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ABSTRACT
Detecting anomalous subsequences in time series data is an im-

portant task in areas ranging from manufacturing processes over

finance applications to health care monitoring. An anomaly can

indicate important events, such as production faults, delivery bot-

tlenecks, system defects, or heart flicker, and is therefore of central

interest. Because time series are often large and exhibit complex

patterns, data scientists have developed various specialized algo-

rithms for the automatic detection of such anomalous patterns. The

number and variety of anomaly detection algorithms has grown

significantly in the past and, because many of these solutions have

been developed independently and by different research communi-

ties, there is no comprehensive study that systematically evaluates

and compares the different approaches. For this reason, choosing

the best detection technique for a given anomaly detection task is

a difficult challenge.

This comprehensive, scientific study carefully evaluates most

state-of-the-art anomaly detection algorithms. We collected and

re-implemented 71 anomaly detection algorithms from different

domains and evaluated them on 976 time series datasets. The al-

gorithms have been selected from different algorithm families and

detection approaches to represent the entire spectrum of anomaly

detection techniques. In the paper, we provide a concise overview

of the techniques and their commonalities; we evaluate their in-

dividual strengths and weaknesses and, thereby, consider factors,

such as effectiveness, efficiency, and robustness. Our experimental

results should ease the algorithm selection problem and open up

new research directions.
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(a) Syntheticunivariate time series resembling an ECG signalwith a
subsequence anomaly (pattern shift), a point anomaly (extremum),
and the scorings of LSTM-AD and Sub-LOF.
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(b) Synthetic multivariate time series with a correlation anomaly
and the scoring of k-Means.

Figure 1: Example time series with anomalies and scorings.

1 ANOMALY DETECTIONWILDERNESS
A data series is an ordered sequence of data points. The data points

describe some object or process property based on a continuous

measure, such as temperature (e. g., physics), mass (e. g., chemistry),

angle (e. g., astronomy), position (e. g., geology), or speed (e. g.,

mechanical engineering). If the order is based on time, the sequence

is generally referred to as a time series. Regardless of the ordering
measure, the recording of the data points usually follows discrete,

equally-spaced intervals. For this reason and because most data

series analytics algorithms are agnostic of the referencemeasure, we

use the terms data series, time series, and sequence interchangeably.
The data points of a time series record are one or multiple real-

valued variables. Each variable models one channel of the time

series. If the data points consist of only one variable, the time series

is called univariate; otherwise, it is multivariate. Figure 1 shows an
example with two time series: a univariate time series on simulated

electrocardiogram (ECG) signals and a synthetically generated mul-

tivariate time series with random mode-jumps. An anomaly in such

time series is a point (e. g., outlier) or point sequence (e. g., irregular-

ity) that deviates w. r. t. some measure, model, or embedding from
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the regular patterns of the sequence. In multivariate time series,

these pattern deviations can occur in any single channel and also

in the correlation of channels (e. g., skew) as shown in Figure 1b.

Anomalous subsequences might have varying lengths and they

might re-appear in the same time series. Depending on the domain

of a time series, its anomalies can describe important events, such

as heart failures in cardiology [4], structural defects in jet turbine

engineering [145], or ecosystem disturbances in earth sciences [35].

The different anomaly types, pattern models, and time series

properties led to the development of amultitude of different anomaly

detection algorithms, about which various surveys exist [12, 20,

27, 28, 29, 37, 38, 53, 63]. In total, we collected 158 publications

about anomaly detection algorithms for time series datasets. Many

of them follow very similar detection approaches, but the general

variety of approaches is remarkably high, ranging from simple

outlier detection over statistical analysis, signal processing, and

data mining to deep learning approaches. Because all of these ap-

proaches exhibit individual strengths and weaknesses, selecting a

suitable algorithm for a given anomaly detection task is extremely

difficult. Figure 1a, for example, shows that the distance method

Sub-LOF detects the point anomaly very well, because it is sensitive

to value magnitudes and change amplitudes; it, however, fails to

detect the subsequence anomaly, because it is insensitive to point

orders. LSTM-AD as a forecasting method, on the contrary, learns

normal patterns and heavily relies on seasonality/periodicity; for

this reason, it easily identifies the anomalous subsequence, but

since it is robust to noise, it ignores the point anomaly.

Because there is no comprehensive scientific study that eval-

uates time series anomaly detection algorithms, it is completely

unclear how well they perform w. r. t. varying datasets, anomaly

types, and parameter settings. Considering the existing evaluations

(surveys [20, 37] and individual algorithms), we find that they usu-

ally consider only a tiny fraction of related work algorithms and

that they are often based on trivial, cherry-picked, biased, misla-

beled, unrealistic, or only few datasets. For this reason, Wu and

Keogh even claimed that all “current time series anomaly detection
benchmarks are flawed” [147].

To create ameaningful evaluation, we collected and re-implemen-

ted a significant amount of 71 anomaly detection algorithms that

represent a broad spectrum of anomaly detection families. For their

evaluation, we put together 976 time series datasets from different

domains and generated several datasets with artificial, but particu-

larly interesting anomalies. The variety of algorithms and datasets

used in this experimental study should provide a clear and reliable

picture of the state-of-the-art in time series anomaly detection. In

summary, this study makes the following contributions:

(1) Short survey: We provide a classification of 158 time se-

ries anomaly detection techniques together with short de-

scriptions of the different algorithm families; we explain our

algorithm choices for this experimental evaluation and the

general ideas behind the algorithms. We offer the most com-
prehensive survey and highlight novel dimensions. (Section 3)

(2) Exhaustive evaluation: We evaluate 71 representative

anomaly detection algorithms on 976 uni- and multivariate

time series datasets and report their performance in terms of

accuracy and runtime; we analyze the strengths and weak-

nesses of different algorithms/techniques and, thereby, con-

sider a variety of time series characteristics. This offers the

broadest view on algorithms, datasets, and features. (Section 4)

In the paper, we provide practical research insights (RIs 1 to 14)
that should help experts select the optimal algorithm for their

anomaly detection task. Our study also shows the current state-of-

the-art in time series anomaly detection and, therefore, serves as

an entry point for researchers into the topic. We indicate potential

for future research and, in this way, support the development of

new algorithms that are now able to address specific issues, exploit

certain capabilities, and ultimately advance the field of anomaly

detection.

In this evaluation, we focus on algorithms that have been sci-

entifically published and/or integrated into popular time series

libraries – in other words, anomaly detection approaches that are

actually available to users. This study, therefore, judges concrete

implementations and only indirectly the techniques and measures

that they use. For a fair comparison, we tried not to modify, en-

hance or combine algorithms and state clearly, where modifications

were necessary. Concerning parameterization, we invest the same

careful and systematic effort into each algorithm. This might, in

the end, not result in the optimal parameter configurations for each

algorithm, but it leads to performance measurements that are rep-

resentative of the algorithms in practice, where users are similarly

restricted in their parameterization capabilities.

2 TIME SERIES AND ANOMALIES
In this study, we investigate algorithms for the detection of anoma-

lous subsequences in time series data. A time series (or data series
in general) is an ordered set 𝑇 = {𝑇1,𝑇2, . . . ,𝑇𝑚} of𝑚 real-valued,

potentially multidimensional data points 𝑇𝑖 ∈ R𝑛 . A subsequence
𝑇𝑖, 𝑗 = {𝑇𝑖 , . . . ,𝑇𝑗 } ⊆ 𝑇 is a contiguous segment of 𝑇 with length

|𝑇𝑖, 𝑗 | = 𝑗 − 𝑖 + 1 and |𝑇𝑖, 𝑗 | ≥ 1. Our evaluation assumes that the data

points are equidistant, which is true for most real-world time series

and relieves the algorithms from interpreting the concrete contin-

uous measures (time, mass, angle, etc.); data series not following

this assumption need to be discretized.

