
Succinct Graph Representations as Distance Oracles: An
Experimental Evaluation

Arpit Merchant
University of Helsinki

arpit.merchant@helsinki.�

Aristides Gionis
KTH Royal Institute of Technology

argioni@kth.se

Michael Mathioudakis
University of Helsinki

michael.mathioudakis@helsinki.�

ABSTRACT
Distance oracles answer shortest-path queries between any pair of
nodes in a graph. They are often built using succinct graph repre-
sentations such as spanners, sketches, and compressors to minimize
oracle size and query answering latency. Node embeddings, in par-
ticular, o�er graph representations that place adjacent nodes nearby
each other in a low-rank space. However, their use in the design of
distance oracles has not been su�ciently studied.

In this paper, we empirically compare exact distance oracles
constructed based on a variety of node embeddings and other suc-
cinct representations. We evaluate twelve such oracles along three
measures of e�ciency: construction time, memory requirements,
and query-processing time over fourteen real datasets and four
synthetic graphs. We show that distances between embedding vec-
tors are excellent estimators of graph distances when graphs are
well-structured, but less so for more unstructured graphs. Overall,
our �ndings suggest that exact oracles based on embeddings can
be constructed faster than multi-dimensional scaling (MDS) but
slower than compressed adjacency indexes, require less memory
than landmark oracles but more than sparsi�ers or indexes, can
answer queries faster than indexes but slower than MDS, and are
exact more often with a smaller additive error than spanners (that
have multiplicative error) while not being lossless like adjacency
lists. Finally, while the exactness of such oracles is infeasible to
maintain for huge graphs even under large amounts of resources,
we empirically demonstrate that approximate oracles based on
GOSH embeddings can e�ciently scale to graphs of 100M+ nodes
with only small additive errors in distance estimations.

PVLDB Reference Format:
Arpit Merchant, Aristides Gionis, and Michael Mathioudakis. Succinct
Graph Representations as Distance Oracles: An Experimental Evaluation.
PVLDB, 15(11): 2297 - 2306, 2022.
doi:10.14778/3551793.3551794

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://version.helsinki.�/ads/distance_oracles.

1 INTRODUCTION
Distance oracles answer distance queries between any pair of nodes
in a graph. To be usable in practice, they should process such queries

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 15, No. 11 ISSN 2150-8097.
doi:10.14778/3551793.3551794

e�ciently, have low construction time, and require small amount of
memory. In this paper, we evaluate the performance of various dis-
tance oracles and identify their relative strengths and weaknesses.

Distance queries are a fundamental primitive in applications
such as generating unbiased samples for distance based experi-
ments [61], distance-vector algorithms that must maintain precise
routing tables [45], and identifying optimal pathways for e�cient
communications in metabolic neural receptors [11, 49]. Graphs in
these domains have small-world characteristics and are bounded
by a small diameter. Thus, relative errors can be signi�cantly large
thereby adversely a�ecting performance [11, 12]. Further, large
graph size makes it computationally challenging to frequently com-
pute exact distances at runtime with minimal latency using tradi-
tional shortest path algorithms such as breadth-�rst search.

To answer queries e�ciently, distance oracles often make use of
succinct graph representations [25, 26, 29]. These representations
come in di�erent forms, namely spanners [44], sketches [19], and
compressors [22], while classic oracles rely on landmarks [54],
and all-pairs shortest paths (APSP) algorithms leverage matrix-
multiplication [20]. Some representations, such as compressors and
APSP, are lossless, meaning that they return the exact distance for
any source-target node pair. However, most types of spanners and
oracles are lossy and only return approximate distance estimates.

Embeddings, i.e., mappings of nodes onto a low-rank vector
space, o�er an alternative approach. For instance, multi-dimensional
scaling (MDS) preserves node distances while extracting a low-rank
approximation of the distance matrix [33]. Moreover, node embed-
dings such as the spectral embedding minimize a global distortion
measure [7]. Advances in deep learning have also led to a genera-
tion of random-walk embeddings that leverage skip-gram models
to preserve local structure by capturing �rst- and second-order
proximities [13], and graph neural networks (GNNs) that model
higher-order neighborhoods [58, 62]. However, although node em-
beddings have been extensively developed recently, an evaluation of
node embeddings as distance oracles is missing from the literature.

In this paper, we aim to �ll this gap. To this end, we conduct an ex-
tensive comparative study of distance oracles based on a variety of
succinct graph representations, with a focus on exact oracles. Each
oracle is built o�ine and is employed to answer distance queries at
runtime. An O����� consists of two components: (i) a model and
(ii) optionally, a set of exceptions. The model takes as input a pair of
nodes and returns a (possibly approximate) estimate of their graph
distance. To compute this estimate, the model makes use of a graph
representation, such as a a node embedding or a spanner, which is
constructed during the o�ine phase. For example, O������ using
node embeddings estimate the graph distance between two nodes
from their distance in the embedding space, while O������ based
on other graph representations use speci�cally-tailored variants of

2297

https://www.acm.org/publications/policies/artifact-review-and-badging-current

breadth-�rst-search (BFS). The set of exceptions stores the distances
between those pairs of nodes that the model is unable to answer
exactly. In practice, this takes the form of a lookup table with pairs
of nodes as keys. At query time, given an input pair of nodes, the
O����� checks whether an entry for the given pair exists in its
exceptions set. If so, it returns the corresponding distance value,
otherwise it queries the model. Therefore, by construction, each
O����� is ensured to be exact under the above scheme, as long as
the set of exceptions can be maintained. However, for very large
graphs (i.e., graphs of tens of millions of nodes or more), computing
such a set of exceptions in not an option, as enumerating all node
pairs becomes infeasible even with large amounts of resources. In
such cases, oracles are necessarily approximate.

Our experiments demonstrate that di�erent O������ o�er dif-
ferent trade-o�s between construction time, memory requirements
(size of model and exceptions set), and query-processing time and
no single O����� is optimal across all measures. We evaluate O��
����� on four synthetic graph families and fourteen real-world
graph datasets. Our main �ndings are:

• Node embeddings o�er excellent estimates of graph distances
when graphs are highly structured, e.g., strongly regular or dense.

• Node embeddings are more e�cient to construct than low-rank
factorizations of the distance matrix such as MDS [33, 34]. How-
ever, MDS captures graph distances better.

• Node embeddings are signi�cantly faster at processing distance
queries than graph compression using DINT [47]. But DINT is
lossless and extremely time-e�cient to construct.

• Node embeddings are more accurate at estimating distances than
TZ-oracles [54] and spanners [44], but are slower to construct.

• Only approximate O������ based on G��� [3] embeddings scale
to graphs of 100M nodes within our resource budget.

2 BACKGROUND
Traditional approaches. Thorup and Zwick [54] construct a data
structure of size O(tn

1+1/t
), in preprocessing time O(tmn

1/t
), to

answer distance queries in time O(t), with a distortion of up to
2t � 1, for any integer t � 1. Follow-up work o�ers variants that
o�er di�erent trade-o�s [1, 6, 16, 59]. We suggest Sommer [53] for
a survey on such data structures.
Graph reductions. Spanners decrease the size of a graph while
maintaining distance. A t-spanner of a graph G, for t � 1, is a
subgraph H ofG of equal size but fewer edges such that all pairwise
distances are distorted by a factor of at most t [44]. They are closely
associated with distance oracles and share the same existential
size-distortion tradeo� via the Erdös girth conjecture [24]. Althöfer
et al. [4] construct greedy (2t � 1)-spanners of optimal size, while
Chechik et al. [16] introduce fault-tolerant spanners that allow
upto f edges failures at an additional f distortion factor. Please see
Bodwin et al. [9] for a recent survey on spanners.

