
DBOS: A DBMS-oriented Operating System
Athinagoras Skiadopoulos1*, Qian Li1*, Peter Kraft1*, Kostis Kaffes1*, Daniel Hong2, Shana

Mathew2, David Bestor2, Michael Cafarella2, Vijay Gadepally2, Goetz Graefe3, Jeremy Kepner2,
Christos Kozyrakis1, Tim Kraska2, Michael Stonebraker2, Lalith Suresh4, and Matei Zaharia1

Stanford1, MIT2, Google3, VMware4
dbos-project@googlegroups.com

ABSTRACT
This paper lays out the rationale for building a completely new
operating system (OS) stack. Rather than build on a single node OS
together with separate cluster schedulers, distributed filesystems,
and network managers, we argue that a distributed transactional
DBMS should be the basis for a scalable cluster OS. We show herein
that such a database OS (DBOS) can do scheduling, file management,
and inter-process communication with competitive performance
to existing systems. In addition, significantly better analytics can
be provided as well as a dramatic reduction in code complexity
through implementing OS services as standard database queries,
while implementing low-latency transactions and high availability
only once.

PVLDB Reference Format:
Athinagoras Skiadopoulos, Qian Li, Peter Kraft, Kostis Kaffes, Daniel Hong,
Shana Mathew, David Bestor, Michael Cafarella, Vijay Gadepally, Goetz
Graefe, Jeremy Kepner, Christos Kozyrakis, Tim Kraska, Michael
Stonebraker, Lalith Suresh, and Matei Zaharia. DBOS: A DBMS-oriented
Operating System. PVLDB, 15(1): 21-30, 2022.
doi:10.14778/3485450.3485454

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DBOS-project.

1 INTRODUCTION
At Berkeley, one of us was an early user of Unix in 1973. Linux
debuted 18 years later in 1991 with the same general architecture.
Hence, the ideas in prevailing operating systems are nearly half a
century old. In that time, we note the following external trends:
(1) ScaleToday, enterprise servers routinely have hundreds of cores,
terabytes of main memory, and hundreds of terabytes of storage, a
stark contrast from the uniprocessors of yesteryear. A large shared
system such as the MIT Supercloud [12, 42] has approximately
10,000 cores, a hundred terabytes of main memory, and petabytes
of storage. Obviously, the resources an OS is called to manage have
increased by many orders of magnitude during this period of time.
(2) Clouds The popularity and scale of public cloud services gener-
ate ever larger configurations, amplifying the management problem.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 1 ISSN 2150-8097.
doi:10.14778/3485450.3485454

*These authors contributed equally to this submission.

(3) Parallel computationMost data warehouse DBMSs harness
a “gang” of CPUs to solve complex queries in parallel. The same
observation can be applied to parallel computing platforms like
Apache Spark. In fact, one of us reported that it is common for a
large cloud to be managing 108 Spark tasks at a time [7]. Interactive
parallel computing systems require launching thousands of jobs
in a few seconds [21, 32]. Obviously, one needs “gang” scheduling
and straggler mitigation support.
(4) Heterogeneous hardware Hardware like GPUs, TPUs, Intelli-
gent SSDs, and FPGAs have become omnipresent in large configu-
rations and bring new optimization opportunities and constraints
[22, 43]. Heterogeneous multi-tier memory systems and even non-
deterministic systems are just around the corner. Such special pur-
pose hardware should be managed by system software. Ideally, an
OS should be able to manage tasks that require multiple kinds of
computing assets.
(5) New applications The need for the hardware mentioned above
is driven by performance/cost requirements of new applications,
most recently machine learning (ML), Internet of Things (IoT), and
“big data” applications [41].
(6) New programming models Users ideally want to pay for re-
sources only when they are active. All major cloud vendors now
offer serverless computing APIs [9] where a user divides their com-
putation into short “tasks” with communication between tasks
supported through an object store. Resources can scale from zero to
thousands and back to zero in seconds. The user only pays for the
resources used in each such task, without explicitly provisioning
machines or otherwise paying for idle resources waiting for input.
According to one estimate [40] 50% of AWS customers are using
Lambda, up from 35% a year ago. Obviously, this programming
model is enjoying widespread acceptance.
(7) Age Linux is now “long in the tooth” having been feature-
enhanced in an ad-hoc fashion for 30 years. This has resulted in slow
forward progress; for example, Linux has struggled for a decade to
fully leverage multi-cores [14, 20, 22, 34].
(8) Provenance It is becoming an important feature for policy
enforcement, legal compliance, and data debugging. Provenance
data collection touches many elements of the system but is totally
absent in most current OSes.

We note that Unix/Linux falls far short of adequately support-
ing these trends. At scale, managing system services is a “big data”
problem, and Linux itself contains no such capabilities. As we noted,
it has struggled for a decade to support multiprocessors in a sin-
gle node and has no support for the multiple nodes in a cluster.
Scheduling and resource management across a cluster must be
accomplished by another layer of management software such as
Kubernetes or Slurm [41]. The two layers are not well integrated,

21

https://doi.org/10.14778/3485450.3485454
https://github.com/DBOS-project
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3485450.3485454
https://www.acm.org/publications/policies/artifact-review-badging#available

so many cross-cutting issues, such as provenance, monitoring, se-
curity and debugging, become very challenging on a cluster and
often require custom built solutions [51]. Furthermore, Linux has
weak support for heterogeneous hardware, which must be managed
by non-OS software. Even for common hardware such as network
cards and storage, practitioners are increasingly using kernel by-
pass for performance and control [19]. Lastly, serverless computing
can be supported by a much simpler runtime; for example, there is
no need for demand paging. Hence, some functions in Linux are
possibly not needed in the future.

Unix offers abstractions that are too few and too low-level for
managing the multiple levels of complexity and huge amounts of
state that modern systems must handle. Our conclusion is that
the “everything is a file” model for managing uniprocessor hard-
ware [44] — a revolutionary position for Unix in 1973 — is ill-suited
to modern computing challenges. Layering an RPC library on top
of the Unix model in order to build distributed systems does not
address the abstraction gap. The current model must be replaced
by a new architecture to make it significantly easier to build and
scale distributed software. In Section 2, we specify such an archi-
tecture based on a radical change towards an "everything is a table"
abstraction that represents all OS state as relational tables, leverag-
ing modern DMBS technology to scale OS functionality to entire
datacenters [23, 33]. In Section 3, we indicate our “game plan” for
proving our ideas. Our timeline contains three phases, and we re-
port on the results of the first phase in Section 4. Section 5 discusses
related work, and Section 6 contains our conclusions.

2 RETHINKING THE OS
The driving idea behind our thinking is to support vast scale in a
cluster or data center environment. Fundamentally, the operating
system resource management problem has increased by many or-
ders of magnitude and is now a “big data” problem on its own. The
obvious solution is to embed a modern high performance multi-
node transactional DBMS into the kernel of a next-generation OS.
As a result, we call our system DBOS (Data Base Operating System).
This results in a very different OS stack.

