
Fast Detection of Denial Constraint Violations
Eduardo H. M. Pena

Federal University of Technology

Campo Mourão, Paraná, Brazil

eduardopena@utfpr.edu.br

Eduardo C. de Almeida

Federal University of Paraná

Curitiba, Paraná, Brazil

eduardo@inf.ufpr.br

Felix Naumann

Hasso Plattner Institute, University of

Potsdam, Germany

felix.naumann@hpi.de

ABSTRACT
The detection of constraint-based errors is a critical task in many

data cleaning solutions. Previous works perform the task either

using traditional data management systems or using specialized sys-

tems that speed up error detection. Unfortunately, both approaches

may fail to execute in a reasonable time or even exhaust the avail-

able memory in the attempt. To address the main drawbacks of

previous approaches, we present the FAst Constraint-based Error
DeTector (FACET) to detect violations of denial constraints (DCs).

FACET uses column sketch information to organize a pipeline of spe-

cial operators for DC predicates and it implements these operators

using a set of efficient algorithms and data structures that adapt to

different data characteristics and predicate structures. We evaluate

our system on a diverse array of datasets and constraints, showing

its robustness and performance gains compared to different types

of DBMSs and to a specialized system.

PVLDB Reference Format:
Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. Fast

Detection of Denial Constraint Violations. PVLDB, 15(4): 859 - 871, 2022.

doi:10.14778/3503585.3503595

1 INTRODUCTION
The detection of data errors is a routine task in data cleaning. Con-

sider the data shown in Table 1. We can use a few data quality

rules that help us maintain or improve the quality of the data. For

example, (1) each employee has a unique value of ID; (2) employees

cannot supervise their own supervisors (SID); or (3) for any two

employees from the same department (Dept), the employee with

the most years of service should not earn the lowest salary.

Table 1: The Employee table.

ID Name Dept StartDate Salary SID

t1 100 C. Gardner Sales 2012 3000 100

t2 101 R. Geller Research 2014 8000 102

t3 102 D. Brown Research 2014 6000 101

t4 103 H. McCoy Research 2015 8000 101

A traditional way to model data quality rules is by defining

integrity constraints, say, a unique constraint for rule (1) and two

denial constraints (DCs) for rules (2) and (3), respectively. Recent

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 15, No. 4 ISSN 2150-8097.

doi:10.14778/3503585.3503595

works on constraint-based data cleaning have used DCs as their

constraint language, because of the generality and high expressive

power of the formalism [20, 32, 35]. This paper also focuses on

DCs. Our goal is to detect data errors as the subsets of tuples in

conflict with the semantics of the DCs. Previous works have used

SQL queries with a relational DBMS for such detection [15, 16, 19,

32]. In our example, the following SQL query returns the pairs of

employees in conflict with the seniority semantics of the third rule:

SELECT t.ID, u.ID

FROM Employee t, Employee u

WHERE t.Dept= u.Dept

AND t.StartDate< u.StartDate

AND t.Salary< u.Salary

Constraint-based queries like the one above require a DBMS

to handle predicates of various sorts and costs. For instance, com-

plex inequality predicates on pairwise relationships of tuples are

commonplace in data quality rules and translate to expensive non-

equi-joins. In these cases, the number of intermediates can quickly

become much larger than the actual query result, so the use of

inappropriate materialization strategies or inefficient algorithms to

process intermediates might result in disastrous performance.

An effective error detection system must provide good perfor-

mance for the wide range of constraints found in production. As

DCs can be easily translated into SQL queries, using the strategies

of query optimization and query execution of a DBMS to detect

DC violations seems reasonable. In practice, however, the same

DBMS that succeed to efficiently evaluate one DC may fail to do

so for another, either due to very long runtime or due to excessive

memory usage [24, 31]. In such settings, performance is difficult to

predict and it can become the bottleneck of a data cleaning pipeline.

There has been prior work on DC-based error detection [6, 31].

In [6], the authors propose predicate evaluation algorithms that, for

efficiency, are customized according to the class of each DC pred-

icate. Those ideas inspired our prior work [31], which eliminates

the preprocessing overheads found in [6] and presents additional

predicate evaluation algorithms. Although these works have shown

better performance than DBMSs for error detection, there remain

critical aspects that warrant further development.

Three main drawbacks limit the performance and robustness of

prior works. First, existing systems use the same low-level repre-

sentation of intermediate results (e.g., offsets) across their entire

processing pipeline. That approach neglects the computation pat-

terns of predicate evaluation and may be suboptimal for some

types of predicates. Second, an analysis of the main algorithms for

predicate evaluation reveals that each may face great performance

degradation depending on the predicate structure or input dataset.

Third, the order of predicate evaluations is selected solely based on

predicate selectivity: the fraction of tuples that satisfy a predicate.

The goal is to reduce the number of processed intermediates so the

859

https://doi.org/10.14778/3503585.3503595
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3503585.3503595

most selective predicates are evaluated first. However, the selectivi-

ties are drawn from table samples and may carry large estimation

errors, which, in turn, may lead to slower evaluation plans [10, 26].

In response, we develop the FAst Constraint-based Error DeTector
(FACET), a robust system to detect all violations of a set of DCs de-

fined for an input dataset. FACET follows the framework of [6, 31],

mapping each DC into a pipeline of refinements, logical operators
whose goal is to efficiently evaluate DC predicates. There are vari-

ous predicate structures, hence various refinement algorithms. In

this paper, we redesign previous algorithms and propose new ones.

These algorithms enable the use of hybrid data structures that adapt

their storage mechanism to better suit the code pattern of each algo-

rithm. With an extended set of algorithms, FACET has more options

to plan error detection and, thus, avoid performance degradation

traps. In addition, we propose a novel heuristic optimization algo-

rithm that uses column sketches to select predicate evaluation order.

Compared to the sampling approach of previous works, our algo-

rithm offers far better accuracy, which enables FACET to organize

pipelines in a more robust manner. Finally, FACET offers different
modes of error detection when multiple DCs are given as input. If

the DCs share common predicates, FACET can achieve deep reuse

of both predicate evaluation and intermediate materialization. In

summary, our main contributions are:

• A system that provides fast and robust detection of data

errors that are DC violations (Section 4);

• A set of algorithms and optimizations to evaluate the various

types of complex predicates of DCs (Section 5);

• A heuristic optimization algorithm to plan predicate evalua-

tion based on column sketches (Section 6);

• An extensive experimental evaluation using synthetic and

real-world data, a wide array of constraints, and comparisons

with related work and with DBMS-based approaches, show-

ing that our system is consistently faster than the competitors—

up to orders of magnitude in many cases (Section 7).

We discuss related work in Section 2, provide background in Sec-

tion 3, and summarize our conclusions in Section 8.

2 RELATEDWORK
Generally speaking, constraint-based data cleaning involves two

major steps: error detection and error correction [11]. The latter

has been extensively studied in the past two decades, with a large

body of work inspired by the seminal paper of Arenas et al. on

consistent query answers and data repairing [1]. See recent works

on tractability and implementation of error correction [8, 9, 21, 28];

as well as comprehensive discussions on the subject [3, 4].

Several works have used relational DBMSs to detect constraint

violations [15, 16, 19, 32]. SQL-based techniques and a commercial

DBMS have been used to detect violations of conditional functional

dependencies in [15]. HoloClean is a well-known data cleaning

system that runs DC-based queries on PostgreSQL for error detec-

tion [32]. PostgreSQL has also been used in the Llunatic system

to detect violations (as well as to compute repairs) [19]. The same

DBMS was used more recently in [16], where entity enhancing

rules are translated into SQL queries and user-defined functions in

an approach that detects constraint violations and duplicates in a

unified process. Given the adoption of DBMS by related tools, we

compare FACET to the DBMS approach. To mitigate limitations of

any specific DBMS, our evaluation study compares FACET directly

to several different DBMSs—each with a different engine (storage,

optimizer, physical planner, execution). Our study additionally in-

cludes DCs, a dataset, and a DBMS which have not been used in

the evaluation of prior works. These assets help us to place the

performance of FACET into a wider perspective.

FACET is inspired by several ideas from [6, 31]. Hydra is an al-

gorithm for the discovery of DCs [6]. Although its final goal is not

error detection, it requires efficient detection to properly work. For

efficiency, Hydra uses a set of refinement algorithms and compact

data structures—we discuss these subjects in detail in Section 3.

However, Hydra contains expensive preprocessing steps that hin-

der its performance. In prior work, we propose VioFinder [31], a
system that uses the basic framework of Hydra, but introduces new

refinement algorithms and eliminates the expensive preprocessing

steps. In our experiments, VioFinder serves as our specialized tool
baseline, since it is generally much faster than Hydra. As discussed

above, there are main differences from FACET to these previous

works, namely: hybrid data structures to handle intermediates; new

refinement algorithms; a novel scheme to plan predicate evaluation;

and different modes of multi-constraint error detection.

3 BACKGROUND
3.1 Representation of constraints
We express constraints using the denial constraint (DC) formal-

ism, as it has a high expressive power, and it generalizes several

other relevant types of constraints, including unique constraints,

functional dependencies, and order dependencies [4, 14]. The basic

idea of DCs is to identify conflicting relationships of combinations

of column values with sets of predicates. We consider predicates

of the form p : t.A o t′.B, where A, B are columns of a table r with
schema R and 𝑛 tuples; t, t′ is a pair of distinct tuples of r; and
o ∈ {=,≠, <, ≤, >, ≥} is a set of comparison operators. We can

formulate a DC 𝜑 with the following notation:

𝜑 : ∀t, t′ ∈ r,¬(p1 ∧ . . . ∧ p𝑚)

Each DC specifies a conjunction of predicates that cannot be true

for any pair of tuples. In other words, a pair of tuples t, t′ satisfies
a DC 𝜑 if it evaluates to false for at least one of the predicates

of 𝜑 . Otherwise, the pair of tuples t and t′ jointly violate the DC 𝜑 ,

which means that the table r is inconsistent with respect to 𝜑 .

