytes) 10 Size (bytes) 10 Size (bytes)

(a) DRAM Seq (b) DRAM Rand (c) PMEM Seq (d) PMEM Rand

Figure 6: Lower bandwidth for store than p-store - 15. Heatmap is annotated with the percentage di erence between store and
p-store bandwidth. A positive value indicates that store is worse than p-store while a negative value indicates the opposite.

is applicable to any storage device. Therefore, this idiosyncrasy DRAM and PMEM. Results, presented in Figure 6, show the an-
is generic, but the mismatch between the cache-line and XPLine notated heatmaps with the percentage di erence in bandwidth.
sizes implies that it is more severe with PMEM that has a similar We observe that there is signi cant di erence in bandwidth for
mismatch in access granularity. PMEM but not for DRAM. We believe that this trend is a result
of the cache hierarchy changing the cache write-back pattern to

4.4 Poor p-store bandwidth on remote NUMA a r_lor_l-deterministic random pattern for regular_stgres. The cache

]] o . eviction algorithm works asynchronously and is independent of
With the recent popularity and ubiquity of NUMA systems, itis he application 10 pattern. Hence, it e ectively converts sequential
important to s_tudy the performance |mp_I|cat|ons_of remote NUMA ~pyJ stores into random writes to PMEM. Random IO on PMEM is
access. To thls_ end, we measure the di erence in Igcal and remote \,qrse than sequential 10 (see Figure 7(a)) because of the e ects of
NUMA bandwidth for both DRAM and PMEM. Figure 5 shows he xpprefetcher on the internal cache in DCPMM (see Figure 7(b)).
the heatmap for this evaluation annotated with the percentage oyever, DRAM random IO does not su er from this issue. There-
di erence in bandwidth between the two modes. Having t0 g0 tore we conclude that this characteristic is speci ¢ to PMEM with
over the mesh interconnect for each transaction adds overhead . internal cache using a prefetcher. In eéADR mode, applications
which reduces oyerall ba_de|dth. A common observab!e theme typically do not ush the cache to minimize latency because the
across all cases is that high concurrency and large 10 sizes ShOw ¢5che s in the persistence domain. However, this experiment shows
more performance degradation for remote access (visible as the ot not ushing the cache can in fact be detrimental to band-
staircase like pattern in the heatmaps). This is because the inter- i4th when using PMEM with a built-in prefetcher
socket bandwidth and Intel Ultra Path Interconnect (UPI) lanes are
both limited. Interestingly, PMEM su ers from higher degradation 4.6 Sequential 10 faster than random 10
for remote access, particularly for sequential 0. The reason for this)))
is that UPI lane sharing across threads changes the access pattern!n this experiment, we compare the sequential and random read
from sequential to random. The degradation is higher for PMEM Pandwidth of DRAM, PMEM, and Flash. Figures 7(a) and 7(c) show

because it is more sensitive to the 10 access pattern than DRAM the read bandwidth comparison with varying IO size. There is dif-
because the XPPrefetcher in DCPMM bene ts sequential 10 more ference between sequential and random bandwidth for both DRAM
than random 10 (see Figures 7(a) and (b)). We observe reduction in @"d PMEM but not for Flash. Flash does not show this idiosyn-
bandwidth with both DRAM and PMEM because of the overheads Crasy because its low bandwidth is easily saturated, regardless of
of remote NUMA access, therefore this idiosyncrasy is applicable O pattern. Overall, the di erence is much higher with PMEM than
to all classes of PMEM. However, it will be more severe with PMEM PRAM. The maximum degradation is 3.5x with PMEM but only
that use an internal cache with a prefetcher. 1.7x with DRAM. To understand the additional degradation with
PMEM we analyze the read hit ratio of the internal XPBu er in
. DCPMM (see Figure 7(b)). We nd that the ratio is 19% lower for
4.5 Lower bandwidth for store than p-store random 10, likely because th€PBu er has a prefetcher which
We measure the bandwidth of persistent stores (followed by a cache- is bene cial for sequential IO . This idiosyncrasy is also present
line ush) and regular stores (not followed by a ush) for both in DRAM because of the CPU prefetcher but it is worse for DCPMM

630

80 as future work. Our goal is to guide the placement of persistent

™ mim ieqd data structures in MongoDB to minimize performance impact and

bl B SZ;’ maximize capaciFy utilization. In general, placing all data structures

—i— DRAM Rand on local NUMA is the most performance optimal con guration,
whereas distributing them evenly among available NUMA nodes

maximizes capacity utilization and performance isolation. To nd
the optimal con guration, we conduct thorough experiments with

64 128 256 512 1024 2048 4096 . z . .

10 Size (bytes) SegR RandR MongoDB considering all possible placement scenarios. Once the
optimal con guration is found, we analyze the reason for its opti-

Bandwidth (GB/s)
N
o

XPBuffer Read Hit Ratio

oo o0 ow
oN » o ®» O

(a) PMEM & DRAM Read Bandwidth (b) Read Hit Ratio . L. X)
mality by examining low-level PMEM counters. Finally, we design a
2.5 set of empirically veri ed guidelines to follow which can be applied
Fao Flash Seq 10 to other storage systems and is agnostic to PMEM technology.
g | T fleshRand 08 MongoDB's PMSE is an alternate storage engine for optimal
£ L5 0'6 usage of persistent memory. Its design primarily consists of two
L0 0'4 persist(_ant data structures a b_+tree (_index) and a record storc_a
505 0'2 (RS). Since both structures o er immediate persistence and consis-
0.0 : tency, journaling and snapshots are not required. PMSE relies on
f s e 0.0 VR RWR PMDK's libpmemobj-cpp transactional bindings to make the data
i) structures crash consistent. We test the performance of PMSE using
(c) Flash Read Bandwidth () PMEM Metrics YCSB §] workloads A, B, and C. For our experiments, MongoDB
Figure 7: (a), (b), and (c) Sequential 10 faster than random IO server daemon is pinned to NUMA node 0 and YCSB client threads
- 16, (d) P-stores are read-modify-write transactions - 17 are pinned to NUMA node 1. We also tuned the b+tree node size

and the record store bu er size to be multiples of PMEM block
size (256B). A total of four cases are considereloth RS and
index both placed on node 0's PMERK®gne both placed on node
1's PMEMyecord storeRS and index placed on node 0's PMEM
and node 1's PMEM, respectivelpdex opposite ofrecord store
Figure 8 shows the throughput and latency for di erent workloads
4.7 P-stores are read-modify-write transactions and con gurations at full subscription (28 threads). As expected,
both has the best performance, whilgonehas the worst. Local