2.1 The DBOS Stack
Our four-level proposal is shown in Figure 1.
Level 4: User space — At the top level are traditional user-level
tasks, which run protected from each other and from lower levels,
as in traditional OSs. In DBOS, we primarily target distributed ap-
plications, such as parallel analytics, machine learning, web search,
and mobile application backends, which are the most widely used
applications today. To support these applications, we encourage a
serverless model of computation, whereby a user decomposes her
task into a graph of subtasks, each running for a short period of
time. Hence, subtasks come into existence, run, and then die in a
memory footprint they specify at the beginning of their execution.
As such, we do not plan to support the complex memory manage-
ment facilities in current systems; a subtask can only run if there is
available memory for its footprint. The serverless computing model
is supported by capabilities at levels 2 and 3 of the DBOS stack.

Common serverless models (e.g. AWS Lambda) dictate that data
be passed between subtasks via a shared object store or filesystem.
This may due to the difficulties in current systems in managing task

Distributed DBMS

Microkernel Services

File System Scheduler IPC Other OS
Services

User ApplicationsLevel 4

Level 3

Level 2

Level 1

Figure 1: Proposed DBOS stack. Level 1 is the bottom layer.

sets, and in locating the recipients of interprocess communication
(IPC) messages. In a DBOS environment that stores all OS state
in a distributed DBMS, neither impediment exists. Hence, DBOS
provides fast IPC between live subtasks, along with table-based data
sharing. Both capabilities are supported via DBMS-based primitives.

In addition, DBOS’s cluster-scale approach makes it significantly
easier for developers to monitor, debug, and secure their distributed
applications. Today’s distributed computing stacks, such as Kuber-
netes, provide few abstractions beyond the ability to launch tasks
and communicate between them via RPC, so they require devel-
opers to build or cobble together a wide range of external tools
to monitor application metrics, collect logs, and enforce security
policies [10, 27, 39, 45]. In contrast, in DBOS, the entire state of
the OS and the application is available in structured tables that can
simply be queried using SQL. For example, finding all the process
IDs in an application, their current memory usage, or aggregate
information about custom metrics in the application is trivial; it
is also easy to ask more complicated questions, such as finding all
processes from users in a certain organization. Likewise, all in-flight
IPC messages are queriable as a table, and can be retained for later
analysis. We believe that these capabilities will greatly simplify
the development of distributed applications, in the same way that
developing and debugging single-process multi-core applications
today is dramatically easier than working with distributed ones.
Level 3: OS Functionality The applications in level 4 are sup-
ported by a set of data-center OS services in level 3, such as task
schedulers, distributed filesystems, interprocess communication
(IPC) and others. We demonstrate high-performance implementa-
tions of these services later in the paper (Section 4).

In DBOS, all OS services benefit from capabilities provided by
the distributed DBMS (level 2), such as high-availability, transaction
support, security, and dynamic reconfiguration. These capabilities
are known pain points in today’s cluster managers, which routinely
re-invent these wheels and yet, provide weaker guarantees than
what a DBMS provides. For example, the Kubernetes control plane
cannot perform multi-object transactions [11], and the HDFS Na-
meNode requires more servers for a highly available configuration
than if they had used a distributed DBMS [37].

In DBOS, all OS services are implemented using a combination
of SQL and user-defined functions. These services all operate on a
consistent global view of the OS state in the form of DBMS tables.
This makes it easy for services to support cross-cutting operations.
For example, modern task schedulers routinely rely on historical
performance profiles of the tasks, data placement information, re-
source utilization, machine properties and myriad other state to
make high quality placement decisions. A scheduler in today’s
cluster managers like Kubernetes and YARN needs to gather such

22

information from disparate layers, each with ad-hoc APIs to expose
the required state, with no consistency guarantees between layers.

Similarly, our programming model should make it easier to build
novel OS services from scratch — say, a privacy reporting tool
about which files’ data have been transmitted over the network —
far more easily than with today’s cluster managers, which would
require intrusive changes to support similar features.
Level 2: The DBMS — In level 2 we propose to utilize a high-
performance multi-node main-memory transactional DBMS. There
are several such DBMSs in commercial service today including
VoltDB [8] (and its predecessor H-Store [3]), SAP-Hana [13], Mi-
crosoft Hekaton [25], and SingleStore (MemSQL) [15], just to name
a few. These systems are all SQL databases, offer multi-node sup-
port, low latency distributed transactions (concurrency control and
crash recovery) and most offer real-time failover (high availability).
The fastest of these are capable of millions of transactions per sec-
ond on modest hardware clusters costing a few thousand dollars.
These standard DBMS services, combined with some standardized
OS-specific schemas, comprise all of the second level.

We have restricted our attention to SQL DBMSs in order to get
the analytic power of a high level query language. However, there
are many No-SQL DBMSs with lower-level interfaces that could
also be considered in a DBOS-style architecture.
Level 1: Microkernel services — We expect a DBMS to be
runnable on top of a minimal microkernel in level 1. It comprises
raw device handlers, interrupt handlers, very basic inter-node com-
munication, and little else.

Long ago, DBMSs tended not to use OS services, and one of us
wrote a paper in 1981 complaining about this fact [47]. There is no
reason why we cannot return to running a DBMS on a “raw device”.
Moreover, DBMSs do their own admission control, so as not to
overtax the concurrency control system. Also, a DBMS running near
the bottom of the OS stack will be processing very large numbers of
short transactions. As such, wewant simple preemption to allow the
DBMS to runwhenever there is work to do. ADBMS can also control
its own memory footprint by dynamically linking and unlinking
user-defined functions as well as little-used support routines.

In DBOS we do not plan to support sophisticated memory man-
agement. The DBMS in level 2 does its own memory management.
One might wonder if level 2 should also run in a Lambda-style
serverless environment. In fact, it would certainly be possible to
specify that nodes in a query plan be serverless computations. How-
ever, doing so would force serverless support into layer 1, which
we want to keep as small as possible. Also, we expect the DBMS to
be running millions of transactions per second, so all the pieces of
a DBMS would, in fact, be memory resident essentially all the time.
Hence, limited value would result from such a decision.
2.2 Design Discussion
It is worth considering the core benefits of the DBOS architec-
ture. OS state in current operating systems is typically supported
piecemeal, usually in various data structures with various seman-
tics. Moving to DBOS will force DBMS schema discipline on this
information. It will also allow querying across the range of OS
data using a single high-level language, SQL. In addition, transac-
tions, high availability and multi-node support are provided exactly
once, by the DBMS, and then used by everybody. This results in

much simpler code, due to avoiding redundancy. Also, current non-
transactional data structures get transactions essentially for free.

Effective management and utilization of large-scale computing
systems require monitoring, tracking, and analyzing the critical
resources, namely processing, storage, and networking. Currently,
additional utilities and appliances are often built or purchased and
integrated into each of these functions [10, 27, 39, 45]. These capabil-
ities provide database functionality to the process scheduling logs,
storage metadata logs, and network traffic logs. As separate adjunct
bolt-on capabilities are highly sensitive to processing, storage, and
network upgrades, they require significant resources to maintain
and significant knowledge by the end-user to use effectively. DBOS
obviates the need for these separate add-on capabilities.

