
Artemis: A System for Analyzing Missing Answers

Melanie Herschel ∗
Universität Tübingen

72076 Tübingen, Germany

melanie.herschel@uni-tuebingen.de

Mauricio A. Hernández †
IBM Almaden Research Center

San Jose, CA, 95120, USA

mauricio@almaden.ibm.com

Wang-Chiew Tan ‡

UC Santa Cruz
Santa Cruz, CA, 95064, USA

wctan@cs.ucsc.edu

1. INTRODUCTION
A central feature of relational database management systems is

the ability to define multiple different views over an underlying
database schema. Views provide a method of defining access con-
trol to the underlying database, since a view exposes a part of the
database and hides the rest. Views also provide logical data in-
dependence to application programs that access the database. For
most cases, the process of specifying the desired views in SQL is
typically tedious and error-prone. While numerous tools exist to
support developers in debugging program code, we are not aware
of any tool that supports developers in verifying the correctness of
their views defined in SQL.

Artemis1 is a system that aims at filling this SQL debugging gap.
Our basic vision for Artemis is similar to debuggers for program-
ming languages. As far as we know, the state-of-the-art approach
for debugging SQL queries is highly manual and basically requires
the database administrator to make a few rounds of study-guess-
fix-test cycles (i.e., study the query, guess or pinpoint the problem,
fix the query, and test the new query with sample test cases). The
goal of Artemis is to provide database administrators and SQL pro-
grammers with a facility for understanding and verifying the SQL
view specifications more systematically.

In this demo, we showcase the principal novel feature of Artemis.
Given a relational database schema and a set of select-project-join-
union (SPJU) views defined over it, users can ask why one or more
tuples are not in the result of the views. This is common in debug-
ging scenarios where oftentimes, one may wonder why the result
of a query or view is empty, or why a query did not return certain
tuples. In the case of multiple views, one may wonder why, for
instance, an employee information is missing from both the em-
ployee register and the payroll view. It is also a mechanism for

∗Work done while at IBM Almaden Research Center.
†Partially funded by the U.S. Air Force Office for Scientific Re-
search under contract FA9550-07-1-0223.
‡Part of the work was done while visiting IBM Almaden Research
Center and supported by NSF CAREER Award IIS-0347065 and
NSF grant IIS-0430994.
1SQL Inspection based on Missing Entry TRAcing.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

“what-if” analysis, a feature that is commonly sought for in many
data analysis applications. As a matter of fact, [2] explored how
to explain why a single tuple is not in the result of a single select-
project-join (SPJ) query. Artemis extends that work with its ability
to generate explanations for a set of missing “tuples” over a set of
SPJU queries. Missing “tuples” may contain labeled nulls repre-
senting unknown and potentially shared values across the “tuples”.
They are encoded into c-tuples which are used in deriving explana-
tions for missing tuples (see Sec. 3). Artemis’ explanations consist
of the set of existing source tuples and the set of missing source
tuples that must be added to generate the missing output tuples.
Artemis’ users can further refine the resulting explanations by re-
quiring Artemis to, e.g., rank the explanations by the number of
new tuples they require or by not allowing new tuples to be added
to certain views.

The algorithm behind Artemis computes explanations by first en-
coding the problem into a set of constraints, which is then passed to
a constraint solver. The solutions returned by the constraint solver
are subsequently filtered and sorted based on user requirements.
Artemis’ front-end is currently implemented as an Eclipse 3.4 plug-
in that extends Eclipse’s Data Tool Platform’s (DTP) plug-ins.

In Sec. 2, we describe the Artemis framework and its extensions.
These are then illustrated by a comprehensive example in Sec. 3.
We give some details on the underlying algorithm in Sec. 4 before
we describe what we plan to demonstrate in Sec. 5.

