Analyzing and Mitigating Data Stalls in DNN Training

Jayashree Mohan
University of Texas at Austin
jaya@cs.utexas.edu

Ashish Raniwala
Microsoft
ashish.raniwala@microsoft.com

ABSTRACT

Training Deep Neural Networks (DNNs) is resource-intensive and
time-consuming. While prior research has explored many different
ways of reducing DNN training time, the impact of input data
pipeline, i.e., fetching raw data items from storage and performing
data pre-processing in memory, has been relatively unexplored.
This paper makes the following contributions: (1) We present the
first comprehensive analysis of how the input data pipeline affects
the training time of widely-used computer vision and audio Deep
Neural Networks (DNNs), that typically involve complex data pre-
processing. We analyze nine different models across three tasks and
four datasets while varying factors such as the amount of memory,
number of CPU threads, storage device, GPU generation etc on
servers that are a part of a large production cluster at Microsoft.
We find that in many cases, DNN training time is dominated by
data stall time: time spent waiting for data to be fetched and pre-
processed. (2) We build a tool, DS-Analyzer to precisely measure
data stalls using a differential technique, and perform predictive
what-if analysis on data stalls. (3) Finally, based on the insights from
our analysis, we design and implement three simple but effective
techniques in a data-loading library, CoorDL, to mitigate data stalls.
Our experiments on a range of DNN tasks, models, datasets, and
hardware configs show that when PyTorch uses CoorDL instead of
the state-of-the-art DALI data loading library, DNN training time
is reduced significantly (by as much as 5X on a single server).

PVLDB Reference Format:

Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay
Chidambaram. Analyzing and Mitigating Data Stalls in DNN Training.
PVLDB, 14(5): 771 - 784, 2021.

doi:10.14778/3446095.3446100

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/msr-fiddle/DS- Analyzer.

1 INTRODUCTION

Data is the fuel powering machine learning [59]. Large training
datasets are empowering state-of-the-art accuracy for several ma-
chine learning tasks. Particularly, Deep Neural Networks (DNNs),

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 14, No. 5 ISSN 2150-8097.
doi:10.14778/3446095.3446100

771

Amar Phanishayee
Microsoft Research
amar@microsoft.com

Vijay Chidambaram
University of Texas at Austin & VMWare Research
vijay@cs.utexas.edu

have gained prominence, as they allow us to tackle problems that
were previously intractable, such as image classification [33, 43, 67],
translation [74], speech recognition[30], video captioning [73], and
even predictive health-care [70].

Empowering DNNss to push state-of-the-art accuracy requires
the model to be trained with a large volume of data. During training,
the model predicts the output given training data; based on the
output, the model’s weights are tuned. This happens iteratively, in
many rounds called epochs.

However, DNN training is data-hungry, resource-intensive, and
time-consuming. It involves the holistic use of all the resources in
a server from storage and CPU for fetching and pre-processing the
dataset to the GPUs that perform computation on the transformed
data. Researchers have tackled how to efficiently use these resources
to reduce DNN training time, such as reducing communication
overhead [32, 39, 49, 57, 76], GPU memory optimizations [22, 38, 63],
and compiler-based operator optimizations [21, 41, 72]. However,
the impact of storage systems, specifically the data pipeline, on
DNN training has been relatively unexplored.

The DNN Data Pipeline. During DNN training, the data pipeline
works as follows. Data items are first fetched from storage and then
pre-processed in memory. For example, for many important and
widely-used classes of DNNs in computer vision, there are several
pre-processing steps: data is first decompressed, and then random
perturbations such as cropping the image or rotating it are per-
formed to improve the model’s accuracy [60]. Once pre-processed,
the data items are sent to the GPUs for processing. One complete
pass over the training dataset is termed an epoch; models are itera-
tively trained for several epochs to achieve desired accuracy.