We can express the data quality rules defined on the Employee
table as the three respective DCs (the identifiers t, t′ are omitted

from now on):

𝜑1 : ¬(t.ID = t′.ID)
𝜑2 : ¬(t.ID = t′.SID ∧ t.SID = t′.ID)

𝜑3 : ¬(t.Dept = t′.Dept ∧ t.StartDate < t′.StartDate∧
t.Salary < t′.Salary)

DC violations expose the data errors of a table with respect to the

semantics of the data quality rules. For example, we find that tuples

t3 and t4 jointly violate the DC 𝜑3 on Employee. The employees in

both tuples work in the same department. Since Mr. D. Brown (tuple

t3) was hired first, he should not have a salary lower than that of

860

Mr. H. McCoy (tuple t4). As a result, the pair of tuples (t3, t4) puts
the Employee table in an inconsistent state.

The first step in constraint-based data cleaning is to detect con-

straint violations [13, 25]. A common next step is to build a conflict

representation from the violation set, usually in the form of a hy-

pergraph. The conflict representations support several other tasks,

for example, data quality assessment and data repairing [21, 32].

As FACET is precisely designed to output the constraint violations

in a dataset, it serves as a natural component for any framework

using DCs, or of course, any constraint subsumed by DCs.

3.2 Violation detection using refinements
FACET follows the design of prior works and uses a special operator

called refinement to evaluate DC predicates [6, 31]. Refinements

operate on compact representations of pairs of tuples and they

use algorithms that are custom-designed for the different predicate

structures. These two properties enable refinements to process dif-

ferent classes of predicates fast while avoiding large intermediates.

Representation of intermediates.Most DCs used in production

express pairwise relationships of tuples, so most DC predicates

naturally have low selectivity. Processing each pair of tuples in-

dividually incur a high interpretation overhead: too many func-

tion calls and too many memory allocations to process all the

pairs. An efficient alternative is to process compact representa-

tions of pairs of tuples [6]. Let tids denote a set of tuple iden-

tifiers, or simply tuples when the context is clear. The set of all

tuples of a table r with 𝑛 tuples is given by tidsr = {t1, . . . , t𝑛}.
Ordered pairs (tids1, tids2) represent sets of tuples pairs (t, t′),
such that t ∈ tids1, t

′ ∈ tids2 and t ≠ t′. For example, the

pair of tids ({t1, t5}, {t1, t2, t3}) represents the pairs of tuples
{(t1, t2), (t1, t3), (t5, t1), (t5, t2), (t5, t3)}. In this work, we refer

to pairs of tids where tids1 = tids2 as reflexive. The set of all
distinct tuple pairs of a table can be expressed as (tidsr, tidsr).
Refinement operator. The refinement operator takes as input

pairs (tids1, tids2) and a predicate p, and it returns the set of

pairs (tids′
1
, tids′

2
) that represent all subsets of pairs of tuples of

(tids1, tids2) that satisfy p. For clarity, we defer the description
of our refinement algorithms to Section 5.

Refinement pipeline. Consider a table r and the refinement of

a predicate p1 followed by the refinement of a predicate p2. As
predicate p1 is the first in the pipeline, its refinement consumes

the pair (tidsr, tidsr) to build auxiliary data structures. From

these structures, it finds the pairs of tuples that satisfy p1 and

incrementally builds pairs of tids that serve as the input for the
next stage (i.e., predicate p2). Next, in the stage of predicate p2,
the refinement incrementally consumes the two sides of each pair

of tids of the previous refinement and builds new auxiliary data

structures. The process of finding qualifying tuple pairs for the

current predicate is the same as above. Notice that the pair of tids
produced at this stage represent tuple pairs that satisfy predicates

p1 and p2 at the same time, and thus, represent the violations of the

DC 𝜑 : ¬(p1∧p2). Consider the Employee table and a pipeline with
predicates p1 : t.Dept = t′.Dept and p2 : t.Salary < t′.Salary, in
this order. The refinement of predicate p1 produces the pair of tids
({t2, t3, t4}, {t2, t3, t4}). In turn, the refinement of predicate p2
consumes this pair and produces a new pair of tids ({t3}, {t2, t4}).

Observe that the sides of predicates and the sides of pairs of

tids relate to each other. Given a predicate p : t.A o t′.B and a

pair (tids1, tids2), the left-hand side t.A of p is for tids1, and the
right-hand side t.B of p is for tids2.

4 THE DESIGN OF FACET

Fast(er) refinements.The structure of DC predicates, i.e., the num-

ber of columns and the comparison operator, play an important

role in the refinement performance. Due to the nature of DC predi-

cates, using an all-purpose refinement algorithm, say a nested loop

approach, is inefficient. To avoid such a bottleneck, prior works

separate predicates into classes (equalities, non-equalities, and in-

equalities) and provide a refinement algorithm for each class [6, 31].

However, in a deeper analysis, we have observed several design

choices that limit the performance of the existing algorithms. Next,

we discuss these choices, as they have guided the design of our

refinement algorithms—described in detail in Section 5.

To represent intermediates (i.e., sets of tids), Hydra uses arrays

of integers [6], whereas VioFinder uses compressed bitmaps [31].

The problem is that each work uses the same, fixed representation

scheme in all its refinement algorithms. We argue, and demonstrate

in our experiments, that the fastest representation actually depends

on the computation pattern of each algorithm. The refinements

of non-equalities and inequalities need to compute many unions

or differences of sets of tids. In this case, compressed bitmaps

deliver great performance as they naturally benefit from fast bitwise

operations [37]. The refinements of equalities, on the other hand,

need to only store and read tids. As such, a simple array of integers

avoids the space and decompression overhead generally incurred

by compressed bitmaps [36]. For these reasons, FACET uses a hybrid
approach, where its refinement algorithms can switch the type of

tids representation depending on their computation pattern.

All existing refinement algorithms have a similar two-phase

structure: they fetch column values to build auxiliary data struc-

tures and then iterate these structures to emit the results. In most

algorithms, these structures are simple hash tables, and refinement

performance is mostly determined by the time spent in the building

phase. For the particular case of equalities and non-equalities on

pairs of different columns, existing algorithms build two hash tables,

one for each side of the input pair of tids. Then they iterate the

entries of one hash table to look up the other one for matches. Our

algorithms, on the other hand, follow a traditional hash-join-like

approach that requires a single hash table plus a probing routine to

emit results. By avoiding the building of the additional hash table,

our algorithms perform generally better than prior solutions.

Inequalities are often the most computationally expensive part

of the refinement pipeline, so we need to treat them carefully. Both

prior works rely on only one algorithm each to handle inequali-

ties [6, 31]. Yet both algorithms have weaknesses that limit their

use or slow down execution depending on the input. We propose a

third (new) algorithm to help in cases where previous algorithms

underperform. We also propose to dynamically choose among the

three algorithms based on information from the input (i.e, column

cardinalities). We describe all algorithms for inequality refinement

in Section 5, but defer the discussion on algorithm selection to

861

Section 6, where we elaborate on the relationship between column

cardinality and predicate evaluation costs.

Robust evaluation plans. In principle, given a DC with𝑚 pred-

icates, we could build a refinement pipeline using any of its 𝑚!

predicate permutations; the errors detected would remain the same.

However, different predicates have very different evaluations costs

to each other. In addition, FACET offers three algorithms for the

refinement of inequalities, each may have different performance

depending on the input. Thus, selecting a low-cost evaluation plan

is critical, but challenging, as it involves selecting a good predicate

order and appropriate algorithms.

The costs of our refinements algorithms (Section 5) are strongly

related to predicate structure as well as the number of distinct

values for a given set of columns. Unfortunately, prior approaches

rely solely on (sampled) predicate selectivity to decide predicate

order and do not explore the fact that different predicates have

different evaluation costs [6, 31]. In Section 6, we present a novel

algorithm that explores the high accuracy of column sketches to

select refinement order and algorithms. Our approach mitigates

poor evaluation plans, which would have higher chances of being

picked if one would use estimates from samples.

Multi-constraint execution.Most previous works perform error

detection one constraint at a time [16, 31, 32, 39]. If the input is a

set of DCs with any pair of DCs sharing at least one predicate, this

strategy results in repeated computations. However, it is possible to

use a trie-based scheme to checkmultiple DCs at a time and alleviate

the computation waste [6]. FACET follows such idea to organize the

refinements in a trie, in such a way that if two or more DCs share

a common refinement path, the intermediate materialization and

the predicate processing for that path are also shared.

FACET supports two organizations of predicate tries. Given a set

of DCs Φ, it can order the predicates of each DC by (i) the cost of

the predicate in each DC (see Section 6), or by (ii) the frequency

count of each predicate with respect to all predicates of Φ. Fig-
ure 1 illustrates the two organizations. The cost-based approach

favors fast predicate processing, whereas the frequency-based ap-

proach favors processing reuse. While previous work supports only

single-thread executions [6], FACET can evaluate the predicate tries

independently of each other and benefit from parallel execution.

In this way, FACET can speed up multi-constraint execution even

when the input contains DCs having no common predicates.

p1

p4p3

p2

p4p3

p3

p5p4

(a) Cost-based

p3

p5p4p2p1

p4

p2p1

(b) Frequency-based

Figure 1: Example of pipeline organizations for a set of DCs
Φ = {¬(p1∧p3),¬(p1∧p4),¬(p2∧p3),¬(p2∧p4),¬(p3∧p4),¬(p3∧
p5)} and predicates with ascending costs: p1, p2, p3, p4, p5.

5 REFINEMENT ALGORITHMS
5.1 Equalities
Equalities are predicates of the form p : t.A = t′.B. Assume column

A as the build side, and column B as the probe side. We iterate the

tuples on the left-hand side of the input pair of tids and fetch their

values of column A. Since refinement operators produce pairs of

tids, we build a hash table that maps each unique value of column

A fetched into a pair (tids1, tids2), where tids1 contains the set
of tuples having that value and tids2 is empty. In the probing

phase, we iterate each tuple on the right-hand side of the input pair

of tids and we probe the hash table with the value of column B of

that tuple. If we find an entry, we add that tuple into the right-hand

side of the pair of tids of that entry (tids2). Finally, for each entry
in the hash table having a pair of tids with at least one pair of dis-

tinct tuples, we push that pair to the next pipeline stage. Consider

the refinement of the predicate p : t.SID = t′.ID and a reflexive

pair of tids with all pairs of tuples of Employee. After the prob-
ing phase, the hash table contains the entries: ⟨100, ({t1}, {t1})⟩,
⟨101, ({t3, t4}, {t2})⟩, and ⟨102, ({t2}, {t3})⟩. The first entry can

be ignored since it does not represent any pair of distinct tuples.