This experiment is particularly targeted to verify certain idiosyn- \ypa access is much faster than remote NUMA access, as we ver-
cratic behavior of the DCPMM XPBu er. In the experiment, we i ed in Figure 5. We also nd thatrecordshows performance close

do repeated non-temporal writes to the same XPLine and measure y, o for all workloads. Surprisingly, the write P99 latencies of
the EWR and RWR. Results are shown in Figure 7(d). To our sur- o4 storandbothare the same which indicates that record store
prise, both EWR and RWR are close to 1. This implies that DCPMM accesses contribute the most to tail latency. Therefoeeord store

writes an XPLine to media as soon as it is completely written, even ¢ gy ration is optimal one since it shows good performance and
if the XPBu er is not full. Further, even though we are writinga .5y 5150 fully utilize the available PMEM capacity. To understand
complete (256B) XPLine, writes are broken up into (64B) cache-line why this con guration is optimal, we analyze the low-level PMEM
size requests because DDR-T operates at cache-line granularity..q nters for both data structures separately. We use two metrics
This results in a read-modify-write transaction for every internal , \ngerstand the performance characteristics of each structure
store. These observations lead us to conclude that the XPBU er ¢ ocive \write ratio (EWR) and e ective bandwidth ratio (EBR). For
is not being e ciently utilized. There are two ways the DCPMM 5y merics, a high value is desirable and indicates optimal usage
internal architecture can be improved. First, retaining fully written of PMEM.

lines in the XPBu er will increase its hit ratio for workloads with Figure 9(a) shows the values of these two metrics for the two

high temporal locality. Second, if the controller nds consecutive a4 stryctures. Our results show that the record store data struc-
writes to same XPLine, then it should not read data from media to ture has far lower values for both metrics which implies that it

avoid unnecessary read-modify-writes. We believe that future gen-
erations of DCPMM should adopt these optimizations to improve
performance.

because of the presence of two prefetchers CPU and XP Prefetcher.
These results indicate that this idiosyncrasy is applicable to any
class of PMEM, but is considerably worse for classes that have an
internal prefetcher.

likely has a sub-optimal access pattern. To verify this, we analyze
the PMEM store access pattern for workload A. We measure the
percentage of data accessed across di erent granularities, shown

5 CASE STUDY NUMA-AWARE DATA in Figure 9(b). We nd that both data structures have a majority
of accesses at 4 8KB granularity. However, the record store has
PLACEMENT WITH MONGODB more accesses in the 64 128B granularity than the b+tree index

In this section, we present a case study to guide data placement on because updating its memory allocator atomically requires small-
NUMA systems with MongoDB's persistent memory storage engine sized stores. This justi es the EWR and EBR trends we observe.
(PMSE) 81. We currently only consider the case where data struc- Therefore, we conclude that a poor EBR or EWR metric means that
tures are placed entirely on local or remote NUMA PMEM. Cases the data structure should be placed on the local NUMA node to

where a single data structure may span across NUMA nodes is left minimize performance degradation. Since EWR is not applicable to

631

=N
o u
S o

Throughput (Kops/s)

>
Workload A Workload B Workload C

\\\\‘\\\}\\\\\\‘\\§

7=
(a) Throughput

Figure 8:

1.0
0.8
0.6
0.4
0.2

= record store

77 both

3 record store

(b) Average Latency

55 index

—

0.0

(a) PMEM Metrics

Store Size Range

(b) Store Histogram

Figure 9: MongoDB YCSB Drilldown

Table 3: Summary of Lock-free Designs Evaluated. Persis-
tence mode “both' is equivalent to both ADR and eADR.

[8,16) [64,128) [128,256)[256,512) [4K;8K)

Name Data Structure Persistence Mode Design Technique
Link-free [65] linkedlist both dirty-bit

SOFT [65] linkedlist both dirty-bit

TLog" linkedlist both per-thread logging
Log-free linkedlist eADR atomic operations
Volatile [37] ring bu er none atomic operations

TX* ring bu er both transactions

TX-free* ring bu er eADR per-thread status bu er

*Proposed in this paper

all PMEM, we instead advocate for the use of EBR. Our observation
can be summarized as the following recommendatiBlace data
structures with higher EBR on remote NUMA.

6 CASE STUDY DESIGNING PERSISTENT
LOCK-FREE DATA STRUCTURES

In this section, we rst discuss challenges associated with persis-
tent lock-free data structure (PLFS) design. Then we present the
design and evaluation of two PLFSs ring bu er and linkedlist. The
intention of this case study is two fold. First, we want to highlight
the di erence in PLFS design between eADR and ADR persistence
modes. Our ndings show that designs which assume the presence
of ADR may not provide the best performance in eADR mode, par-
ticularly for update heavy workloads. So, there is merit in tailoring

Z =
B/Write C/Read

(c) P95 Latency

=%
A/Read

(d) P99 Latency

Evaluation of MongoDB PMEM Storage Engine with YCSB

nea[2[Ta1L]a] 12 [3[25 1] [e[e]ele]
Node © | Node 1 | Node 2 | Node 3 bitmap
op valin-flight op valin-flight

|inser‘t|12| falsel |de1ete|25| true |
Thread 1 Log Thread 2 Log

[HEAD|—{ 12 [-}—] 25 |}—{7AIL]

Linkedlist View
Figure 10: TLog Design Overview with 2 Threads. Thread 1
has completed its operation whereas Thread 2 is in- ight. 0
in the bitmap indicates that the memory region is allocated.

[Jan pyem [] In DRAM

structure is no longer lock-free. Transactional abstractions which
use redo/undo logging are one of the most common techniques but
as many of these rely on locks internally they are not applicable.
Some abstractions, such as PMDK's libpmemobj libré&§ fo not

use locks but rely on per-thread bu ers to maintain transaction
state. Such abstractions can be used to maintain consistency and
lock-freedom. Another recently developed technique is thety-bit
design, as used irbp, 65. In this approach, data is markedirty
when it is updated; threads which nd the dirty bit set ush data to
PMEM so that only committed data is read. Using per-thread scratch
bu ers for logging or status tracking is another approach that can
be used. Since threads operate on independent memory regions,
they can operate in a lock-free manner. Finally, for eADR mode,
relying on atomic operations is su cient to maintain consistency.
Note that only using atomic operations may not be su cient in
this case because some information may be required to identify
the data structure state on recovery from crash. Other techniques,
such as per-thread logging may also be necessary. Also note that
in all designs atomic operations are required to maintain mutual
exclusion.

In this section, we present designs for two truly lock-free persis-
tent data structures a multi-producer, multi-consumer ring bu er
and a concurrent linked list. We chose these data structures because
they are commonly used in database systems for several di erent

designs for eADR mode. Second, we want to compare and contrast purposes. Table 3 shows a summary of the di erent designs we

PLFS design techniques. Our results show that selecting an appro-

priate technique can signi cantly impact performance and should
be done considering the workload 10 pattern and persistence mode.

6.1 Design Techniques

There are several existing techniques in literature which can be used
to implement PLFS. Providing atomicity and isolation guarantees
requires the use of complex transactional systems, which often use
locks for mutual exclusion. The use of locks implies that the data

632

evaluate. Designs with persistence mode “both' were designed for
ADR mode but can also be run in eADR mode by replacing all per-
sistence barriers with store fences. The main point of this study is

not to implement the best possible design but rather to compare

and contrast di erent design approaches.