Another class of reductions focuses on graph compression us-
ing two heuristics, namely, homophily (similar nodes have similar
neighbors) and locality (edges between node pairs are likely to
point to other node pairs nearby). Compression involves a node
reordering scheme and an encoding scheme where the choice of the
former directly impacts the compression ratio achieved by the latter.
Node reordering is proven to be NP-hard, but heuristics such as

spectral [30] and recursive bisection [22] are known to perform well
in practice. Cheng et al. [17] proposed compression schemes that
explicitly target e�cient processing of k-hop reachability queries.
Low-rank embeddings. Low-rank embeddings can be divided in
two broad classes. First, are embeddings designed to reduce data
dimensionality. This is achieved using projection methods, such
as, Isomap [5], multi-dimensional scaling (MDS) [33], or Johnson-
Lindenstrauss [32]. Alternatively, landmark embeddings store the
distances from a small subset of landmark nodes to all other nodes in
a graph. The choice of landmarks is determined via a reconstruction
loss and distances are estimated using triangulation [31], packet
routing [8], distance labels [25], or a trained neural network [50].

The second class comprises of modern node-embedding algo-
rithms that represent nodes as low-dimensional vectors such that
topological structures are preserved. Unsupervised embeddings
such as NetSMF [48], or GraRep [14] capture �rst-order (e.g., adja-
cency) or higher-order (similarity between r -hop neighborhoods of
nodes) proximity via matrix factorization or random-walk paths.
Supervised embeddings, designed for attributed graphs from graph
neural networks (GNNs), fuse node-level features with adjacency
and ground-truth labels tasks such as node classi�cation. We refer
the reader to surveys on unsupervised embeddings [13], GNNs [58],
representation learning [27], and benchmarking for node classi�ca-
tion and link prediction [23, 28] for a comprehensive overview.

2.1 Choice of Representative Methods
In this paper, we place these disparate succinct graph representa-
tions into a common framework for distance oracles. Given their
large number, we carefully choose representative methods to cover
diverse approaches for our empirical study (Sections 5-6). We cover
classical approaches with TZ Oracle [54], t-Spanner [44], and Land-
marks [50]. To cover compression-based approaches that preserve
graph distances, we include DisOracle [41] and DINT [47]. We
include Spectral Embedding [43] and Multidimensional Scaling
(MDS) [34] to cover traditional embedding methods that aim to
preserve adjacency and distances, respectively. Moreover, we in-
clude NetSMF [48] and Asym-DNN [2] as modern node embedding
methods that use random-walks and neural-networks. NetSMF gen-
eralizes previous approaches such as DeepWalk [46], which are
thus not included in our experiments (e.g., NetSMF scales to larger
graphs and produces embeddings of better quality than DeepWalk,
as per Figure 2 and Table 5 of [48]). Lastly, we include FREDE [56]
and GOSH [3] as e�cient, state-of-the-art methods that produce
node embeddings by factorizing node-similarity matrices. Since
both FREDE and GOSH extend VERSE [55] and improve upon its
performance, we do not include VERSE in our experiments (FREDE
o�ers anytime computation and orders of speedup as per Figure
5 [56]; moreover, GOSH exhibits speedups in the range of 8.27-
768.45x over VERSE on medium-size graphs for embeddings of
similar quality, as per Table 6 [3], and unlike VERSE, GOSH better
scales to large graphs of tens-of-million nodes as per Table 7 [3]).

3 SETUP
Let G = (V ,E) be a graph with n = |V | nodes and m = |E | edges.
In this paper, we consider G to be undirected because we focus on
methods designed for undirected graphs. Let A denote its adjacency

2298

matrix with binary entries indicating the presence or absence of an
edge. A path in a graphG is a �nite sequence of nodes �1 ! . . .!
�`+1 in which any two consecutive nodes are adjacent. The length
of a path is the number of edges that appear in it, and the graph
distance of two nodes is the minimum path length between them.

We consider the task of computing the graph distance for any pair
of nodes i, j 2 V . To address it, we consider a two-phase approach:
an o�ine phase in which we construct a distance O����� and
an online phase wherein we use the O����� to process distance
queries. The two phases are described below.
O�ine phase: The distance O����� consists of two components
namely, a Model and an (optional) Exceptions set. A Model M is
equipped with (i) a succinct representation of the original graph G

such as a spanner or a node embedding and (ii) a query-processing
algorithm for estimating graph distances. In Section 4, we describe
the di�erent models that we study in this paper along with their
query-processing algorithms. It should be noted, however, that
some models are lossy and are formally known to have a multi-
plicative distortion factor denoted by t (e.g., TZ-Oracles [54] and
t-spanners [44]). Therefore, they do not return the correct graph
distance for some node pairs. For such node pairs, the exact distance
may optionally be stored in a lookup table named Exceptions. If
Exceptions are indeed maintained, it is guaranteed that the exact dis-
tance is available for all node pairs, even ones for which the Model
returns an inexact answer. However, computing the Exceptions
requires a full enumeration of node pairs. This becomes infeasible
for very large graphs (node size 10M+) due to the quadratic (in
graph size) number of node pairs.
Online phase: During this phase, the O����� answers distance
queries. If Exceptions are maintained, it �rst searches for the input
node pair in the Exceptions set: if present, the O����� returns the
corresponding distance value from the lookup table; otherwise the
query-processing algorithm of the Model is executed. Because the
Exceptions contain the exact distance for all pairs of nodes that the
Model does not answer correctly, the use of Exceptions ensures, by
design, that O����� always returns the correct answer. By contrast,
if Exceptions are not maintained (e.g., in very large graph settings,
where they are infeasible to compute), then query answering is
uses only the Model’s predictions, and is generally approximate.

In evaluating O������, we consider three key measures: (1) con-
struction time, given adjacency matrix as input, (2) memory size,
which is a sum of Model and Exceptions sizes, and (3) query process-
ing time. For an O����� to be competitive, it should demonstrate
an advantage in at least one of these measures. In this paper, for the
larger part, we focus on exact distance oracles, as we aim under-
stand the trade-o�s o�ered by di�erent O������ under the common
requirement for exactness and a common budget of resources.

4 MODELS
In this section, we describe various Model choices and their query-
processing algorithms, summarized in Table 1.

4.1 Traditional Models
Two natural baselines stand at two opposite extremes. The �rst is
to simply store the graph in the adjacency-list format. This requires
no preprocessing and produces a Model requiring size O(m); any

distance query can then be answered correctly using O(m + n)

operations (number of steps) using BFS. The second, is to use an
All-Pairs Shortest Path (APSP) algorithm [15, 20] to preprocess
the graph in Õ(mn) time and store the O(n

2
) matrix holding the

distances as the Model. Query processing takes O(1) operations
(lookup). While these baselines require no Exceptions to be sepa-
rately stored, adjacency lists are slow to process queries at runtime
and distance matrices are too large to compute and store e�ciently.
Thus, we consider the following traditional approximate Models:
• TZ-Oracle [54] creates a tree cover of the graph such that each

node is contained in a small number of trees and returns the
graph distance with a multiplicative distortion of at most t for
any node pair. Query processing time depends on the operations
required to identify the relevant tree and shortest path.