To decide about the build and probe side, we estimate the car-

dinality (number of distinct values) of the columns using the fast

HyperLogLog sketches [17]. We use the column that has the low-

est estimated cardinality as the build side, so we have the fewest

possible number of table entries. Notice that if we use column B as

the build side, we must reverse the order of the pair of tids.

Avoiding scans in reflexive pairs of tids. Some DCs have pred-

icates or predicate sequences that enable further refinement opti-

mizations. Equalities having the same column on both sides are a

good example. Assume a predicate of the form p : t.A = t′.A to be

the first in the pipeline. We build a hash table that maps each unique

value of column A in the table into a reflexive pair (tids1, tids1),
where tids1 contains the tuples having that value. There is no

need for probing the hash table in these cases. We can simply it-

erate each entry, if it has a pair of tids with at least one pair of

distinct tuples (i.e., tids1 has more than one tuple), we push that

pair into the next stage. Also, we use this strategy on sequences

of predicates p : t.A = t′.A that are right at the beginning of the

pipeline. For example, the pair of tids ({t2, t3, t4}, {t2, t3, t4})
represents pairs of employees of the same department and the pair

of tids ({t2, t4}, {t2, t4}) represents pairs of employees of the

same department that have the same salary. As the pairs of tids
are always reflexive, we can avoid one entire scan of tids. Notice
that we can perform this optimization for all the refinements of

single-column predicates on reflexive pairs of tids.

5.2 Non-equalities
We refer to non-equalities as predicates of the form p : t.A ≠ t′.B.
Similar to the refinement of equalities, we follow a hash-based

approach, but with a key difference in how we build the output.

Assume column A as the build side once more. Given a pair of tids
(tids1, tids2) as input, we build a hash table the same way we do

for equalities on a pair of different columns. Now, assume each entry

of this hash table to have a key 𝑘 associated with a pair of tids
(tids′

1
, tids′

2
). An empty tids′

2
means that none of the tuples in

862

tids2 have a value 𝑘 of column B matching that value 𝑘 of column

A of the tuples of tids′
1
. In other words, all tuples of tids′

1
have a

value of column A that is different from every value of column B of

the tuples in tids2. So we simply push the pair (tids′
1
, tids2) to

the next refinement. On the other hand, a non-empty tids′
2
means

that all tuples of tids′
1
have a value 𝑘 of column A that is equal

to the 𝑘 value of column B of the tuples of tids′
2
. In this case, we

calculate the set difference tids′′
2
= tids2 \ tids′

2
. Then, we push

the pair (tids′
1
, tids′′

2
) to the next refinement.

Hybrid tids in action. Functional dependencies exemplify a pred-

icate structure that can greatly benefit from our refinement opti-

mizations. Assume a DC 𝜑 : ¬(t.StartDate = t′.StartDate ∧
t.Salary ≠ t′.Salary), or StartDate → Salary in functional de-

pendency notation. We first perform the refinement of the equality

on StartDate and obtain a reflexive pair (tids1, tids1), where
tids1 = {t2, t3}. Through this stage, we store tids as simple ar-

rays of integers, because the current refinement does not need to

perform any bitwise operations. The next stage is the refinement of

the non-equality on Salary, which benefits from tids reflexivity.
In this stage, we fetch the values of salary of the integer-based

tuples of tids1 and build a hash table with entries ⟨6000, {t3}⟩ and
⟨8000, {t2}⟩. At this stage, however, we use compressed bitmaps to

store and operate tids, because of the non-equality requirement

for logical operations. Each entry of the non-equality hash table is

a value 𝑣 of salary associated with a subset of tids1: a set tids
′
1

of tuples that have that value 𝑣 of salary. Notice that the tuples of

tids′
1
have a salary value different from the salary values of the

tuples of the set difference tids′′
1

= tids1 \ tids′
1
. This opera-

tion is implemented with a simple and not. Finally, we push pairs

(tids′
1
, tids′′

1
) into the output. For the non-equality on salaries,

we first push the pair ({t3}, {t2}), and then the pair ({t2}, {t3}).

5.3 Inequalities
We refer to inequalities as predicates of the form p : t.A o t′.B,
where operator o ∈ {<, ≤, >, ≥}.

IEJoin. This algorithm was proposed in [24] and used in [6] to

process the inequality predicates of DCs. The algorithm is designed,

and limited, to process two inequalities at a time. First, it builds

sorted versions of each side of the input pair of tids. Next, it
computes permutation arrays and offset arrays whose contents are

relative to the sorted tids. Guided by these arrays, it visits the

sorted tuples from the right-hand side of the input pair and marks a

bitmap for pairs of tuples that satisfy the second predicate. Finally,

it iterates parts of the offset array regarding the left-hand side of

the input and checks the marked bits in the bitmap to determine if

the current pair of tuples also satisfy the first predicate. To produce

pairs of tidswe use the following strategy from [6]: while checking

the bitmap, we incrementally insert the satisfying pair of tuples

into the output pair of tids. If we find tuples producing different

matching structures, either in the left-hand side or in the right-hand

side of the output, we can push the current pair of tids and start

a new iteration for a new output pair. Such strategy reduces the

number of pairs of tids IEJoin pushes to further refinements.

The cost of the IEJoin algorithm is usually dominated by the

sorting phase for instances that produce a relatively low output.

For instances with many qualifying results, however, the domi-

nant part of the algorithm becomes the iteration of offset arrays as

well as bitmap scanning. As a result, the algorithm may severely

underperform for predicates of low selectivity.

Hash-Sort-Merge (HSM). We refer to HSM as the algorithm for in-

equalities used in VioFinder [31]. The algorithm follows a sort-

merge approach that uses the distinct values of each column as

sentinels. Like our other refinement algorithms, it first builds a hash

table for each column of the input predicate using the respective

side of the input pair of tids. Then, it constructs a sorted set from

the keys of each hash table and removes from the tails and heads of

these sorted sets those values that cannot form any pair of tids that
satisfy the inequality. In the merging phase, the algorithm performs

interleaved linear scans of the two sorted sets to find pairs of values

that satisfy the predicate. Then, it collects the tids associated with
those values into the output pairs of tids. Each new result is built

incrementally using the pairs of tids from previous iterations and

logical union (OR) operations. Instead of pushing a pair of tids for
each pair of matching values, the algorithm checks the pair from

the previous iteration and tries to keep the tids associated with

the new matching values in that same pair whenever the matching

value structure allows it. This strategy not only reduces the number

of pairs of tids moving in the pipeline, but also helps to produce

denser tids that better benefit from bitmap compression.

The HSM algorithm builds the output incrementally from previous

iterations, which alleviates performance slowdowns from predicates

of low selectivity. However, the algorithm needs to map each dis-

tinct column value into its respective tids. This becomes an issue

for predicates on high-cardinality columns. Although bitmap com-

pression reduces the storage and operation complexity of tids [27],
it does not reduce the number of logical operations required to in-

crementally build the resulting pair of tids.

Binning-Hash-Sort-Merge (BHSM). We propose the novel BHSM
algorithm to extend HSM to use bitmaps with binning. Binning

is a technique that partitions the column values into a number

of ranges and uses a bitmap to represent each range. Instead of

building hash tables, BHSM builds range maps that map ranges of

a column domain into the tids (bitmaps) whose values of that

column lies within the ranges. For simplicity of implementation, we

use equal-width binning: we retrieve the minimum and maximum

value of each column, and we divide that range into equally spaced

ranges according to a fixed number of bins. The main flow of BHSM
is similar to the HSM case, but the merging phase uses interleaved

linear scans of sorted sets of column ranges rather than sorted sets of

column values. For each pair of matching ranges, BHSM produces the
associated pair of tids. In BHSM, these pairs are usually very dense,

as they contain a large fraction of pairs of tuples that satisfy the

inequality. This fact helps the algorithm achieve high throughput.

In addition, BHSM needs to perform a candidate check for the tids
related to the matching ranges. To do so, the algorithm simply runs

the original HSM algorithm on these tids. In general, the number

of tuples the HSM algorithm processes at this point is rather small

compared to the total number of tuples in the original input.

As an example, consider all pairs of tuples of the Employee table
and the refinement of the predicate p : t.StartDate < t′.StartDate

863

using BHSM with two bins. First, we build a range map with two en-

tries: ⟨[2011,2013), {t1}⟩ and ⟨[2013,2015], {t2, t3, t4}⟩. Since the
range [2011,2013) is lower than the range [2013,2015], the inter-
leaved scan of ranges results in the pair ({t1}, {t2, t3, t4}). Next, we
perform the candidate checks for each tids of the range map. Run-

ning HSM having ({t1}, {t1}) and p as input returns empty, whereas

running HSM for ({t2, t3, t4}, {t2, t3, t4}) returns the pair of tids
({t2, t3}, {t4}). Notice that the pairs of tids ({t1}, {t2, t3, t4})
and ({t2, t3}, {t4}) represent all pairs that satisfy the inequality.

Compared to the HSM algorithm, the BHSM algorithm greatly im-

proves the evaluation of predicates on high cardinality columns. In

the first phase of the algorithm, the number of logical operations is

always limited due to binning. As for the candidate check phase, it

runs over only a part of the domain space. As a result, the column

cardinality perceived at this point is smaller than the column car-

dinality perceived for the original column, so the issue with high

cardinality columns is mitigated.

Optimizations. In the case of the refinement of single-column in-

equalities that consume reflexive pairs of tids, the algorithms

iterate only one side of the pairs to build their auxiliary data

structures. A second optimization is possible for refinements sub-

sequent to inequality refinements implemented with either HSM
or BHSM. During the “merge” phase of these algorithms, many of

the output pairs of tids are formed incrementally from previous

pairs. As an example, observe the right-hand side of the pair of

tids for the refinement of p : t.Salary > t′.Salary with HSM:
({t3}, {t1}), ({t2, t4}, {t1, t3}). A refinement receiving pairs of

tids of this form can cache the data structures built for the right-

hand side of each pair. While the relative difference of the right-

hand side of previous and current pairs is non-empty, we can build

the supporting data structures incrementally. In the example, a

refinement receiving the pairs of the refinement on p would build

a structure for tuple t1, then, in the next iteration, incrementally

update that structure for tuple t3.