6.2 Lock-free Linkedlist

We consider a sorted linkedlist with any arbitrary structure as the
value. Our lock-free linkedlist designs are extensions of Harris'

Link-free [SOFT XX TLog Link-free [\NSOFT KX]TLog

LN

N
=)

f
«

-
)

Throughput (Mops/s)
o - N w £ w

Throughput (Mops/s)

o w

N
«

Link-free
NsoFT

XA TLog

Log-free|

Link-free
KJSOFT

K TLog

Log-free|

=N
u o
w A U o

—
o

N

Throughput (Mops/s)

o =

Throughput (Mops/s)

o wu

N
5 10 20 30 40 50

Update %

(a) ADR (1024 Range)

5 10 20 30

Update %

(b) ADR (4096 Range)

40

10 20 30 40 50
Update %

(c) eADR (1024 Range)

0 5 0 5 10 20 30

0
Update %

(d) eADR (4096 Range)

40 50

Figure 11: Lock-free Linkedlist Throughput Evaluation

algorithm [23 and support the same basic operationsinsert,
delete, andcontains. The original algorithm uses the atomic
compare-and-swap operations to maintain lock freedom. Node
deletion is logical and requires subsequent garbage collection to
reclaim memory. The logical deletion process involves marking
nodes agemovedy setting the least signi cant bit of the node's
pointers. Our designs build upon the original algorithms to provide

false. Thread 2, on the other hand, has not completed its delete
operation and its in- ight ag is still set totrue. If there is a crash

at this moment, then on recovery Thread 2's pending operation
will be completed using data in the log. The Lock-free design is the
same as shown in the gure, except that the per-thread logs are not
required.

Evaluation. We compare our designs with two current state-of-the-

persistence. We propose one design for ADR systems, called TLog,art approaches, SOFT and Link-free, proposedd§.[We measure
and another for eADR systems, called Log-free. Both designs use the total throughput achieved by all implementations while varying

the same memory allocator and base design.

TLog Design. TLog adds persistence barriers to ensure durability.
A new node is ushed to PMEM before being added to the list. In
addition, changes to a node's next pointer are also ushed. For main-
taining operation atomicity, we rely on per-thread scratch bu ers
for micro-logging operations. Before initiating a list operation, each
thread stores the operation type and its parameters in its scratch
bu er and marks it as in- ight. Once the operation is completed,
the operation is marked as completed. On recovery, scratch bu ers
of all threads are examined and any in- ight operations are redone.

the update ratio and value range at full subscription (28 threads) to
simulate a heavy load scenario.

Figures 11(a) and (b) compare list throughput in ADR mode
for 1024 and 4096 value ranges. TLog outperforms Link-free in all
cases and SOFT in all but two cases. Link-free works similar to
TLog but does not use per-thread logs for atomicity. Instead, nd
operations are required to ush the node (if not already persisted)
before returning it. This increases the latency of nd operations
and reduces overall throughput. SOFT is an optimization of Link-
free in that it does not ush node pointers but uses a valid ag

Recovery is idempotent because insert and delete operations are per-node to indicate which nodes are part of the list. On recovery,

both idempotent themselves.
Log-free Design. In eADR mode, the volatile cache is in the persis-

all PMEM nodes are scanned to nd valid nodes and are added to
the list. SOFT reduces the number of persistence barriers required,

tence domain. Insert and delete operations have a single lineariza- so insert and delete operations are fast. However, it still requires

tion point (the compare-and-swap instruction). Therefore, we do
not need to use transactions or journaling to maintain atomicity.
We can use Harris' algorithm as is, but with store fences at lin-
earization points. However, we still need to prevent PMEM leaks
and allow PMEM address space relocation. Our memory allocator
solves these two problems.

Memory Allocator Design. The memory allocator consists of a
xed size PMEM slab indexed using a volatile lock-free bitmap. The
bitmap relies on atomidetch-and-and/or instructions to retain
lock freedom. Our memory reclamation algorithm uses epoch-based
reclamation (EBR)I5 to maintain correctness and garbage collect
unused memory. To prevent PMEM leaks, we keep the bitmap in
volatile DRAM and rebuild its state upon recovery. This is done by
walking through the linkedlist and marking the memory region for
each node as allocated in the bitmap. In this manner, memory allo-
cation does not require transactional support. Finally, to safeguard

nd operations to ush nodes, increasing nd latency. On the other
hand, TLog uses micro-logging for atomicity and does not rely on
nd operations doing persist barriers. Therefore, TLog nd latency
is much lower than SOFT or Link-free but insert and delete latency
is higher. This also explains why TLog performance gets closer to
Link-free and SOFT as the update percentage is increased.
Figures 11(c) and (d) compare list throughput in eADR mode for
1024 and 4096 value ranges. TLog outperforms both Link-free and
SOFT in all cases. This is because in eADR mode there is no need
to ush cache-lines. So, insert and delete operations do not incur
persistence overheads. SOFT and Link-free optimize insert/delete
over nd and are hence outperformed by TLog. We also observe
that Log-free outperforms TLog in all but two cases, albeit only by
a small margin. The Log-free design takes advantage of the eADR
mode to avoid the micro-logging operation which TLog performs.
By eschewing logging, Log-free achieves better throughput, par-

against PMEM address space relocation, we use relative pointers ticularly for 1024 value range. The Log-free design's improvement

and pointer swizzling [7, 50].

Figure 10 shows an overview of the TLog design. As can be
inferred from the gure, linkedlist nodes are allocated from the
PMEM slab and use node o sets instead of pointers. In the example
shown, two threads operate on the linkedlist. Thread 1 has com-
pleted its insert operation and marked the in- ight aginits log as

633

over TLog is only marginal because a majority of time is spent in
search and nd operations as opposed to persistence barriers.