The DNN data pipeline operates in parallel with GPU computa-
tion. Ideally, the data pipeline should steadily feed pre-processed
data items to the GPUs to keep them continuously busy process-
ing data; we term this GPU-bound. Unfortunately, training image,
video, or audio models is often I/O-bound, bottlenecked by fetching
the data from storage, or CPU-bound, bottlenecked by applying
data pre-processsing in memory. Collectively, we term these bottle-
necks data stalls and differentiate between prep stalls (time spent
on data pre-processing) and fetch stalls (time spent on I/O).

1.1 Contributions

Categorizing, measuring, and analyzing data stalls. We present
the first comprehensive analysis of data stalls (categorized as fetch
and prep stalls) in DNN training. We analyze nine popular DNN
models from three domains (image classification, object detection,
and audio classification) and four datasets in a production cluster

https://doi.org/10.14778/3446095.3446100
https://github.com/msr-fiddle/DS-Analyzer
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3446095.3446100

Table 1: Key findings and implications of our analysis of data stalls

Finding

Insights

OS Page Cache is inefficient for DNN training due to thrashing

DNN-aware caching can eliminate thrashing across epochs

DNNs need anywhere between 3 — 24 CPU cores per GPU for data
pre-processing

If hardware is upgraded to overcome workload bottlenecks, it must be done carefully

with an eye towards designing balanced server SKUs.

DNNs spend upto 65% of the epoch time in data pre-processing,
primarily on redundant decoding

Decoded data can be cached (as opposed to caching encoded data), if space

amplification due to decoding can be addressed

Lack of coordination among local caches lead to redundant I/O in
distributed training across servers

To overcome local storage I/O bottlenecks, local in-memory caches of servers
allocated to a job can be coordinated to fetch data from distributed in-memory caches

Hyperparameter search workloads perform redundant I/0 & prep

Hyperparameter search jobs must coordinate data fetch & prep to mitigate data stalls

at Microsoft. We vary factors such as the storage media, amount
of data that can be cached in memory, the number of CPU threads
used to fetch and pre-process data, and GPU generation. We then
analyze how these factors affect the data pipeline and DNN training.
Our analysis shows that data stalls are prominent in popular com-
puter vision and audio DNNSs, as opposed to text-based NLP models.
Our analysis finds that data stalls squander away the improved
performance of faster GPUs, even on ML optimized servers like
the DGX-2 [10]. Revisiting the insights from Stonebraker et al. [69],
our analysis corroborates that relying on OS abstractions (like Page
Cache) is inefficient for DNN workloads. We also find that the data
pipelines in popular training frameworks like PyTorch and Ten-
sorFlow are inefficient in their use of CPU and memory resources,
despite using state-of-the-art data-loading libraries like DALI [7]
that reduce prep stalls using GPU-accelerated data pre-processing.
Table 1 summarizes the findings and insights of our analysis.

Performing predictive what-if analysis of data stalls. Perform-
ing an analysis of how the data pipeline impacts DNN training is
challenging since DNN training has a high degree of concurrency;
it is hard to isolate the time taken to perform a single task as data
pre-processing is pipelined with GPU computation. We develop a
tool, DS-Analyzer, that uses differential analysis between runs (e.g.,
comparing a run where data is completely cached vs when data
needs to be fetched from storage) to identify data-stall bottlenecks.
Using the measured data stalls, it answers what-if questions to help
practitioners predict and analyze data stalls (e.g., What would be
the impact on data stalls if DRAM capacity increased by 2x?).