6 REFINEMENT PLANNING
This section describes a low-overhead heuristic algorithm to select

predicate evaluation orders whose expected costs are minimized. It

also describes how to select the inequality algorithms that best fit

the DC structure and input dataset.

6.1 A cost measure for refinements
A basic cost in most refinement algorithms regards iterating the

hash tables entries that maintain tids. As a result, the number

of distinct values of a column, hence the number of table entries,

impacts the overall refinement performance. Furthermore, a key

performance dimension for building and probing hash tables is

their spatial size [34]. Large hash tables are less cache-effective

due to higher data movement and perform worse than small hash

tables that better fit in the cache [7, 40]. To illustrate this intuition,

we ran FACET for a single equality p : t.A = t′.A using the two

tids storage types: arrays of integers, and compressed bitmaps.

We set the number of records to 𝑁 = 2
20

for all executions and

generated values following a uniform distribution. We increased

the number of distinct values of column A in powers of two, and for

each factor, we generated one hundred datasets. Figure 2 reports the

average refinement runtime and the average size of the hash table

built for each factor. As expected, there is a correlation between

column cardinalities, hash table sizes, and runtime. Regarding tids
representation, performance degradation is more severe for bitmaps,

as they incur overhead that soon becomes non-negligible.

24 28 212 216 220

Number of distinct values

213

222

tids as arrays of integers

Runtime (ms) Table size (bytes)

24 28 212 216 220

Number of distinct values

tids as compressed bitmaps

Figure 2: The impact of column cardinality on hash table
sizes and equality refinement runtime.

Hash table partitioning is a well-studied way to reduce the penal-

ties of hash tables with a large number of entries [40]. Unfortunately,

the partitioning itself may also incur non-negligible overhead and

slow down execution [2, 5, 40]. There has been a long debate on

hashing schemes [5, 29, 33, 34], which is out of the scope of this

paper. But even if we could find the fastest hashing scheme, the

code pattern in the refinements remains the same. The higher the

column cardinality, the higher the number of entries we iterate

to produce the pairs of tids, and hence the higher the amount of

computation. For example, in the HSM algorithm for inequalities,

the number of logical ORs performed is a direct function of column

cardinality. Thus, we use column cardinalities as a proxy for the

amount of work a refinement is expected to perform.

Column cardinalities are usually not given, so we estimate them

using HyperLogLog sketches [17]. Compared to other estimators,

these sketches provide a good trade-off between fast estimation,

accuracy, and stability for all cardinality ranges [22]. As we discuss

next, we also need to calculate the cardinality of pairs of columns

in some cases. We use the estimation framework proposed in [18]

to correct estimates on pair of columns from small samples using

HyperLogLog sketches on individual columns. As it has been shown

in [18], the approach is able to produce highly accurate estimates

while keeping a very low estimation overhead.

6.2 Organizing refinements
First, we divide the DC predicates into the classes described in

Section 5: equalities, non-equalities, and inequalities. The intuition

here is to evaluate the classes of predicates of higher selectivity first.

Compared to other predicate classes, equalities usually incur low

evaluation costs and have a higher selectivity, so they come first.

Consider a predicate p : t.A = t′.A and f(𝑘) as the frequency of a

column value 𝑘 in the domain A, denoted 𝑑𝑜𝑚(A) . For simplicity,

assume 1 < f(𝑘) < 𝑛, that is, every value 𝑘 appears more than once

and A is not a single value column. To refine this predicate, we build

a hash table for column A and then iterate a total of |𝑑𝑜𝑚(A) | entries.
This iteration results in

∑︁
𝑘

f(𝑘)2 pairs of tuples. Now, consider we

change the operator of p to form a new predicate p′ : t.A ≠ t′.A.
We can intuitively see the increase in computations, as for each

value 𝑘 we need to perform one set difference computation. By the

same token, we see the huge increase in intermediate size compared

864

to the equality counterpart, as we now have

∑︁
𝑘

f(𝑘) · (𝑛 − f(𝑘))

pairs of tuples. We use the above intuition to evaluate predicates

according to the selectivity signature of their classes: equalities

first; then inequalities; and finally non-equalities.

Next, we order predicates within each class. At this point, we use

column cardinality information to push down predicates whose re-

finement is likely faster to compute. The intuition is that predicates

within the same class usually have selectivities within the same

order of magnitude. Even if we favor predicates of lower selectivity,

the amount of computation saved should pay off in the end. We fol-

low general rules within each predicate class. When the predicates

of a class consume reflexive pairs of tids, single-column predicates

have the priority. In this way, more refinements save the scanning

of one side of the input pair of tids. Otherwise, the priority is

predicates on the column with the least estimated cardinality. As a

result, more refinements work on smaller hash tables.

Single-column equalities. The higher the cardinality of a column,

the more likely single tuples with a unique value for that column

are to appear. We might be tempted to push the single-column

equalities on high cardinality columns down in an attempt to re-

duce intermediate sizes—since tuples with unique column values

cannot form satisfying pairs of tuples. However, the columns of DC

predicates are highly correlated, which might lead to pairs of tuples

being carried over a large portion of the pipeline. Furthermore, the

strategy above favors evaluating more expensive predicates first.

That being said, we still use the ascending order of column cardinal-

ities to order a pair of single-column equalities. However, for more

than two single-column equalities, we propose a greedy approach,

called GreedyHLL, based on intermediate size and evaluation costs.

Consider a set of predicates P = {p1, . . . , p𝑚}, where each pred-

icate p𝑖 is a single-column equality on the column A𝑖 . Let |A𝑖 | be
the estimated number of distinct values of column A𝑖 . Similarly,

let |A𝑖 , A𝑗 | be the estimated number of distinct value combinations

of column pairs (A𝑖 , A𝑗). We use 𝑖𝑛𝑡𝑒𝑟𝑚𝑒𝑑𝑖𝑎𝑡𝑒𝑠 =
𝑛−|A𝑖 ,A𝑗 |

𝑛 as the

ratio of tuples expected to remain after the evaluation of the predi-

cate pair (p𝑖 , p𝑗). The higher the column pair cardinality, the lesser

the number of tuples expected for subsequent refinements. Assum-

ing that |A𝑖 | ≤ |A𝑗 |, we use 𝑐𝑜𝑠𝑡 = 10

√︁
|A𝑖 | + |A𝑖 , A𝑗 | to capture the

expected costs of refining predicates p𝑖 then p𝑗 , in this order. As

discussed in Section 6.1, the refinement costs increase with the mag-

nitude of the column cardinalities. Thus, for each distinct pair of

predicates p𝑖 , p𝑗 ∈ P, 𝑖 ≠ 𝑗 , we compute rank = intermediates · cost.
The lower the 𝑟𝑎𝑛𝑘 values, the more likely a refinement is to evalu-

ate cheaper pairs of predicates and output intermediates of smaller

size. With the expected costs in place, we select pairs of predicates

in ascending order of 𝑟𝑎𝑛𝑘 . For each selected pair, we place the

predicate on the column with the least cardinality first. The algo-

rithm finishes when no predicate pair is left to visit or when all

predicates have been included in the predicate order.

Inequalities.We need to choose both the evaluation order and the

refinement algorithms for inequalities—we first discuss the latter.

The IEJoin algorithm is designed and limited to two predicates

at a time. Thus, for a single inequality, the decision stays between

HSM and BHSM. We ran an experiment with HSM, as well as BHSM
(with various numbers of bins), to perform the refinement of an

inequality p : t.A > t′.A. We used uniformly distributed values and

increasing values of column cardinality. Figure 3 (on the left) shows

the results of the experiment for a table with 1M rows. We observe

that HSM processes predicates on columns of low cardinality faster

than BHSM, which means that the candidate checking overhead

of BHSM does not pay off for those cases. The situation clearly

reverts for predicates on higher cardinality columns. We observe

that a threshold of 10, 000 distinct values works well for switching

between HSM and BHSM. Also, BHSM is stable with a number of bins

between 100 and 1, 000— similar ranges have been identified in

studies on bitmap indexes [37, 38]. We set BHSM with 500 bins, as

this setting consistently producedmost of the fastest executions.We

also performed the previous experiment with different table sizes

and data following other data distributions, e.g., different Zipfian

distributions, and we observed the same trends as above.

101 102 103 104 105

102

103

104
¬(t. A> t0. A)

BHSM (500)
BHSM [100-10000]

HSM

101 102 103 104 105

¬(t. A> t0. A∧ t. B< t0. B)
HSM/BHSM IEJoin

Number of distinct values of column A

Ru
nt

im
e

(m
s)

Figure 3: The different impacts of column cardinality on the
runtime of HSM, BHSM and IEJoin.

For any pair of inequalities, we can either use a pair of refine-

ments (with either HSM or BHSM) or a single refinement with IEJoin.
It turns out that the different approaches complement each other

well. We use a DC 𝜑 : ¬(t.A > t′.A ∧ t.B < t′.B) to illustrate this

behavior. We generate data in a similar way we did for the previous

experiment for a single inequality. But now, for each distinct value

𝑣 of column A, we generate a set of values for column B such that 𝜑

is fully satisfied. We set the cardinality of column B as twice the size
of the cardinality of column A. To add violations into the datasets,

we randomly selected 1% of the tuples and increased their values of

column B. The results on the right of Figure 3 are for a table with

1M rows and shows that IEJoin is more stable than HSM/BHSM for
higher values of column cardinality. In these cases, the sorting-first

strategy of IEJoin is more efficient than the incremental strategy

of HSM/BHSM. For smaller column cardinalities, however, the perfor-

mance of the algorithm is more impaired than the performance of

HSM/BHSM. In these cases, the dominant part of IEJoin is no longer

sorting, but offset array iteration and bitmap scanning. The tipping

point between HSM/BHSM and IEJoin occurs around 213 distinct val-
ues. We varied the experiment above, with larger dataset scales, and

observed that the absolute tipping points discussed for HSM/BHSM
and IEJoin work well in different scenarios.