The principal pushback we have gotten from our initial pro-
posal [23] is “you won’t be able to offer a performant implementa-
tion”. Of course, we have heard this refrain before — by the CODA-
SYL advocates back in the 1970’s. They said “you can’t possibly do
data management in a high-level language (tables and a declarative
language). It will never perform.” History eventually proved them
wrong. Our goal in DBOS is analogous, and we turn in the next
section to three successive prototypes with that goal.

3 DBOS STAGES
We will build out the DBOS prototype in three stages of increasing
strength: from “straw”, to “wood”, and finally “brick”.

3.1 DBOS-straw
Our first prototype demonstrates that we can offer reasonable per-
formance on three OS services: scheduling tasks, providing a filesys-
tem, and supporting interprocess communication (IPC). Construct-
ing the DBOS-straw prototype entails using Linux for level 1, an
RDBMS for level 2, writing a portion of level 3 by hand, and creating
some test programs in level 4. Results in these areas are documented
in Section 4 of this paper. We expect this exercise should convince
the naysayers of the viability of our proposal. This system builds
on top of VoltDB, which offers required high performance.

3.2 DBOS-wood
With the successful demonstration of DBOS-straw, we will install
our prototype in a Linux cluster in user code and begin supporting
DBOS functions in a real system. We expect to use a serverless
environment to support user-level tasks. Hence, any user "process"
is a collection of short running "tasks" assembled into a graph.
We expect this graph to be stored in the DBMS to facilitate better
scheduling, and tasks, to the extent possible, will be user-defined
DBMS functions. We are currently implementing a DBOS-based
serverless environment. Moreover, we will “cut over” a sample of
Linux OS functions to our model, implemented in level 3 DBOS
code. The purpose of DBOS-wood is to show that OS functions can
be readily and compactly coded in SQL and that our filesystem,
scheduling and IPC implementations work well in a real system.
The implementation of DBOS-wood is now underway. When it is
successfully demonstrable, we will move on to DBOS-brick.

3.3 DBOS-brick
Our last phase will be to beg, borrow, steal, or implement a micro-
kernel for level 1 and potentially revisit the DBMS decision in level

23

2. On top of this framework we can port our serverless environment
and the collection of OS services from DBOS-wood. In addition, we
expect to reimplement enough level 3 OS services to have a viable
computing environment. During this phase, we expect to receive
substantial help from our industrial partners (currently Amazon,
Google and VMWare), since this is a sizeable task.

We expect to have sufficient resources to implement level 1 from
scratch, if necessary. Level 2 will be too large a project for us to
implement from scratch, so we expect to adapt existing DBMS code
to the new microkernel, perhaps from VoltDB or H-Store.

4 DBOS-STRAW
We first discuss a few characteristics of our chosen DBMS, VoltDB.
Thenwe turn to the DBOS-straw implementations of the scheduling,
IPC, and the filesystem. We show that the DBOS architecture can
deliver the performance needed for a practical system.

4.1 Background
4.1.1 VoltDB. As noted earlier, there are several parallel, high per-
formance, multi-node, transactional DBMSs with failover that we
could have selected. VoltDB was chosen because of the relationship
one of us has with the company. VoltDB implements SQL on top of
tables which are hash-partitioned on a user specified key across mul-
tiple nodes of a computer system. VoltDB supports serializability
and transactional (or non-transactional) failover on a node failure.
It is optimized for OLTP transactions (small reads and writes) and
insists transactions be user-defined DBMS procedures [16] which
are compiled and aggressively optimized. All data is main-memory
resident and highest performance is obtained when:
(1) Transactions access data in only a single partition; concurrency
control is optimized for this case.
(2) The user task is on the same node as the single partition accessed.
This avoids network traffic while executing a transaction.

4.1.2 Supercloud. We ran all of our experiments on the MIT Super-
cloud [12]. Supercloud nodes have 40-core dual-socket Intel Xeon
Gold 6248 2.5GHz CPUs, 378GB memory, a Mellanox ConnectX-4
25Gbps NIC, and a 4.4TB HDD. We use up to 8 nodes (320 cores) of
VoltDB. We use a configuration with 1 partition per core, so tables
are partitioned 320 ways in a maximum configuration.

4.2 Scheduling Studies
We assume that in DBOS, a scheduler runs on each partition of our
VoltDB installation. To implement a multi-node scheduler in SQL,
we must create relational tables to store scheduler metadata. The
first of these is a Task table; the scheduler adds a row to this table
whenever a task is created. Scheduling the task to a worker can be
done at creation time or deferred; we will show example schedulers
that do each. The fields of the Task table are:
Task (p_key, task_id, worker_id, other_fields)

The p_key is the current partition of the task. The Task table is
partitioned on this field. If task assignment is done at creation time,
the worker_id field stores the worker to which the task is assigned.
If scheduling is deferred, that field is instead initialized to null;
when the scheduling decision is made, the task will move to the
assigned worker’s partition and the field will be set. other_fields
hold scheduling relevant information, such as priority, time the

schedule_simple(P, TID) {
select worker_id,unused_capacity from Worker

where unused_capacity>0 and p_key=P
limit 1;

if worker_id not None:
WID = worker_id[0];
UC = unused_capacity[0];
update Worker set

unused_capacity=UC - 1
where worker_id=WID and p_key=P;

insert into Task (P, TID, WID,...);
}

Figure 2: Simple FIFO scheduler.

task was created, time since the task ran last, etc. Such information
might be useful for debugging, provenance, and data analytics.

Our schedulers also require aWorker table:

Worker (p_key, worker_id, unused_capacity)

Each worker is associated with a VoltDB partition defined by its
p_key. TheWorker table is partitioned on this field. Workers have
capacity in units of runnable tasks. The table specifies the unused
capacity of each worker. We can extend this table to add fields such
as accelerator availability or other worker metadata.

It is the job of the scheduler to assign an unassigned task to some
worker and then decrement its unused capacity. It is possible to
implement a diverse range of schedulers by changing the stored
procedure which performs this assignment.

In Figure 2 we sketch a stored procedure implementing a sim-
ple FIFO scheduler with a mix of SQL and imperative code. The
input to this scheduler is a randomly chosen partition P and the
unique identifier of the task TID to be scheduled. The scheduler
first selects at most one worker (limit 1) that has unused capacity
(unused_capacity>0) from the target partition (p_key=P). If one
is found, the scheduler decrements the selected worker’s unused
capacity by one in the Worker table. Then, the scheduler inserts a
row for task TID into theTask table. The scheduler iterates through
random partitions until it finds one with unused capacity for the
task. In the interest of brevity, we omit dealing with the corner case
when worker capacity is completely exhausted.