To make complete sense of the ADR results, we rst analyze
the time-wise breakdown of each function call using a ame graph.
Figure 12 shows the ame graphs for TLog and SOFT with 1024
value range and 50% updates. The stacked boxes show the function

Bl st

search Il

s
delete

benchOpsThread<SOFTList<long>>

e |
search I8
insert

|i search
delete

|search

R et |

start_thread

main list

(a) TLog (b) SOFT

Figure 12: Flame Graph of Persistent Linkedlist Implemen-
tations with 1024 Value Range and 50% Updates

=
o

12

AN soFT NN soFT
8 10
) XA TLog T I Tog
2 6 2 8
z R
I
s 54
2
2
Loz ¥ & NS %
256 1024 4096 0

256 1024 4096
search

256 1024 4096 256 1024 4096

find search find

(a) 5% Updates (b) 50% Updates

Figure 13: Lock-free Linkedlist Latency for Search and Find

call trace and the width of each box is proportional to total time
spent in that function. For both implementations, a majority of
time is spent in iterating over the list (search and nd operations).
Persistence barriers and other operations comprise a very small
fraction of overall time. Increasing value range or decreasing update
percentage will further reduce this fraction of time. According
to [24, a typical application using list-based sets performs 90%
reads. This indicates that optimizing linkedlist traversal is more
important than minimizing persistence operations. Both SOFT and
Link-free focus on optimizing persistence, resulting in a sub-optimal
design. On the other hand, TLog does not change search and nd
operations (as compared to Harris' algorithm), and shows better
performance for nd intensive cases. To verify this reason, we
measure the latency of search and nd operation while varying

E free
occupied
LT

head pos head pos

P1 Buffer p1p2 P2 Buffer

T oy
o J1 |2 |3 |4 |5 |6 |7 |8 o |10)11 |12
oI o x I x I x xS
(K LH H

C1 Buffer C1C2 c2 Buffer

tail pos tail pos
Figure 14: Ring Bu er Design Overview with 2 Producers
and 2 Consumers: LT is last tall, T is tail, LH is last head,
and H is head.

that slot. Essentially, this store instruction is the linearization point
of an operation where it becomes visible to other threads.
Persistent Design Overview. We propose two designs for our
lock-free persistent ring bu er a transaction-based design, TX,
for ADR systems and a transaction-free design, TX-free, for eADR
systems. For both designs, the ring bu er, global head/tail pointers,
and thread-local pointers are placed in PMEM. Last head and last
tail pointers are placed in DRAM instead of PMEM because they
can be computed using thread-local pointers and hence do not need
to be persisted. We also add two thread-local pointers in PMEM
(push and pop position) to indicate the slot position where the
thread is operating on. These pointers are used to identify the slots
for which push/pop operations were interrupted in case of a crash.
Memory management is fairly straightforward since the ring bu er

is of a xed size. We allocate PMEM for all necessary structure and
pointers statically on application startup. The simpli ed memory
allocation avoids PMEM leaks. In addition, we use indices instead
of real pointers to allow PMEM address space relocation. Figure 14
shows an overview of the ring bu er design with 2 producers and

2 consumers. As shown in the gure, each producer/consumer has

value range (256, 1024, and 4096) and update percentage (5 and 50} private bu er which contains the local head/tail and position

Results are shown in Figure 13. We nd that on increasing value pointers. The position variable always indicates the slot which was
range SOFT latency increases more for both operations as compared being operated on. On recovery, the head/tail pointer is examined.

to TLog. These results con rm the reasons for the performance
trends in Figure 11.

6.3 Lock-free Ring Bu er

We base our designs on Krizhanovsky's algorithBv] for volatile
lock-free ring bu ers.

Volatile Design. The original algorithm uses per-thread head and
tail pointers to maintain lock freedom. To perform a push or pop
operation, each thread increments the global head/tail pointer using
a fetch-and-add instruction and stores the old value in its local
head/tail pointer. The local pointer indicates the queue slot which
the thread will operate on. Before operating on the location, the
thread must make sure that it is safe to push or pop at that slot.
To ensure this, two global variables (last tail and last head) are
maintained to indicate the earliest push and pop operations still
in- ight. Threads compute theses variables for each operation by
iterating over all thread-local head/tail pointers. These variables
are used to ensure that we do not push at a slot still being popped or

If it is not INT_MAX (c0), then the corresponding operation was
left incomplete. In this manner, all incomplete operations can be
detected by scanning the bu ers of all producers and consumers
and appropriate steps can be taken to restore the state to produce a
consistent view of the ring bu er.

TX Design. In this design, we wrap the critical section of push/pop
operations with transactions for atomicity. We use PMDK's libp-
memobj transactional bindings for this purpose, which use a com-
bination of redo and undo logging to achieve atomicity. The use of
transactions guarantees that there are no partially completed oper-
ations in case of a crash. On recovery, we examine the push/pop
position pointers to determine which bu er slots were being oper-
ated on at the time of crash. We use this information to consolidate
the bu er, i.e., copy data to remove holes, which can occur as a result
of a subset of threads initiating their operations at the time of crash.
Using PMDK transactions does not compromise lock-freedom be-
cause transactions use thread-local bu ers to store internal state
and avoid synchronization.

vice-versa. Once each thread completes its operation, it sets its local TX-free Design. The TX-free design follows the same principle as

head/tail pointer toINT_MAX. This allows other threads to push/pop

634

the TX design but does not require the use of transactions. Only

I TX

LX) TX-free

Fol
[
p99.9 average p99

pop

Figure 15: E ect of ushing data with low temporal locality
in eADR mode Results show ratio of latency when no data
is ushed to latency when only slot data is ushed.

&

average p99
push

Normalized Latency
oRNWAUIO®
]

p99.9

store fences are required to implement persistence barriers. This
is because the volatile cache is within the persistence domain in
eADR mode. Further, there is only a single linearization point, which
involves setting the push/pop position tDNT_MAX. On recovery,
checking the values of the position pointers for each thread enables
us to identify in- ight operations and roll them back. After the
roll-back is complete, we consolidate the bu er, just as in the TX
design.

Evaluation. To the best of our knowledge, TX and TX-free are the
rst lock-free persistent ring bu er solutions available. Thus, we
compare the performance of the proposed designs with the volatile
implementation in both ADR and eADR persistence modes. We
use 4KB slot size and 32K slots so that the working set is 3-4 times
larger than the LLC size.

We rst examine the e ects of ushing data with low temporal
locality in eADR mode. We modify our designs to ush slot data (but
not per-thread bu ers or transaction state) on each push operation
and measure latency. Figure 15 shows the normalized latency for
TX and TX-free designs in eADR mode. Except for average push
TX latency, all other latency values are similar or higher when slot
data is not ushed from the cache. As we observed from I5 results,
not ushing the cache can lower bandwidth when using DCPMM.
Here, we nd that not ushing non-critical data can increase la-
tency as well. The reason for this is that data in the ring bu er
has low temporal locality and competes with other critical data

(

—
'
o

TX (ADR)
TX (eADR

PATX-free
E=lvolatile

Ll

avg p99 p99.9 avg p99 p9§.9
push pop

TX (ADR)
TX (eADR)
525 TX-free

iy

PMEM PMEM Media Media
Write Read Write

Latency (us)
-
N

ol

[

N B O ®ON

o O O © O ©

X

Data Size (GB) / Operati

o » ®

o

L3
Misses Read

(a) Operation Latency (b) PMEM Hardware Counters

Figure 16: Lock-free Ring Bu er Evaluation (a) Latency for
50% pops and 50% pushes with 4KB slot size at 28 threads,
(b) Performance trends via low-level PMEM counters. The
y-axis represents number of operations (in millions) for L3
misses and data size (in GB) for PMEM and media read/write.