Given the above, we organize the inequalities of each DC based

on the ascending order of the column cardinalities of each inequal-

ity, and then we select the refinement algorithms as follows. If

the DC contains only a single pair of inequalities, then we check

whether IEJoin is a viable option. We use IEJoin if the predicates

of the pair of inequalities include only columns with a cardinality

of 2
13

or higher, and thus, avoid the performance degradation from

IEJoin on low-cardinality columns. For other cases, we check each

inequality to choose between HSM or BHSM (again, depending on

865

column cardinality) and build a sequence of HSM or BHSM execu-

tions that can straightforwardly benefit from the caching scheme

discussed in Section 5. This strategy helps, for example, when the

sequence of inequalities has columns of different ranges of cardinal-

ity values. The first refinements are usually fast to perform due to

their lower-cardinality structure, whereas the further refinements

benefit from cached hash tables and, possibly, binning.

We can improve algorithm selection even further when the

evaluation pipeline also includes equalities. It turns out that the

refinement of the equalities may produce intermediate pairs of

tids whose structures enable us to switch the inequality algo-

rithms for better performance. For a moment, consider the DC

𝜑 : ¬(t.A = t′.A ∧ t.B < t′.B ∧ t.C < t′.C) and assume that B is a

low-cardinality column. Also, assume that the predicate evaluation

follows the predicate order as shown. In principle, we would choose

HSM for the inequality on column B. However, the actual cardinality
perceived by HSM depends on the joint cardinality |A, B|. The higher
this value is, the higher the number of entries HSM needs to incre-

mentally iterate to produce the results. Therefore, when equalities

are present, we check the estimated cardinality |A, B| to choose be-

tween HSM/BHSM and IEJoin. Now, assume C as a high-cardinality
column whose predicate would be assigned to BHSM. In this case,

we check if the actual number of tuples that reach that far in the

pipeline could actually benefit from binning. In our experiments,

we observed that the number of tuples for these cases are smaller

than the number of bins itself. Thus, we disable binning for these

cases as it would incur unnecessary overheads.

7 EXPERIMENTAL EVALUATION
In this section, we report the results of our experimental evaluation.

We describe our experimental settings in Section 7.1. Then, we

compare FACET to various other systems in Section 7.2. Finally, we

evaluate the design decisions of FACET in more depth in Section 7.3.

7.1 Experimental Settings
Table 2 lists the twelve DCs and the four datasets used in our exper-

iments. Most of the DCs have been used in related work [20, 31]. To

better investigate our design decisions, we included in our experi-

ments the Flights1 dataset (containing monthly domestic flight

records from 1990 to 2009) and the DCs 𝜑8, 𝜑9 and 𝜑13. For exam-

ple, DC 𝜑8 helps investigate our algorithm for equality refinement

as well as for the hybrid intermediate representation. The set of

DCs contains both approximate DCs (with violations) and exact

DCs (without violations), ranging from simple key constraints to

complex data quality rules. This set represents forms of DCs that

are usually seen in production (defined by experts or discovered

from data). The datasets contain a mix of numeric, date, and cate-

gorical columns, which we classify depending on their domain size,

i.e., cardinality values, with intervals [2,1000), [1000,10000), and
[10000,|r|] as low, medium, and high, respectively.

We compared FACET to a leading commercial DBMS (DBMS-X)
and to three distinct open source DBMSs: PostgreSQL represents
the tuple-at-a-time model; MonetDB implements the column-at-a-

time model; and DuckDB implements the vectorized model. Both

MonetDB and DuckDB run inmainmemory after the dataset is loaded.

1
http://www.bts.gov/, last accessed on 12/12/21

Once a dataset was loaded into a DBMS, we indexed all columns

mentioned in the DCs. We built B-tree indices with PostgreSQL
and DBMS-X; block range indices and adaptive radix tree indices

with DuckDB; and column imprints with MonetDB. To improve the

query plans, we ran the respective commands of each DBMS to

update the statistics on the tables before the executions.

To compare our system to a system that has also been designed

for DCs, we used our prior work VioFinder [31]. Notice that

VioFinder also uses the refinement pipeline, the pair of tids repre-
sentation, and specialized algorithms for different predicate classes.

Since our evaluation focuses on error-detection performance, we

used a SELECT COUNT(*) clause in each DBMS query to return

only the number of violations and avoid the materialization costs.

By the same token, we set both FACET and VioFinder to count and
return the number of violations detected.

FACET and VioFinder were implemented as Java programs that

run in main memory after a dataset is loaded. The planning phase

of VioFinder uses table samples of 1% and a linear factor of 20 (as

suggested in [6]). In FACET, we use table samples of 1% to correct the

cardinality estimates on pair of columns (as it can already produce

good estimates [18]). Setting sample sizes as above yielded equiv-

alent times for the planning phase of both FACET and VioFinder,
which did not disturb the order of the remaining results.

We ran all experiments on an Intel Core i7-7700HQ (2.8 GHz, 4

physical cores/8 logical cores, 32 KB for L1, 256 KB for L2, and 6 MB

for shared L3); 16 GB RAM; 256 GB SSD; Ubuntu 20.04; OpenJDK

64-Bit Server JVM 11.0.11; and JVM heap space limited to 8 GB.

We terminated any execution that exceeded a four-hour time limit.

Unless stated otherwise, we report runtime as the sum of all (but

data loading) times involved in the executions, for all systems. For

the DBMS approaches, we report indexing time and query execution

time separately. Notice that the specialized systems (VioFinder
and FACET) do not require traditional column indexing; they build

their auxiliary structures on the fly. With the exception of one

experiment in Section 7.3, we ran all executions on a single core.

Finally, we report the average of five independent executions.

7.2 Comparing to other systems
Figure 4 shows the runtime of running FACET and the DBMS-based

approaches for all the evaluated DCs, on three dataset scales (notice

the log-scale). The dashed areas in each bar reflect the detection

times alone. The results show that FACET is able to perform and

scale well for all datasets and DCs. Also, they show that FACET
finishes error detection much faster than the DBMSs most of the

time (even if we consider only detection times). The speedups are

of orders of magnitude for DCs that include inequalities: where

FACET takes a few seconds to finish, the DBMSs often take a few

hours or reach the time limit. In some cases, the index construction

in the DBMSs takes longer than the detection itself. As we increase

the number of rows, several DBMS’s executions start showing a

quadratic increase in runtime. On the other hand, FACET scales

linearly with the input size for most DCs.

By contrast, the DBMS baselines produce mixed results. MonetDB
was often unable to finish execution because its materialization

model drastically increases memory consumption for larger inputs.

PostgreSQL was always among the slowest executions (often by

866

http://www.bts.gov/

Table 2: Datasets summary and denial constraints used in our experiments.

Dataset

Number

of rows

Column

Cardinalities

DC

number

Denial constraint

Tax 10M Low, High 𝜑4 ¬(t.AreaCode = t′.AreaCode ∧ t.Phone = t′.Phone)
Tax 10M Medium, High 𝜑5 ¬(t.ZipCode = t′.ZipCode ∧ t.City ≠ t′.City)
Tax 10M Low 𝜑6 ¬(t.State = t′.State ∧ t.HasChild = t′.HasChild ∧ t.ChildExemp ≠ t′.ChildExemp)
Tax 10M Low, Medium, High 𝜑7 ¬(t.State = t′.State ∧ t.Salary > t′.Salary ∧ t.Rate < t′.Rate)
Flights 3.6M Low, Medium 𝜑8 ¬(t.Origin = t′.Dest ∧ t.Dest = t′.Origin ∧ t.Distance ≠ t′.Distance)
Flights 3.6M Low, Medium, High 𝜑9 ¬(t.Orgin = t′.Origin ∧ t.Dest = t′.Dest ∧ t.Flights > t′.Flights ∧ t.Passengers < t′.Passengers)
TPC-H 6M Medium, High 𝜑10 ¬(t.Customer = t′.Supplier ∧ t.Supplier = t′.Customer)
TPC-H 6M Medium 𝜑11 ¬(t.Receiptdate ≥ t′.Shipdate ∧ t.Shipdate ≤ t′.Receiptdate)
TPC-H 6M Low, High 𝜑12 ¬(t.ExtPrice > t′.ExtPrice ∧ t.Discount < t′.Discount)
TPC-H 6M Low, High 𝜑13 ¬(t.Qty = t′.Qty ∧ t.Tax = t′.Tax ∧ t.ExtPrice > t′.ExtPrice ∧ t.Discount < t′.Discount)
IMDB 2.5M Low, High 𝜑14 ¬(t.Title = t′.Title ∧ t.ProductionYear = t′.ProductionYear ∧ t.Kind ≠ t′.Kind)
IMDB 5.8M Low, High 𝜑15 ¬(t.Title = t′.Title ∧ t.Name = t′.Name ∧ t.CharName = t′.CharName ∧ t.Role = t′.Role)

10k 100k 1M
Tax(φ4)

100

103

Facet MonetDB DuckDB DBMS-X PostgreSQL

10k 100k 1M
Tax(φ5)

100

103

10k 100k 1M
Tax(φ6)

103

10k 100k 1M
Tax(φ7)

104

10k 100k 1M
Flights(φ8)

100

103

10k 100k 1M
Flights(φ9)

103

105

10k 100k 1M
Tpch(φ10)

100

102

10k 100k 1M
Tpch(φ11)

104

10k 100k 1M
Tpch(φ12)

105

10k 100k 1M
Tpch(φ13)

103

10k 100k 1M
Imdb(φ14)

102

104

10k 100k 1M
Imdb(φ15)

102

104

Number of rows

Ru
nt

im
e

(m
s)

Figure 4: Runtime comparison of FACET to four distinct DBMSs using SQL queries. The dashed areas in each bar represent the
violation detection time, whereas the solid areas represent the indexing construction time (only for the DBMSs). The dotted
lines are cases where the respective DBMS either exceeded the time limit of four hours or ran out of memory.

orders of magnitude). This might be a side effect of the tuple-at-a-

time model on low selectivity predicates, leading to many function

calls and high interpretation overheads. DuckDBwas the only DBMS

able to complete the execution for all DCs within the time limit,

and it was often the fastest DBMS option. The fact that DuckDB pro-
cesses intermediates vector-at-a-time supports the design decision

in FACET of processing pairs of tids at a time.