Mitigating data stalls. We use the insights from our analysis to
identify opportunities for improvement. We build a new Coordi-
nated Data Loader, CoorDL! that uses three main techniques to
mitigate data stalls. First, inspired by the pioneering work of Stone-
braker et al. on database caching [69], we demonstrate that relying
on the OS page cache is sub-optimal for DNN training. We imple-
ment MinlO, a software cache that is specialized for DNN training.
Second, we describe the partitioned caching technique to coordinate
the MinlO caches of servers involved in distributed training over
commodity network stack. Third, we discuss the coordinated prep
technique to carefully eliminate redundancy in data prep among
concurrent hyperparameter search jobs in a server. We implement
these techniques as part of the user-space library CoorDL, built
on top of the state-of-the-art data pipeline DALI [7]. We evaluate
CoorDL across different models, datasets, and hardware and show
that it can accelerate training by up-to 5X on a single server by
mitigating data stalls over DALL

Read as cordial

772

2 BACKGROUND

Deep Neural Networks (DNNs) are a class of ML models that au-
tomatically extract higher level features from the input data. The
DNN is trained over multiple rounds termed epochs. Each epoch
processes all items in the dataset exactly once, and consists of mul-
tiple iterations; each iteration processes a random, disjoint subset of
the data termed a minibatch. The DNN is trained until a target ac-
curacy is reached. Training a DNN model to reach a given accuracy
consists of two steps:

(1) Hyperparameter (HP) search. There are many parameters
for the learning algorithm that must be provided before the
start of training. These hyperparameters (for e.g., learning rate,
its decay, dropout, and momentum) influence the speed and
quality of learning. During the search process, we start several
training jobs; each job trains the model with different hyper-
parameters, on each available GPU (or a distributed job across
several GPUs); progress is checked after a few epochs and the
worst-performing candidates are killed and replaced by new
jobs with different hyperparameters that are chosen algorith-
mically [19, 27, 37, 46]. Tuning hyperparameters is crucial for
generating DNN models that have high accuracy [61].

—~
oY)
~

Training the model to target accuracy. The second step is
to obtain models with high accuracy by training it with input
data, using the hyperparameters chosen in the previous step.

2.1 The DNN ETL Requirements

In every epoch of training, the input dataset is subjected to a ETL
(extract-transform-load) before being processed at the GPU (or any
other accelerator). The ETL process in the data pipeline of popular
image-based DNN training imposes several unique data ordering
constraints to ensure model convergence and achieve state-of-the-
art accuracy.
e The dataset must be shuffled every epoch to ensure the order
in which data items are accessed are random in each epoch
e An epoch must use all data items in the dataset exactly once
e In every epoch, the data transformations(pre-processing) must
be random; the same transformed item should not be used
across epochs

Several prior work have theoretically and empirically demonstrated
that relaxing these constraints will affect the convergence rate of
SGD [23, 48, 52, 60]. While some NLP and recommendation models
may not require random pre-processing and data shuffling every
epoch, the focus of our work is computer vision and audio models
where random data augmentation and shuffling is the default and

Prefetch Pre-processing

Collate
batch

8888

Fetch Rate (F) Prep Rate (P) GPU Rate (G)

Figure 1: Data Pipeline in DNN training. This figure shows
the different stages in the data pipeline.

Decode — Transform —>

common practice [54, 62]. Therefore, in this work, all our experi-
ments abide by the aforementioned ETL requirements.

2.2 DALI: Fast Data Pipelining

State-of-the-art data loading and pre-processing libraries like DALI
can be used as a drop in replacement for the default dataloaders in
frameworks like PyTorch, TensorFlow, or MxNet. DALI can accel-
erate data pre-processing operations using GPU-accelerated data
pre-processing operations. DALI also prefetches and pipelines the
data fetch and pre-processing with the GPU compute, similar to the
default dataloader in PyTorch. We empirically verified that DALI
outperforms the default data pipelines of PyTorch, TensorFlow,
and MxNet. Therefore, throughout this work, unless and otherwise
stated, we use DALI, as it is the strongest baseline.

3 DATA STALLS IN DNN TRAINING

We now discuss our formulation of data stalls. Consider the training
process of a typical DNN. It executes the following steps in each
iteration of an epoch:

(1) A minibatch of data items is fetched from storage.

(2) The data items are pre-processed, for e.g.,, for image classifica-
tion, data items are decompressed, and then randomly cropped,
resized, and flipped.