This is expected because it requires expensive transactions and
cache-line ushes to ensure atomicity and durability. All changes
to PMEM data need to be logged and as we have seen from I1 and 12
results, PMEM writes have high overhead. We can also observe that
in eADR mode, TX-free has much better performance than TX. Even
though cache-line ushes can be avoided for TX in eADR mode,
the overhead of transactions is high. However, TX-free avoids both
cache ush and transaction overheads and achieves near volatile
performance. In fact, P99 latency for TX-free is only 2x that of the
volatile design. To better understand the reasons for these perfor-
mance trends, we examine low-level PMEM counters for the entire
duration of our experiments. Results are presented in Figure 16(b).
PMEM read/write represent data exchanged with the PMEM con-
troller while media read/write represent data exchanged with the
internal 3D-XPoint media in DCPMM. We nd that TX (ADR) has
the highest number of L3 misses and PMEM operations. In compar-
ison, TX (eADR) signi cantly reduces L3 misses and PMEM reads.
This is because we do not ush transaction data and per-thread
bu ers to PMEM, so load operations are more likely to be serviced
from the CPU cache. PMEM and media writes are also reduced

for cache space. This reduces the cache hit rate of the per-thread by avoiding some cache- ush operations. Finally, TX-free further

bu ers and transaction state which have high temporal locality
and increases overall latency. Push latency is less a ected than pop

latency because not ushing the slots removes an expensive persis-

tence operation o the critical path for push operations. This is also
the reason why TX has slightly better push latency. Finally, we can
also observe that TX-free is less a ected as compared to TX. This

reduces PMEM and media writes because transactional PMEM up-
dates are not required anymore. An interesting observation is that
the media reads remain largely unchanged for all implementations.
This implies that reads are mostly serviced from the XPBu er in
DCPMM.

is because TX-free does not use transactions and hence has a lower

overall memory footprint, so the cache hit rate of critical data is less
a ected. Overall, ushing data with low temporal locality is

good for lowering latency . Although this observation appears
trivial and has been observed in prior literaturd,[64 with the use

6.4 Key Insights

The main takeaways from our analysis are twofold. First, transac-
tions on PMEM have high overhead; dcansactions should be
avoided to the extent possible . Per-thread logging and dirty-bit

of non-temporal stores, its impact is more pronounced with PMEM design are two alternatives that can be used to avoid transactions.
because its latency is much higher than DRAM. Therefore, applying As we observed from our evaluation, per-thread logging is more
this observation can signi cantly impact performance. Based on optimal for read-heavy workloads while the dirty-bit design is bet-
these results, we ush slot data in eADR mode for all subsequent ter for update-heavy workloads. Also, in some cases it may not be
experiments. possible to avoid transactions. Therefore, choosing the correct de-
We also measure the latency of each operation with 50% pops sign technique is important for both performance and correctness.
and 50% pushes at full subscription (28 threads). Figure 16(a) showsSecond, we conclude that ADR-based designs do not necessarily
the average, p99, and p99.9 latency of di erent implementations. provide the best performance in eADR mod®. attain optimal
We observe that TX in ADR mode shows the worst performance. performance, algorithms should be speci cally designed for

635

Table 4: System Design Recommendations. Performance Impact

N/A: No impact, Low: <1.5x, Moderate: 1.5-3x, High: >3x.

ID Rule Recommendation Impact

R1 Avoid p-stores Eliminate unnecessary stores and/or cache stores in DRAM High (C1 C4)

R2 Avoid concurrent access to PMEM for p-stores Limit number of threads writing to PMEM High (C4), (C1C3)

R3 Avoid small-sized IO Reduce small-sized 10s and use store+cache- ush, if unavoid High (C3,C4), (C1,C2)

R4 Limit NUMA access Put data structures with higher EBR on remote NUMA PMEM High (C2,C4), (C1,C3)
R5 Use p-stores for non-critical data in eADR moc Flush data with low temporal locality from cache High (C2,C4), (C1,C3)

R6 Avoid random 10 Use techniques like write bu ering and log structuring High (C2,C4), (C1,C3)
R7 Avoid transactions Use techniques like per-thread logging or a dirty-bit design High (C1 C4)

the eADR mode by taking advantage of the immediate per-
sistence of any visible operation . Our results show that this is
more applicable for update-heavy workloads.

7 DISCUSSION

In this section, we discuss interesting results from our experimen-
tal analysis. Further, we combine the lessons we learnt from our
analysis to propose PMEM system design recommendations.

7.1 ISA Support

The types of persistence instructions available play an impor-
tant role in PMEM performance. There are three categories of
persistence instructions (D cache- ush (such aglflush and
clflushopt), @ write-back (such aglwb), and@ non-temporal
(such as nt-storeYD and(?) require data to be in the cache while
(@ bypasses the cach@) invalidates the cache-line from all levels
and writes dirty data to PMEM(2) does the same but does not
invalidate the cache-line, and thus improves performance by avoid-

results show that for applications where persistence barriers com-
prise a signi cant portion of overall time, optimizing the system
design speci cally for eADR mode has useful performance gains.
For instance, our Log-free linkedlist design for eADR shows mar-
ginal improvement over the ADR design, TLog. This is because
linkedlist workloads are read heavy. On the other hand, our TX-
free ring bu er design for eADR signi cantly outperforms the ADR
TX design. In this case, the ring bu er workloads are update heavy,
which is why we see drastic improvement. Therefore, it is quite
important to consider persistence mode while designing a PMEM
storage system.

7.3 Internal Cache

DCPMM uses an internal cache to bu er PMEM reads and writes.
Our experiments have shown that the internal cache is actually the
root cause behind many of its idiosyncrasies (including 14, 15, 16, and
17 from Table 1). The reason is that the XPBu erin DCPMM uses the

ing the need to read the cache-line back on a subsequent load and pprefetcher to preload lines. As a result, there are two prefetchers

increasing cache hit rate. By bypassing the cache hierar®y,
achieves higher bandwidth compared @ and(®) but has higher
latency. Therefore, it may be useful for large 10 sizes or data with
low temporal locality. In all other case€) will likely perform bet-
ter. @ should be used only if it is known that ushed data will not

be read again. This is because it reduces the cache hit rate, which

adversely a ects performance, as we have shown in Figure 3(a).
The clwb write-back instruction is now part of the ISA on new
Intel CPUs but as of now its behavior is the same as cache- ush
instructions [53. Therefore, we were unable to test the performance
bene ts of write-back over cache- ush. Once it is implemented as

expected, it will be an interesting avenue for future research.

7.2 Persistence Mode

As we have observed in Y6, the persistence mode has both per-
formance and design implications. In eADR mode, the cache does

not need to be ushed, so the cost of persistence is signi cantly

(one in CPU cache and one within DCPMM) in the critical path.
In general prefetching logic is more suited for sequential 10 than
random |O. Therefore, DCPMM sequential |0 is much faster than
random 10. Any PMEM access where sequential IO is converted
to random 10 (such as using stores instead of p-stores or NUMA
access to PMEM) will perform poorly. Based on these observations,

we conclude thatfuture PMEM which contains an internal

cache with a prefetcher will likely show idiosyncrasies 14,

15, and 16, just like DCPMM . In addition, the ability to control
the prefetching logic of the cache in software will be useful in
optimizing latency critical 10. The current generation of DCPMM
does not provide this support, but if it is available in the future, it

will be interesting to see its performance impact.