With the exception of PostgreSQL, the DBMSs performed rea-

sonably well for DCs including only equalities. However, the per-

formance of all DBMSs drastically worsens for DCs including non-

equalities or inequalities. In broad terms, we observed the follow-

ing: For equalities and non-equalities, DuckDB and MonetDB (the in-

memory DBMSs) use hash join, whereas PostgreSQL and DBMS-X
chose between merge join and hash join. All DBMSs fall back to us-

ing nested loops for inequalities but push down equalities whenever

they are available. This latter decision is a clear strategy to decrease

the number of intermediates before evaluating more expensive

predicates—which is also FACET’s strategy. With regard to indexing,

the optimizers of MonetDB and DuckDB never chose indices, while
PostgreSQL and DBMS-X used them only seldomly. The quality of

the query plans varied not only between DBMSs, but also between

database scales. For DCs 𝜑9, 𝜑14 and 𝜑15, DBMS-X opted for different
join algorithms between the 100K and the 1M datasets with great

impact on the relative response time. Similarly, PostgreSQL used
different plans (and varied materialization schemes) for DC 𝜑15,

which resulted in poor performance even for the smallest dataset.

In the next experiment, we used GROUP BY clauses, instead of

self-joins, to detect violations of functional dependencies (FDs).

The approach is similar to [15], but our setting does not require

handling constant values. Given an FD 𝜑 : A1, . . . , A𝑚 → B defined
for a table r, we obtain the values of columns A1, . . . , A𝑚 responsible

for the violations of 𝜑 with queries of the form:

SELECT DISTINCT t.A1, . . . , t.A𝑚
FROM r t

GROUP BY t.A1, . . . , t.A𝑚
HAVING COUNT(DISTINCT t.B) >1

Then, we use a subquery and the EXISTS operator to obtain

the complete tuples that participate in the constraint violations.

Figure 5 shows the runtimes of the above approach compared to

the runtimes of FACET, for the three FDs 𝜑5, 𝜑6 and 𝜑14, on datasets

with 1M rows. FACET is fastest, both in terms of detection time and

total time. Interestingly, we observe that the performance gain of

867

FACET over the other systems is higher for DC 𝜑14, which has a

few violations (DCs 𝜑5 and 𝜑6 have no violations). The GROUP BY
approach for FDs may be faster than the self-join approach in some

cases, as their respective queries have different structures and, thus,

generate different query plans. However, the GROUP BY approach

produces only the tuples that participate in the constraint violations;

that is, it produces a different result granularity than the self-join

approach. We would still need to process the output to generate

the pair of tuples used in related data cleaning tools (e.g., [35]).

The query plans for the GROUP BY approach, DuckDB and MonetDB
did not use indices and DBMS-X used them only for 𝜑5. Their query

plans are very similar in terms of operations, aggregates and join

algorithms. The runtime difference, however, comes from the exe-

cution model and the materialization of intermediates that are more

efficient in DuckDB and DBMS-X than in MonetDB. In PostgreSQL,
all query plans used bitmap index scans. However, the query cost

exploded for the DISTINCT clause that is needed to de-duplicate

the result from the inner query comparison.

Tax(φ5) Tax(φ6) Imdb(φ14)
102

103

104

Ru
nt

im
e

(m
s)

Facet MonetDB DuckDB DBMS-X PostgreSQL

Figure 5: Runtime comparison of FACET to four distinct
DBMSs using the GROUP BY approach. The filling patterns of
the bars are the same as in Figure 4.

This next experiment compares the performance of FACET with

that of VioFinder [31], by varying the number of rows in each table

as we show in Figure 6. Unlike the DBMS-based approaches, both

systems were able to finish for the full tables, most often in a matter

of a few seconds. This fact indicates that the general design of these

systems can mitigate many of the issues raised in the DBMS-based

approach. Overall, the results show that FACET generally scales

better than VioFinder with the number of rows—the main reason

varies across DCs. For functional dependencies and keys (𝜑4, 𝜑5, 𝜑6,

𝜑14, 𝜑15), the hybrid storage of tids and the predicate organization
of FACET contribute to speedup factors from 1.31 to 2.17, for the

maximum number of rows in each table. For DCs that include two-

column equalities (𝜑8, 𝜑10), the speedup factors (of up to 2.3) are

additionally associated with the more efficient hash-join approach

of FACET. Both FACET and VioFinder choose HSM to evaluate the

inequalities of the DCs𝜑7,𝜑11, and𝜑13. The former system is sightly

faster for DC 𝜑7 due to its approach for the equality on that DC, but

it renders no relevant improvement for DCs 𝜑11, and 𝜑13. Switching

HSM for IEJoin to evaluate the pair of inequalities of the DC 𝜑9 and

enabling BHSM for the ExtPrice inequality of the DC 𝜑12 enabled

FACET to achieve speedups, for the maximum number of rows in

each table, of 3.64 and 14.49, respectively.

7.3 Evaluation of the design decisions of FACET
Given the above results, the next set of experiments are devoted to

better investigate the design decisions in FACET and shed light on

why it performs better than the other systems.

Figure 7 shows the performance changes from different types of

tids storage—the DCs in the plot are representatives that illustrate

the different performance impacts on inequalities, non-equalities,

and equalities (left to right). The hybrid storage of FACET uses

the power of bitmap compression or the simplicity of an array of

integers dynamically, and its related runtime is always among the

fastest. The compressed bitmaps support much faster executions

than arrays of integers when predicate evaluation relies on logical

operations (as in DCs 𝜑7 and 𝜑8). Otherwise, the additional costs

in regard to bitmaps do not pay off, as in the case of DC 𝜑15.

In Figure 8 we compare the use of static inequality algorithms

(as used in previous works) to the the adaptivity approach of FACET.
The performance of all three inequality algorithms greatly vary

depending on the input. All algorithms perform well for DC 𝜑7, but

HSM is the fastest due to the cardinality settings. The joint cardinality
of the columns in DC𝜑9 is high, so IEJoin is the best option. Finally,
DC𝜑12 includes predicates that severely hinders the performance of

both IEJoin (due to the low-cardinality Discount column) and HSM
(due to the high-cardinality ExtPrice column). In this case, BHSM
is the best option, and it becomes orders of magnitude faster than

the other two options as the number of rows grows. The adaptivity

approach of FACET avoids the worst-case configuration by taking

the values of column cardinality and the size of the pairs of tids
into account. As a result, its runtime results closely follow that of

the best algorithmic option for each input.

Next, we investigate the evaluation planning strategies of FACET.
Table 3 illustrates the difference between naive evaluations of pred-

icate pairs in the order shown (the baseline) vs. evaluations in the

order chosen by FACET—which is, for these examples, the reverse

order of what is shown. Clearly, the largest speedups occur for

pairs of predicates that contain an equality combined with either

an inequality or a non-equality. Pushing equalities down incurs

much smaller intermediates, hence the larger speedups.

Recall that FACET considers predicate selectivity only to sort

between different predicate classes and that it uses column sketches

to sort within a predicate class. It turns out that predicate selectivity

might be too sensitive for predicates within the same class. For

example, while the number of intermediates (in pairs of tuples) from

the evaluation of t.Salary > t′.Salary is 1.07 times larger than the

number of intermediates from the evaluation of t.Rate < t′.Rate,
the column cardinality of Salary is about twelve times that of Rate.

Previous works use sampling and predicate selectivity to decide

the order of predicates within the same class. As a result, errors

in selectivity estimation could lead these system to choose poor

predicate orders. For example, from a set of ten runs, sampling

chose the higher-cost predicate order of the third entry of Table 3

twice. Our sketch-based approach, in turn, consistently chose the

cheaper predicate order. To investigate this matter even further

and to contrast the effectiveness of sampling ([6, 31]) vs. column

sketches, we generated tables with 1𝑀 rows and a varied number

of columns whose cardinality classes are chosen at random—one

hundred tables per column number. For each table, we used a DC

with inequalities of the form t.Ai < t′.Ai, where 𝑖 varied with the

number of columns. We used the true column cardinalities as the

ground truth and check it against the order chosen by the estimators.

The results in Table 4 show the superiority of the sketch-based

approach (“HLL”): it is not impacted by the number of columns,

868

2 4 6 8 10
Tax(φ4)

0

1

2

FACET Viofinder

2 4 6 8 10
Tax(φ5)

0
1
2
3

2 4 6 8 10
Tax(φ6)

0.5
1.0
1.5

2 4 6 8 10
Tax(φ7)

2

4

1 2 3
Flights(φ8)

0

1

1 2 3
Flights(φ9)

0
4
8

12

1 2 3 4 5 6
Tpch(φ10)

0.5
1.0
1.5

1 2 3 4 5 6
Tpch(φ11)

6
12
18

1 2 3 4 5 6
Tpch(φ12)

0
250
500
750

1 2 3 4 5 6
Tpch(φ13)

6
12
18
24

1 2
Imdb(φ14)

0.25
0.50
0.75

1 2 3 4 5 6
Imdb(φ15)

0

1

2

Number of rows (in millions)

Ru
nt

im
e

(s
)

Figure 6: Runtime comparison of FACET to VioFinder.

100K 500K 1M
Tax(φ7)

0

100

Hybrid Compressed Bitmaps Array of integers

1M 2M 3M
Flights(φ8)

0.5

1.0

1M 3M 6M
Imdb(φ15)

1

2

Number of rows

Ru
nt

im
e

(s
)

Figure 7: Impact of the types of tids storage on runtime.

1M 5M 10M
Tax(φ7)

0

1

10 Adaptivity HSM BHSM IEJoin

1M 2M 3M
Flights(φ9)

0
1

10

100k 500k 1M
TPCH(φ12)

0

10

1000

Number of rows

Ru
nt

im
e

(s
)

Figure 8: Impact of adaptivity vs. non-adaptivity strategies
on the runtime for DCs including inequalities.

and it is fast to compute. Sampling, on the other hand, produces

unsatisfactory accuracy even with large samples and for a small

number of columns.

Table 3: Runtime speedups of predicate evaluations in the
order shown relative to evaluations in the order by FACET.

Predicate evaluation order

Speedup

As shown FACET

t.Phone = t′.Phone ∧ t.AreaCode = t′.AreaCode 1.00 1.19
t.Passengers < t′.Passengers ∧ t.Flights > t′.Flights 1.00 1.22
t.Salary > t′.Salary ∧ t.Rate < t′.Rate 1.00 2.71
t.ExtPrice > t′.ExtPrice ∧ t.Discount < t′.Discount 1.00 17.02
t.Flights > t′.Flights ∧ t.Origin = t′.Origin 1.00 25.78
t.Flights ≠ t′.Flights ∧ t.Origin = t′.Origin 1.00 41.36

The next experiment evaluates our GreedyHLL approach. We

focus on uniqueness constraints as they are composed of single-

column equalities solely. We ran the DC discovery algorithm of [30]

on Tax and extracted all uniqueness constraints from a sample of

100k rows so they would likely be violated when checked over the

Table 4: Accuracy and estimation time comparison of the
sketch-based approach vs. the sample-based one.