The concrete definition of an anomaly differs in the literature. In-

dividual, abnormal data points are usually referred to as outliers [2].
Given the ordering characteristic of time series data, anomalous

data points have been classified into point, sequence, and contextual
anomalies [20] to consider length and context information in the

classification. When subdividing a time series into fixed-size sub-

sequences (e. g., via windowing), the (ab)normality of individual

patterns can be defined by their distance to (nearest) neighbor pat-

terns w. r. t. certain similarity and distance measures. This leads i. a.

to the anomaly concept of discords [70]. Because we aim to evalu-

ate anomaly detection approaches with different interpretations of

anomalous behavior, we use the following general definition:

Definition 2.1. A time series anomaly is a sequence of data points

𝑇𝑖, 𝑗 of length 𝑗−𝑖+1 ≥ 1 that deviates w. r. t. some characteristic em-

bedding, model, and/or similarity measure from frequent patterns

in the time series 𝑇 .

Time series anomaly detection is the process of marking anom-

alies in a given time series. Two related analytics tasks are time
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series forecasting [65] and time series classification [87]. Time series

forecasting describes the process of predicting the future progres-

sion of a time series; although this activity is not in the focus of this

study, many anomaly detection approaches, such as DeepLSTM [31],

Torsk [60], ARIMA [65] and NumentaHTM [3], use time series pre-

diction internally and determine anomalies using the deviation of

predicted from observed values. Time series classification, in con-

trast, describes the process of assigning entire time series to certain

classes; it is often used as a post-processing step to classify detected

anomalies into domain-specific classes, but some anomaly detection

algorithms, such as PS-SVM [85], SR-CNN [112], COPOD [80], and

NoveltySVR [86], use classification techniques internally to assign

time series decompositions to predefined categories.

The anomaly detection algorithms that we investigate in this

study propose different embeddings, models, and similarity func-

tions. Some of which are based on statistical analysis, others on

machine learning, and again others on data mining. In this paper,

we aim to evaluate these techniques by measuring the algorithm’s

accuracy in various (real-world) scenarios. For this comparison, the

results need to be transformed into a uniform output format. The

most uniform result format for all anomaly detection algorithms is

a point-wise scoring of the data points. We define it as follows:

Definition 2.2. A time series scoring 𝑆 = {𝑠1, 𝑠2, . . . , 𝑠𝑚} with

𝑠𝑖 ∈ R is the result of a time series anomaly detection algorithm

that assigns each data point 𝑇𝑖 ∈ 𝑇 an anomaly score 𝑠𝑖 ∈ 𝑆 . For

any two scores 𝑠𝑖 and 𝑠 𝑗 , it must be true that if 𝑠𝑖 > 𝑠 𝑗 , then 𝑇𝑖 is

more anomalous than 𝑇𝑗 (in their respective contexts).

Our re-implementations of the various algorithms transform all

outputs (scores, confidences, distances, etc.) into time series scorings
with properties from Definition 2.2. For algorithms that score entire

subsequences 𝑇𝑖, 𝑗 , we assign the subsequence score to all 𝑇𝑘 ∈ 𝑇𝑖, 𝑗 .

If data points receive subsequence scores frommultiple overlapping

subsequences, which is when they are part of overlapping subse-

quences, we assign the average of these scores as individual point

scores (maximum aggregation performed worse). The translation

of anomaly scores into binary anomaly labels (e. g., 0 for normal

and 1 for anomalous) via thresholding is an orthogonal, algorithm-

independent problem that we do not consider in this evaluation.

Hence, any thresholding that transforms scores into binary labels

was (if possible) removed from the evaluated algorithms.

To evaluate the various scorings, we use three threshold-agnostic

Area Under the Curve (AUC) measures: The Area under the Receiver
Operating Characteristics Curve [57, 19] (AUC-ROC), the Area Un-
der the Precision-Recall Curve [109, 39] (AUC-PR), and the Area

Under the ranged-based Precision, range-based Recall Curve [131]
(AUC-PTRT). AUC-ROC and AUC-PR have been used in most eval-

uations of time series algorithms and, therefore, serve to relate our

results to existing evaluation results. Ranged-based Precision (PT)

and range-based Recall (RT) are more recent evaluation metrics

specifically developed for time series anomalies [131]; AUC-PTRT

simply calculates the area under the curve for these two new met-

rics. By also considering the ordering of the scorings, it offers a

different perspective on the obtained results. All three metrics as-

sign perfect scores of 1.0 if a threshold exists that clearly separates

anomalous from normal points in the scoring, regardless of what

that threshold actually is.

The AUC-PR contrasts the precision to the recall score, whereas

the AUC-ROC uses the false-positives-rate (FPR) instead of preci-

sion. The number of negative samples (N) in a dataset has a higher

influence on AUC-PR than on AUC-ROC because the precision

is the ratio of true positives (TP) to all predicted positives (PP)

(precision = 𝑇𝑃
𝑃𝑃

). A higher N introduces more potentially false

positives (FP) and, thus, higher PP. The FPR, used by AUC-ROC, is

the ratio
𝐹𝑃
𝑁
. A higher N is potentially reflected in both FP and N.

Therefore, the FPR is less influenced by N than precision is. The

appropriate metric depends on the specific use-case: AUC-ROC

rewards sensitive algorithms while AUC-PR rewards precise algo-

rithms. AUC-PTRT softens the very strict preciseness requirements

of AUC-PR to adapt the measure to subsequences.

3 ANOMALY DETECTION TECHNIQUES
This section provides a broad but also concise survey of existing

anomaly detection algorithms that we consider in our evaluation.

The algorithms originate from different research areas and belong

to different method families. More specifically, we found anomaly

detection algorithms in (i) Deep Learning, (ii) Stochastic Learning,

(iii) Classic Machine Learning, (iv) Outlier Detection, (v) Statistics

(Regression and Forecasting), (vi) Data Mining, and (vii) Signal

Analysis. Overall, we collected 158 publications that each describes

a unique approach for detecting anomalies in time series. Figure 2

shows all the collected publications grouped by their research area.

In our experimental evaluation, we consider a representative

subset of 71 algorithms that cover all major types of approaches

and method families. In Figure 2, the 71 considered algorithms are

highlighted in blue italics. Table 1 gives a brief overview about the

selected algorithms, their properties, and their implementation.

Table 1 is structured by two essential algorithm categories: the

algorithms’ supported input dimensionality (column “D”) and their

learning type (column “L”). The input dimensionality category de-

scribes if an algorithm can use inter-variable dependencies and

correlations (multivariate) or not (univariate). Equal to the general

outlier/anomaly detection problem, time series anomaly detection

algorithms can also be grouped into three learning types (cf. [29]):

unsupervised, supervised, and semi-supervised. Hodge andAustin call
those categories TYPE I, TYPE II, and TYPE III respectively in their

survey of outlier detection methods [63]. Unsupervised (TYPE I)

algorithms separate anomalous points from the normal part of the

time series without prior knowledge (no explicit training step is

required). These algorithms assume that anomalous subsequences

can be separated from normal subsequences because they, i. a., are

less frequent, have different shapes and behaviors, or originate

from a different distribution. Supervised (TYPE II) algorithms model

normal and abnormal behavior in the time series and require a

training step before they can be employed on a new time series.

All points of the training time series must be marked as either nor-

mal (usually 0) or anomalous (usually 1). These algorithms learn

to distinguish between the normal and the anomalous behavior

of the training time series. Given an unseen test time series, the

algorithms can, then, mark the anomalous subsequences that match

their internal representation of anomalous behavior. Supervised

algorithms are restricted in their ability to detect unseen anomalies

and are, therefore, rarely used for anomaly detection in time series.
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Deep Learning

Normalizing Flow [116]

DeepAnT [94]STORN [123]

CoalESN [99]

DeepNAP [72]

DeepLSTM[31]

Hybrid KNN [124] EncDec-AD [88]LSTM-based
VAE-GAN [98] LAMP [166]

DAE [117]

MultiHTM[146]

TCN-AE [135]

AD-LTI [148]

LSTM-AD [89]

AE [117]
VELC [158]

Bagel [79]
HealthESN [32]MTAD-GAT [161]

MoteESN [30]
RADM[40]

MSCRED [159]

LSTM-VAE [106]
OmniAnomaly [125]

OceanWNN [143]

Image-embedding-CAE [44]

Donut [150]

MAD-GAN [77]

TAnoGAN [8]

PAD [33]
Torsk [60]

SSA [155]

NumentaHTM [3]

Telemanom [64]

SR-CNN [112]

Outlier Detection

LOCI/aLOCI [103]

MCOD[73]
Isolation Forest [83]

CBLOF [59]