• t-spanner [44] returns a sparsi�ed graph H using a randomized
algorithm such that the distance between any node pair in H is
at most t times the distance between the pair in G. The number
of query operations is counted similarly to adjacency-list.

• Landmarks [50] chooses a small number of nodes l as landmarks
and computes the graph distance from all nodes to each landmark.
It maps distances in the embedding space to true graph distances
using a feedforward neural network that requires a constant
number of query operations independent of graph size.

4.2 Models based on node embeddings
We aim to evaluate how models based on node embeddings compare
against models obtained from other succinct graph representations.

D��������� 1 (N��� E���������). A node embedding is a map-
ping U : V ! Rn⇥k that maps each node i of a graph G to a
k-dimensional vector ui 2 Rk where k ⌧ |V |.

Given embedding vectors ui and uj for nodes i and j, we denote
by kui � uj kp the `p -distance between i and j. We propose two
models for a given node embedding: (i) G����DT and (ii) N���DT.
Each of them takes the embedding distance kui � uj kp as a feature
and outputs an estimate d̂G (i, j) of the graph distance dG (i, j).

G����DT learns a single decision tree model for the entire graph,
that is, for all O(n

2
) distinct node pairs. G����DT captures global

correlations between embedding distances and rescales them to ap-
propriate graph distances. In contrast, N���DT learns one decision
tree model for each node i 2 V . Thus, it has n decision trees but,
depending on graph structure, the size of each node-speci�c tree
can be small. The query processing time required to answer a query
is de�ned as the number of decision tree operations (identifying a
node-speci�c tree in N���DT takes constant time).

Below, we brie�y describe the embeddings. We write G����DT
+X or N���DT+X to refer to the model that employs G����DT or
N���DT, respectively, on top of embedding X.
• Spectral Embedding [43] is a matrix U 2 Rn⇥k constructed by

stacking eigenvectors corresponding to the k smallest eigenval-
ues of the unnormalized graph Laplacian, de�ned as L = D � A
where D is a diagonal matrix and D(i, i) is the degree of node �i .
For very large graphs (10M+ nodes), we use GOSH’s [3] paral-
lelized approach to obtain approximate spectral embeddings.

• NetSMF [48] presents a scalable version of DeepWalk [46] by
spectrally sparsifying a dense transition matrix P so as to enable

2299

Table 1: Qualitative comparison of memory M , construc-
tion time TC , and query time TQ complexity of Models con-
structed from various succinct graph representations. t , d ,
k , � , and c denote the distortion factor, average node de-
gree in the graph, embedding dimension (where applicable),
maximum label size, and number of CPU cores, respectively.
Note, k ⌧ n.

Model Lossless
Complexity

M TC TQ

Adjacency 3 O(m) O(1) O(n +m)

APSP [20] 3 O(n
2
) Õ(mn) O(1)

TZ Oracle [54] 7 O(tn
1+1/t

) O(tmn
1/t

) O(t)

t-Spanner [44] 7 Õ(t
c
n

1+1/t
) O(tmn

1/t
) O(tn

1+1/t
)

DINT [47] 3 O(n) O(m) O(n +m)

DisOracle [41] 3 O(n
2
) O(�

2
/c ⇤m) O(n)

Landmark [50] 7 O(kn) Õ(m + kn) O(k
2 logn)

MDS [34] 7 O(kn
1+1/k

) O(kmn
1/k

) O(k)

Spectral [43] 7 Õ(kn) Õ(km) O(k)

NetSMF [48] 7 Õ(n
2
) Õ(n

2
) O(k)

FREDE [56] 7 Õ(dn) Õ(dn
2
) O(k)

Asym-DNN [2] 7 Õ(kn) Õ(kn
2
) O(k)

fast sparse matrix factorization whilst maintaining the represen-
tative power of the learned embeddings from DeepWalk. Here,
P = log(vol(G)(1

T
ÕT
r=1(D

�1A)r)D�1
) � logb and vol(G) is the

volume of the graph,T represents the length of the random walk,
and b is the number of negative samples.

• FREDE [56] individually processes the rows of a non-linearly
transformed Personalized PageRank-based similarity matrix to
sketch a close approximation of its optimal SVD. The resulting
embedding has a closed-form solution, requires subquadratic
(in n) space, and can be computed at any time, meaning that as
more nodes are processed, its quality improves.

• Asym-DNN [2] models an edge as a function of node embed-
dings and information from sampled random walks with non-
existent edges. It minimizes the likelihood of having observed the
training graph G = (V ,Etrain) captured by the objective functionŒ

i, j 2V � (�(i, j))R(i, j)(1�� (�(i, j)))I[(i, j)<Etrain] where � (x) is the
logistic function, R(i, j) is the frequency with which i, j appear
in simulated random walks, I is the indicator function, and � is a
low-rank a�ne projection in the manifold space.

4.3 Multi-dimensional scaling
Multi-dimensional scaling (MDS) is a popular family of algorithms
designed for projecting the n ⇥ n distance matrix into a low dimen-
sional Euclidean space; given pairwise distances, reconstruct a map
that preserves those distances. That is, MDS seeks to �nd points
u1, . . . ,un 2 Rk , for all i 2 [n], such that dG (i, j) ⇡ kui � uj kp ,
for all node pairs (i, j). Given distance matrix D, classical MDS con-
structs the Gram matrix D>D and then applies double centering to
get B = �

1
2CD

>DC. Here, C = I� 1
21, I is the identity matrix and 1

is the all-ones matrix. Then, MDS is computed as n⇥k-dimensional

embedding U = V>

{k }S{k } where S{k } represents a k ⇥ k diagonal
matrix whose entries are the k largest in magnitude eigenvalues of
B and V>

{k } are the corresponding eigenvectors. At query time, the
graph distance between a node pair is estimated by the `p norm
between the corresponding row vectors of U and is thus only de-
pendent on k . We use (i) sketching to reduce dimensionality, (ii)
block-striped cyclic decomposition for parallelizing matrix multi-
plication [57], and (ii) a parallelizable inverse iteration algorithm
for approximately computing a partial eigendecomposition [21].

4.4 Compressed Adjacency Indexes
Compressed adjacency indexes minimize the number of bits used
to store the topological information of the graph. We consider two
schemes namely, (i) DINT [47], an inverted index, and (ii) DisOra-
cle [41] which relies on topology based distance labeling. The core
idea behind these approaches is the same. The graph is processed to
de�ne a node ordering, i.e. assigning labels or identi�ers to nodes
such as placing topologically similar nodes nearby in the resulting
order, in a way that optimizes compression. Choosing the right node
ordering can result in a signi�cantly higher compression ratio [22].
Then, an encoding scheme is designed to build a data structure (e.g.
dictionary) that can minimize the number of bits needed to encode
adjacency information among sets of nodes, based on the node
order and a ranking function. Last, a query answering algorithm
traverses the index to compute the source-target distance.
• DINT [47] We use spectral ordering wherein nodes are arranged

in increasing value in the second smallest Laplacian eigenvector,
after experimentation with di�erent node orderings. Spectral
ordering places adjacent nodes within close proximity in the
index, a property that leads to consistently good performance in
comparison with baseline node orderings (e.g., random). Next, the
index is constructed using a single-packed rectangular dictionary
of node IDs as integer sequences. This enables �xed-to-�xed
decoding which executes a copying operation of constant pre-
determined length from the index to the output bu�er and is
thus extremely fast. Using DINT, graph distance between a pair
of nodes is computed via BFS traversal (note: BFS for DINT is
implemented similarly to BFS for adjacency list, with appropriate
decoding for the nodes reached at each BFS expansion step).