Number

of Columns

Accuracy Avg. time per table (ms)

Sampling

HLL

Sampling

HLL

0.1% 1% 10% 0.1% 1% 10%

2 0.48 0.64 0.65 1.0 4 36 356 39

3 0.24 0.29 0.32 1.0 5 48 477 55

4 0.07 0.14 0.11 1.0 6 65 636 75

5 0.03 0.03 0.06 1.0 8 78 758 92

entire table. The DCs have between two to five predicates each.

In Figure 9 we show the DCs 𝜑4, 𝜑15, and the set of discovered

constraints (DCs 𝜑16 − 𝜑31) as we compare the runtime of FACET
using the predicate order (or plans) from GreedyHLL, sampling

([6, 31]), and all other predicate permutations. Notice that runtime

is not as affected by estimation errors as it is in settings containing

inequalities. Still, the results illustrate how GreedyHLL is robust

for constraints having a variety of predicate numbers. For the DCs

having five predicates (120 possible plans), the worst plans produce

executions that are nearly three times slower than the executions

with GreedyHLL. The plans fromGreedyHLL consistently produced

the fastest (or close to the fastest) executions, whereas the plans

from sampling produced the slowest executions for a few DCs.

φ4 φ15 φ16 φ17 φ18 φ19 φ20 φ21 φ22 φ23 φ24 φ25 φ26 φ27 φ28 φ29 φ30 φ31
DCs

2000

3000

4000

Ru
nt

im
e

(m
s) Sampling

GreedyHLL
Remaining plans

Figure 9: Runtime of FACET using the plans of GreedyHLL vs.
runtime of FACET using all other possible plans.

The next experiment compares the execution options that FACET
offers when multiple DCs are given as input. We used the unique-

ness constraints described previously, which share many predicates

among each other. Also, we used a subset of the DCs discovered

869

on Tax (sample with 100k rows). Since the number of discovered

DCs was too large for human verification, we ranked the results

with the scoring system described in [12] and picked the top-20

results—these DCs share just a few predicates. FACET can check each
DC sequentially (“Sequential”), or each DC on a different thread

(“Parallel”—up to eight threads in our environment). Alternatively,

it can use two trie-based schemes, where predicates are sorted by

cost (“CostTrie”) or frequency (“FreqTrie”). Both trie-based modes

can run in parallel (each root on a thread).

Figure 10 shows the results for a varied number of DCs. We ran

each setting ten times using DCs taken at random for each DC

number and report the average runtime of the runs—we used tables

with 1M rows in this experiment. Clearly, enabling the multi-DC ex-

ecution can improve the overall runtime even further. For example,

Sequential was nearly three times slower than CostTrie Parallel for

the set of uniqueness constraints. The performance of FreqTrie and

CostTrie were generally similar: the former pushes down frequent,

but likely more expensive predicates, whereas the latter follows the

cheaper predicates first rule, which might decrease predicate evalu-

ation reuse. The trie-based approaches achieve higher speedups for

the set of uniqueness constraints—since they found many shared

predicates, they reused many more predicate evaluations. For the

top-20 DCs, on the other hand, there was not much space for reusing

predicate evaluations and the speedups come from the indepen-

dent (parallel) evaluation of each DC (or path in the trie-based

approaches). Currently, FACET supports only inter-DC parallelism.

Extending the refinement algorithms in Section 5 to benefit from

intra-DC parallelism is a topic of future work.

2 4 6 8 10 12 14 16
|DCs| from the UCCs of Tax

500

1000

1500

Ru
nt

im
e

(m
s)

Sequential
Parallel

CostTrie Sequential
CostTrie Parallel

FreqTrie Sequential
FreqTrie Parallel

2 4 6 8 10 12 14 16 18 20
|DCs| from the top-20 DCs of Tax

1000

2000

Ru
nt

im
e

(m
s)

Figure 10: Performance of the multi-DC execution modes.

Figure 11 shows the runtime breakdown of FACET for each DC,

on 1M rows. The time spent in each major part of the execution is

tracked and plotted as a percentage of the entire runtime. Loading

refers to the time spent to load the data file into main memory;

planning regards the time spent on cardinality estimation, sam-

pling, and predicate organization; and execution refers to the time

spent in detecting violations. Mind that each DC reaches as many

stages as its predicate number and that the pair of inequalities of

DC 𝜑9 is handled in a single stage by the IEJoin algorithm. In

general, the biggest execution costs were either data loading or

evaluating expensive predicates. An interesting execution contrast

from FACET planning can be seen, for example, between the stage

bars of DCs 𝜑4 and 𝜑15. For 𝜑4, FACET pushes down the predicate

on the low-cardinality column which leaves the “heavy” work for

the second stage. In turn, the system opts for pushing down the

equality pair with the highest selectivity in DC 𝜑15. In this case,

the initial stages handle high-cardinality columns, eliminate most

of the intermediates in the way, and thus, they greatly reduce the

work for further stages.

0%

50%

100%

Loading Planning Execution

Tax(φ4
)

Tax(φ5
)

Tax(φ6
)

Tax(φ7
)

Flights(φ
8)

Flights(φ
9)

TPCH(φ10
)

TPCH(φ11
)

TPCH(φ12
)

TPCH(φ13
)

IMDB(φ14
)

IMDB(φ15
)

0%

50%

100%

Stage 1 Stage 2 Stage 3 Stage 4

%
 o

f t
he

 r
un

tim
e

Figure 11: Runtime breakdown of FACET.

Our final experiment shows the heap size required to success-

fully execute FACET for each DC, on 1M records. To obtain this

requirement, we ran FACET with a maximum heap size of 32 MB

and continuously double this value until the system is able to pro-

cess the given DC. We also measured the amount of memory used

to store the dataset in memory. The results in Figure 12 show that

FACET generally requires a low amount of memory to succeed. The

requirement increases for DCs having a very high number of viola-

tions, e.g., 𝜑11 and 𝜑12, or for DCs over columns of large domains

and wide column values (e.g., the strings from 𝜑15). Finally, we

observe that binning, as in 𝜑12, and that equality pushdown, as in

𝜑13, have a great potential to reduce memory footprint in general.

Tax(φ4)
Tax(φ5)

Tax(φ6)
Tax(φ7)

Flights(φ8)

Flights(φ9)

TPCH(φ10)

TPCH(φ11)

TPCH(φ12)

TPCH(φ13)

IMDB(φ14)

IMDB(φ15)
32MB

256MB

512MB

He
ap

 si
ze

Remainder of the execution
In-memory dataset

Figure 12: Memory requirement of FACET.

8 CONCLUDING REMARKS
In this paper, we presented the FACET system to address the chal-

lenges of detecting data errors as DC violations. We showed how

column sketches can be a powerful tool in the organization of pred-

icate evaluation and minimize the amount and cost of intermediate

processing. We introduced new refinement algorithms and showed

that switching between the available inequality algorithms can

avoid occasions of suboptimal performance. Also, we proposed hy-

brid data structures as a better fit for the different patterns in each

refinement algorithm. All these ideas are integrated into a system

that is able to process multiple DCs at a time with robust and fast

error detection performance.

FACET naturally integrates with constraint-based data cleaning

pipelines. An extension for future work is the integration of FACET
with other use-cases, for example: in query processing by adding

cleaning operators into the query plans to track and repair DC

violations on demand [20]; or in top-k query answering by counting

the DC violations to rank the answering tuples [23].

870

REFERENCES
[1] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. 1999. Consistent Query

Answers in Inconsistent Databases. In Proceedings of the Symposium on Principles
of Database Systems (PODS). 68–79. https://doi.org/10.1145/303976.303983

[2] Maximilian Bandle, Jana Giceva, and Thomas Neumann. 2021. To Partition,or

Not to Partition, That is the Join Question in a Real System. In Proceedings of the
International Conference on Management of Data (SIGMOD). https://doi.org/10.

1145/3448016.3452831

[3] Leopoldo Bertossi. 2011. Database Repairing and Consistent Query Answering.
Morgan & Claypool Publishers.

[4] Leopoldo Bertossi. 2019. Database Repairs and Consistent Query Answering:

Origins and Further Developments. In Proceedings of the Symposium on Principles
of Database Systems (PODS). 48–58. https://doi.org/10.1145/3294052.3322190

[5] Spyros Blanas, Yinan Li, and Jignesh M. Patel. 2011. Design and Evaluation of

Main Memory Hash Join Algorithms for Multi-Core CPUs. In Proceedings of
the International Conference on Management of Data (SIGMOD). 37–48. https:

//doi.org/10.1145/1989323.1989328

[6] Tobias Bleifuß, Sebastian Kruse, and Felix Naumann. 2017. Efficient Denial

Constraint Discovery with Hydra. PVLDB 11, 3 (2017), 311–323. https://doi.org/

10.14778/3157794.3157800

[7] Alex D. Breslow, Dong Ping Zhang, Joseph L. Greathouse, Nuwan Jayasena, and

Dean M. Tullsen. 2016. Horton Tables: Fast Hash Tables for in-Memory Data-

Intensive Computing. In Proceedings of the USENIX Annual Technical Conference.
281–294.

[8] Marco Calautti, Marco Console, and Andreas Pieris. 2019. Counting Database Re-

pairs under Primary Keys Revisited. In Proceedings of the Symposium on Principles
of Database Systems (PODS). 104–118. https://doi.org/10.1145/3294052.3319703

[9] Marco Calautti, Leonid Libkin, and Andreas Pieris. 2018. An Operational Ap-

proach to Consistent Query Answering. In Proceedings of the Symposium on
Principles of Database Systems (PODS). 239–251. https://doi.org/10.1145/3196959.

3196966

[10] Moses Charikar, Surajit Chaudhuri, Rajeev Motwani, and Vivek Narasayya. 2000.