2. THE ARTEMIS FRAMEWORK
Formally, an Artemis debugging scenario is defined by a triple

(Q, D, E). Q is the set of SPJU queries (or views) that we are
debugging. D represents the source database for Q. Let Q(D)
denote the set of tuples in the views. E represents a set of c-tuples
that do not exists in Q(D) and require an explanation. The main
goal of Artemis is to generate explanations for the results E based
on Q and D. Each explanation describes how existing tuples in D
and new c-tuples (not currently in D) are used by Q to create all
required tuples in E.

We extend our debugging scenario by allowing users to specify
constraints on the returned explanation. Users can select a subset of
viewsQim ⊆ Q and mark them as “immutable views”. Intuitively,
Qim corresponds to the queries whose results the user trusts and
should not change. Note that the mechanism of Qim is more gen-
eral than the trust conditions allowed in [2], where only insertions
to source tables can be disallowed through trust conditions placed
on those tables. Note, however, that attribute trusts in [2] cannot be
captured through queries in Qim, since [2] allows tuples to be in-
serted into the source table even when certain attributes of the table
are trusted. When this constraint is in place, Artemis will not pro-
duce explanations that require tuples to be inserted into Qim(D).



UIDEmail Name
U1 john@univ.edu John
U2 jane@busy.com Jane
U3 peter@home.de Peter

IID UID
I1 U1
I4 U1
I2 U2
I3 U3
I4 U3

PIDUID Picture Visibility
P1 U1 goldengate.jpg Friend
P2 U1 pier39.jpg Public
P3 U2 market.jpg Friend
P4 U3 winetasting.jpgPublic

UID1UID2
U1 U2
U2 U3

PTID PIDCategory
PT1 P1 I3
PT2 P1 I1
PT3 P2 I4
PT4 P4

User Picture
UserInterest

Friend PictureTag

U1_Email Friend U2_Email
john@univ.edu Jane jane@busy.com
jane@busy.com John john@univ.edu
jane@busy.com Peter peter@home.de
peter@home.de Jane jane@busy.com

U1_Email Picture PContributor
peter@home.de pier39.jpg John

NetworkView

InterestingPicsView

Figure 1: The PhotoShare database (sample)

views.sql

CREATE VIEW Photoshare.UserInterestView AS 
SELECT U.email AS U1_EMAIL, I.Interest AS U1_Interest 
FROM Photoshare.User U, Photoshare.UserInterest UI, Photoshare.Interest I 
WHERE UI.UID = U.UID AND UI.IID = I.IID;

CREATE VIEW Photoshare.NetworkView AS
SELECT U1.email AS U1_email, 

U2.name AS Friend, U2.email AS U2_email 
FROM Photoshare.User U1, Photoshare.User U2, 

Photoshare.Friend F 
WHERE U1.uid = F.uid1 and u2.uid = f.uid2 
UNION 
SELECT U1.email AS U1_email, 

U2.name AS Friend, U2.email AS U2_email 
FROM Photoshare.User U1, Photoshare.User U2, 

Photoshare.Friend F 
WHERE U1.uid = F.uid2 and u2.uid = f.uid1;

CREATE VIEW Photoshare.InterestingPicsView AS 
SELECT U1.EMAIL AS U1_EMAIL, P.Picture AS Picture, 

U2.Name AS PContributor F
FROM Photoshare.User U1, Photoshare.User U2, 

Photoshare.PICTURE P, Photoshare.PictureTag PT, 
Photoshare.UserInterest UI 

WHERE U1.UID = UI.UID AND PT.CATEGORY = UI.IID 
AND PT.PID = P.PID AND P.VISIBILITY = 'Public' 
AND U1.UID <> U2.UID AND U2.UID = P.UID 
UNION 
SELECT NWV.U1_EMAIL AS U1_EMAIL, P.PICTURE AS Picture, 

NWV.FRIEND AS PContributor 
FROM Photoshare.User U1, Photoshare.User U2, 

Photoshare.PICTURE P, Photoshare.PictureTag PT, 
Photoshare.UserInterest UI, Photoshare.NetworkView NWV 

WHERE NWV.U1_EMAIL = U1.EMAIL AND UI.UID = U1.UID 
AND NWV.U2_EMAIL = U2.EMAIL AND U2.UID = P.UID 
AND PT.PID = P.PID AND PT.CATEGORY = UI.IID 
AND P.VISIBILITY = 'Friend'

Page 1

Figure 2: View definition queries inQ.