BLOF [59]

COPOD [80]

DBStream [55] LOF [22] DILOF [95]COF [130]

GeckoFSM [118]
IF-LOF [36]

EIF [58]
Subsequence IF [83]

Hybrid Isolation
Forest [91]

Subsequence LOF [22]

Data Mining

TwoFinger [90]

NorM [14]

DissimilarityAlgo [6]

STOMP [164]
Series2Graph [16]

HOT SAX [70]

STAMP [156]MERLIN [97]

DAD [154]

BoehmerGraph [13]

GrammarViz [120]

TARZAN [71]

NormA-SJ [15]

NormA-smpl [15]

KnorrSeq2 [102]

TSBitmap [144]

ILOF [108]

VALMOD [82]

SurpriseEncoding [26]

Ensemble GI [43]

DADS [119]

PST [128]

SCRIMP++ [163]

Left STAMPi [156]

Classic ML PCA [121]

NetworkSVM[160] MS-SVDD [149] sequenceMiner [23]
NoveltySVR [86]

k-Means [151]

Random Forest Regressor [165]

SLADE-MTS [142]

HBOS [47]

PCC [121]

Hybrid K-Means [140]

Random Black Forest [165]

PhaseSpace-SVM [85]

KNN [110]

SLADE-TS [141]

RobustPCA [101]

S-SVM[11]

XGBoosting [34]

RUSBoost [54]

AOSVM[48]

Eros-SVMs [74]

OC-KFD [114] Signal Analysis

SR [112] DWT-MLEAD [134]

Online DWT-
MLEAD [133]

FFT [111] Stochastic
Learning

I-HMM[127]

MultiHMM [78]

SmartSifter [152] LaserDBN [100]

EM-HMM[105]
EDBN [107]

U-GMM-HMM[68]

CxDBN [137]

FuzzyDNBC [136]

GLA [84]

HMAD[49]

HSMM[129]

Statistics

FAST-MCD [115]

ARIMA [65]

EWMA[65]

S-H-ESD [62]

Holt’s [65]

Holt-Winter’s [1]EWMA-STR [162]

MGDD[126]

pEWMA[25]
ARMA[18]

AR [18]

MedianMethod [10]

SH-ESD+ [138]

ANODE [96]

MA [18]

Kalman Filter [52]

SARIMA [52]

RePAD [76]

AMD Segmentation [153]

DSPOT [122]

ConInd [5]

PCI [157]

Figure 2: All 158 collected anomaly detection methods for time series data structured by their method family. Methods con-
sidered in this evaluation are highlighted in blue italics.

Semi-supervised (TYPE III) algorithms try to learn only the normal

behavior of a training time series. This means that they should

be trained on normal time series to build a model of the normal

behavior. When applied to a test time series, all subsequences that

do not conform to the normal behavior are marked as anomalous.

In addition to the input dimensionality and learning type cate-

gories, we also categorize time series anomaly detection algorithms

into six method families: (i) forecasting (Section 3.1), (ii) recon-

struction (Section 3.2), (iii) distance (Section 3.4), (iv) encoding

(Section 3.3), (v) distribution (Section 3.5), and (vi) tree methods

(Section 3.6). These method families characterize the algorithms by

their general approach of determining the abnormality of specific

points or subsequences within the time series. The following sec-

tions describe the method families in more detail and introduce the

member algorithms that are evaluated in this study.

While we do not modify, enhance or combine algorithms that

have been published in specific ways, we include Subsequence LOF

(Sub-LOF) [22], Subsequence Isolation Forest (Sub-IF) [83], and Sub-

sequence Fast-MCD (Sub-Fast-MCD) [115] as representatives of

outlier detection techniques applied to time series subsequences,

which is common practice in the subsequence anomaly detection

research area [9, 15, 17, 119]. Practically, this means that instead

of applying these algorithms to the individual multidimensional

points of a multivariate time series, a univariate time series is first

split into fixed-length subsequences using a sliding window and the

algorithm is then applied to these subsequences. On request of our

industry partner and to cover the widest range of approaches pos-

sible, we also included the Random Forest Regressor (RForest) [21],

Random Black Forest (RBForest) [165], and XGBoosting [34] algo-

rithms that are common semi-supervised machine learning tech-

niques applied on subsequences for anomaly detection.

3.1 Forecasting Methods
Forecasting methods (symbol: ) use a (continuously) learned

model to forecast a number of time steps based on a current con-

text window. The values for the forecasted data points depend

solely on the time series’ data points in the preceding context

window and the previously learned model. The forecasted points

are then compared to the observed values in the original time se-

ries to determine how anomalous the observed values are. Most

forecasting methods use a sliding window with a stride of 1 to

build the context window and forecast a single point at a time.

The methods in this family differ most in the type of forecasting

model that they use (i. e., the type of normal behavior model), in

the way they build this model (i. e., the learning approach) and

the calculation metric for the anomaly scores (i. e., the distance

metric for forecasted and observed values). The representatives of

this category that we consider in our evaluation are: AD-LTI [148],

ARIMA [65], DeepAnT [94], DeepNAP [72], HealthESN [32], LSTM-

AD [89], MedianMethod [10], MTAD-GAT [161], NumentaHTM [3],

NoveltySVR [86], OceanWNN [143], RBForest [165], RForest [21],

SARIMA [52], Telemanom [64], Torsk [60], Triple ES [1], and XG-

Boosting [34].

Usually, forecasting methods are trained in a semi-supervised

way: The training time series without anomalies is used to learn the

normal model of the data. A deviation from this normal, expected

behavior in the test time series, i. e., a significant difference in the

observed and forecasted data points, is regarded as anomalous. This

applies to RBForest, RForest, OceanWNN, XGBoosting, AD-LTI,

DeepAnT, DeepNAP, HealthESN, LSTM-AD (which can predict

multiple points), MTAD-GAT, and Telemanom. However, Numen-

taHTM, NoveltySVR, Torsk (which can also predict multiple points),
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Table 1: All 71 algorithms considered in our evaluation
grouped by dimensionality (“D”) and learning type (“L”).