7.4 10 Ampli cation

lowered. However, our results (see Figures 6 and 15) have shown The mismatch between the DDR-T protocol and 3D-XPoint access

that avoiding the ush operation reduces bandwidth and increases
latency when using DCPMM. This is particularly true if data with
low temporal locality is not ushed. This observation shows that
even in eADR mode, some data should be ushed to achieve good
performance. We expect that this trend will mostly be applicable to
DCPMM.

In terms of design implications, eADR mode allows program-
mers to eliminate or reduce the requirement of transactions. Our

636

granularities in DCPMM causes 10 ampli cation, resulting in re-
duced bandwidth utilization. This can be mitigated to some extent
by using large access sizes but remains a relevant performance
anomaly. We expect thauture PMEM with a mismatch in ac-

cess granularities will result in similar idiosyncratic behav-

ior (such as 13). To avoid this problem, PMEM should be designed
to either match or minimize the di erence between access granu-
larities.

7.5 Recommendations

Based on our observations in this paper, we present a set of system
design recommendations as well as their performance impact on
di erent classes of PMEM. Table 4 shows the consolidated set of rec-
ommendations along with their impact. We compute the impact of

each recommendation based on the combined quantitative impact

of the idiosyncrasies that the recommendation helps manage, as ob-
served in our empirical evaluation (Y4,Y5,Y6). The recommendations

are as follows. R1 follows directly from 11 and 12 p-stores must

reach PMEM and are more expensive than loads. Reducing unnec-
essary stores is, therefore, a good design philosophy. R2 is based on

results we observed during 12 experiments. We achieve maximum
PMEM bandwidth with just 8 threads as opposed to 28 threads with
DRAM. Limiting concurrent writers to PMEM is an e cient way to
maximize bandwidth utilization. R3 follows directly from 13 using
small-sized 10 results in lower bandwidth, particularly for DCPMM
due to internal 10 ampli cation. A good programming practice
should be to combine several smaller stores into a single large store.
In cases where small stores cannot be avoided, a store+cache- ush
should be preferred over nt-store because it has been shown to
have lower latency$3. R4 is inferred from 14 as well as our NUMA
study with MongoDB. As we concluded from the study, placing
data structures with higher EBR on remote NUMA results in maxi-
mum capacity utilization with minimal performance loss. R5 is a
result of 15 and our ring bu er evaluation p-stores achieve higher
bandwidth than regular stores and using p-stores on non-critical
data improves latency. So, there is merit in ushing irrelevant data
from the cache, even in eADR mode. R6 follows directly from 16
random IO is worse than sequential 10, particularly for DCPMM.
There are several existing techniques which can be applied to x
this issue, including log structuring and write bu ering. Both tech-
niques help convert small random IO into larger sequential 10. R7
is based on results we observed in our lock-free case study. This
recommendation is more applicable to eADR mode where it is easier
to avoid transactions. There are several techniques which can be
used to avoid transactions. One is per-thread logging, which we use
in our linkedlist design and is also used by PMDK. Another is using
adirty-bit design, as used irgg 65. We believe that these recom-
mendations will serve as guidelines to any researcher designing
PMEM-based storage systems.

8 RELATED WORK

In this section, we discuss relevant related work on PMEM evalua-
tion and lock-free persistent data structure design.

PMEM Evaluation Studies. There are several studied8 25 26

35 39 48 53 58 62 63 which evaluate both low-level as well as
system-level performance characteristics of DCPMM. Unlike this
paper, all of these studies present guidelines that are only applicable
to DCPMM. This work was done in parallel witt6(, so there is
overlap in some of the analysis. In particular, idiosyncrasies 12, 13,
and 14 are presented in both works, but others (11, 15-17) are unique
to this paper. While their work was only targetted for DCPMM,
our work seeks to understand the root cause of each idiosyncrasy
and understand its applicability to future PMEM. Even though
some idiosyncrasies were discussed in prior literatuseq7, 64,
their impact is more pronounced for DCPMM, a fact that was not

637

known before. Therefore, the novelty of our work is in not only
identifying the larger performance impact of these idiosyncrasies
but also in pinpointing the exact reason for this additional impact
and understanding their applicability to other classes of PMEM. In
addition, while prior literature recommends completely avoiding
NUMA accesses, our results show that carefully placing data on
remote NUMA can help maximize capacity utilization with minimal
impact on performance. We proposed a new metric, called EBR, to
guide NUMA-aware data placement (data structures with high EBR
can be placed on remote NUMA). Unlike EWR proposedad,[
EBR is applicable to other classes of PMEM.

Lock-free Persistent Data Structures. Several works have pre-
sented the design of lock-free persistent data structurel [
presents the design of lock-free queues with di erent durability
requirements. The focus of their work is on ensuring a consistent
view of the queue in the event of failure. Zuriel et ab$| extend
their work to design lock-free durable sets, including linkedlist,
skiplist, and a hashmap. They improve performance by reduc-
ing the number of persistence barriers required to ensure con-
sistency. We compare with their linkedlist implementation in Y6.
NVC-Hashmap 49 reduces persistence overhead by only ush-
ing cache-lines at linearization point®MwCAS [5€ is an easy to
use multi-word compare-and-swap primitive for PMEM which
simpli es the design of lock-free data structures. Log-free data
structures [LQ uses dirty bits and write bu ering to avoid the need
for logging and improve data structure performance. CDC3[
uses a multi-version approach to implement persistent data struc-
tures and avoid logging. All of these works evaluate with emulated
PMEM and only consider the ADR persistence mode. Therefore, our
work is unique in evaluating with real PMEM and also considering
both persistence modes for data structure design.

9 CONCLUSION

In this paper, we proposed PMIdioBench, a micro-benchmark suite
to categorize the idiosyncrasies of real PMEM through targeted
experiments and further understand the applicability of its char-
acteristics on other classes of PMEM. Based on generic PMEM
characteristics, we conducted two in-depth studies, one to guide
the placement of data structures on NUMA-enabled systems to max-
imize capacity utilization, the other to guide the design of lock-free
data structures on both ADR and eADR systems. Our analyses lead
us to make interesting observations about PMEM behavior which
highlight the challenges of programming with PMEM. We distilled
the information gathered as empirically veri ed technology agnos-
tic system design recommendations. We believe that this paper will
be useful to a wide range of researchers with di erent specializa-
tions. In the future, we plan to continuously enrich PMIdioBench
benchmarks and tools for emerging PMEM platforms. We also plan
to evaluate with more storage systems.