To demonstrate this simple scheduler’s performance, we imple-
ment it in VoltDB as a stored procedure and measure median and
tail latencies as we vary system load. Our experiments used forty
parallel schedulers on two VoltDB hosts and two client machines.
They are synthetic–tasks are scheduled, but not executed. Hence,
the latencies reflect the scheduling overhead of DBOS. As shown
in Figure 5, the simple FIFO scheduler can schedule 750K tasks per
second at a sub-millisecond tail latency while the median latency re-
mains around 200 𝜇s even at 1M tasks/sec load, which outperforms
most existing distributed schedulers.

However, this simple scheduler has some disadvantages. For
example, it has no notion of locality, but many tasks perform better
when co-located with a particular data item. Moreover, it may need
multiple tries to find a worker with spare capacity.

Our second scheduler (locality-aware scheduler, Figure 3) at-
tempts to avoid both issues. Specifically, it schedules the task at the
worker machine where the task’s home directory partition resides.

24

schedule_locality(HP, TID) {
... // Same code as FIFO scheduler
if worker_id not None:
... // Same code as FIFO scheduler
else:

insert into Task (HP, TID, null, ...);
}

Figure 3: Locality-aware scheduler.

schedule_least_loaded(P, TID) {
select worker_id,unused_capacity from Worker

where unused_capacity>0 and p_key=P
order by unused_capacity desc
limit 1;

... // Same code as FIFO scheduler
}

Figure 4: Least-loaded scheduler.

FIFO Least-loaded

0.0 0.5 1.0
Throughput (×106 TPS)

0

200

400

P
50

L
at

en
cy

(u
s)

(a) Median latency

0.0 0.5 1.0
Throughput (×106 TPS)

100

101

102

103

104

P
99

L
at

en
cy

(u
s)

(b) P99 latency

Figure 5: Performance of schedulers.

We can query this information from our filesystem (§4.4). The input
to this scheduler is the home directory partition HP and the ID of the
task TID to be scheduled. The first three SQL queries in its stored
procedure are similar to those in the FIFO scheduler; the difference
is the insert query at the end (highlighted in red in Figure 3).
This queues tasks that cannot be immediately run at their target
partition until it has unused capacity. Hence, this locality-aware
scheduler may defer task assignment under high load.

Our last scheduler (least-loaded scheduler, Figure 4) ensures the
best load balance possible, assuming fairly long running tasks. This
scheduling strategy is commonly used in many existing systems.
Specifically, we schedule the next incoming task to the worker with
the greatest unused capacity within a partition.

Implementing this scheduler only required changing a single
line of code to the simple FIFO scheduler, i.e., adding a ‘order by
unused_capacity desc’ clause (highlighted in red in Figure 4).
As shown in Figure 5, this scheduler is only slightly slower than the
previous two because of the additional operation. If we wanted to
find the least-loaded worker across all partitions, we could simply
remove the ‘p_key=P’ clause. This showcases the strength and
expressiveness of the relational interface–significant changes to
scheduler behavior require only a few lines of code to implement.

4.3 IPC
4.3.1 DBMS-backed IPC. Inter-process communication is the task
of sending messages from a sender to a receiver. Typical messaging
systems, such as TCP/IP and gRPC [2] provide reliable delivery,

TCP/IP gRPC DBOS

64B
N=1

8KB
N=1

64B
N=10

8KB
N=10

Message Size, #Senders

0

100

200

300

P
50

L
at

en
cy

(µ
s)

(a) Median latency

64B
N=1

8KB
N=1

64B
N=10

8KB
N=10

Message Size, #Senders

100

101

102

103

104

T
hr

ou
gh

pu
t

(M
bp

s)

(b) Throughput

Figure 6: Performance of ping-pong benchmark.

in-order delivery, exactly-once semantics, and flow control. Im-
plementing a system with stronger guarantees is straightforward
using a multi-node DBMS backend. AMessage table is required:

Message(sender_id, receiver_id, message_id, data)

This table is partitioned on receiver_id. To send a message,
the sender just adds a row to this table, which is a single-partition
insert to a remote partition. To read a message, the receiver queries
this table via a local read. These two commands are transactional.

If we replicate the Message table, failover will allow the IPC
system to continue in the face of failures, without loss of data, a
stronger guarantee than what TCP or existing RPC systems provide.
This is a required feature of a message system. Another feature,
in-order delivery, can be achieved by indexing theMessage table
on an application- or library-specific message_id field. For exactly-
once semantics, the receiver just needs to delete each message upon
receiving it. Lastly, DBMSs can store massive amounts of data, so
we expect flow control will not be needed.

4.3.2 Limitations. One limitation of our approach is that the re-
ceiver must poll the Message table periodically if expecting a mes-
sage, which may increase CPU overhead. However, support for
database triggers would avoid polling altogether. Several DBMSs
implement triggers, e.g., Postgres [48], but VoltDB does not. A
production implementation of DBOS would require a trigger-like
mechanism to avoid the “busy waiting” that polling entails.

4.3.3 Evaluation. We compare the performance of our DBMS-
backed IPC (DBOS) against two baselines, gRPC [2] and bare-bones
TCP/IP. gRPC is one of the most widely-used messaging libraries
today and offers most of the features that we aim to support. TCP/IP
is also a widely used communications substrate. In our benchmarks,
the DBOS receivers and senders run on separate VoltDB hosts. gRPC
runs natively on top of TCP/IP, with SSL disabled. TCP/IP is an OS
service running on top of Supercloud’s network fabric.

We first measure DBOS’s performance in a ping-pong benchmark.
The sender sends a message to the receiver which replies with the
same message. We vary the message size as well as the number of
concurrent senders and receivers, each in its own thread. In Figure 6
we show the (a) median latency and (b) throughput of the different
messaging schemes. DBOS achieves 24%–49% lower throughput
and 1.3 – 2.5× higher median latency compared to gRPC, and DBOS
achieves 4–9.5× lower performance than TCP/IP.

The comparison against gRPC is more favorable for DBOS in the
other two benchmarks we tested. Similar to the first benchmark,
Figure 7 shows the performance of a ping20-pong20 benchmark

25

TCP/IP gRPC DBOS

64B
N=1

8KB
N=1

64B
N=10

8KB
N=10

Message Size, #Senders

100

101

102

103

104

P
50

L
at

en
cy

(µ
s)

(a) Median latency

64B
N=1

8KB
N=1

64B
N=10

8KB
N=10

Message Size, #Senders

100
101
102
103
104
105

T
hr

ou
gh

pu
t

(M
bp

s)
(b) Throughput

Figure 7: Performance of ping20-pong20 benchmark.

TCP/IP gRPC DBOS

1 10 40
Receivers

100

101

102

103

P
50

L
at

en
cy

(µ
s)

(a) Median latency

1 10 40
Receivers

0

25

50

75

100

T
hr

ou
gh

pu
t

(M
bp

s)

(b) Throughput

Figure 8: Performance of multicasting benchmark.

where each sender sends 20 messages to the receiver, expecting 20
messages back. This workload is characteristic of batch communi-
cation applications such as machine learning inference serving.