D L Method Area Family Origin Language

u
n
i
v
a
r
i
a
t
e

u
n
s
u
p
e
r
v
i
s
e
d

NoveltySVR [86] Classic ML distance own Python

PS-SVM [85] Classic ML distance own Python

Ensemble GI [43] Data Mining encoding own Python

GrammarViz [120] Data Mining encoding original Java

HOT SAX [70] Data Mining distance original Python

TSBitmap [144] Data Mining encoding community Python

NormA-SJ [15] Data Mining distance original Python

SAND [17] Data Mining distance original Python

Series2Graph [16] Data Mining encoding original Python

STAMP [156] Data Mining distance original R

STOMP [164] Data Mining distance original R

VALMOD [82] Data Mining distance original R

Left STAMPi [156] Data Mining distance original Python

SSA [155] Data Mining distance own Python

PST [128] Data Mining trees own R

NumentaHTM [3] Deep L. forecasting original Python

Sub-LOF [22] Outlier Det. distance own Python

Sub-IF [83] Outlier Det. trees own Python

DWT-MLEAD [134] Signal A. distribution own Python

FFT [111] Signal A. reconstruction own Python

SR [112] Signal A. reconstruction original Python

S-H-ESD [62] Statistics distribution own R

DSPOT [122] Statistics distribution original Python

ARIMA [65] Statistics forecasting own Python

MedianMethod [10] Statistics forecasting own Python

SARIMA [52] Statistics forecasting own Python

Triple ES [1] Statistics forecasting own Python

PCI [157] Statistics reconstruction own Python

s
e
m
i
-
s
u
p
e
r
v
i
s
e
d

RForest [21] Classic ML forecasting own Python

XGBoosting [34] Classic ML forecasting own Python

TARZAN [71] Data Mining encoding original Python

HealthESN [32] Deep L. forecasting own Python

OceanWNN [143] Deep L. forecasting own Pytorch

Bagel [79] Deep L. reconstruction original Python

Donut [150] Deep L. reconstruction original Pytorch

IE-CAE [44] Deep L. reconstruction own Pytorch

SR-CNN [112] Deep L. reconstruction original Pytorch

Sub-Fast-MCD [115] Statistics distribution own Python

m
u
l
t
i
v
a
r
i
a
t
e

u
n
s
u
p
e
r
v
i
s
e
d

PCC [121] Classic ML reconstruction community Python

HBOS [47] Classic ML distance community Python

k-Means [151] Classic ML distance own Python

KNN [110] Classic ML distance community Python

EIF [58] Classic ML trees original Python

Torsk [60] Deep L. forecasting original Pytorch

CBLOF [59] Outlier Det. distance community Python

COF [130] Outlier Det. distance community Python

DBStream [55] Outlier Det. distance original R

LOF [22] Outlier Det. distance community Python

COPOD [80] Outlier Det. distribution community Python

IF-LOF [36] Outlier Det. trees own Python

iForest [83] Outlier Det. trees community Python

s
e
m
i
-
s
u
p
e
r
v
i
s
e
d

RobustPCA [101] Classic ML reconstruction community Python

RBForest [165] Classic ML forecasting own Python

Hybrid KNN [124] Deep L. distance own Pytorch

DeepAnT [94] Deep L. forecasting own Pytorch

DeepNAP [72] Deep L. forecasting own Pytorch

LSTM-AD [89] Deep L. forecasting own Pytorch

MTAD-GAT [161] Deep L. forecasting own Pytorch

Telemanom [64] Deep L. forecasting original Tensorflow

MSCRED [159] Deep L. reconstruction own Tensorflow

AE [117] Deep L. reconstruction own Tensorflow

DAE [117] Deep L. reconstruction own Tensorflow

EncDec-AD [88] Deep L. reconstruction own Pytorch

LSTM-VAE [106] Deep L. reconstruction own Tensorflow

OmniAnomaly [125] Deep L. reconstruction original Tensorflow

TAnoGan [8] Deep L. reconstruction own Pytorch

Fast-MCD [115] Statistics distribution own Python

LaserDBN [100] Stochastic L. encoding own Python

s
u
p
e
r
v
.

NF [116] Deep L. distribution own Pytorch

HIF [91] Outlier Det. trees original Python

MultiHMM [78] Stochastic L. encoding own Python

ARIMA, and SARIMA build their normal model directly on the test

dataset using some number of initial points (unsupervised). For

these initial points, the methods assume normality and do not cal-

culate an anomaly score. The model is periodically rebuilt to adapt

to changes in the data. The model updates are put to an extreme in

MedianMethod and Triple ES. Both algorithms rebuild the entire

normal model from every context window: The MedianMethod

uses the median of the context window as forecast, while Triple ES

fits a triple exponential smoothing model to each context window

to forecast one subsequent point.

3.2 Reconstruction Methods
Reconstruction methods (symbol: ) build a model of normal be-

havior by encoding subsequences of a normal training time series

in a (low dimensional) latent space. To detect anomalies in a test

time series, subsequences from the test series are reconstructed

from the latent space and the reconstructed subsequences’ values

are then compared to the original, observed series values. The in-

puts to the reconstruction process are training windows (usually

created using a sliding window with stride 1) that provide the

time context to the model. Because the model is built only on nor-

mal data (semi-supervised), anomalous subsequences in the test

series cannot be reconstructed by the model. Hence, the anomaly

score can be calculated from the difference between the original

and the reconstructed subsequences. Representatives of this cat-

egory in our evaluation are: AutoEncoder (AE) [117], Bagel [79],

DenoisingAutoEncoder (DAE) [117], Donut [150], EncDec-AD [88],

FFT [111], Image-embedding CAE (IE-CAE) [44], LSTM-VAE [106],

MSCRED [159], OmniAnomaly [125], PCI [157], PCC [121], Ro-

bustPCA [101], Spectral Residual (SR) [112], SR-CNN [112] and

TAnoGan [8].

An exception to the semi-supervised training of these meth-

ods are the four unsupervised methods FFT, SR, PCC, and PCI:

They encode the input subsequences of the test series into a pre-

defined latent space and, thereby, deliberately loose information,

i. e., precision, which is needed to capture anomalies. During the

reconstruction process, not all details of the original subsequences

can be recreated. Hence, the differences between the reconstructed

subsequences and the original ones can be reported as anomaly

scores.

3.3 Encoding Methods
Encoding methods (symbol: ) are similar to reconstruction meth-

ods in that they also encode subsequences of a time series in a

low dimensional latent space. However, they do not attempt to

reconstruct the subsequences from the latent space, but compute

the anomaly score directly from the latent space representations.

More specifically, the anomaly scores are attributed to the points

which correspond to the encoded subsequences in the latent space.

In this evaluation, we consider the following representatives of this

category: Ensemble GI [43], GrammarViz [120], LaserDBN [100],

MultiHMM [78], PST [128], Series2Graph [16], TARZAN [71], and

TSBitmap [144].

GrammarViz and its successor Ensemble GI discretize the sub-

sequences to, then, infer hierarchical grammar rules; both algo-

rithms consider hard to compress subsequences (low grammar rule
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coverage) as anomalous. Similarly, TSBitmap encodes discretized

subsequences as bitmaps that preserve the frequency of the subse-

quences; the distances between bitmaps of a leading and a lagging

window are then used as anomaly score. TARZAN also encodes

the frequencies of discretized subsequences, but it uses suffix trees

for both the training and test time series (semi-supervised); the

difference between the expected frequency (from training) of a

subsequence to the observed frequency is used as anomaly score.

LaserDBN, PST, and MultiHMM construct probabilistic models and

use the log-likelihood of subsequences as their anomaly score; while

MultiHMM builds the model from a normal training time series

(semi-supervised), LaserDBN and PST consider only the test time

series. Series2Graph transforms subsequences of the test time series

into a lower-dimensional space, from which the approach builds a

directed cyclic graph. The graph’s edges represent the transitions

between groups of subsequences. The more often an edge is tra-

versed by the time series, the higher its score gets. Thus, edges with

low scores are more anomalous.

3.4 Distance Methods
Distance methods (symbol: ) use specialized distance metrics to

compare points or subsequences of a time series with each other.

Anomalous subsequences are expected to have larger distances

to other subsequences than subsequences with normal behavior.

For the distance calculations, algorithms in this family may take

either all other subsequences, only some nearest neighbors, or

certain cluster centroids as distance reference points. Some ap-

proaches perform a mapping of the subsequences into a multidi-

mensional space before computing the distances. Cluster-based

distance methods cluster similar subsequences together and, then,

compute the distances to dense areas. Most of the methods in this

category create subsequences via a sliding window with a stride

of 1 on the test time series. Distance-based methods usually do

not require training data and are, therefore, unsupervised. Rep-

resentatives of this category in our evaluation are: CBLOF [59],

COF [130], DBStream [55], HOT SAX [70], Hybrid KNN [124],

k-Means [151], KNN [110], LOF [22], NormA-SJ [15], PhaseSpace-

SVM (PS-SVM) [85], SAND [17], SSA [155], STAMP [156],

STOMP [164], Sub-LOF [22], VALMOD [82], and Left STAMPi [156].

Nearest neighbor methods determine anomaly scores by com-

puting the distance of points (KNN, COF, LOF) or subsequences

(STAMP, STOMP, VALMOD, Left STAMPi, Sub-LOF, HOT SAX,

Hybrid KNN) to their nearest neighbors. Infrequent, uncommon sub-

sequences have large distances to their neighbors and are, therefore,

scored as anomalous. A particular subclass of this group (STAMP,

STOMP, VALMOD, Left STAMPi) efficiently computes the matrix
profile, which records the distance of each subsequence to its near-

est non-self neighbor [156, 164]. DBStream and k-Means cluster the

subsequences and then use the distances between subsequences

and their corresponding cluster centroids as anomaly scores. Simi-

larly, CBLOF uses multidimensional points instead of subsequences

for the clustering. NormA-SJ, SAND, and SSA build a reference

model of normal behavior to which subsequences are compared

to. The distance between a subsequence and the reference model

is used as an anomaly score. PS-SVM fits a one-class SVM to a

transformed representation of the subsequences and uses the in-

verse distance to the decision boundary as the anomaly score. The

only semi-supervised approach in this family is Hybrid KNN; it

requires normal training data without anomalies to build a model

of normality to which new subsequences are compared to.