• DisOracle [41] uses 2-hop labeling to create hub nodes, similar
to landmarks, and assigns the distance to the hub nodes as labels
to each other node in the graph. 2-hop labeling ensures that the
shared hubs of each pair of nodes have at least one common
node. Finding the optimal labeling is NP-hard and the resulting
index can be large (quadratic in the number of nodes). DisOracle
transforms the node order dependence from adjacency to distance
information in a parallelized label propagation based manner and
uses equivalence relation elimination to prune redundant labels
(recognized as PSL+). This speeds up construction and reduces
index size compared to landmark labeling and 2-hop approaches.
We note that DINT is originally presented as a compressed ad-

jacency index in an information retrieval setting, used to retrieve
those documents that contain a speci�ed term – but the data struc-
ture can equally well be used as a compressed adjacency index in
our setting, to retrieve nodes connected to a speci�ed node. DisOra-
cle o�ers a parallelized variant of a compressed index compared to

2300

the sequential nature of DINT. They require a larger index but o�er
a faster query processing time. Tree decomposition based methods
are another variant that specialize in identifying the core-fringe
structure of graphs and then create an index on these two separate
parts. Since we consider the general graph case, we do not directly
compare against them. We refer the reader to a recent experimental
study on distance labeling algorithms for the same [42].

5 EXPERIMENTS ON SYNTHETIC GRAPHS
In this section, we demonstrate the impact of graph structure on
the performance of embedding distances as estimates for graph
distances. We use G����DT+Spectral as O����� for four synthetic
graph families, of varying regularity in their structure: (i) connected
caveman (CC), (ii) Barabási-Albert (BA), (iii) Watts-Strogatz (WS),
and (iv) Erdös-Rényi (ER). For each family, we construct a toy graph
instance withn = 200 nodes and its spectral embedding with dimen-
sion k = 2. We also compute the graph distance and the embedding
distance (`2-norm between embedding vectors), for all n(n � 1)/2
distinct node pairs, and train G����DT. Further implementation
details and results are available in the supplementary material.

Figure 1 reports the results on synthetic data. The �rst row of
plots displays the distribution of embedding distance as a function
of graph distance for the four synthetic graph families. The second
row shows the number of decision tree operations performed by
G����DT as a function of graph distance. We �nd that embedding
distances are a good proxy for graph distances. G����DT is able
to recover exact graph distances for 99.47, 99.46, 99.39, and 95.63
percent of node pairs for CC, BA, WS, and ER graphs, respectively.
From the �rst row of plots, we observe that the overlap between
boxes increases as we go from CC to ER graphs. This implies that
the gap in the embedding distance between nodes at di�erent graph
distances reduces as the graph becomes less regular and less dense.
Nodes at distance 2 and 4 are well-separated in the embedding space
for CC and BA compared to WS and ER, thus leading to more errors.
From the plots in the second row, we observe the increasing number
of decision tree operations required for estimation. CC requires 5
operations on average while ER requires 32. Crucially, G����DT
displays a small average additive error of 1 (e.g., it estimated the
path length to be either 1, 2, or 3 when the actual graph distance
was 2) in all four graphs. Thus, we conclude that embedding-based
O������ can be very e�ective for well-structured graphs.

6 EXPERIMENTS ON REAL GRAPHS
6.1 Datasets and Setup
In this section, we study the advantages and disadvantages of using
node embeddings versus other succinct representations in con-
structing exact O������. Table 2 provides an overview of dataset
statistics. A longer description is o�ered in the supplementary
material. We explicitly model all graphs as undirected including
wiki-Vote, web-BerkStan, and Twitter which are originally directed.

Resource Budget. All experiments that follow are performed un-
der the same budget of computational resources. Parallelized code
implementations make use of Intel(R) Xeon(R) CPU E7-8890 v4 @
2.20GHz with 128 cores and Tesla P100-PCIE GPU with 128 cores
(where applicable). For each O�����, we allow 24 hours each for

Table 2: Dataset statistics: number of nodes |V |, number of
edges |E |, average degree davg, average clustering coe�cient
C, and density � (number of edges as fraction of node pairs)
of the graph, respectively. Density is de�ned as |E |/(|V |(|V |�

1)). † denotes datasets with directed edges originally. How-
ever, we explicitly model all datasets as undirected.

Graph
Size Properties

|V | |E | davg C �(⇥10�5
)

cora [52] 2.5K 5.1K 4.1 0.24 200
twitch-RU [40] 4.4K 37K 17.0 0.17 400
twitch-FR [40] 6.5K 110K 34.4 0.22 500
wiki-Vote† [37] 7.1K 100K 28.5 0.14 400
twitch-DE [40] 9.5K 150K 32.3 0.20 300
ca-CondMat [38] 21K 91K 8.6 0.64 40
email-Enron [39] 34K 180K 10.7 0.51 70
blogcatalog [51] 89K 2.1M 47.2 0.35 53
loc-gowalla [18] 200K 950K 9.7 0.24 48
com-DBLP [60] 320K 1M 6.6 0.63 20
web-BerkStan† [39] 650K 6.6M 20.1 0.61 3.1
roadNet-PA [39] 1.1M 1.5M 2.8 0.05 4.0
Twitter† [35] 41.6M 1.4B 70.51 – 0.084
UK Domain [10] 105M 3.3B 62.8 0.03 0.029

construction and exceptions, and up to 500GB RAM. Following
Section 3, for each graph and for a given Model, we �rst attempt to
build an exact O����� (i.e. an appropriate set of Exceptions along-
side the Model to guarantee exactness). If the resources do not
su�ce to guarantee exactness (i.e., to compute and maintain an
Exceptions), then instead we maintain an approximate O�����– i.e.,
the O����� produces approximate distance estimates using only
the given Model and without making use of Exceptions.

We �nd that these resource-budget constraints induce a separa-
tion of the datasets into two groups. For the �rst group, the resource
budget su�ces to build an exact O����� for each Model of Table 1.
The �rst group consists of roadNet-PA (1.1M nodes) and all smaller
graphs. The second group consists of graphs Twitter (41M nodes)
and UK Domain (105M nodes). For the second group, the resource
budget does not su�ce to build an exact O�����. We refer to the
�rst group as the “small-to-large” and the second group as the “very
large” graphs and split the presentation of results accordingly: Sec-
tion 6.2 presents results on exact O������ for the smaller graphs
and Section 6.3 approximate O������ on the very large ones.