(3) The minibatch is then processed at the GPU to obtain the
model’s prediction

(4) A loss function is used to determine how much the prediction
deviates from the right answer

(5) Model weights are updated using computed gradients

Ideally, most of the time in each epoch should be spent on Steps
3-5 (which we collectively term the GPU compute time), i.e., training
is GPU bound. When performing multi-GPU training, individual
GPUs (workers) exchange weight gradients with other workers
before performing weight update. For this work, we roll the com-
munication time for gradient exchange during multi-GPU training
into computation time.

In most frameworks including PyTorch, TensorFlow, and MxNet,
data preparation (Steps 1 and 2) and GPU computation execute in a
pipelined fashion; i.e., subsequent minibatches are prefetched and
pre-processed by data preparation threads, using multiple CPU cores
on the machine, as the GPU computes on the current minibatch of
data. If the GPU is waiting for Steps 1-2 to happen, we term it a
data stall. Specifically, if training is blocked on Step 1, we call it a
fetch stall; the training is I/O bound in this case. Training blocked
due to Step 2 is termed prep stall; this causes the training to be CPU
bound. Data stalls cause the GPU to be idle, and must be minimized
to increase GPU utilization.

The rate at which data items can be fetched from storage (Step
1) depends primarily on the storage media. The rate at which

773

Table 2: Models and datasets used in this work.

Task Model Dataset (Size)
Shufflenetv2 [77]
AlexNet [43] ImageNet-22k [8]
Resnet138 [33] (1.3TB)
Image
Classification SqueezeNet [35] Openlmages-Extended

MobileNetv2 [65]
ResNet50 [33]
VGG11 [67]

[45, 66] (645GB)
Imagenet-1k [64
(146GB

=

Obj Detection ~ SSD+Res18 [50] Openlmages [45] (561GB

= |2 | =

Audio Classify M5 [24] Free Music [25] (950GB

data items can be pre-processed (Step 2) depends upon the pre-
processing operations and the number of CPU cores available for
pre-processing.

In general, if we prefetch data at rate F, pre-process it at rate
P and perform GPU computation on it at rate G, then data stalls
appear if G > min(F, P), i.e., GPU processes data at a rate faster
than it can be prefetched or pre-processed.

Any fetch or prep stall implies idle GPU time, which must be
minimized. The fetch and prep stalls reported in this work are
unmasked stall time; i.e., the stall time that shows up in the critical
path, inspite of being pipelined with compute. From now on, we
call data prefetching simply fetch, and pre-processing prep.

4 ANALYZING DATA STALLS
To understand data stalls in DNN training and the fundamental

reasons why data stalls exist, we perform a comprehensive analysis
on several DNNs by varying a number of factors, such as the number
of GPUs, GPU generation, the size of the DRAM cache, the number
of CPU threads etc.

4.1 Methodology

Models and Datasets. We analyze nine state-of-the-art DNN mod-
els across three different tasks and four different datasets as shown
in Table 2. This section focuses on the smaller ImageNet-1K dataset
for image classification models. Evaluation with large datasets like
ImageNet-22k and Openlmages is presented in Section §7. The
image and audio classification models are taken from TorchVi-
sion [15] and TorchAudio [14] respectively; for object detection,
we use NVIDIA’s official release of SSD300 v1.1 [11].

Pre-processing. For all DNNs, we use the same pre-processing as
in their original papers. More precisely, for the image classification
task, pre-processing includes image decoding, random crop, resizing
to a fixed size, and a random horizontal flip of the image. The object
detection task performs a color twist of the image, and a random
crop and horizontal flip of the bounding box in addition to the image
transformations described for image classification. The audio model
decodes and down-samples input to 8kHz.

Training environment. All experiments are performed on Py-
Torch 1.1.0 using the state-of-the-art NVIDIA data loading pipeline,
DALIL We have empirically verified that DALI’s performance is
strictly better than PyTorch, TF and MxNet’s default data loaders;

Table 3: Server configurations used. We use two SKUs; each
server has 24 CPU cores, 500GiB DRAM, and 8 GPUs.