3.5 Distribution Methods
Distribution methods (symbol: ) estimate the distribution of the

data or fit a distribution model to the data. The distributions are

calculated either over data points or subsequences obtained via

windowing. Although similarity of points and subsequences can be

a factor for the distribution fit (very similar patterns are counted

as equal), abnormality is judged by frequency rather than distance

in this algorithm family. The anomaly scores are usually measured

using probabilities, likelihoods, or distances of the points or sub-

sequences w. r. t. the prior calculated distributions. In general, this

is an unsupervised approach, as anomalies can be found in the

extremes/tails of the distributions. In the semi-supervised case, the

distribution is estimated over a training time series that contains

only normal behavior, while the points or subsequences of the test

time series are then checked against the previously learned distri-

bution. Representatives of distribution methods in our evaluation

are: COPOD [80], DWT-MLEAD [134], Fast-MCD [115], HBOS [47],

Normalizing Flows (NF) [116], S-H-ESD [62], DSPOT [122], and

Sub-Fast-MCD [115].

DWT-MLEAD, Fast-MCD, and Sub-Fast-MCD estimate a Gauss-

ian distribution over the time series. Afterwards, the anomaly of

points or subsequences is measured by their distance to the mean

of the distribution. The difference in these approaches is that DWT-

MLEAD uses a discrete wavelet transform (DWT) as preprocessing

step and the log-likelihood of subsequences as the anomaly score;

Fast-MCD and Sub-Fast-MCD, on the other hand, calculate the

score as the Mahalanobis distance between the points (Fast-MCD)

or subsequences (Sub-Fast-MCD) and the estimated Gaussian distri-

bution of a normal training time series (semi-supervised). Another

algorithm, HBOS, estimates a generic probability distribution of

subsequences with the help of histograms; then, it uses the inverse

density of the subsequences’ histogram bins as anomaly score. The

COPOD algorithm builds an empirical multidimensional cumula-

tive distribution function (copula) to estimate the tail probability

of points; these tail probabilities then translate into the anomaly

scores. S-H-ESD is a point anomaly detector that, first, performs STL

time series decomposition and then applies a Grubbs test, which

assumes a Gaussian distribution, on the residuals to mark outlier

points. Another point anomaly detector, DSPOT, estimates a gen-

eralized Pareto distribution of the time series’ extreme values and

applies a threshold on the distribution tails to flag anomalous points.

Finally, NF is a supervised sequence anomaly detection method that

transforms an arbitrary prior distribution to a Gaussian distribution

using a neural network; it then marks subsequences falling into the

distribution’s tails as anomalous.

3.6 Isolation Tree Methods
Isolation tree methods (symbol: ) build an ensemble of random

trees that partition the samples (points or subsequences) of the

test time series. For the tree construction, the methods recursively
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select random features and random split values as tree nodes to

eventually isolate the samples in the tree leaves. The number of

splits required to isolate a sample is a measure described by the

average path length over all random trees in the ensemble. Because

anomalous samples are easier to separate than normal samples,

they are on average closer to the tree root and have noticeably

shorter paths. For this reason, path lengths are characteristic for

the normality of samples and, hence, their reciprocal value translate

into anomaly scores. Representatives of this category in our eval-

uation are: Extended Isolation Forest (EIF) [58], Hybrid Isolation

Fores (HIF) [91], Isolation Forest - Local Outlier Factor (IF-LOF) [36],

Isolation Forest (iForest) [83], and Sub-IF [83].

The general isolation tree method described above, which is also

the method that all algorithms in this family are based upon, is the

iForest algorithm. Supervised variants of this approach are EIF and

HIF. The Sub-IF algorithm is an extension for subsequence anomaly

detection, i. e., an algorithm that can process sequences instead of

points, and IF-LOF is a combination of iForest [83] and LOF [22].

4 EXPERIMENTAL EVALUATION
For our experimental evaluation, we executed 71 algorithms (Sec-

tion 4.1.1) on 976 real-world and synthetic datasets (Section 4.1.2).

We optimized the parameters of all algorithms globally over a set

of well-labeled synthetic datasets so that the experiments use the

possibly best configuration for each algorithm (Section 4.1.3). In

this section, we finally present an exhaustive evaluation on the

algorithms’ quality (Section 4.2) and runtime behavior (Section 4.3).

We emphasize that this evaluation compares time series anomaly

detection algorithms by their properly published implementations

and draws conclusions about the different concepts and families

from the results. An exhaustive evaluation of all concepts (matrix

profiles vs. auto-encoders vs. trees vs. . . . ) in all possible implemen-

tations is technically impossible. Hence, if an algorithm exhibits a

bad performance in our evaluation, this does not necessarily mean

that its concept is bad. However, a bad performance shows that, in

practice, achieving a good result with a particular approach is hard.

4.1 Environment and Setup
For this study, we developed an evaluation tool called TimeEval

1

that manages the executions of the numerous evaluation tasks. An

evaluation task is one algorithm analyzing one dataset. TimeEval

is a Python 3.8 program that automatically schedules, executes,

and analyzes a pre-defined set of evaluation tasks on a compute-

cluster. It measures and calculates all the metrics, status codes, and

execution times that we report in this section. Because TimeEval

runs the algorithms in separate Docker containers, the algorithms

are not bound to a specific programming language or version and

TimeEval can distribute the evaluation tasks over a computer cluster.

We ran our experiments on a cluster of 14 servers equipped with

Intel Xeon E5-2630 v4 CPUs (10 cores at 2.2 GHz). Every Docker

container, and thus every algorithm, is restricted to one CPU core

and 3 𝐺𝐵 of memory. Hence, every node can simultaneously run

10 tasks. The entire cluster can perform 140 evaluation tasks in

parallel. We do not use GPUs – neither for training nor testing.

1
The source code, data, and other artifacts have been made available at https://hpi.de/

naumann/s/time-series-anomaly-detection-evaluation.

Table 2: Data collections used for experimental evaluation
with their dimensionality (univariate and/or multivariate).

Collection Name Origin Dim. Avg.
Length

Avg.
Cont.

# Datasets
total used

Callt2 [41, 66] real multi 5,040 4.1% 1 1

Daphnet [7, 41] real multi 32,594 13.2% 35 3

Dodgers [41, 66] real uni 50,400 11.1% 1 0

Exathlon [67] real multi 47,530 18.3% 39 2

GHL [42] synthetic multi 200,001 0.4% 48 0

Genesis [139] real multi 16,220 0.3% 1 1

GutenTAG synthetic multi/uni 10,000 2.4% 193 187

IOPS [112] real uni 100,649 1.8% 29 4

KDD-TSAD [69, 147] synthetic uni 77,415 0.6% 250 249

Kitsune [92] real multi 2,335,288 17.0% 9 0

LTDB [45, 46] real multi 9,706,422 14.1% 7 0

MGAB [132] synthetic uni 100,000 0.2% 10 10

MITDB [45, 93] real multi 650,000 12.5% 48 4

Metro [41, 61] real multi 48,204 0.1% 1 0

NAB [3] real/synthetic uni 6,302 8.9% 58 56

NASA-MSL [64] real uni 2,730 12.0% 27 16

NASA-SMAP [64] real uni 8,070 12.4% 54 35

OPPORTUNITY [41, 113] real multi 36,224 3.4% 24 0

Occupancy [24, 41] real multi 6,208 28.7% 2 0

SMD [125] real multi 25,300 4.2% 28 23

SSA [104, 155] real uni 27,038 22.5% 23 0

SVDB [45, 50, 51] real multi 230,400 13.6% 78 16

WebscopeS5 [75] real/synthetic uni 1,561 0.7% 367 360

All experiments define a time limit for training and execution

times of 2 ℎ, respectively, and a memory limit of 3 𝐺𝐵. We employ

early-stopping and model-checkpointing for (semi-)supervised al-

gorithms that need to iterate the training time series multiple times,

i. e. once per epoch. Every algorithm gets up to 2 hours to fit to

the training data, after which the best-so-far-model is used for the

anomaly detection on the test data. If an algorithm cannot finish a

single epoch within the time limit or takes more than 2 hours to de-

tect the anomalies on the test time series, we consider it timed-out.