ImplementationDetails. Our experimentation has three primary
computational bottlenecks. (i) Finding graph distances between dis-
tinct node pairs. This takes a few seconds for the smallest graph
(cora), upto 27 hours for the 1.1M-node graph (roadNet-PA), and
23 hours for 100K nodes for very large graphs. (ii) Constructing
succinct representations. We augment publicly-available implemen-
tations of TZ-Oracle, t-spanner, NetSMF, FREDE, and Asym-DNN
for embedding distances, while DINT is augmented with Algorithm
1 for estimating distances. (iii) Fitting decision tree(s) using O(n

2
)

training samples. N���DT is constructed by parallelizing over in-
dividual nodes while G����DT is parallelized over multiple CPU

2301

0 1 2 3 4 5 6 7 8 9 101112
0.0

0.1

0.2

Em
be

dd
in

g
D

is
ta

nc
e

Connected Caveman

0 1 2 3 4
0.00

0.20

0.40

0.60

Barabasi Albert

0 1 2 3 4 5 6 7
0.00

0.10

0.20

Wa�s Strogatz

0 1 2 3 4 5 6 7 8 9 1011
0.00

0.25

0.50

0.75

Erdos Renyi

0 1 2 3 4 5 6 7 8 9 101112
Graph Distance

10

20

30

D
ec

is
io

n
Tr

ee
O

pe
ra

tio
ns

0 1 2 3 4
Graph Distance

20

40

0 1 2 3 4 5 6 7
Graph Distance

20

40

0 1 2 3 4 5 6 7 8 9 1011
Graph Distance

20

40

Figure 1: Results of G����DT on four synthetic graphs. The plots in the �rst and second row display the distance in the
embedding space and the number of decision tree operations (required for distance estimation) as a function of the actual
graph distance, respectively.

cores with a balanced workload determined by recursively splitting
a root histogram of the data into child histograms. In the case of
MDS, for smaller graphs such as Cora whose Gram Matrix B can
be held in memory, we use the Lanczos algorithm [36] for approxi-
mately computing the k largest eigenvectors. For larger graphs, we
use SCALAPACK’s parallelized implementations for matrix multi-
plication and approximate eigendecomposition (PxSYTRD).

Parameter Settings. We construct t-spanners with t = 10. We set
the embedding dimension to k = 128 for all algorithms because
larger k returned marginal improvements at the cost of increased
construction time. We construct DINT using a single packed dictio-
nary encoding. We seek hyperparameters that lead to good perfor-
mance using manual grid search. Lastly, we choose a set of 100K
random node pairs as queries for evaluating query processing time.

6.2 Exact O������ on small-to-large Graphs
Figure 2 depicts the relative bene�ts and limitations of O������
with respect to memory requirements and query processing time,
using the adjacency list as a baseline. For each dataset, we compute
the memory required to store the adjacency list (in MB) and the
query processing time (in number of operations) it needs to answer
100K queries. Each marker in Figure 2 reports these two quantities
for other O������ as a fraction of the respective quantities for
the adjacency list. Table 3 displays the size of Exceptions for lossy
O������. We describe our key observations below.

Node-EmbeddingO������process distance queries faster
than DINT, but require more memory and are slower to con-
struct. For instance, we observe that DINT requires 0.65×operations
compared to Adjacency-List (email-Enron), while G����DT needs
0.42× since, in e�ect, DINT answers queries via BFS. This di�er-
ence is more pronounced (0.87× vs. 0.11×) for roadNet-PA because

of its grid-like structure, large size, and low average degree. How-
ever, DINT is designed to be extremely memory-e�cient and scales
very well with graph size. The C++ implementation of DINT takes
between 1.2 (cora) and 62.8 (web-BerkStan) seconds to create the
index, with size between 0.001 MB and 16.6 MB and no additional
space for exceptions since its compression is lossless.

In contrast, the combined time to construct node embeddings and
train decision trees for N���DT drastically increases with graph
size. Embedding a dense graph such as com-DBLP with NetSMF
takes 7.3 hours. Also, large imbalance in actual graph distances
leads to instability and �uctuation in the depth and size of learned
decision trees. Even after enforcing shallow depth and high com-
pression, the memory required for N���DT (n decision trees along
with Exceptions) is impractically large compared to Adjacency-List;
e.g., 125×for small graphs like twitch-FR and 7646×for larger graphs
like web-BerkStan). As a consequence of the shallow depth, we
�nd that the number of Exceptions required by N���DT+FREDE
slightly exceeds that of G����DT+FREDE in the case of loc-gowalla.
This may be recti�ed by allowing greater depth. But we see the
bene�ts of N���DT at query time when it takes 0.15 and 0.026 frac-
tion of operations needed by Adjacency-List (for email-Enron and
roadNet-PA, resp.) because the size of each node-speci�c decision
tree is small and accessing it takes constant time.

Node-EmbeddingO������ requiremorememory andpro-
cessing time than MDS, but are faster to construct. For in-
stance, GraphDT+NetSMF takes less than half the time taken by
MDS on medium-sized graphs like loc-gowalla whereas incremental
approaches like FREDE can be upto 19× faster. For larger graphs
such as web-BerkStan, MDS becomes prohibitively expensive since
it requires multiplication and factorization of two large dense ma-
trices. However, query answering for MDS is independent of n and
m and is thus extremely fast (constant time) requiring 0.035× (loc-
gowalla) or 0.044× (web-BerkStan) number of operations compared

2302

5000

10000

15000
loc-gowalla

0.00 0.25 0.50 0.75 1.00
0
1

10000

20000

com-DBLP

0.00 0.25 0.50 0.75 1.00
0
1

2500

5000

7500

web-BerkStan

0.00 0.25 0.50 0.75 1.00
0
1

10000

20000

30000

roadNet-PA

0.00 0.25 0.50 0.75 1.00
0
1

100

150

200

twitch-DE

0.00 0.25 0.50 0.75 1.00
0

50

200

400

600

ca-CondMat

0.00 0.25 0.50 0.75 1.00
0
1

500

1000

1500
email-Enron

0.00 0.25 0.50 0.75 1.00
0
1

500

1000

1500

blogcatalog

0.00 0.25 0.50 0.75 1.00
0
1

100

200

300

cora

0.00 0.25 0.50 0.75 1.00
0
1

50

100
twitch-RU

0.00 0.25 0.50 0.75 1.00
0
1

50

100

twitch-FR

0.00 0.25 0.50 0.75 1.00
0
1

75

100

125
wiki-Vote

0.00 0.25 0.50 0.75 1.00
0

25

Decrease in No. of Operations (compared to Adjacency-List)

In
cr

ea
se

in
M

em
or

y
(c

om
pa

re
d

to
A

dj
ac

en
cy

-L
is

t)

Adjacency-List
Distance-Matrix
TZ-Oracle

t-Spanner
Landmark
DINT

MDS
GraphDT + Spectral
GraphDT + NetSMF

GraphDT + FREDE
GraphDT + Asym-DNN
NodeDT + Spectral

NodeDT + NetSMF
NodeDT + FREDE
NodeDT + Asym-DNN

Figure 2: Query processing time (number of operations) and memory requirements (MBs needed for storing Model and Excep-
tions) for di�erent O������, reported as multiplicative factors over the respective quantities of Adjacency List.

to Adjacency-List while GraphDT+FREDE takes 0.24× and 0.46× op-
erations, respectively. We �nd that the size of MDS’s Exceptions
set is <20% of total node pairs for smaller graphs like cora or twitch-
FR (cf. Table 3) and <30% for larger graphs like com-DBLP. This is
less than that of other node embeddings since they do not directly
preserve distances. We note that incorrect estimates by embedding-
O������ are o� by only a small additive factor for all datasets.