GPU GPU Storage Rand Read

Config Mem(GB) Media (MBps)
SSD-V100 8xV100 32 SSD 530
HDD-1080Ti 8x1080Ti 11 HDD 15-50

therefore we perform our analysis of data stalls using the strongest
baseline, DALI. We use two distinct server configurations for our
analysis as shown in Table 3. Both these are part of a large pro-
duction and research cluster at Microsoft [9, 40], whose workload
have guided the design of several research systems for ML train-
ing [20, 31, 51, 75]. These servers also closely resemble publicly
available cloud GPU SKUs [1, 2]. Config-SSD-V100 has configu-
ration closest to AWS p3.16xlarge [1] with gp2 storage [6], while
Config-HDD-1080T1 is closest to AWS p2.8xlarge [2] with st1 stor-
age [6]. Both our servers have 500GB DRAM, 24 physical CPU cores
, and 8 GPUs per server.

Training parameters. For experiments on Config-SSD-V100, we
use a batch size of 512 per GPU for all image classification mod-
els, 128 per GPU for SSD-Res18, 16 per GPU for M5 and perform
weak scaling for distributed training (while ensuring that the global
batch size is consistent with those widely used in the ML commu-
nity). Since V100 GPUs have tensor cores, we use Apex mixed
precision training with LARC (Layer-wise Adaptive Rate Clip-
ping), and state-of-the art learning rate warmup schedules [29].
On Config-HDD-1080T1i, we use the maximum batch size that fits
the GPU memory (less than 256 for all models) and perform full-
precision training.

Training metrics. We run all the experiments presented here for
three epochs, and report the average epoch time (or throughput in
samples per second), ignoring the first epoch. Since we start with
a cold cache in our experiments, first epoch is used for warmup.
Measuring data stall time does not require training to accuracy;
per-epoch time remains stable.

4.2 Measuring data stalls using DS-Analyzer

We develop a standalone tool, DS-Analyzer that profiles data stalls
in DNN training. Frameworks like PyTorch and TensorFlow provide
an approximate time spent on data loading and pre-processing per
minibatch, by simply placing timers in the training script. This is
insufficient and inaccurate for two reasons. First, this technique
cannot accurately provide the split up of time spent in data fetch
(from disk or cache) and pre-processing operations. To understand
if the training is bottlnecked on I/O or CPU, it is important to
know this split. Second, frameworks like PyTorch and libraries
like DALI use several concurrent processes (or threads) to fetch
and pre-process data; for a multi-GPU data parallel training job, a
data stall in one of the data loading processes may reflect as GPU
compute time for the other processes, because all GPU processes
wait to synchronize weight updates at batch boundaries. Naively
adding timers around data path does not provide accurate timing
information. Therefore, DS-Analyzer uses a differential approach.
DS-Analyzer runs in three phases;

774

(1) Measure ingestion rate. First, DS-Analyzer pre-populates
synthetic data at the GPUs and runs the job for a fixed number
of epochs. This identifies the max data ingestion rate at the
GPUs, with no fetch or prep stalls.

Measure prep stalls. Next, DS-Analyzer runs the training
script with a subset of the given dataset, such that it is entirely
cached in memory, using all available CPU cores, and estimates
the training speed. Since this run eliminates fetch stalls, any

drop in throughput compared to (1) is due to prep stalls.
(3) Measure fetch stalls. Finally, DS-Analyzer runs the training
script by clearing all caches, and setting maximum cache size
to a user-given limit, to account for fetch stalls. The difference

between (2) and (3) is the impact of fetch stalls.