ACKNOWLEDGMENTS

We thank our anonymous reviewers for their valuable feedback. We
would also like to thank Tuong Nguyen, Abel Gebrezgi, Jonathan
Burton, and Timothy Witham from Intel for their support and help
in access to the test platform. This work was supported in part by
NSF research grant CCF #1822987.

REFERENCES

[1] Hiroyuki Akinaga and Hisashi Shima. 2010. Resistive Random Access Memory
(ReRAM) Based on Metal Oxidd2roc. IEEES8 (2010), 2237 2251.

[31] Intel. 2016. Persistent Memory Storage Engine for
https://github.com/pmem/pmse (accessed Dec. 2020).

Intel. 2017. Processor Counter Monitor. https://github.com/opcm/pcm (accessed
Dec. 2020).

MongoDB.

132

[2] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng, Yuhui) . . ’ .

Wang, and Guoging Ma. 2018. PolarFS: An Ultra-Low Latency and Failure [33] Intel. 2018. libpmemobj-cpp. https://github.com/pmem/libpmemobj-cpp (ac-
Resilient Distributed File System for Shared Storage Cloud Datalfaseeedings cessed Dec. 2020).)
of the VLDB Endowmefi, 12 (2018), 1849 1862. [34] Intel. 2019. 2019 Annual Report. hitps://annualreport.intc.com/Y2019/default.aspx

[3] Daniel Castro, Paolo Romano, and Joao Barreto. 2019. Hardware Transactional (accessed Dec. 2020).))))
Memory meets Memory Persistency. Parallel and Distrib. Compui30 (2019), [35] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman
63 79. Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, Jishen

[4] Andreas Chatzistergiou, Marcelo Cintra, and Stratis D Viglas. 2015. REWIND: Zhao, and Steven Swanson. 2019. Basic Performance Measurements of the Intel
Recovery Write-Ahead System for In-Memory Non-Volatile Data-Structures. In Optane DC Persistent Memory ModularXiv preprint arXiv:1903.057(2D19). i
Proceedings of the VLDB Endowiriéolt 8. 497 508. 36] Rohan Kadekodi, Se Kwon Lee, Sanidhya Kashyap, Taesoo Kim, Aasheesh Kolli,

[5] Feng Chen, David A Koufaty, and Xiaodong Zhang. 2009. Understanding Intrinsic and Vijay Chidambaram. 2019. SplitFS: Reducing Software Overhead in File
Characteristics and System Implications of Flash Memory Based Solid State Systems for Persistent Memory. BOSP'19194 508.)

Drives. INSIGMETRICS'0881 192. [37] Alexander Krlzhanovsky. 2013. Lock-Free Multi-Producer Multi-Consumer

[6] Youmin Chen, Youyou Lu, Fan Yang, Qing Wang, Yang Wang, and Jiwu Shu. 2020. Queue on Ring Bu erLinux Journal2013, 228 (2013), 4. o
FlatStore: An E cient Log-Structured Key-Value Storage Engine for Persistent [38] Benjamin C Lee, Engin Ipek, Onur Mutlu, and Doug Burger. 2009. Architecting
Memory. INASPLOS'201077 1091. Phase Change Memory as a Scalable DRAM AlternativéS@A'092 13.

[7] Joel Coburn, Adrian M. Caul eld, Ameen Akel, Laura M. Grupp, Rajesh K. Gupta, [39] Lucas Lersch, Xiangpeng Hao, Ismail Oukid, Tianzheng Wang, and Thomas
Ranijit Jhala, and Steven Swanson. 2011. NV-Heaps: Making Persistent Objects Willhalm. 2019. Evaluating Persistent Memory Range Indeiesceedings of the
Fast and Safe with Next-generation, Non-volatile MemoriesABPLOS'11.05 VLDB Endowmerit3, 4 (2019), 574 587. .) .
118. [40] Mengxing Llu,_Mlng_xmg Zhang, Kang Chen, Xu_ehal Qian, Yongwei Wu,_Welml_n

[8] Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek, Ben- Zheng, and Jinglei Ren. 2017. DudeTM: BLluldmg Durable Transactions with
jamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O Through Byte- Decoupling for Persistent Memory. IASPLOS'1B29 343.

Addressable, Persistent Memory. BOSP'04.33 146. [41] Baotong Lu, Xiangpeng Hao, T|anzhen_g Wang, and Eric Lo. 2020. Dash: Scalable

[9] Brian F Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Hashing on Persistent MemoryRroceedings of the VLDB Endowni&hi8 (2020),
Sears. 2010. Benchmarking Cloud Serving Systems with YCS.Q&'10143 11471161 . . .

154. [42] Youyou Lg, qlwu Shu, Ypumm Chen, and Tao Li. 2017. Octopus: An RDMA-

[10] Tudor David, Aleksandar Dragojevic, Rachid Guerraoui, and Igor Zablotchi. 2018. enabled Distributed Persistent Memory File SystemUBENIX ATC'1773 785.
Log-Free Concurrent Data Structures. USENIX ATC'1873 386. [43] Teng Ma, Mingxing Zhang, Kang Chen, Zhuo Song, Yongwei Wu, and Xuehai

[11] Mingkai Dong, Heng Bu, Jifei Yi, Benchao Dong, and Haibo Chen. 2019. Per- Qian. 2020. AsymNVM: An E cient Framework for Implementing Persistent
formance and Protection in the ZoFS User-Space NVM File SysteSOBP'19 Data Structures on Asymmetric NVM Architecture. RSPLOS'2057 773.

478 493. [44] Amirsaman Memaripour, Joseph Izraelevitz, and Steven Swanson. 2020. Pronto:

[12] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz, Dheeraj Easy and Fast Persistence for Volatile Data Structure53RLOS2(789 806.
Reddy, Rajesh Sankaran, and Je Jackson. 2014. System Software for Persistenf45] MongoDB Inc. 2009. MongoDB. https://www.mongodb.com/ (accessed Dec.
Memory. InEuroSys'1415. 2020). _ _

[13] Assaf Eisenman, Darryl Gardner, Islam AbdelRahman, Jens Axboe, Siying Dong, [46] Dushyan?h Narayanan and Orion Hodson. 2012. Whole-System Persistence. In
Kim Hazelwood, Chris Petersen, Asaf Cidon, and Sachin Katti. 2018. Reducing ASPLOS'1201 410-, .
DRAM Footprint with NVM in Facebook. IEuroSys'1812. [47] Jong-Hyeok Pa(k, G|hwanl Oh, and Sang-Won Lee. 2017. SQL Statement Logging

[14] FAST'19. 2019. Orion: A Distributed File System for Non-Volatile Main Memory for Making SQLite Truly Lite. 11, 4 (2017), 513 525.

and RDMA-Capable Networks. 221 234.

[15] Keir Fraser. 2004 Practical Lock-FreedonPh.D. Dissertation. University of

Cambridge. UCAM-CL-TR-579.