Node-Embedding O������ use fewer exceptions than t-
Spanner [44] and TZ-Oracle [54]. To observe a non-trivial spar-
si�cation of the graph, distortion (t) needs to be set as high as 10.
As a result, the corresponding size of their Exceptions set can be
as high as 75% of distinct node pairs (cf. blogcatalog in Table 3).
This distortion factor is multiplicative leading to larger errors in
the estimates compared to G����DT or N���DT which have small
additive error. Yet, this does not signi�cantly improve query an-
swering time for t-spanner either, which can be nearly four times
as expensive as N���DT for graphs with higher density and large
average degree such as twitch-DE (requiring 0.87X and 0.22X opera-
tions required by Adjacency-List, resp.). Their advantage lies in the
faster construction time compared to embedding-based O������.

We emphasize that, upto this point, our experiments do not
identify a single O����� that dominates others for all measures of

interests. Our results provide a guide for users to determine the best
O����� given their construction, memory, and processing budgets.

6.3 Approximate O������ on very large
Graphs

In extending the evaluation of exact O������ to very large graphs,
namely Twitter and UK Domain, we came across two major bottle-
necks: �rst, all-pairs distance computation proved intractable, with
running times that exceeded our resource budget (24 hours), by
orders of magnitude in our estimate; second, most evaluated mod-
els, including NetSMF and Asym-DNN, did not scale to very large
graphs, with their computation exceeding our resource budget (24
hours). As FREDE provides any-time computation, we were able to
train it for a very small number of epochs, which were not su�cient
to produce stabilized embeddings and good distance estimates.

In light of these bottlenecks, we extend our evaluation to an
approximate setting for very large graphs with GOSH [3] embed-
dings, which was the one model that scaled well enough to provide
reasonably good results. We use a random subset of node pairs that
is large enough to allow computation within our resource budget,
and train on them a decision tree model. The training and testing

2303

Table 3: Size of the Exceptions set for all lossy O������ as a fraction of total distinct node pairs. Numbers in blue represent
the best lossy O����� and underlined values represent second-best within margin of error. Adjacency-List, Distance-Matrix,
and DINT are lossless and require no exceptions to be stored.

Dataset TZ-Oracle t-spanner Landmark MDS
GraphDT NodeDT

Spectral NetSMF FREDE Asym-DNN Spectral NetSMF FREDE Asym-DNN

cora 0.495 0.481 0.433 0.174 0.415 0.408 0.368 0.377 0.352 0.325 0.271 0.279
twitch-RU 0.515 0.528 0.447 0.189 0.478 0.450 0.392 0.412 0.432 0.409 0.343 0.382
twitch-FR 0.551 0.533 0.474 0.196 0.492 0.480 0.414 0.423 0.498 0.482 0.297 0.316
wiki-Vote 0.585 0.561 0.521 0.188 0.516 0.520 0.491 0.480 0.466 0.487 0.358 0.340
twitch-DE 0.589 0.563 0.528 0.215 0.496 0.483 0.435 0.443 0.461 0.497 0.342 0.333

ca-CondMat 0.439 0.429 0.271 0.203 0.429 0.417 0.321 0.315 0.278 0.259 0.198 0.196
email-Enron 0.472 0.461 0.298 0.219 0.476 0.431 0.301 0.314 0.388 0.353 0.204 0.208
blogcatalog 0.754 0.692 0.674 0.245 0.592 0.532 0.467 0.496 0.453 0.541 0.390 0.397
loc-gowalla 0.597 0.548 0.493 0.269 0.457 0.416 0.390 0.402 0.462 0.423 0.394 0.409
com-DBLP 0.627 0.613 0.508 0.283 0.518 0.485 0.412 0.397 0.462 0.444 0.319 0.331

web-BerkStan 0.681 0.644 0.531 0.304 0.576 0.518 0.449 0.468 0.515 0.488 0.325 0.343
roadNet-PA 0.161 0.177 0.093 0.117 0.362 0.233 0.225 0.233 0.184 0.149 0.061 0.072

Table 4: Performance of GOSH O�����: acuracy on
train/test set (Acc.), average additive error in distance esti-
mations (Eavg),memory (M inGB), construction timeTC , and
average query processing time (TQ in seconds), respectively.

Dataset Acc. Eavg M TC TQ

roadNet-PA 73.56 / 70.45 1.53 1.3G 1.9H 2.3E-2
Twitter 84.67 / 83.71 1.26 21G 5.2H 4.8E-5
UK Domain 69.42 / 67.18 0.97 48G 8.3H 9.7E-6

set is created by randomly choosing a set of S source nodes and
Ts destination nodes for each s 2 S . Further experimental details
are provided in the supplementary material. Moreover, we employ
GOSH to obtain embeddings in k = 128 dimensions.

We �nd that given the strong power-law structure of the graph
which is captured by the training data, the approximate GOSH-
based O����� learns the mapping from embedding distance to
graph distance with good accuracy (84.71% and 69.51% on Twitter
and UK Domain, respectively). The learned decision tree model itself
requires 3.57MB and 7.13MB disk space, and 6.74 and 20.33 average
number of operations for Twitter and UK Domain, respectively.

7 CONCLUSION
In this paper, we presented an extensive experimental evaluation
of succinct graph representations as exact distance oracles. We
comparatively analysed traditional approaches using spanners,
TZ-oracles, distance matrices and modern approaches using com-
pressed adjacency indexes and node embeddings on four synthetic
and twelve real datasets. For embeddings, we de�ned two models,
G����DT that �ts a single decision tree for the entire graph and
N���DT that �ts one decision tree per node to learn a mapping
from the embedding distance to the graph distance, respectively. We
�nd that these models are excellent estimators of graph distances
when graphs are well-structured, but their performance degrades

when graph structure is more random. The choice of the embedding
impacts the number of exceptions needed to be stored. N���DT
requires fewer exceptions to be stored and less query processing
time compared to G����DT, but signi�cantly more memory, thus
making it impractical for common use. Moreover, we �nd that while
no single oracle is optimal across all e�ciency measures, node em-
bedding based O������ are upto 19 times faster than MDS, require
up to 2 times less memory than approximate distance-preserving
data structures, up to 23 times less processing time than compressed
indexes, and are exact up to 1.7 times more often than spanners.
Crucially, approximate oracles based on scalable GOSH embeddings
estimate graph distances with only small additive errors and can
be e�ciently constructed for large graphs (100M+ nodes).

7.1 Limitations and Future Work
There are two primary limitations of the distance oracles. (1) With
the exception of MDS, node embedding algorithms do not explicitly
optimize for preserving graph distances in their objective functions
which results in reduced capacity to recover exact distances. (2)
Computing all-pairs-distances and succinct representations such
as node embeddings are inherently non-scalable tasks for very
large graphs. This makes the construction of exact distance oracles
intractable. We identify these as directions for future research.

ACKNOWLEDGMENTS
Arpit Merchant would like to thank Ananth Mahadevan and Sachith
Pai for useful discussions on experiment design. Aristides Gionis is
supported by the Academy of Finland projects AIDA (317085) and
MLDB (325117), the ERC Advanced Grant REBOUND (834862), the
EC H2020 RIA project SoBigData++ (871042), and the Wallenberg
AI, Autonomous Systems and Software Program (WASP) funded by
the Knut and Alice Wallenberg Foundation. Michael Mathioudakis
is supported by the University of Helsinki and the Academy of
Finland Projects MLDB (322046) and HPC-HD (347747).