Here, DBOS outperforms gRPC by up to 2.7× with small mes-
sages, while it achieves 48% lower performance with 8KB messages.
The small performance gap between DBOS and gRPC is impressive
considering that the DBOS message scheme is implemented in a
few lines of SQL code running on top of an unmodified DBMS,
while gRPC is a specialized communication framework developed
by many engineers over many years. The gap between TCP/IP and
DBOS has narrowed somewhat, but it is still substantial.

Figure 8 shows the results of our third benchmark. In this bench-
mark, a single sender sends a small 64-byte message to a vary-
ing number of receivers, expecting their replies. This workload
is characteristic of fan-out communication applications such as
web search or parallel aggregation. The results show that as the
number of receivers increases, the performance difference between
DBOS and gRPC widens, which is in agreement with the previous
results on small messages. For 40 receivers, DBOS achieves 2.3×
higher throughput and 64% lower median latency than gRPC. Not
surprisingly, the gap between DBOS and TCP/IP is still substantial.

We are encouraged by these results for the following reasons.
First, VoltDB uses TCP/IP as its message substrate. In DBOS-wood,
we plan to run on a bare-bones data transport, which should bridge
much of these gaps. Second, DBOS uses polling, another source of
significant overhead, which we expect to eliminate in DBOS-wood.
Furthermore, DBOS requires an additional copy relative to the other
schemes. A future DBMS could avoid this overhead.

Our conclusion is that DBOS IPC can be made a great deal more
efficient. However, even in its current form, DBOS is reasonably
competitive against gRPC. Since this is the most popular messaging
system, we are encouraged that DBOS IPC is “fast enough”.

Also, it should be noted clearly that new messaging services
can be quickly coded in SQL. In current hard-coded systems they

Map (p_key, partition_id, host_name, host_id)
User (user_name, home_partition, current_path)
Directory (d_name, content, content_type,

user_name, protection_info, p_key)
Localized_file (f_name, f_owner, block_no, bytes,

f_size, p_key)
Parallel_file (f_name, f_owner, block_no, bytes,

f_size)

Figure 9: Filesystem tables for data and metadata.

require extensive development. For example, a “hub and spoke”
implementation of messaging is a few lines of SQL.

4.4 The DBOS Filesystems
DBOS supports two filesystems, both including the standard POSIX-
style interface. The first filesystem stores all data for a user, U, on a
single VoltDB partition divided into blocks of size B. In this imple-
mentation, the file table, noted below, is partitioned on user_name.
This will ensure that U is localized to a single partition and offers
very high performance for small files.

The second filesystem partitions files on block_no, thereby
spreading the blocks of a file across all VoltDB partitions. In this
case, reads and writes can offer dramatic parallelism, but lose node
locality. For this paper’s scope we focus on in-memory operations,
so we leave the implementation of a spilling disk scheme, similar
to the one used in the H-Store project [3], to future work. Figure 9
shows the tables that contain filesystem data and metadata. These
tables are accessed directly by DBOS level 3 SQL services, in order
to provide functionality to user code in level 4.

The Map table specifies the physical local VoltDB partitions
that implement a given VoltDB database. partition_id is the
primary key, and is a foreign key in the other tables. The Map table
is read-almost-always and is replicated on all nodes of a database.

The User table specifies the home partition (partition_id)
for each user. This partition holds their file directory structure.
This table is also replicated on all partitions. The Directory table
holds standard directory information, and is partitioned on p_key.
The Localized_file table holds the bytes that go in each block
in a localized file. It is partitioned on p_key. The Parallel_file
table holds the bytes for parallel (partitioned) files. It has the same
information as the previous table. However, file bytes must be stored
in all partitions, so this table is partitioned on block_no.

Our design uses fully qualified Linux file names for f_names.
Traversing directories generates simple lookup queries and the
“current path” is stored in theUser table. That way there is no need
for “open” and “close”, so both are no-ops in DBOS.

To access block B in localized File F with a fully qualified name
for user U, we can look up the home partition from User, if it is
not already cached. With that partition key, we can access Local-
ized_file. Parallel files are automatically in all partitions. With
access to the VoltDB hashing function, we know which partition
every block is in. However, it will be rare to read a single block
from a parallel file. In contrast, “big reads” can send a query with a
block range to all partitions that will filter to the correct blocks.

For both implementations, there are stored procedures for all
filesystem operations. In the case of a localized file, the VoltDB “stub”

26

in the user task sends the operation to the node holding the correct
file data, where a stored procedure performs the SQL operation and
returns the desired result. For partitioned tables, the stub invokes a
local VoltDB stored procedure, which fans the parallel operations
to the various partitions with data. These partitions return the data
directly to the stub which collates the returns and alerts the task.

Note that block-size can be changed by a single SQL update
to the length of the “bytes” field in either file table. Also, it is
straightforward to change the DBOS filesystem into an object store,
again with modest schema changes. Lastly, it is not a difficult design
to allow the file creator complete control over the placement of
blocks in a parallel file.

For our first experiment, we run our localized file system with a
Supercloud configuration of 1 VoltDB node (40 partitions) for 40
users. Each user has 100 files of size 256KB split into 128 2KB blocks
and runs the following operation loop:

while(true) {
Open a random file

Read or write twenty random 2KB blocks
with equal probability

Close the file
}

We compare our VoltDB filesystem with the Linux filesystem
ext4 [4]. Ext4 is a journaling filesystem that uses delayed allocation,
i.e., it delays block allocation until data is flushed to disk. It should
be clearly noted that this comparison is “apples-to-oranges”, since
we are comparing a VoltDB implementation of a transactional,
multi-node filesystem with a direct implementation of a local, non-
transactional one.

As we can see in Figure 10a, DBOS matches or exceeds ext4’s
write performance because it avoids global locks that become a
bottleneck for ext4 [36]. However, ext4 read performance consider-
ably exceeds that of DBOS. The basic reason is the invocation cost
of VoltDB is around 40 microseconds, whereas the cost of a Linux
system call is approximately 1 microsecond. In a production DBOS
deployment we would need to reduce this latency by, for example,
using shared memory for task communication.

To demonstrate the significance of invocation overhead, we ran
a slightly different benchmark where each user reads 20 blocks,
each from a different file.
while(true) {

Repeat twenty times
Open a random file

Read or write one random 2KB blocks
with equal probability

Close the file
}

In this case, Linux will need multiple system calls, while DBOS
still requires only one. As can be seen in Figure 10b, the performance
gap between DBOS and ext4 has narrowed somewhat.

Besides reading and writing data, there are two other opera-
tions a filesystem must do. The first is metadata operations such as
creating or deleting files. The second is analytics operations such
as finding the size of a directory or listing its contents. We now
benchmark each operation.

Ext4 DBOS

Read Write
Operation

0

4

8

12

16

IO
P

S
(×

10
6)

(a) Same File

Read Write
Operation

0

2

4

6

8

IO
P

S
(×

10
6)

(b) Different Files

Figure 10: Throughput for 40 clients that read 20 blocks of
2KB each from (a) the same and (b) different files.