Users can also define Qm ⊆ Q as the set of queries for which
Artemis must minimize the number of tuples inserted. Note that
we require Qm ∩ Qim = ∅. Users can also specify filters on the
resulting explanations, for instance, based on the number of tuples
inserted. We note that [2] uses a similar concept of trust, but it is
less general than the Qim concept. In addition, [2] does not have
a way of specifyingQm or other constraints.

3. A SAMPLE TEST CASE STEP-BY-STEP
We illustrate the Artemis framework using a debugging scenario

for a social network application. This scenario, called PhotoShare,
models a picture sharing application among a network of “friends”.
Fig. 1 shows an excerpt of the Photoshare database. At the bot-
tom, we depict five source relations. These five tables are D in our
debugging scenario. The two top tables depict the result of Q(D).
The corresponding queries inQ are given in Fig. 2. Arrows from D
to Q(D) in Fig. 1 show which tables are used in the FROM clause
of each view definition.

The source schema stores information about PhotoShare users
including their friends, pictures taken, and tags about their interests.
Each picture can also be tagged as relevant to certain interest.

The NetworkView view associates the e-mail addresses of people
connected by the Friends table. Notice that this association is bi-
directional and is computed with the union of two almost identical
SPJ queries (one for each direction). The InterestingPicsView finds,
for each user, a list of shared pictures whose tag matches at most
one of the user’s interests. For example, peter@home.de appears

Friend F User U1 User U2
F.UID1 F.UID2 U1.UID U1.EMAIL* U1.NAME U2.UID U2.EMAIL* U2.NAME*

1 U1 = U2.UID U1 john@univ.edu John = F.UID2 $friend-email $friend-name
2 U1 U1 U1 john@univ.edu John U1 john@univ.edu John
3 U1 U3 U1 john@univ.edu John U3 peter@home.de Peter
4 = U2.UID U1 U1 john@univ.edu John = F.UID1 $friend-email $friend-name
5 U1 U1 U1 john@univ.edu John U1 john@univ.edu John
6 U2 U1 U1 john@univ.edu John U2 jane@busy.com Jane
7 U3 U1 U1 john@univ.edu John U3 peter@home.de Peter

Picture P PictureTag PT UserInterest UI User U1 User U2 NetworkView NWV
P.PID P.UID P.PICTURE* P.VISIBILITY PT.ID PT.PID PT.CATEGORY UI.UID UI.IID U1.UID U1_EMAIL* U1.NAME U2.UID U2.EMAIL U2NAME* NWV.U1_EMAIL NWV.FRIEND* NWV.U2_EMAIL

1 = PT.PID = U2.ID $picture Public ? = P.PID = UI.IID = U1.ID = PT.CATEGORY U1 john@... John = P.UID & ≠ U1.ID ? $friend-name
2 = PT.PID = U2.ID $picture Friend ? = P.PID = UI.IID = U1.ID = PT.CATEGORY U1 john@... John U1 john@... John john@univ.edu $friend-name = U2.EMAIL

Figure 3: Explanations creating t1

in this view because the picture pier39.jpg, contributed by John,
was tagged as I1, an interest that Peter shares.2 Given this common
database setup, Artemis’ users can explore why certain tuples are
not in the views. For instance, the query programmer might need to
know why john@univ.edu does not appear in InterestingPicsView.
Notice that we can extract several possible high-level explanations
by studying the queries. Maybe John is no longer a PhotoShare
user, or does not have a declared interest. Perhaps none of the other
users is sharing a photo tagged with John’s interest. Or, even if they
have such a photo, the photo is not visible to John.