Towards Estimation Error Guarantees for Distinct Values. In Proceedings of the
Symposium on Principles of Database Systems (PODS). 268–279. https://doi.org/

10.1145/335168.335230

[11] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data Cleaning:

Overview and Emerging Challenges. In Proceedings of the International Conference
on Management of Data (SIGMOD). 2201–2206. https://doi.org/10.1145/2882903.

2912574

[12] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Discovering Denial Constraints.

PVLDB 6, 13 (2013), 1498–1509. https://doi.org/10.14778/2536258.2536262

[13] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting

violations into context. In Proceedings of the International Conference on Data
Engineering (ICDE). 458–469. https://doi.org/10.1109/ICDE.2013.6544847

[14] Wenfei Fan. 2015. Data Quality: From Theory to Practice. SIGMOD Record 44, 3

(2015), 7–18. https://doi.org/10.1145/2854006.2854008

[15] Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsietsidis. 2008. Con-

ditional Functional Dependencies for Capturing Data Inconsistencies. ACM
Transactions on Database Systems (TODS) 33, 2 (2008), 6:1–6:48. https://doi.org/

10.1145/1366102.1366103

[16] Wenfei Fan, Chao Tian, YanghaoWang, and Qiang Yin. 2021. Parallel Discrepancy

Detection and Incremental Detection. PVLDB 14, 8 (2021), 1351–1364. https:

//doi.org/10.14778/3457390.3457400

[17] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier. 2007. Hyper-

LogLog: the analysis of a near-optimal cardinality estimation algorithm. Discrete
Mathematics & Theoretical Computer Science (2007), 137–156.

[18] Michael J. Freitag and Thomas Neumann. 2019. Every Row Counts: Combining

Sketches and Sampling for Accurate Group-By Result Estimates. In Proceedings
of the Conference on Innovative Data Systems Research (CIDR).

[19] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. 2020.

Cleaning data with Llunatic. VLDB Journal 29, 4 (2020), 867–892. https://doi.

org/10.1007/s00778-019-00586-5

[20] Stella Giannakopoulou, Manos Karpathiotakis, and Anastasia Ailamaki. 2020.

Cleaning Denial Constraint Violations through Relaxation. In Proceedings of
the International Conference on Management of Data (SIGMOD). ACM, 805–815.

https://doi.org/10.1145/3318464.3389775

[21] Amir Gilad, Daniel Deutch, and Sudeepa Roy. 2020. On Multiple Semantics for

Declarative Database Repairs. In Proceedings of the International Conference on

Management of Data (SIGMOD). ACM, 817–831. https://doi.org/10.1145/3318464.

3389721

[22] Hazar Harmouch and Felix Naumann. 2017. Cardinality Estimation: An Experi-

mental Survey. PVLDB 11, 4 (2017), 499–512. https://doi.org/10.1145/3186728.

3164145

[23] Ousmane Issa, Angela Bonifati, and Farouk Toumani. 2020. Evaluating Top-k

Queries with Inconsistency Degrees. PVLDB 13, 12 (2020), 2146–2158. https:

//doi.org/10.14778/3407790.3407815

[24] Zuhair Khayyat, William Lucia, Meghna Singh, Mourad Ouzzani, Paolo Papotti,

Jorge-Arnulfo Quiané-Ruiz, Nan Tang, and Panos Kalnis. 2015. Lightning Fast

and Space Efficient Inequality Joins. PVLDB 8, 13 (2015), 2074–2085. https:

//doi.org/10.14778/2831360.2831362

[25] Solmaz Kolahi and Laks V. S. Lakshmanan. 2009. On Approximating Optimum

Repairs for Functional Dependency Violations. In Proceedings of the International
Conference on Database Theory (ICDT). ACM, 53–62. https://doi.org/10.1145/

1514894.1514901

[26] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper, and

Thomas Neumann. 2015. How Good Are Query Optimizers, Really? PVLDB 9, 3

(Nov. 2015), 204–215. https://doi.org/10.14778/2850583.2850594

[27] Daniel Lemire, Gregory Ssi-Yan-Kai, and Owen Kaser. 2016. Consistently Faster

and Smaller Compressed Bitmaps with Roaring. Softw. Pract. Exper. 46, 11 (2016),
1547–1569. https://doi.org/10.1002/spe.2402

[28] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error Cor-

rection via a Unified Context Representation and Transfer Learning. PVLDB 13,

11 (2020), 1948–1961. https://doi.org/10.14778/3407790.3407801

[29] Ingo Müller, Peter Sanders, Arnaud Lacurie, Wolfgang Lehner, and Franz Färber.

2015. Cache-Efficient Aggregation: Hashing Is Sorting. In Proceedings of the
International Conference on Management of Data (SIGMOD). 1123–1136. https:

//doi.org/10.1145/2723372.2747644

[30] Eduardo H. M. Pena, Eduardo C. de Almeida, and Felix Naumann. 2019. Discovery

of Approximate (and Exact) Denial Constraints. PVLDB 13, 3 (2019), 266–278.

https://doi.org/10.14778/3368289.3368293

[31] Eduardo H. M. Pena, Edson Ramiro Lucas Filho, Eduardo Cunha de Almeida,

and Felix Naumann. 2020. Efficient Detection of Data Dependency Violations.

In Proceedings of the International Conference on Information and Knowledge
Management (CIKM). ACM, 1235–1244. https://doi.org/10.1145/3340531.3412062

[32] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. HoloClean:

Holistic Data Repairs with Probabilistic Inference. PVLDB 10, 11 (2017), 1190–1201.
https://doi.org/10.14778/3137628.3137631

[33] Stefan Richter, Victor Alvarez, and Jens Dittrich. 2015. A Seven-Dimensional

Analysis of Hashing Methods and its Implications on Query Processing. PVLDB
9, 3 (2015), 96–107. https://doi.org/10.14778/2850583.2850585

[34] Stefan Schuh, Xiao Chen, and Jens Dittrich. 2016. An Experimental Comparison of

Thirteen Relational Equi-Joins inMainMemory. In Proceedings of the International
Conference on Management of Data (SIGMOD). 1961–1976. https://doi.org/10.

1145/2882903.2882917

[35] Yu Sun and Shaoxu Song. 2021. FromMinimum Change to MaximumDensity: On

S-Repair under Integrity Constraints. In Proceedings of the International Confer-
ence on Data Engineering (ICDE). 1943–1948. https://doi.org/10.1109/ICDE51399.

2021.00181

[36] JianguoWang, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson. 2017.

An Experimental Study of Bitmap Compression vs. Inverted List Compression.

In Proceedings of the International Conference on Management of Data (SIGMOD).
993–1008. https://doi.org/10.1145/3035918.3064007

[37] Kesheng Wu, Ekow Otoo, and Arie Shoshani. 2004. On the Performance of

Bitmap Indices for High Cardinality Attributes. In Proceedings of the International
Conference on Very Large Databases (VLDB). 24–35. https://doi.org/10.1016/B978-

012088469-8.50006-1

[38] Kesheng Wu, Kurt Stockinger, and Arie Shoshani. 2008. Breaking the Curse of

Cardinality on Bitmap Indexes. In Proceedings of the International Conference
on Scientific and Statistical Database Management (SSDBM). 348–365. https:

//doi.org/10.1007/978-3-540-69497-7_23

[39] Jing Nathan Yan, Oliver Schulte, MoHan Zhang, Jiannan Wang, and Reynold

Cheng. 2020. SCODED: Statistical Constraint Oriented Data Error Detection. In

Proceedings of the International Conference on Management of Data (SIGMOD).
ACM, 845–860. https://doi.org/10.1145/3318464.3380568

[40] Marcin Zukowski, Sándor Héman, and Peter Boncz. 2006. Architecture-Conscious

Hashing. In Proceedings of the International Workshop on Data Management on
New Hardware (DaMoN). ACM, 6–es. https://doi.org/10.1145/1140402.1140410

871

https://doi.org/10.1145/303976.303983
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/3448016.3452831
https://doi.org/10.1145/3294052.3322190
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.1145/1989323.1989328
https://doi.org/10.14778/3157794.3157800
https://doi.org/10.14778/3157794.3157800
https://doi.org/10.1145/3294052.3319703
https://doi.org/10.1145/3196959.3196966
https://doi.org/10.1145/3196959.3196966
https://doi.org/10.1145/335168.335230
https://doi.org/10.1145/335168.335230
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.1145/2882903.2912574
https://doi.org/10.14778/2536258.2536262
https://doi.org/10.1109/ICDE.2013.6544847
https://doi.org/10.1145/2854006.2854008
https://doi.org/10.1145/1366102.1366103
https://doi.org/10.1145/1366102.1366103
https://doi.org/10.14778/3457390.3457400
https://doi.org/10.14778/3457390.3457400
https://doi.org/10.1007/s00778-019-00586-5
https://doi.org/10.1007/s00778-019-00586-5
https://doi.org/10.1145/3318464.3389775
https://doi.org/10.1145/3318464.3389721
https://doi.org/10.1145/3318464.3389721
https://doi.org/10.1145/3186728.3164145
https://doi.org/10.1145/3186728.3164145
https://doi.org/10.14778/3407790.3407815
https://doi.org/10.14778/3407790.3407815
https://doi.org/10.14778/2831360.2831362
https://doi.org/10.14778/2831360.2831362
https://doi.org/10.1145/1514894.1514901
https://doi.org/10.1145/1514894.1514901
https://doi.org/10.14778/2850583.2850594
https://doi.org/10.1002/spe.2402
https://doi.org/10.14778/3407790.3407801
https://doi.org/10.1145/2723372.2747644
https://doi.org/10.1145/2723372.2747644
https://doi.org/10.14778/3368289.3368293
https://doi.org/10.1145/3340531.3412062
https://doi.org/10.14778/3137628.3137631
https://doi.org/10.14778/2850583.2850585
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.1145/2882903.2882917
https://doi.org/10.1109/ICDE51399.2021.00181
https://doi.org/10.1109/ICDE51399.2021.00181
https://doi.org/10.1145/3035918.3064007
https://doi.org/10.1016/B978-012088469-8.50006-1
https://doi.org/10.1016/B978-012088469-8.50006-1
https://doi.org/10.1007/978-3-540-69497-7_23
https://doi.org/10.1007/978-3-540-69497-7_23
https://doi.org/10.1145/3318464.3380568
https://doi.org/10.1145/1140402.1140410