Table 1: Performance of file operations.

Operation FS Avg Latency (𝜇s) Max Ops/sec (×103)
Create
File

Ext4 656.78 (±8.99) 31.39 (±0.56)
DBOS 67.48 (±6.98) 303.85 (± 1.33)

Delete
File

Ext4 654.04 (±8.99) 30.53 (± 0.61)
DBOS 65.58 (±7.1) 302.30 (±2)

Table 2: Performance and LoC of conditional size aggregate.

Language Time (msec) Lines of Code
C++ 9.90 98
SQL 0.65 2

In the first one shown in Table 1, we demonstrate the perfor-
mance of DBOS and ext4 when 40 threads create and delete files.
Since DBOS uses fully qualified names, there is a single insert to
create a file instead of a directory traversal, leading to a 10× per-
formance advantage. A similar advantage is, of course, true for
deletes. As noted earlier, it is quite easy to change the implementa-
tion of DBOS files. Hence, we could move between fully qualified
names and context-sensitive names if circumstances dictated. This
implementation flexibility is one of the key advantages of DBOS.

Our second benchmark is an analytics operation that determines
the total size of files owned by each user, counting only those that
are greater than 20K in size. This is a simple SQL query in DBOS:

select sum(f_size) from Localized_file
where f_owner = user and f_size >= size;

On the other hand, this is not a built-in operation in ext4, and
must be coded in a user program using some set of tools. Since this
is a simple task, we wrote a program to recursively scan the home
directory for a user, computing the necessary statistic. Lines of
code and running time for a simple 4000-file directory are listed in
Table 2. Like other analytics operations, this one is faster in DBOS,
and requires an order of magnitude less programming effort.

So far, we have exercised the localized filesystem. Now, we turn
to benchmarking the DBOS parallel filesystem, where files can be
distributed across multiple Supercloud nodes. We compare our im-
plementation with the Supercloud preferred multi-node filesystem,
Lustre [1]. Lustre has a block size of 1 MB but VoltDB’s perfor-
mance drops off for large block size. As a result, we use a block
size of 8 KB in DBOS. The idea behind a parallel filesystem is to

27

Lustre DBOS

1 2 4 8 16
Clients

0

1000

2000

3000

T
hr

ou
gh

pu
t

(M
B

/s
)

(a) Read

1 2 4 8 16
Clients

0

1000

2000

3000

T
hr

ou
gh

pu
t

(M
B

/s
)

(b) Write

Figure 11: Throughput for 1 to 16 remote clients, co-located
in a single node. Each client (a) reads and (b) writes parallel
files of 8KB blocks.

deliver maximum throughput until the backplane bandwidth is
exhausted. In theory, the aggregate user load on both Lustre and
DBOS should increase until the Supercloud backplane bandwidth
(25 Gbps between nodes) is reached.

We first test how many clients on a single node are needed to
saturate the network bandwidth. VoltDB runs on 8 server nodes,
each with 40 partitions, for 320 partitions in total. Client processes
read and write a collection of 4096 128 MByte files, belonging to
128 different users, for a total database size of 512 GBytes. Each
client process runs the following loop:

while(true) {
Open a random file
Read/Write 128 MBytes in parallel
Close the file

}

In Figure 11, we see that both DBOS and Lustre can quickly
saturate Supercloud’s 25 Gbps networkwithwrites. However, DBOS
requires only 4 client processes to saturate the network with reads,
while Lustre can only reach 70% of the network’s capacity with 16
workers. This behavior might be associated with some documented
issues that affect Lustre’s read operations’ parallelism [5].

Then, we evaluate our parallel filesystem’s scalability. In this
experiment, we scan across the number of nodes running VoltDB
and test the maximum throughput the filesystem can achieve. We
run clients in the same set of nodes as VoltDB servers. The dataset
consists of 1280 128MByte files, belonging to 320 users, for a total
size of 160GBytes. Files are partitioned on block number, so each
file is distributed over all nodes.

In Figure 12, we plot the throughput achieved by our filesystem
over the number of nodes VoltDB is deployed on. We observe a
throughput drop when we move from one to two nodes. In the
single-node case, all transactions are local, while when we have
two nodes, half of the transactions are remote and thus much more
expensive. However, we observe that after paying for that initial
remote penalty the DBOS parallel filesystem’s performance scales
almost linearly with the number of VoltDB nodes used.

5 RELATEDWORK
Using declarative interfaces and DBMS concepts in system software
is not new. In the OS world, filesystem checkers often use con-
straints specified in a declarative language [29, 35]. More broadly,
tools like OSQuery [6] provide a high-performance declarative

1 2 4 8
Nodes

0

10

20

T
hr

ou
gh

pu
t

(G
B

/s
)

Read

Write

Figure 12: Throughput scalability with increasing DB nodes.

interface to OS data for easier analytics and monitoring. In a dis-
tributed setting, Cloudburst [46] and Anna [52] also build on DBMS
technology. Similar ideas have been proposed in Tabularosa [33].
Declarative programming and DBMSs have already been used in
some of our target applications: DCM [49] proposes a cluster man-
ager whose behavior is specified declaratively, while HopFS [37]
proposes a distributed filesystem whose metadata is stored in a
NewSQL DBMS. However, none of these efforts proposed a radi-
cally new OS stack with a DBOS-style DBMS at the bottom.

In the programming languages community, there has been con-
siderable work on declarative languages, dating back to APL [26]
and Prolog [24]. More recent efforts along these lines include
Bloom [18] and Boom [17]. Recently, many high-performance
declarative DBMSs have been proposed, including H-Store [3] and
its successor VoltDB [8]. Our contribution is to argue for a new OS
stack, not a particular programming language.

Lastly, “serverless computing”, or Function as a Service (FaaS),
has been widely suggested as a new programming model for user
programs [28, 30, 31, 38, 50]. It enables massive parallelism and flex-
ibility in developing and deploying cloud applications, by executing
stateless functions operating on externally stored state.

6 CONCLUSION
In this paper, we have shown the feasibility of layering a cluster
operating system on a high performance distributed DBMS. We pro-
vided experiments showing that such an architecture can provide
basic OS services with performance competitive with current solu-
tions. We also showed anecdotally that services can be written in
SQL with dramatically less effort than in a modern general-purpose
language. Moreover, all OS state resides in the DBMS and can be
flexibly queried for monitoring and analytics. We are presently at
work on a DBOS-wood prototype which will include a serverless
environment and end-to-end applications built on top of it.

ACKNOWLEDGMENTS
This material is based upon work supported by the Assistant Sec-
retary of Defense for Research and Engineering under Air Force
Contract No. FA8702-15-D-0001, National Science Foundation CCF-
1533644, and United States Air Force Research Laboratory Coopera-
tive Agreement Number FA8750-19-2-1000. Any opinions, findings,
conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
Assistant Secretary of Defense for Research and Engineering, the
National Science Foundation, or the United States Air Force. The
U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation.