4.3 Data Stalls in DNN Training

Our analysis aims to answer the following questions:

Fetch Stalls | ¢ romote storage a bottleneck for training? §4.3.1
(Remote)
Fetch Stalls | When does the local storage device (SSD/HDD) §43.2
(Local) become a bottleneck for DNN training? -
When does data prep at the CPU become a bot- §433
Prep Stalls | y.peck for DNN training? -
. Do fetch and prep stalls exist in other training §434
Generality platforms like TensorFlow? -
4.3.1 When dataset resides on remote storage. Datasets used

for training DNNs could reside locally on the persistent storage of a
server, or on shared remote storage such as distributed file systems
(HDFS, GlusterFS - GFS), or object stores (S3, Azure blobs). We
analyze the impact of two kinds of remote backends; a distributed
file system, GlusterFS (GFS) and the Azure blob object store accessed
via blobfuse. When data resides remotely, the first epoch of training
fetches data over the network and stores it locally for subsequent
use. Cluster file systems like GFS use the OS Page Cache to speed
up subsequent accesses. Blobfuse downloads the dataset on to local
SSD, and mimics local training from the second epoch. Figure 2a
compares the epoch time for ResNet18 on Config-SSD-V100 using
GFS, blobfuse, and local SSD for the first epoch and a stable-state
epoch with warmed up cache.

The data stall overhead of BlobFuse is especially high in the
first epoch when it downloads the entire dataset to local storage,
and can result in 20X higher training time as compared to GFS.
Unsurprisingly, during the steady state epochs, data stall overheads
when using the local SSD and BlobFuse are similar (as the blob data
is cached on the local SSD); GFS results in more data stalls as it
validates metadata of cached data items over the network every
time a data item is accessed. Blobfuse does not incur any network
cost beyond first epoch, if the dataset fits on local SSD.

As shown in Figure 2b, for the ImageNet1K dataset, for BlobFuse,
the cost of downloading the entire dataset in the first epoch is
amortized as we train for a longer number of epochs, making the
remote Blobstore a better fit compared to GFS when models are
trained to accuracy for over 60 epochs.

Athough datasets are growing in size, large datasets that are
publicly available fit entirely on local storage (but not in memory) [8,
16, 18, 25, 45, 64]. Therefore, a common training scenario is to pay

(]

2 20 B local-SSD | —o— GFS PR
2, BN GFS £ 157 = AzBlob oo
£ 151 Az Blob TP ’/ ’
52 5E _
c®© o~ I~
28104 2 Elo 7

5 E .
=1 g S+ iw,‘
7 s E 51 .-°0*
S] o
fr L4

20 100

Epoch-1

Epoch-stable 40 80
Number of epochs

(a) Epoch time (b) Cumulative training time

Figure 2: Training with remote stores. The high download
cost of blob is amortized over training for a large # of epochs

a one-time download cost for the dataset, and reap benefits of local-
SSD accesses thereafter (default and recommended mode in the
Microsoft clusters). Therefore, in the rest of the work, we analyze
fetch stalls in scenarios where dataset is present locally on a server,
but is not entirely cached in memory.

4.3.2 When datasets cannot be fully cached. ML-optimized
cloud servers with 500GB DRAM can only cache 35% of ImageNet-
22K, or 45% of the FMA dataset, or 65% of the Openlmages dataset,
although they entirely fit on local storage. Popular datasets like
ImageNet-1K cannot be fully cached on commonly used cloud
SKUs like AWS p3.2xlarge, which has 61 GiB DRAM. When
datasets don’t fit in memory, and the fetch rate(F) < compute rate
(min(P, G)), fetch stalls occur.

Fetch stalls are common if the dataset is not fully cached in
memory. Figure 3 shows the percentage of per epoch time spent
on I/O for nine different DNNs when 35% (for e.g., ImageNet-22k on
500GB server) of their respective datasets can be cached in memory
on Config-SSD-V100. DNNs spend 10 —70% of their epoch time on
blocking I/O, despite pipelining and prefetching, simply because
the compute rate is higher than fetch rate.