To explain this missing value, the user enters a new c-tuple

t2 = (’john@univ.edu’, $picture, $friend-name)

into InterestingPicsView. Further, assume the user wants to ensure
′john@univ.edu′ is a friend of the person contributing the picture.
This is easily done by entering a new c-tuple

t1 = (’john@univ.edu’, $friend-name, $friend-email)

into NetworkView. The c-tuples contain constant values and labeled
nulls, denoted by a $ sign followed by the name of the null3. Notice
that the null friend-name is present in both t1 and t2, meaning that
both tuples share the same (unknown) value.

Fig. 3 shows some possible explanations for t1. Each explana-
tion (i.e., row) contains data from a single tuple of each source table
in the query. In the case of t1 ∈ InterestingPicsView, each explana-
tion has a tuple from Friend and two tuples from User. Notice that
some of these tuples (those with the lighter background) already
exist on the source tables and others (those with the darker back-
ground) are c-tuples that need to exist for t1 to exist. Consider, for
example the last explanation in Fig. 3 (row 7). To create t1 using
that explanations, a tuple (U3, U1) must be inserted into Friends.
That tuple will join with the existing tuples in User shown in the
same explanation row. Similarly, Fig. 4 shows two alternative ex-
planations to produce t2 (we use ‘?’ to denote any possible values).

To explain t1 and t2 at the same time, we compute the cross
product of all explanations for t1 and t2. As we do this, we ensure
that conditions that appear in the individual explanations appear in
the combined explanation. For example, shared labeled nulls like
friend-name are assigned the same value.

Artemis produced 469 such explanations for this debugging sce-
nario (the cross product of the 7 explanations of t1 and the 67 ex-
planations of t2). All explanations satisfy source constraints (key,
unique, foreign). It is possible to trivially extend the algorithm
in [2] to support multiple SPJU queries and explain multiple tu-
ples. However, since [2] does not consider these constraints, they
return 9900 explanations (25 for t1 and 396 for t2).

Artemis provides several ways to reduce the number of expla-
nations. Our user can, for instance, add User to Qim to signal
2The InterestingPicsView query is a union between shared pictures
that are visible to everybody and pictures that are only visible to
friends.
3As we shall see in Sec. 4, c-tuples also include a condition that
determines if the tuple exists in an instance.



Friend F User U1 User U2
F.UID1 F.UID2 U1.UID U1.EMAIL* U1.NAME U2.UID U2.EMAIL* U2.NAME*

1 U1 = U2.UID U1 john@univ.edu John = F.UID2 $friend-email $friend-name
2 U1 U1 U1 john@univ.edu John U1 john@univ.edu John
3 U1 U3 U1 john@univ.edu John U3 peter@home.de Peter
4 = U2.UID U1 U1 john@univ.edu John = F.UID1 $friend-email $friend-name
5 U1 U1 U1 john@univ.edu John U1 john@univ.edu John
6 U2 U1 U1 john@univ.edu John U2 jane@busy.com Jane
7 U3 U1 U1 john@univ.edu John U3 peter@home.de Peter

Picture P PictureTag PT UserInterest UI User U1 User U2 NetworkView NWV
P.PID P.UID P.PICTURE* P.VISIBILITY PT.ID PT.PID PT.CATEGORY UI.UID UI.IID U1.UID U1_EMAIL* U1.NAME U2.UID U2.EMAIL U2NAME* NWV.U1_EMAIL NWV.FRIEND* NWV.U2_EMAIL

1 = PT.PID = U2.ID $picture Public ? = P.PID = UI.IID = U1.ID = PT.CATEGORY U1 john@... John = P.UID & ≠ U1.ID ? $friend-name
2 = PT.PID = U2.ID $picture Friend ? = P.PID = UI.IID = U1.ID = PT.CATEGORY U1 john@... John U1 john@... John john@univ.edu $friend-name = U2.EMAIL