Fast-MCD, RForest, XGBoosting, HealthESN, HIF, LaserDBN, Mul-

tiHMM, RBForest, RobustPCA, Sub-Fast-MCD, and TARZAN are

(semi-)supervised and have no iterative training approach. Thus, the

model-checkpointing strategy does not apply to those algorithms.

4.1.1 Algorithms. Of the 71 algorithms that we consider in this

evaluation, we collected 22 author implementations (original), found
10 reliable community implementations (community), and re-imple-

mented 39 algorithms if no implementation was obtainable (own)
(cf. Table 1). A special TimeEval wrapper adds required interfaces

and transforms the algorithm outputs into time series scorings.

From the 71 implemented algorithms, five algorithms could not

process a single dataset due to hitting memory or time limits [43,

52, 86, 159, 161]. Another five algorithms did not produce a single

reasonable result on any dataset [106, 115, 115, 117, 117]. Because

we could not solve the issues (if there are any) from the provided

material, we excluded these 10 algorithms from our analysis.

4.1.2 Datasets. For this study, we collected 1,354 datasets from 24

collections. Table 2 lists the collections, their cardinality, and the

dimensionality of their time series. Due to the unreliability of the

anomaly labels in the collected datasets [147], we developed the

Good Time Series Anomaly Generator (GutenTAG) and generated

another 194 time series with a large variety of well-labeled anom-

alies. The generated time series are of five base-types (Sine, ECG,

1785

https://hpi.de/naumann/s/time-series-anomaly-detection-evaluation
https://hpi.de/naumann/s/time-series-anomaly-detection-evaluation


RandomWalk, Cylinder Bell Funnel, and Polynomial) with different

lengths, variances, amplitudes, frequencies, and dimensions. The se-

lection of injected anomalies covers nine different types (amplitude,

extremum, frequency, mean, pattern, pattern shift, platform, trend,

and variance), which are particularly interesting for the analysis

of certain detection capabilities. Furthermore, the well-defined and

reliable labels enable a stable parameterization of the algorithms.

From the 1,354 collected datasets, we removed all time series that

(a) have no anomalies because there is nothing to be found; (b) have

a 𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 > 0.1 because having more than 10% anomalous

points objects the assumption that anomalies are rare (primarily

SSA, Occupancy, and Dodgers); (c) could not be processed by at

least 50% of the algorithms (usually due to their size and our strict

memory and time limits) because this distorts our analytical results

(primarily Exathlon, IOPS, Kitsune, and LTDB); and (d) could not be

processed with an AUC-ROC score of at least 0.8 by a single algo-

rithm because this indicates a bad label quality (primarily MITDB,

SVDB, and Daphnet). The NAB collection contains a few datasets

that do not conform to some of our filters, but we included them

anyway to see how the algorithms react to these datasets. We also

included four randomly selected datasets from Exathlon and IOPS

despite their large size, to capture at least a few large time series

in the evaluation as food for very efficient approaches. After the

filtering, 976 time series datasets remained (cf. Table 2).

4.1.3 Parameterization. To compare the algorithms in their best

possible configurations, we ran a systematic (hyper-)parameter tun-

ing process. Because a full parameter grid search on 192 parameters,

976 datasets, and three evaluation metrics is clearly infeasible (and

unrealistic to be run in practice), we assume parameter indepen-

dence and optimize each parameter separately for best average

AUC-ROC score on all synthetic GutenTAG datasets. The best pa-

rameter values (see availability page) are then used for the entire

evaluation. More specifically, the tuning was executed as follows:

(1) Parameter initialization: We first derive initial settings from

default values provided with the algorithms’ publications or refer-

ence implementations; if no settings are provided, we set reasonable

values manually by performing brief tests on a few datasets.

(2) Parameter classification: We classify all individual 192 pa-

rameters into four groups: fixed (99), dependent (12), shared (11),

and optimize (70). Fixed parameters are default parameters with-

out obvious alternatives, parameters that impact only the runtime

performance, or parameters with very explicit default suggestions.

Dependent parameters are ones whose best values depend on time

series properties so that they cannot be defined globally. For ex-

ample, the optimal window-size depends on the period size or

dominant frequency of the processed dataset. Hence, for dependent

parameters, we optimize the heuristic that is used to dynamically

calculate them from time series metadata. Shared parameters are

parameters that occur in multiple algorithms with the exact same

function. These parameters can be optimized jointly for all algo-

rithms, in which they appear, which saves time and increases fair-

ness. Optimize parameters are all remaining parameters that need

to be optimized per algorithm.

(3) Parameter limitation: We define a search space (based on de-

fault values, human expertise, and ad-hoc tests) for each non-fixed

parameter, which is a specific range of values this parameter (or

heuristic) can take. For numeric values, we then draw 5 equidistant

samples (including the default value) from this range; for categorical

and boolean values, we test all possible settings.

(4) Automatic optimization: We set up TimeEval to test every

parameter in every previously determined setting. For algorithms

that take exceptionally long on certain datasets, we reduced the size

of these datasets for the parameter search. Settings with the best

average AUC-ROC scores are then promoted to default parameters.

4.2 Quality of Results
In this section, we first analyze the effectiveness of all implemented

algorithms on all datasets (Section 4.2.1). We then investigate the

reliability of our results and implementations (Section 4.2.2). Finally,

we evaluate the overall performance for specific anomaly types and

dataset characteristics (Section 4.2.3).

4.2.1 AUC-ROC, AUC-PR and AUC-PTRT. Table 3 provides a com-

prehensive qualitative performance overview of all our experimen-

tal results. The table lists all 61 algorithms grouped by their input

dimensionality and learning type. The table columns TL, OOM, and

ERR show the percentage of timeout, out-of-memory, and other

errors during the experiments respectively. Within their groups, the

algorithms are sorted descending by their mean AUC-ROC score

over all datasets. The remaining columns to the right contain a box

plot for each algorithm (rows) and specific quality metric (columns).

We report the AUC-ROC, AUC-PR, and AUC-PTRT scores for all

datasets and, additionally, the AUC-ROC score aggregated over

only our synthetically generated GutenTAG datasets.

39 of the 61 algorithms detect anomalies in an unsupervised

way. 19 algorithms are semi-supervised and, thus, have to train

on data without anomalies beforehand. (RI 1) Despite supervised
algorithms using additional information during training (labels for

normal and anomalous points), they do not achieve superior results

compared to semi-supervised or even unsupervised approaches.

One exception is the NF algorithm, which achieved excellent de-

tection rates, albeit only on 34% of the datasets; for the majority

of datasets, it either ran into timeouts or errors, which makes the

reported results not very reliable (cf. Section 4.2.2). In addition to

their weak performance (in this experiment), supervised algorithms

are rather unpopular in practice (only 7 out of 158 methods are

supervised) most likely because anomalies are usually not known

beforehand in real-world scenarios. However, since supervised de-

tection methods translate easily to multivariate data, we have not

found any supervised algorithm restricted to only univariate data.

The comparison of the scores of multivariate and univariate al-

gorithms shows that on average, univariate algorithms perform

slightly better. For this comparison, we need to consider that mul-

tivariate algorithms were run on all time series while univariate

algorithms processed only univariate time series. One might con-

clude that multivariate time series are harder to analyze, but the

multivariate algorithms performed 6% worse on the univariate data

w. r. t. AUC-ROC than on themultivariate data in our evaluation.We

therefore conclude that (RI 2) there is no one-size-fits-all solution

in the set of currently available algorithms: A multivariate algo-

rithm is necessary to detect multivariate anomalies (e. g., anomalies

in the correlation of series), but a univariate algorithm is preferable

for univariate data.
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Table 3: Qualitative performance overview for all 61 algorithms with box plots (mean in green andmedian in orange) showing
the score distribution for the metrics AUC-ROC, AUC-PR, and AUC-PTRT.