OS Page Cache is inefficient for DNN training. DNN training
platforms like PyTorch, TensorFlow and libraries like DALI, rely on
the operating system’s Page Cache to cache raw training data in
memory. Unfortunately, the OS Page Cache leads to thrashing as it
is not efficient for DNN training. If 35% of the data can be cached,
then an effective cache should provide 35% hits; instead, the Page
Cache provides a lower hit rate. For a 146 GiB data set, each epoch
should see only 65% of the dataset, or 95GiB, fetched from storage.
Instead, we observe 85% of the dataset fetched from storage every
epoch; the 20% difference is due to thrashing. Figure 4 shows the
fetch stalls, including those due to thrashing, when using PyTorch
with DALIL An effective cache for DNN training must eliminate
thrashing to reduce fetch stalls to the minimum shown in Figure 4.

Lack of coordination among caches leads to redundant I/0
in distributed training. In distributed training jobs, the data to
be fetched and processed is divided randomly among servers, and
changes every epoch. As a result, each server often has to fetch
data from storage every epoch; this is done even if the required data
item is cached in an another server that is a part of the distributed
training job. This lack of coordination among caches makes dis-
tributed training storage I/O-bound. When training Resnet50 on
ImageNet-1K (146GiB) across two servers having a total cache size
of 150GiB, each server fetches 45GiB from storage in each epoch
(despite the fact that the other server might have this data item in

775

100 -

80 -

ShN-ShuffleNet
SqN-SqueezeNet
V11-VGG11

AN -AlexNet
MN -MobileNet
SSD-SSD+RN18

RN18-ResNetl8
RN50-Resnet50
M5 -AudioM5

60 +

40

BEs... .

20
AN RN18 SgN MN RN50 V11 SSD I\/i5

Fetch stall (% of epoch time)

Figure 3: Fetch stalls. Several DNNs experience significant
stalls waiting for I/O, when training on Config-SSD-V100
with 35% of their dataset cached.

Figure 4: ResNet18 with varying cache. This stacked bar
chart splits epoch time into time spent in compute, ideal
fetch stalls, and the additional fetch stall due to thrashing.

its cache). On Config-HDD-1080T1, this leaves ResNet50 stalled on
1/O for 75% of its epoch time.

Lack of coordination in HP search results in redundant I/0.
HP search is performed by launching several parallel jobs with
different HP on all available GPUs in a server [47]. Al HP jobs access
the same dataset in a random order in each epoch, resulting in cache
thrashing and read amplification. When 8 single-GPU jobs are run
in a server (35% cache), there is 7X read amplification per epoch
(884 GiB read off storage compared to 125 GiB for one job), which
slows down HP search on ResNet18 by 2x on Config-SSD-V100.

4.3.3 When datasets fit in memory. We now analyze the im-
pact of CPU pre-processing on DNN training in the scenario where
the entire dataset is cached in memory of a single server, thus
eliminating fetch stalls due to storage I/O.

DNNs need 3-24 CPU cores per GPU for pre-processing. Fig-
ure 5 shows how DNN training throughput changes as we vary the
number of CPU pre-processing threads (per V100 GPU) for four
models. For computationally complex models like ResNet50, 3 — 4
CPU cores per GPU is enough to prevent prep stalls; for computa-
tionally lighter models like ResNet18 or AlexNet, as many as 12 —
24 CPUs per GPU are needed to mask prep stalls. Even on NVIDIA’s
Al-optimized DGX-2, there are only three CPU cores per GPU; thus,
many models have prep stalls on the DGX-2 (§7.6)

DALI is able to reduce, but not eliminate prep stalls. DALI
has a GPU-based prep mode to offload a part of pre-processing to
the GPU. As shown in Figure 8 (a), when all pre-processing except
decoding is offloaded to the GPU for training ResNet18, prep stalls
reduce. The effectiveness of DALI depends on the GPU speed; for
example, on the slower 1080Ti, DALI is able to eliminate prep stalls