Figure 4: Explanations creating t2

that no changes can be made to User. This removes from consid-
eration any explanation that inserts a c-tuple into User. Another
possibility is to restrict or minimize the “side-effects” an explana-
tion creates. For example, consider what happens if we execute
the explanation for t1 in row 3 (Fig. 3). That explanation requires
adding a tuple (U1, U3) to Friend. However, that tuple will cre-
ate a new tuple (peter@home.de, goldegate.jpg, John) in Inter-
estingPicsView. Since this tuple is not t2, is it considered a “side-
effect”. To avoid these cases, users can add InterestingPicsView
to Qm and Artemis will only produce explanations that minimize
changes to that view (in this case, only t2). With these simple
constraints in place (namely, Qim = {User, UserInterest}, and
Qm = {InterestingPicsView }), Artemis returns a total of 52 ex-
planations: 4 explanations for t1 and 13 explanations for t2.

4. A GLIMPSE BEHIND THE SCENES
The Artemis algorithm determines the provenance of missing tu-

ples specified in E. Various notions of database provenance exist.
This work is largely inspired by [2], where data provenance is ex-
tended to explain non-existing data. That work is, however, limited
to a single SPJ query in Q and a single tuple in E.

The basic Artemis algorithm consists of five major steps, which
we briefly outline here.
Step 1: Compute generic witness. UsingQ and E, Artemis com-
putes a generic witness that produces all c-tuples in E. The generic
witness is a set of source tuple “patterns” that match the tuples in
the generated explanations. For example, if we assume we only
want to explain t1 (see Fig. 3), Artemis generates a generic witness
with the following two patterns:

Pattern1 = Friend(uid1, uid2), U1(uid1, john@univ.edu, n1),

U2(uid2, $friend-email, $friend-name)

Pattern2 = Friend(uid2, uid1), U1(uid1, john@univ.edu, n1),

U2(uid2, $friend-email, $friend-name)

Notice that Pattern1 matches rows 1-3 in Fig. 3 and Pattern2

matches rows 4-7. A nice feature of the generic witness is that
it serves as a summary of the actual explanations (and can be used
to hide explanation tuples and declutter the display).

For each pattern in the generic witness, Artemis executes Steps 2, 3
and 4.
Step 2: Create c-tables for D. In this step, Artemis creates con-
ditional tables (c-tables) for the source data in D. A c-tuple in a
c-table includes labeled nulls and conditions. The semantics of a tu-
ple in a c-table are that a tuple only exists if its condition holds [3].
When generating c-tables for D, tuples already in D are assigned
the TRUE condition. New tuples, those “generated” by the witness
pattern, are represented using labeled nulls and conditions. The
condition of a such tuples is the conjunction of all the conditions
in the witness pattern plus conditions implied by key, unique, for-
eign key constraints. Fig. 5 shows the result of Step 2 for Pattern1

using our debugging scenario. In a sense, [2] implicitly performs
this step, but only for the special case of a singe SPJ query and a
single missing tuple. This is the last step for which we can make
analogies to [2] as all remaining steps relate to the more general
case Artemis considers.
Step 3: ExecuteQ over the c-tables. Let Dc be the c-table version
of the source database D produced by Step 2. Artemis computes