Michal Friedman, Maurice Herlihy, Virendra Marathe, and Erez Petrank. 2018. A

Persistent Lock-Free Queue for Non-Volatile MemoryPRoPP'128 40.

Kaan Geng, Michael D Bond, and Guoging Harry Xu. 2020. Crafty: E cient,

HTM-Compatible Persistent Transactions. ROPL'2059 74.

Gurbinder Gill, Roshan Dathathri, Loc Hoang, Ramesh Peri, and Keshav Pingali.

2020. Single Machine Graph Analytics on Massive Datasets using Intel Optane DC

Persistent MemoryProceedings of the VLDB Endownigéht8 (2020), 1304 1318.

[19] Yonatan Gottesman, Joel Nider, Ronen Kat, Yaron Weinsberg, and Michael Factor.

2016. Using Storage Class Memory E ciently for an In-Memory Database. In

SYSTOR'181.

Brendan Gregg. 2016. The Flame Grafbmmun. ACM9, 6 (2016), 48 57.

Frank T Hady, Annie Foong, Bryan Veal, and Dan Williams. 2017. Platform

Storage Performance with 3D XPoint Technolod@roc. IEEEO5, 9 (2017), 1822

1833.

Swapnil Haria, Mark D Hill, and Michael M Swift. 2020. MOD: Minimally Ordered

Durable Data Structures for Persistent Memory. ASPLOS'2075 788.

[23] Timothy L Harris. 2001. A Pragmatic Implementation of Non-Blocking Linked-
Lists. InInternational Symposium on Distributed ComputB@p 314.

[24] Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming.

[25] Takahiro Hirofuchi and Ryousei Takano. 2019. The Preliminary Evaluation of
a Hypervisor-based Virtualization Mechanism for Intel Optane DC Persistent
Memory Module.arXiv preprint arXiv:1907.120(2019).

[26] Takahiro Hirofuchi and Ryousei Takano. 2020. A Prompt Report on the Perfor-
mance of Intel Optane DC Persistent Memory ModulEICE Transactions on
Information and Systeni®3, 5 (2020), 1168 1172.

[27] Jian Huang, Karsten Schwan, and Moinuddin K Qureshi. 2014. NVRAM-aware

Logging in Transaction Systems. 8, 4 (2014), 389 400.

Yihe Huang, Matej Pavlovic, Virendra Marathe, Margo Seltzer, Tim Harris, and

Steve Byan. 2018. Closing the Performance Gap Between Volatile and Persistent

Key-Value Stores Using Cross-Referencing Log&JB®ENIX ATC'1®67 979.

Intel. 2014. Intel VTune Pro ler. https://software.intel.com/content/www/us/en/

develop/tools/vtune-pro ler.html (accessed Dec. 2020).

[30] Intel. 2014. PMDK. https://github.com/pmem/pmdk (accessed Dec. 2020).

[16]
[17]

[18]

[20]
[21]

[22]

(28]

[29]

638

[48
[49

vy B Peng, Maya B Gokhale, and Eric W Green. 2019. System Evaluation of the

Intel Optane Byte-Addressable NVM. MEMSYS'1804 315.

David Schwalb, Markus Dreseler, Matthias U acker, and Hasso Plattner. 2015.

NVC-Hashmap: A Persistent and Concurrent Hashmap for Non-Volatile Memo-

ries. InProceedings of the 3rd VLDB Workshop on In-Memory Data Mangement

and Analytics1 8.

Steve Stargall. 201®rogramming Persistent Memory: A Comprehensive Guide for

Developers

Dmitri B Strukov, Gregory S Snider, Duncan R Stewart, and R Stanley Williams.

2008. The Missing Memristor Fountlature453, 7191 (2008), 80.

AA Tulapurkar, Y Suzuki, A Fukushima, H Kubota, H Maehara, K Tsunekawa,

DD Djayaprawira, N Watanabe, and S Yuasa. 2005. Spin-Torque Diode E ect in

Magnetic Tunnel JunctiondNature438, 7066 (2005), 339.

Alexander van Renen, Lukas Vogel, Viktor Leis, Thomas Neumann, and Alfons

Kemper. 2019. Persistent Memory I/O PrimitivesDaMoN'191 7.

Shivaram Venkataraman, Niraj Tolia, Parthasarathy Ranganathan, and Roy H

Campbell. 2011. Consistent and Durable Data Structures for Non-Volatile Byte-

Addressable Memory. IRAST'11Vol. 11. 61 75.

[55] Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne: Light-
weight Persistent Memory. IASPLOS'1B1 104.

[56] Tianzheng Wang, Justin Levandoski, and Per-Ake Larson. 2018. Easy Lock-Free

Indexing in Non-Volatile Memory. INCDE'18461 472.

Yongkun Wang, Kazuo Goda, Miyuki Nakano, and Masaru Kitsuregawa. 2010.

Early Experience and Evaluation of File Systems on SSD with Database Ap-

plications. Ininternational Conference on Networking, Architecture, and Storage

467 476.

Michéle Weiland, Holger Brunst, Tiago Quintino, Nick Johnson, Olivier I rig,

Simon Smart, Christian Herold, Antonino Bonanni, Adrian Jackson, and Mark

Parsons. 2019. An Early Evaluation of Intel's Optane DC Persistent Memory

Module and its Impact on High-Performance Scienti ¢ Applications.3€'19

1109.

Xiaojian Wu and AL Reddy. 2011. SCMFS: A File System for Storage Class

Memory. InSC'1139.

Fei Xia, Dejun Jiang, Jin Xiong, and Ninghui Sun. 2017. HiKV: A Hybrid Index

Key-Value Store for DRAM-NVM Memory Systems.USENIX ATC'1B49 362.

Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File System for

Hybrid Volatile/Non-volatile Main Memories. IfFAST'16323 338.

[50

(51

[52]

(53]

(54

57

58

[59]

[60

[61

https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://software.intel.com/content/www/us/en/develop/tools/vtune-profiler.html
https://github.com/pmem/pmdk
https://github.com/pmem/libpmemobj-cpp

[62] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steven Swan{64] XiYang, Stephen M Blackburn, Daniel Frampton, Jennifer B Sartor, and Kathryn S

son. 2019. An Empirical Guide to the Behavior and Use of Scalable Persistent McKinley. 2011. Why Nothing Matters: The Impact of Zeroing @OPSLA'11
Memory. arXiv preprint arXiv:1908.035¢%19). 307 324.

[63] Jian Yang, Juno Kim, Morteza Hoseinzadeh, Joseph Izraelevitz, and Steve Swanson[65] Yoav Zuriel, Michal Friedman, Gali She , Nachshon Cohen, and Erez Petrank.
2020. An Empirical Guide to the Behavior and Use of Scalable Persistent Memory. 2019. E cient Lock-Free Durable Sets. ®OPSLA'19l 26.

In FAST'20169 182.

639