Dim. Learn. Algorithm TL OOM ERR AUC-ROC all datasets AUC-PR all datasets AUC-P
T
R
T

all datasets AUC-ROC GutenTAG only

U
N
I
V
A
R
I
A
T
E

U
N
S
U
P
E
R
V
I
S
E
D

Sub-LOF [22] 2 % 0 % 0 %

GrammarViz [120] 3 % 0 % 0 %

DWT-MLEAD [134] 0 % 0 % 0 %

VALMOD [82] 1 % 9 % 11 %

SAND [17] 5 % 1 % 22 %

Left STAMPi [156] 2 % 0 % 1 %

Series2Graph [16] 0 % 0 % 5 %

ARIMA [65] 7 % 0 % 0 %

PCI [157] 0 % 0 % 0 %

STOMP [164] 2 % 0 % 0 %

STAMP [156] 4 % 0 % 0 %

Triple ES [1] 15 % 0 % 9 %

NumentaHTM [3] 0 % 0 % 0 %

NormA-SJ [15] 10 % 1 % 3 %

Sub-IF [83] 0 % 0 % 0 %

MedianMethod [10] 0 % 0 % 0 %

SR [112] 0 % 0 % 0 %

PS-SVM [85] 12 % 0 % 0 %

PST [128] 0 % 4 % 0 %

SSA [155] 1 % 0 % 0 %

HOT SAX [70] 24 % 1 % 1 %

TSBitmap [144] 0 % 0 % 0 %

DSPOT [122] 6 % 0 % 0 %

FFT [111] 0 % 0 % 0 %

S-H-ESD [62] 0 % 0 % 49 %

S
E
M
I
-
S
U
P
E
R
V
I
S
E
D

Donut [150] 1 % 1 % 2 %

RForest [21] 12 % 0 % 0 %

IE-CAE [44] 0 % 0 % 1 %

XGBoosting [34] 0 % 0 % 0 %

OceanWNN [143] 0 % 0 % 10 %

Bagel [79] 19 % 0 % 2 %

SR-CNN [112] 22 % 0 % 1 %

TARZAN [71] 0 % 0 % 18 %

M
U
L
T
I
V
A
R
I
A
T
E

U
N
S
U
P
E
R
V
I
S
E
D

k-Means [151] 0 % 4 % 1 %

KNN [110] 0 % 0 % 0 %

Torsk [60] 7 % 0 % 0 %

EIF [58] 0 % 0 % 0 %

iForest [83] 0 % 0 % 0 %

HBOS [47] 0 % 0 % 0 %

DBStream [55] 0 % 2 % 78 %

CBLOF [59] 0 % 0 % 0 %

COPOD [80] 0 % 0 % 0 %

IF-LOF [36] 0 % 0 % 3 %

LOF [22] 0 % 0 % 0 %

COF [130] 0 % 24 % 0 %

PCC [121] 0 % 0 % 0 %

S
E
M
I
-
S
U
P
E
R
V
I
S
E
D

LSTM-AD [89] 14 % 50 % 3 %

HealthESN [32] 66 % 0 % 0 %

Telemanom [64] 0 % 0 % 0 %

RBForest [165] 6 % 5 % 0 %

EncDec-AD [88] 55 % 26 % 3 %

DeepAnT [94] 0 % 0 % 5 %

OmniAnomaly [125] 0 % 4 % 2 %

LaserDBN [100] 4 % 0 % 7 %

RobustPCA [101] 0 % 0 % 0 %

TAnoGan [8] 65 % 0 % 1 %

Hybrid KNN [124] 0 % 1 % 1 %

S
U
P
E
R NF [116] 60 % 6 % 0 %

HIF [91] 1 % 0 % 0 %

MultiHMM [78] 0 % 0 % 52 %

0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1

Some algorithms take exceptionally long for training and/or ex-

ecution or consume a lot of memory, which caused them to exceed

our resource limits: NF, HealthESN, EncDec-AD, and TAnoGan,

for example, finished less than 50% of the datasets within the time

limit and COF, LSTM-AD, and EncDec-AD ran out of memory in

more than 20% of the experiments. These timeout and memory

errors often occur with multivariate algorithms due to the higher

complexity of multivariate data and algorithms. Algorithm imple-

mentations with high error rates, such as S-H-ESD, DBStream, and

MultiHMM, often failed because they could not deal with certain

input characteristics (e. g., value plateaus) or made assumptions that

do not generalize; errors also indicate technical flaws that we could

not resolve. A high error rate does, in general, not reflect on the

performance of an algorithm, as we see unstable implementations

with both good (e. g., NF) and bad (e. g., S-H-ESD) scores. (RI 3)
The relatively high overall error susceptibility despite our strong

investment into each implementation shows that every practical

algorithm deployment needs careful testing; only few implementa-

tions, such as DWT-MLEAD, KNN, and Sub-LOF, actually appear

to be both robust and effective.

When comparing the results of different quality metrics, we

observe that the rankings for the AUC-ROC and AUC-PR scores
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Figure 3: Scorings of GrammarViz (encoding), Sub-LOF (dis-
tance), DWT-MLEAD (distribution), DeepAnT (forecasting),
Donut (reconstruction), and Sub-IF (trees) on a GutenTAG
sinus series with five anomalies; AUC-ROC in parentheses.

clearly deviate due to their different scoring focus (cf. Section 2).

The reason is that some algorithms mark the start and the end of

an anomalous section, while others mark the entire section; most

algorithms also mark the transition into an anomaly as anomalous,

while, i. a., forecasting methods tend to mark anomalies not before

they actually started. For example, DeepAnT is much stronger

in AUC-ROC than in AUC-PR, while DBStream is the strongest

approach in AUC-PR but only mediocre in AUC-ROC. (RI 4) The
most relevant scoring metric, therefore, depends on the use case and

what the results are expected to indicate. We provide the scores for

all three metrics in Table 3 for reference and report only AUC-ROC

scores in all further charts.

The results in Table 3 further show higher average AUC-ROC

scores for experiments on only GutenTAG datasets than on all

datasets; in particular, the AUC-ROC score variances are lower

on average. This is partially because the algorithms have been

optimized for these datasets, which demonstrates the need for pa-

rameter tuning. However, the clarity of the improvements (despite

varying parameter counts) also shows that real-world datasets are

either harder or their labeling quality is worse. We therefore follow

the recommendation of [147] and also provide results on controlled

data for performance comparison. Contrary to our general obser-

vation, a few outlier-detection algorithms, such as MedianMethod,

actually perform better on all datasets, which is because the fraction

of extreme-value anomalies is higher in the real-world data than

in the generated data and they excel in this discipline. The results

for supervised algorithms are the same for both aggregation types

because the collected data does not include time series with proper

labels for supervised training.

The scorings in Table 3 let us draw the conclusion that k-Means,

which leverages simple subsequence time series clustering, is a very

effective multivariate approach performing similarly well as other

representatives of the distance family. This is surprising because

previous research suggests that subsequence time series clustering

produces meaningless cluster centers (usually sinusoids) [81]. The

authors of [81] claim that motifs, similar to those used in NormA-SJ,

capture true cluster centroids more accurately, but our experiments

cannot confirm that this is actually beneficial for anomaly detection.

Figure 3 shows six AUC-ROC scorings for a time series with

different types of anomalies. From each anomaly detection family,
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Figure 4: Reliability of reported results.

we selected one interesting representative to demonstrate certain al-

gorithmic strengths: GrammarViz (encoding) is particularly strong

in frequency and pattern anomaly detection; Sub-LOF (distance)

marks pattern shifts particularly precisely and works well in gen-

eral; DWT-MLEAD (distribution) also finds all anomalies very well,

but it produces high scores for noticeably wide areas around the

anomalous sections; DeepAnT (forecasting) detects pattern shifts

and frequencies particularly well and, as a forecasting approach,

its scores always peak a bit later than all other scores; Donut (re-

construction) is clearly very sensitive to patterns but insensitive

to magnitudes, which is why the pattern anomaly dominates its

scores; Sub-IF (trees) is particularly sensitive to pattern anomalies

and struggles a bit with point anomalies and pattern shifts.

(RI 5) Our experimental results on the different datasets show

that, overall, every anomaly detection family can be effective and

there is no clear winner. Furthermore, no single algorithm achieved

perfect scores leaving much room for future work.

4.2.2 Reliability of Results. Figure 4 relates the algorithms’ average

AUC-ROC scores to their percentage of successfully processed

datasets. Hence, the y-coordinate of a point indicates the reliability

of the point’s AUC-ROC score. The algorithms are color-coded by

their family and the most relevant points are labeled.