U1_EMAIL Friend U2_EMAIL Condition

 john@univ.edu John john@univ.edu ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U1 ) & (U2_UID = U1 ) & $friend-name = John & $friend-email = john@univ.edu

 jane@busy.com John john@univ.edu ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U2 ) & (U2_UID = U1 ) & $friend-name = John & $friend-email = john@univ.edu

 peter@home.de John john@univ.edu ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U3 ) & (U2_UID = U1 ) & $friend-name = John & $friend-email = john@univ.edu

 jane@busy.com Jane jane@busy.com ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U2 ) & (U2_UID = U2 ) & $friend-name = Jane & $friend-email = jane@busy.com

 peter@home.de Jane jane@busy.com ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U3 ) & (U2_UID = U2 ) & $friend-name = Jane & $friend-email = jane@busy.com

 john@univ.edu Peter peter@home.de ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U1 ) & (U2_UID = U3 ) & $friend-name = Peter & $friend-email = peter@home.de

 peter@home.de Peter peter@home.de ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U3 ) & (U2_UID = U3 ) & $friend-name = Peter & $friend-email = peter@home.de

UID Email Name Condition
U1 john@... John True
U2 jane@... Jane True
U3 peter@... Peter True

uid1 john@... n1 uid1 & email unique
uid2 n2 e2 uid1 & email unique & n2 = $friend-name & e2 = friend-email

UID1 UID2 Condition
U1 U2 True
U2 U3 True

fuid1 fuid2 (fuid1,fuid2) unique, foreign key dependencies for fuid1 & fuid2 hold

User

Friend

Figure 5: Example for generated c-tables for D

Q(Dc) using the algorithms for query execution over c-tables [3].
The result are views with the same schema as originally plus a con-
dition attached to each tuple. In these views we distinguish three
types of tuples: (i) tuples that are present in the original view (those
have a TRUE condition), (ii) tuples that potentially match tuples in
E, and (iii) the remaining tuples, which are potential side effects.
In Fig. 6, we only show tuples of type (ii) (those with a check mark)
and type (iii) (those with an ‘x’) in the c-table version of the Net-
workView. The conditions enforcing key, unique, and foreign key
constraints are omitted for brevity. In the following, we will refer to
the different conditions as c1 through c7, where c1 is the condition
of the first tuple, c2 the condition of the second tuple and so on.
Step 4: Compute explanations. Next, Artemis determines every
possible way of combining tuples of type (ii) such that each of the
n tuples in E is generated exactly once. For each combination, a
condition Ci = ct1 ∧ ...∧ ctn is formulated that corresponds to the
conjunction of the conditions attached to each of the n tuples. All
other tuples of type (ii) or (iii) are considered side-effects and we
append to Ci the constraint that none (or the minimal number) of
these tuples should exist. In our example, we have n = 1 tuples in
E, and 2 possibilities to create it. Assuming that no side-effects on
NetworkView are desired, the generated conditions are

C1 = c1 ∧ ¬(c2 ∨ c3 ∨ c4 ∨ c5 ∨ c6 ∨ c7)

C6 = c6 ∧ ¬(c1 ∨ c2 ∨ c3 ∨ c4 ∨ c5 ∨ c7)

We pass each Ci to a constraint solver [1] and if it determines that
the problem is satisfiable, we generate the corresponding expla-
nation. Of the constraints shown above, only C1 is satisfiable and
corresponds to the insertion of (U1,U1) into the Friend relation. C6

is not satisfiable because any solution that creates (john@univ.edu,
Peter, peter@home.de) in NetworkView creates (peter@home.de,
John, john@univ.edu) as a side-effect, i.e., c6 ∧ ¬ c3 is not satis-
fiable and hence C6 is not satisfiable.
Step 5: Prune and output explanations. In the final step, Artemis
unions the explanations returned for each pattern of the generic wit-
ness (Step 2 through Step 4 iterated over these). Artemis prunes re-
dundant solutions if necessary and applies any filters that have not
been considered so far. It also sorts the remaining explanations if
necessary before returning them.