28

REFERENCES
[1] 2003. Lustre. Retrieved September 21, 2021 from https://www.lustre.org/
[2] 2015. gRPC: A high performance, open source universal RPC framework . Re-

trieved September 21, 2021 from https://grpc.io/
[3] 2015. H-Store. Retrieved September 21, 2021 from https://db.cs.cmu.edu/projects/

h-store/
[4] 2016. Ext4 Wiki. Retrieved September 21, 2021 from https://ext4.wiki.kernel.

org/index.php/Main_Page
[5] 2018. Lustre Mailing List. Retrieved September 21, 2021 from http://lists.lustre.

org/pipermail/lustre-discuss-lustre.org/2018-March/015406.html
[6] 2019. OSQuery. Retrieved September 21, 2021 from https://osquery.io/
[7] 2020. Matei Zaharia. Personal Communication.
[8] 2020. VoltDB. Retrieved September 21, 2021 from https://www.voltdb.com/
[9] 2021. Amazon Lambda. Retrieved September 21, 2021 from https://aws.amazon.

com/lambda/
[10] 2021. Envoy Proxy. Retrieved September 21, 2021 from https://www.envoyproxy.

io/
[11] 2021. Kubernetes Single Resource Api. Retrieved September 21, 2021 from https:

//kubernetes.io/docs/reference/using-api/api-concepts/#single-resource-api
[12] 2021. MIT Supercloud. Retrieved September 21, 2021 from https://supercloud.

mit.edu/
[13] 2021. SAP Hana. Retrieved September 21, 2021 from https://www.sap.com/

products/hana.html
[14] 2021. Scaling in the Linux Networking Stack. Retrieved September 21, 2021

from https://www.kernel.org/doc/html/latest/networking/scaling.html
[15] 2021. SingleStore. Retrieved September 21, 2021 from https://www.singlestore.

com/
[16] 2021. VoltDB Stored Procedures. Retrieved September 21, 2021 from https:

//docs.voltdb.com/tutorial/Part5.php
[17] Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Heller-

stein, and Russell Sears. 2010. Boom Analytics: Exploring Data-Centric, Declara-
tive Programming for the Cloud. In Proceedings of the 5th European Conference on
Computer Systems (Paris, France) (EuroSys ’10). Association for Computing Ma-
chinery, New York, NY, USA, 223–236. https://doi.org/10.1145/1755913.1755937

[18] Peter Alvaro, Neil Conway, Joe Hellerstein, and William Marczak. 2011. Con-
sistency Analysis in Bloom: a CALM and Collected Approach. CIDR 2011 - 5th
Biennial Conference on Innovative Data Systems Research, Conference Proceedings,
249–260.

[19] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: A ProtectedDataplaneOperating System forHigh
Throughput and Low Latency. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 49–
65. https://www.usenix.org/conference/osdi14/technical-sessions/presentation/
belay

[20] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev,
M. Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. 2010. An Analysis of
Linux Scalability to Many Cores. In Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation (Vancouver, BC, Canada) (OSDI’10).
USENIX Association, USA, 1–16.

[21] Chansup Byun, Jeremy Kepner, William Arcand, David Bestor, Bill Bergeron,
Vijay Gadepally, Michael Houle, Matthew Hubbell, Michael Jones, Andrew Kirby,
et al. 2020. Best of Both Worlds: High Performance Interactive and Batch Launch-
ing. In 2020 IEEE High Performance Extreme Computing Conference (HPEC). IEEE,
1–7.

[22] Chansup Byun, Jeremy Kepner, William Arcand, David Bestor, William Bergeron,
Matthew Hubbell, Vijay Gadepally, Michael Houle, Michael Jones, Anne Klein,
et al. 2019. Optimizing Xeon Phi for Interactive Data Analysis. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1–6.

[23] Michael Cafarella, David DeWitt, Vijay Gadepally, Jeremy Kepner, Christos
Kozyrakis, Tim Kraska, Michael Stonebraker, and Matei Zaharia. 2020. DBOS: A
Proposal for a Data-Centric Operating System. arXiv preprint arXiv:2007.11112
(2020).

[24] Alain Colmerauer and Philippe Roussel. 1996. The Birth of Prolog. In History of
programming languages—II. 331–367.

[25] Cristian Diaconu, Craig Freedman, Erik Ismert, Per-Ake Larson, Pravin Mittal,
Ryan Stonecipher, Nitin Verma, and Mike Zwilling. 2013. Hekaton: SQL Server’s
Memory-Optimized OLTP Engine. In Proceedings of the 2013 ACM SIGMOD
International Conference on Management of Data. 1243–1254.

[26] Adin D. Falkoff and Kenneth E. Iverson. 1973. The Design of APL. IBM Journal
of Research and Development 17, 4 (1973), 324–334.

[27] Rodrigo Fonseca, George Porter, Randy H. Katz, and Scott Shenker. 2007. X-
Trace: A Pervasive Network Tracing Framework. In 4th USENIX Symposium on
Networked Systems Design & Implementation (NSDI 07). USENIX Association,
Cambridge, MA. https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-
network-tracing-framework

[28] Sadjad Fouladi, Riad S Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubra-
maniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and
Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing

Using Thousands of Tiny Threads. In 14th {USENIX} Symposium on Networked
Systems Design and Implementation ({NSDI} 17). 363–376.

[29] Haryadi Gunawi, Abhishek Rajimwale, Andrea Arpaci-Dusseau, and Remzi
Arpaci-Dusseau. 2008. SQCK: A Declarative File System Checker. 131–146.

[30] Joseph M Hellerstein, Jose Faleiro, Joseph E Gonzalez, Johann Schleier-Smith,
Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless Com-
puting: One Step Forward, Two Steps Back. arXiv preprint arXiv:1812.03651
(2018).

[31] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag
Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja
Yadwadkar, et al. 2019. Cloud Programming Simplified: A Berkeley View on
Serverless Computing. arXiv preprint arXiv:1902.03383 (2019).

[32] Michael Jones, Jeremy Kepner, Bradley Orchard, Albert Reuther, William Arcand,
David Bestor, Bill Bergeron, Chansup Byun, Vijay Gadepally, Michael Houle,
et al. 2018. Interactive launch of 16,000 microsoft windows instances on a
supercomputer. In 2018 IEEE High Performance extreme Computing Conference
(HPEC). IEEE, 1–6.

[33] Jeremy Kepner, Ron Brightwell, Alan Edelman, Vijay Gadepally, Hayden Janan-
than, Michael Jones, Sam Madden, Peter Michaleas, Hamed Okhravi, Kevin
Pedretti, et al. 2018. Tabularosa: Tabular operating system architecture for mas-
sively parallel heterogeneous compute engines. In 2018 IEEE High Performance
extreme Computing Conference (HPEC). IEEE, 1–8.