Most algorithms (87%) have successfully processed more than

70% of the datasets, andmany algorithms (35%) even processedmore

than 99% of the datasets. The large majority of reported quality

measurements is, therefore, reliable. For example, DWT-MLEAD

has an average AUC-ROC score of 0.83 with a reliability of 100%

and will most likely perform well also on other datasets. On the

contrary, RobustPCA has an average AUC-ROC score of only 0.54

with a reliability of 100% and will, therefore, most likely perform

badly also on other datasets.

Only 8 algorithms have a reliability lower than 52%, among

which MultiHMM, S-H-ESD, and TAnoGan performed poorly, DB-

Stream and EncDec-AD performed mediocre, and HealthESN, NF

and LSTM-AD performed great. The qualitative characterizations

are, therefore, not particularly representative, but demonstrate sig-

nificant setup and runtime difficulties: MultiHMM, S-H-ESD, and

DBStream encountered many internal errors that we could not fix;

NF, HealthESN, EncDec-AD, and TAnoGan struggled with the 4 ℎ

time limit; and LSTM-AD often exceeded the 3 𝐺𝐵 memory limit.
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Figure 5: Quality results grouped by dataset characteristics
(anomaly type, base oscillation, trend, periodicity) with em-
phasis on algorithm families.

4.2.3 Anomaly Types and Dataset Characteristic. Our data genera-
tion tool GutenTAG

2
generates time series with very specific char-

acteristics (anomaly type, base oscillation, trend, periodicity, and

dimensionality), which we can use to conduct insightful analyses.

Figure 5 shows the average AUC-ROC scores of all 61 algorithms

grouped by these characteristics: Every point in the plot represents

an algorithm and every row a specific characteristic. For better

readability, every row is subdivided into six color-coded sub-rows

2
For a more detailed description, please consider the GutenTAG documentation at

https://github.com/HPI-Information-Systems/gutentag.

– one for each method family. The black vertical marker line in

each row marks the mean AUC-ROC score of all algorithms for

the particular characteristic and, hence, the overall performance

for a specific characteristic (in the generated time series). We anno-

tate the best performing algorithm per data characteristic (highest

average AUC-ROC score; smallest standard deviation as tiebreaker).

Considering the anomaly types, (RI 6) an extremum seems to be

the easiest anomaly (avg. AUC-ROC score above 0.8) and (RI 7) a
trend the hardest anomaly (avg. AUC-ROC score below 0.6). For

extremum anomalies, we find that tree-based algorithms and point

anomaly detectors work exceptionally well; for trend anomalies,

only few encoding, distance and forecasting approaches delivered

acceptable results. (RI 8) Frequency and pattern-shift anomalies

clearly separate the algorithms in ones that can (mostly distance

and forecasting) and ones that cannot (mostly reconstruction and

tree) detect them.

The base oscillation groups show that anomalies in periodic sine

waves are the easiest to detect, while the same types of anomalies

are the hardest to detect in chaotic Cylinder Bell Funnel (CBF) base

oscillations. (RI 9) Due to the lack of structure in chaotic time series,

most algorithms struggle to find a suitable representation for nor-

mal behavior or cannot distinguish between normal and abnormal

subsequences at all. The algorithms reached a suspiciously high

average AUC-ROC score of 0.75 on the non-periodic Random Walk

(RW) time series because these series do not contain the relatively

hard-to-find pattern and pattern-shift anomalies – on non-periodic

data, such anomalies cannot be represented. However, the compari-

son of sinus and ecg indicates that increasingly complex patterns

also increase the difficulty for anomaly detection.

Figure 5 shows that trends do have an impact on individual

algorithms (sometimes positive and sometimes negative), but the

average performance of all algorithms is surprisingly robust against

simple trends. Only the quadratic trend seems to complicate the de-

tection a bit. For distance-based algorithms, trends are the slightest

problem (if not an advantage).

(RI 10) Anomalies on periodic time series are easier to detect

than on non-periodic time series. Even though the average values

differ by only 0.03, more algorithms reached scores higher than

0.90 on periodic time series (16 algorithms) than on non-periodic

time series (two algorithms). As mentioned earlier, periodic time

series also contain more difficult anomalies so that their scores are

disadvantaged in this comparison.

Our measurements show that anomaly detection on univariate

time series is on average easier than on multivariate time series. A

direct comparison yields a higher average AUC-ROC score of 0.06.

This effect is particularly evident on our generated datasets because

most of their anomalies are present only in a single channel, which

makes them harder to distinguish from noise.

(RI 11) In summary, most reconstruction methods yielded rather

bad AUC-ROC scores (∼ 0.5) and only some algorithms in this

group, i. e., EncDec-AD and Donut, can detect anomalies well across

all characteristics; forecasting and distance algorithms, on the con-

trary, yielded particularly good results and many of their represen-

tatives, such as DeepAnT and Sub-LOF, are amongst the best per-

forming algorithms in almost every characteristic; finally, distance

algorithms performed remarkably well on variance anomalies.
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Figure 6: Average runtime per algorithm for one data point
(logarithmically scaled).

4.3 Runtime and Memory
In a final experiment, we measured the runtimes for all algorithms

on our univariate time series and normalized the runtimes by the

lengths of the respective time series. Figure 6 shows the average

measured runtime of every algorithm for one time series data point.

The plotted times cover training and testing times, both with a time

limit of 2 ℎ. Consequently, (semi-)supervised algorithms can take

up to 4 ℎ per time series if their training does not converge before

the limit and they time out during testing. Algorithm executions

that exceed the time limit are considered with a runtime equal to the

time limit. If this happens to an algorithm at least once, it is marked

with a † to indicate that its true runtime could be longer than listed

in the plot. Algorithm executions with errors are excluded from

consideration because we could not measure any runtimes.

(RI 12) Most supervised and semi-supervised algorithms are

among the slowest algorithms in our evaluation and need on av-

erage 255𝑚𝑠 for one data point, which is largely due to their long

training times. This observation confirms similar conclusions made

in related work [67]. There are, however, (semi-)supervised meth-

ods, such as XGBoosting, RobustPCA, TARZAN, and LaserDBN,

that compete well (< 2.5𝑚𝑠 per data point) with the runtime per-

formance of the unsupervised methods. We also find unsupervised

algorithms, such as Triple ES, NormA-SJ, HOT SAX, DSPOT, and

ARIMA, that took exceptionally long (> 125 𝑚𝑠 per data point).

Because every approach calculates/learns some model to solve

the task, the performance is not necessarily tied to the learning

type. (RI 13) Overall, neither the fastest algorithms nor the slowest

algorithms delivered qualitatively good results (cf. Table 3). The

algorithmwith the clearly best cost/benefit ratio in our experiments

is DWT-MLEAD with an average AUC-ROC score of 83% and an

outstanding runtime of 2.2𝑚𝑠 per data point.

(RI 14) Only few implementations actually struggle with our

3 𝐺𝐵 memory limit. LSTM-AD and EncDec-AD, for example, are

deep learning methods that innately require more memory than

other methods and, therefore, exceeded the limit in 50% and 26%

of the experiments, respectively. The unsupervised COF algorithm

also exceeded the limit in 24% of all experiments. It is comparatively

memory inefficient but able to analyze multivariate data, while

other unsupervised methods with lower memory footprints cannot.

5 DISCUSSION
In line with related work [67], we found that deep learning ap-

proaches are not (yet) competitive despite their higher processing

effort on training data. We could also confirm that “simple methods
yield performance almost as good as more sophisticated methods” [56].
Still, no single algorithm clearly performs best. We highlighted sev-

eral algorithms with specific strengths, but the overall performance

results call for further research in the following three areas:

Flexibility: No algorithm (or algorithm family) clearly domi-

nates all other approaches and solves all anomaly detection setups.

To advance the field of anomaly detection, we suggest further re-

search on holistic and hybrid anomaly detection systems that com-

bine existing strengths for the detection of more diverse anomalies

in time series with arbitrary characteristics.

Reliability: Despite our best efforts, only very few algorithms

could process all time series without errors and within common

time and memory limits. We therefore emphasize the importance

of further research on the robustness and scalability of time series

anomaly detection algorithms.

Simplicity: Most anomaly detection algorithms of this study

were remarkably sensitive to their parameter settings and required

on average seven settings. What makes this problem worse is that

most practical use cases do not have training data for algorithm

configuration. For this reason, further research on auto-configuring
and self-tuning algorithms is very much needed.
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