2304

REFERENCES
[1] Ittai Abraham and Cyril Gavoille. 2011. On Approximate Distance Labels and

Routing Schemes with A�ne Stretch. In Distributed Computing, David Peleg (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 404–415.

[2] Sami Abu-El-Haija, Bryan Perozzi, and Rami Al-Rfou. 2017. Learning Edge
Representations via Low-Rank Asymmetric Projections. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management (Singapore,
Singapore) (CIKM ’17). Association for Computing Machinery, New York, NY,
USA, 1787–1796. https://doi.org/10.1145/3132847.3132959

[3] Taha Atahan Akyildiz, Amro Alabsi Aljundi, and Kamer Kaya. 2020. GOSH:
Embedding Big Graphs on Small Hardware. In 49th International Conference
on Parallel Processing - ICPP (Edmonton, AB, Canada) (ICPP ’20). Association
for Computing Machinery, New York, NY, USA, Article 4, 11 pages. https:
//doi.org/10.1145/3404397.3404456 Nominated for the best-paper award.

[4] Ingo Althöfer, Gautam Das, David Dobkin, Deborah Joseph, and José Soares. 1993.
On sparse spanners of weighted graphs. Discrete & Computational Geometry 9, 1
(1993), 81–100.

[5] Mukund Balasubramanian, Eric L Schwartz, Joshua B Tenenbaum, Vin de Silva,
and John C Langford. 2002. The isomap algorithm and topological stability.
Science 295, 5552 (2002), 7–7.

[6] Surender Baswana, Akshay Gaur, Sandeep Sen, and Jayant Upadhyay. 2008.
Distance Oracles for Unweighted Graphs: Breaking the Quadratic Barrier with
Constant Additive Error. In Automata, Languages and Programming, Luca Aceto,
Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
609–621.

[7] Mikhail Belkin and Partha Niyogi. 2003. Laplacian eigenmaps for dimensionality
reduction and data representation. Neural computation 15, 6 (2003), 1373–1396.

[8] Yakir Berchenko and Mina Teicher. 2009. Graph Embedding through Random
Walk for Shortest Paths Problems. In Stochastic Algorithms: Foundations and
Applications, Osamu Watanabe and Thomas Zeugmann (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 127–140.

[9] Greg Bodwin, Michael Dinitz, and Caleb Robelle. 2021. Optimal Vertex Fault-
Tolerant Spanners in Polynomial Time. In Proceedings of the Thirty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms (Virtual Event, Virginia) (SODA
’21). Society for Industrial and Applied Mathematics, USA, 2924–2938.

[10] Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. 2004.
UbiCrawler: A Scalable Fully Distributed Web Crawler. Software: Practice &
Experience 34, 8 (2004), 711–726.

[11] Ed Bullmore and Olaf Sporns. 2009. Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature reviews neuroscience 10, 3
(2009), 186–198.

[12] Julia M Burkhart, Marc Vaudel, Stepan Gambaryan, Sonja Radau, Ulrich Walter,
Lennart Martens, Jörg Geiger, Albert Sickmann, and René P Zahedi. 2012. The �rst
comprehensive and quantitative analysis of human platelet protein composition
allows the comparative analysis of structural and functional pathways. Blood,
The Journal of the American Society of Hematology 120, 15 (2012), e73–e82.

[13] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. 2018. A com-
prehensive survey of graph embedding: Problems, techniques, and applications.
IEEE Transactions on Knowledge and Data Engineering 30, 9 (2018), 1616–1637.

[14] Shaosheng Cao, Wei Lu, and Qiongkai Xu. 2015. GraRep: Learning Graph Repre-
sentations with Global Structural Information. In Proceedings of the 24th ACM
International on Conference on Information and Knowledge Management (Mel-
bourne, Australia) (CIKM ’15). Association for Computing Machinery, New York,
NY, USA, 891–900. https://doi.org/10.1145/2806416.2806512

[15] Timothy M Chan. 2010. More algorithms for all-pairs shortest paths in weighted
graphs. SIAM J. Comput. 39, 5 (2010), 2075–2089.

[16] Shiri Chechik. 2014. Approximate Distance Oracles with Constant Query Time.
In Proceedings of the Forty-Sixth Annual ACM Symposium on Theory of Computing
(New York, New York) (STOC ’14). Association for Computing Machinery, New
York, NY, USA, 654–663. https://doi.org/10.1145/2591796.2591801

[17] James Cheng, Zechao Shang, Hong Cheng, Haixun Wang, and Je�rey Xu Yu.
2014. E�cient processing of k-hop reachability queries. The VLDB journal 23, 2
(2014), 227–252.

[18] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and Mobility:
User Movement in Location-Based Social Networks. In Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(San Diego, California, USA) (KDD ’11). Association for Computing Machinery,
New York, NY, USA, 1082–1090. https://doi.org/10.1145/2020408.2020579

[19] Edith Cohen and Haim Kaplan. 2007. Summarizing Data Using Bottom-k Sketches.
In Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles of Dis-
tributed Computing (Portland, Oregon, USA) (PODC ’07). Association for Comput-
ing Machinery, New York, NY, USA, 225–234. https://doi.org/10.1145/1281100.
1281133

[20] Camil Demetrescu and Giuseppe F Italiano. 2004. A new approach to dynamic
all pairs shortest paths. Journal of the ACM (JACM) 51, 6 (2004), 968–992.

[21] Inderjit Singh Dhillon. 1997. A new O (N (2)) algorithm for the symmetric tridiag-
onal eigenvalue/eigenvector problem. University of California, Berkeley, Berkeley,
CA, USA.

[22] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey
Pupyrev, and Alon Shalita. 2016. Compressing Graphs and Indexes with Re-
cursive Graph Bisection. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (San Francisco, California,
USA) (KDD ’16). Association for Computing Machinery, New York, NY, USA,
1535–1544. https://doi.org/10.1145/2939672.2939862

[23] Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio,
and Xavier Bresson. 2020. Benchmarking Graph Neural Networks. CoRR
abs/2003.00982 (2020), 47. https://arxiv.org/abs/2003.00982

[24] Paul Erdös. 1965. On some extremal problems in graph theory. Israel Journal of
Mathematics 3, 2 (1965), 113–116.

[25] Cyril Gavoille, David Peleg, Stéphane Pérennes, and Ran Raz. 2004. Distance
labeling in graphs. Journal of Algorithms 53, 1 (2004), 85–112.

[26] James D. Guyton and Michael F. Schwartz. 1995. Locating Nearby Copies of
Replicated Internet Servers. SIGCOMM Comput. Commun. Rev. 25, 4 (oct 1995),
288–298. https://doi.org/10.1145/217391.217463

[27] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation Learning
on Graphs: Methods and Applications. , 24 pages. https://doi.org/10.48550/ARXIV.
1709.05584

[28] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu,
Michele Catasta, and Jure Leskovec. 2020. Open graph benchmark: Datasets for
machine learning on graphs. Advances in neural information processing systems
33 (2020), 22118–22133.

[29] Bradley Hu�aker, Marina Fomenkov, Daniel J Plummer, David Moore, Kimberly
Cla�y, et al. 2002. Distance metrics in the Internet. In Proc. of IEEE international
telecommunications symposium (ITS). sn, IEEE, New York, NY, USA, 20.