[34] Jean-Pierre Lozi, Baptiste Lepers, Justin Funston, Fabien Gaud, Vivien Quéma,
and Alexandra Fedorova. 2016. The Linux Scheduler: A Decade of Wasted Cores.
In Proceedings of the Eleventh European Conference on Computer Systems (London,
United Kingdom) (EuroSys ’16). Association for Computing Machinery, New York,
NY, USA, Article 1, 16 pages. https://doi.org/10.1145/2901318.2901326

[35] Marshall Kirk McKusick, Willian N Joy, Samuel J Leffler, and Robert S Fabry.
1986. Fsck- The UNIX† File System Check Program. Unix System Manager’s
Manual-4.3 BSD Virtual VAX-11 Version (1986).

[36] Changwoo Min, Sanidhya Kashyap, Steffen Maass, and Taesoo Kim. 2016. Un-
derstanding Manycore Scalability of File Systems. In 2016 USENIX Annual Tech-
nical Conference (USENIX ATC 16). USENIX Association, Denver, CO, 71–85.
https://www.usenix.org/conference/atc16/technical-sessions/presentation/min

[37] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowling, Steffen Grohsschmiedt,
and Mikael Ronström. 2017. HopsFS: Scaling Hierarchical File System Meta-
data Using NewSQL Databases. In 15th USENIX Conference on File and Storage
Technologies (FAST 17). USENIX Association, Santa Clara, CA, 89–104. https:
//www.usenix.org/conference/fast17/technical-sessions/presentation/niazi

[38] Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow:
Scalable Analytics on Serverless Infrastructure. In 16th {USENIX} Symposium on
Networked Systems Design and Implementation ({NSDI} 19). 193–206.

[39] Björn Rabenstein and Julius Volz. 2015. Prometheus: A Next-Generation Moni-
toring System (Talk). USENIX Association, Dublin.

[40] Gladys Rama. 2020. Report: AWS Lambda Popular Among Enterprises, Con-
tainer Users. https://awsinsider.net/articles/2020/02/04/aws-lambda-usage-
profile.aspx.

[41] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill Bergeron,
Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew Prout, Antonio Rosa,
and et al. 2018. Scalable system scheduling for HPC and big data. J. Parallel and
Distrib. Comput. 111 (Jan 2018), 76–92. https://doi.org/10.1016/j.jpdc.2017.06.009

[42] Albert Reuther, Jeremy Kepner, Chansup Byun, Siddharth Samsi, William Arcand,
David Bestor, Bill Bergeron, Vijay Gadepally, Michael Houle, Matthew Hubbell,
et al. 2018. Interactive supercomputing on 40,000 cores for machine learning
and data analysis. In 2018 IEEE High Performance extreme Computing Conference
(HPEC). IEEE, 1–6.

[43] Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi,
and Jeremy Kepner. 2020. Survey of Machine Learning Accelerators. In 2020 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE, 1–12.

[44] D. M. Ritchie and K. Thompson. 1974. The Unix Time-Sharing System. Commun.
ACM 17 (1974), 365–375.

[45] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report. Google,
Inc. https://research.google.com/archive/papers/dapper-2010-1.pdf

[46] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith,
Jose M Faleiro, Joseph E Gonzalez, Joseph M Hellerstein, and Alexey Tumanov.
2020. Cloudburst: Stateful Functions-as-a-Service. arXiv preprint arXiv:2001.04592
(2020).

[47] Michael Stonebraker. 1981. Operating System Support for Database Management.
Commun. ACM 24, 7 (July 1981), 412–418. https://doi.org/10.1145/358699.358703

[48] Michael Stonebraker and Lawrence A. Rowe. 1986. The Design of POSTGRES. In
Proceedings of the 1986 ACM SIGMOD International Conference on Management of
Data (SIGMOD ’86). Association for Computing Machinery, Washington, D.C.,
USA, 340–355. https://doi.org/10.1145/16894.16888

[49] Lalith Suresh, João Loff, Faria Kalim, Sangeetha Abdu Jyothi, Nina Narodytska,
Leonid Ryzhyk, Sahan Gamage, Brian Oki, Pranshu Jain, and Michael Gasch. 2020.
Building Scalable and Flexible Cluster Managers Using Declarative Programming.

29

https://www.lustre.org/
https://grpc.io/
https://db.cs.cmu.edu/projects/h-store/
https://db.cs.cmu.edu/projects/h-store/
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
http://lists.lustre.org/pipermail/lustre-discuss-lustre.org/2018-March/015406.html
http://lists.lustre.org/pipermail/lustre-discuss-lustre.org/2018-March/015406.html
https://osquery.io/
https://www.voltdb.com/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://www.envoyproxy.io/
https://www.envoyproxy.io/
https://kubernetes.io/docs/reference/using-api/api-concepts/#single-resource-api
https://kubernetes.io/docs/reference/using-api/api-concepts/#single-resource-api
https://supercloud.mit.edu/
https://supercloud.mit.edu/
https://www.sap.com/products/hana.html
https://www.sap.com/products/hana.html
https://www.kernel.org/doc/html/latest/networking/scaling.html
https://www.singlestore.com/
https://www.singlestore.com/
https://docs.voltdb.com/tutorial/Part5.php
https://docs.voltdb.com/tutorial/Part5.php
https://doi.org/10.1145/1755913.1755937
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/belay
https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-framework
https://www.usenix.org/conference/nsdi-07/x-trace-pervasive-network-tracing-framework
https://doi.org/10.1145/2901318.2901326
https://www.usenix.org/conference/atc16/technical-sessions/presentation/min
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://www.usenix.org/conference/fast17/technical-sessions/presentation/niazi
https://awsinsider.net/articles/2020/02/04/aws-lambda-usage-profile.aspx
https://awsinsider.net/articles/2020/02/04/aws-lambda-usage-profile.aspx
https://doi.org/10.1016/j.jpdc.2017.06.009
https://research.google.com/archive/papers/dapper-2010-1.pdf
https://doi.org/10.1145/358699.358703
https://doi.org/10.1145/16894.16888

In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 827–844. https://www.usenix.org/conference/
osdi20/presentation/suresh

[50] Mike Wawrzoniak, Ingo Müller, Rodrigo Fraga Barcelos Paulus Bruno, and Gus-
tavo Alonso. 2021. Boxer: Data Analytics on Network-enabled Serverless Plat-
forms. In 11th Annual Conference on Innovative Data Systems Research (CIDR’21).

[51] Rebecca Wild, Matthew Hubbell, and Jeremy Kepner. 2019. Optimizing the
Visualization Pipeline of a 3-D Monitoring and Management System. In 2019
IEEE High Performance Extreme Computing Conference (HPEC). IEEE, 1–5.

[52] Chenggang Wu, Vikram Sreekanti, and Joseph M Hellerstein. 2018. Eliminating
Boundaries in Cloud Storage with Anna. arXiv preprint arXiv:1809.00089 (2018).

30

https://www.usenix.org/conference/osdi20/presentation/suresh
https://www.usenix.org/conference/osdi20/presentation/suresh