[30] Martin Juvan and Bojan Mohar. 1992. Optimal linear labelings and eigenvalues
of graphs. Discrete Applied Mathematics 36, 2 (1992), 153–168.

[31] Jon Kleinberg, Aleksandrs Slivkins, and Tom Wexler. 2004. Triangulation and
embedding using small sets of beacons. In 45th Annual IEEE Symposium on
Foundations of Computer Science. IEEE, New York, NY, USA, 444–453.

[32] Felix Krahmer and Rachel Ward. 2011. New and improved Johnson–Lindenstrauss
embeddings via the restricted isometry property. SIAM Journal on Mathematical
Analysis 43, 3 (2011), 1269–1281.

[33] Joseph B Kruskal. 1978. Multidimensional scaling. Number 11 in 1. Sage, Wash-
ington, DC, USA. https://doi.org/10.4135/9781412985130

[34] Joseph B Kruskal and Judith B Seery. 1980. Designing network diagrams. In
Proceedings of the First General Conference on Social Graphics. US Department of
the Census, United States Government Printing O�ce, Washington, DC, USA,
22–50.

[35] Jérôme Kunegis. 2013. KONECT: The Koblenz Network Collection. In Proceedings
of the 22nd International Conference on World Wide Web (Rio de Janeiro, Brazil)
(WWW ’13 Companion). Association for Computing Machinery, New York, NY,
USA, 1343–1350. https://doi.org/10.1145/2487788.2488173

[36] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. 1998. ARPACK users’
guide: solution of large-scale eigenvalue problems with implicitly restarted Arnoldi
methods. SIAM, Philadelphia, PA, USA.

[37] Jure Leskovec, Daniel Huttenlocher, and Jon Kleinberg. 2010. Signed Networks
in Social Media. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (Atlanta, Georgia, USA) (CHI ’10). Association for Computing
Machinery, New York, NY, USA, 1361–1370. https://doi.org/10.1145/1753326.
1753532

[38] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densi�cation and shrinking diameters. ACM transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2–es.

[39] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. 2009.
Community structure in large networks: Natural cluster sizes and the absence of
large well-de�ned clusters. Internet Mathematics 6, 1 (2009), 29–123.

[40] Jundong Li, Xia Hu, Jiliang Tang, and Huan Liu. 2015. Unsupervised Streaming
Feature Selection in Social Media. In Proceedings of the 24th ACM International on
Conference on Information and Knowledge Management (Melbourne, Australia)
(CIKM ’15). Association for Computing Machinery, New York, NY, USA, 1041–
1050. https://doi.org/10.1145/2806416.2806501

[41] Wentao Li, Miao Qiao, Lu Qin, Ying Zhang, Lijun Chang, and Xuemin Lin. 2019.
Scaling Distance Labeling on Small-World Networks. In Proceedings of the 2019
International Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 1060–1077.
https://doi.org/10.1145/3299869.3319877

[42] Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An experimental
study on hub labeling based shortest path algorithms. Proceedings of the VLDB
Endowment 11, 4 (2017), 445–457.

[43] Bin Luo, Richard C Wilson, and Edwin R Hancock. 2003. Spectral embedding of
graphs. Pattern recognition 36, 10 (2003), 2213–2230.

[44] David Peleg and Alejandro A Schä�er. 1989. Graph spanners. Journal of graph
theory 13, 1 (1989), 99–116.

2305

[45] Charles E Perkins and Elizabeth M Royer. 1999. Ad-hoc on-demand distance
vector routing. In Proceedings WMCSA’99. Second IEEE Workshop on Mobile Com-
puting Systems and Applications. IEEE, IEEE, New York, NY, USA, 90–100.

[46] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (New York, New York,
USA) (KDD ’14). Association for Computing Machinery, New York, NY, USA,
701–710. https://doi.org/10.1145/2623330.2623732

[47] Giulio Ermanno Pibiri, Matthias Petri, and Alistair Mo�at. 2019. Fast Dictionary-
Based Compression for Inverted Indexes. In Proceedings of the Twelfth ACM
International Conference on Web Search and Data Mining (Melbourne VIC, Aus-
tralia) (WSDM ’19). Association for Computing Machinery, New York, NY, USA,
6–14. https://doi.org/10.1145/3289600.3290962

[48] Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Chi Wang, Kuansan Wang, and
Jie Tang. 2019. NetSMF: Large-Scale Network Embedding as Sparse Matrix
Factorization. In The World Wide Web Conference (San Francisco, CA, USA)
(WWW ’19). Association for Computing Machinery, New York, NY, USA, 1509–
1520. https://doi.org/10.1145/3308558.3313446

[49] Syed Asad Rahman and Dietmar Schomburg. 2006. Observing local and global
properties of metabolic pathways:âĂŸload pointsâĂŹ and âĂŸchoke pointsâĂŹ
in the metabolic networks. Bioinformatics 22, 14 (2006), 1767–1774.

[50] Fatemeh Salehi Rizi, Joerg Schloetterer, and Michael Granitzer. 2018. Shortest
path distance approximation using deep learning techniques. In 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, IEEE, New York, NY, USA, 1007–1014.

[51] Benedek Rozemberczki, Carl Allen, and Rik Sarkar. 2019. Multi-scale Attributed
Node Embedding. arXiv:1909.13021 [cs.LG]

[52] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classi�cation in network data. AI magazine 29,
3 (2008), 93–93.

[53] Christian Sommer. 2014. Shortest-path queries in static networks. ACM Comput-
ing Surveys (CSUR) 46, 4 (2014), 1–31.

[54] Mikkel Thorup and Uri Zwick. 2005. Approximate distance oracles. Journal of
the ACM (JACM) 52, 1 (2005), 1–24.

[55] Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. 2018.
VERSE: Versatile Graph Embeddings from Similarity Measures. In Proceedings of
the 2018 World Wide Web Conference (Lyon, France) (WWW ’18). International
World Wide Web Conferences Steering Committee, Republic and Canton of
Geneva, CHE, 539–548. https://doi.org/10.1145/3178876.3186120

[56] Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Ivan
Oseledets, and Emmanuel Müller. 2021. FREDE: anytime graph embeddings.
Proceedings of the VLDB Endowment 14, 6 (2021), 1102–1110.

[57] Robert A Van De Geijn and Jerrell Watts. 1997. SUMMA: Scalable universal
matrix multiplication algorithm. Concurrency: Practice and Experience 9, 4 (1997),
255–274.

[58] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
Philip S. Yu. 2021. A Comprehensive Survey on Graph Neural Networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2021), 4–24. https:
//doi.org/10.1109/TNNLS.2020.2978386

[59] Christian Wul�-Nilsen. 2016. Approximate Distance Oracles with Improved Query
Time. Springer New York, New York, NY, 94–97. https://doi.org/10.1007/978-1-
4939-2864-4_568

[60] Jaewon Yang and Jure Leskovec. 2015. De�ning and evaluating network commu-
nities based on ground-truth. Knowledge and Information Systems 42, 1 (2015),
181–213.

[61] Xiaohan Zhao, Alessandra Sala, Haitao Zheng, and Ben Y. Zhao. 2011. E�cient
shortest paths on massive social graphs. In 7th International Conference on Collab-
orative Computing: Networking, Applications and Worksharing (CollaborateCom).
IEEE, New York, NY, USA, 77–86.

[62] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI Open 1 (2020), 57–81.

2306