Steps 1 through 3 resemble the well-studied problems of view
update and view maintenance, and the definition of these steps of
the Artemis algorithm was inspired by the work on view mainte-
nance and view update using c-tables presented in [5, 6]. Runtime
performance of the constraint solver is acceptable. For the small
example in this paper, the solver takes 2 seconds. With larger do-



U1_EMAIL Friend U2_EMAIL Condition

 john@univ.edu John john@univ.edu c1 =  ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U1 ) & (U2_UID = U1 ) & $friend-name = John & $friend-email = john@univ.edu

 jane@busy.com John john@univ.edu c2 = ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U2 ) & (U2_UID = U1 ) & $friend-name = John & $friend-email = john@univ.edu

 peter@home.de John john@univ.edu c3 = ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U3 ) & (U2_UID = U1 ) & $friend-name = John & $friend-email = john@univ.edu

 jane@busy.com Jane jane@busy.com c4 = ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U2 ) & (U2_UID = U2 ) & $friend-name = Jane & $friend-email = jane@busy.com

 peter@home.de Jane jane@busy.com c5 = ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U3 ) & (U2_UID = U2 ) & $friend-name = Jane & $friend-email = jane@busy.com

 john@univ.edu Peter peter@home.de c6 = ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U1 ) & (U2_UID = U3 ) & $friend-name = Peter & $friend-email = peter@home.de

 peter@home.de Peter peter@home.de c7 = ( F_UID1 = U1_UID ) & ( F_UID2 = U2_UID ) & (U1_UID = U3 ) & (U2_UID = U3 ) & $friend-name = Peter & $friend-email = peter@home.de

UID Email Name Condition
U1 john@... John True
U2 jane@... Jane True
U3 peter@... Peter True

uid1 john@... n1 uid1 & email unique
uid2 n2 e2 uid1 & email unique & n2 = $friend-name & e2 = friend-email

UID1 UID2 Condition
U1 U2 True
U2 U3 True

fuid1 fuid2 (fuid1,fuid2) unique, foreign key dependencies for fuid1 & fuid2 hold

User

Friend

Figure 6: Excerpt of the c-table for NetworkView

Figure 7: Artemis in action

mains, e.g., with 100 distinct values per attribute, average runtime
is below 20 seconds. Improving and optimizing our runtime is a
major direction of further research.

5. THE DEMONSTRATION
We implemented an optimized version of the Artemis algorithm

in Java. The implementation requires a constraint solver and the
current implementation uses Minion 0.7.0 [1]. The graphical user
interface was created extending Eclipse plugins and allows users
to specify parameters of Artemis debugging scenarios, run debug-
ging scenarios, and explore the returned explanations. The Artemis
plugin comes with many features known in the world of Eclipse,
including its own Perspective, Views, Editors, and Project based
resource organization.

Fig. 7 shows a screenshot of Artemis in action. The Data Source
Explorer on the left allows users to specify Q, which is an exten-
sion of the explorer provided by Eclipse’s Data Tools Platform The
Graph View in the center summarizes Q and D in a similar way
as Fig. 1 does for our sample scenario. The Explanation Navigator
on the right shows summaries of each explanation and the Expla-
nation Detail View at the bottom shows the details. Note that the
screenshot exactly represents the sample scenario discussed in this
paper. Our current implementation supports both DB2 and Derby
as source databases storing D.

At the conference we will demonstrate Artemis using several de-
bugging scenarios for at least two use cases. The first use case,
named PhotoShare includes the toy examples used throughout this
paper as well as more real-life debugging scenarios for an appli-
cation that allows users to connect to each other and share, tag, or

comment pictures. The second use case is based on the TPC-H
schema and data. However, since Artemis does not support aggre-
gations, only a limited number of TPC-H queries will be used4. We
will show attendees how Artemis helps understanding and debug-
ging these SQL queries, and we will discuss the details Artemis’
algorithm, limitations, and future directions.

6. REFERENCES
[1] I. P. Gent, C. Jefferson, and I. Miguel. Minion: A fast scalable

constraint solver. In ECAI, pages 98–102, 2006.
[2] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the

provenance of non-answers to queries over extracted data. In
PVLDB, pages 736–747, 2008.

[3] T. Imieliński and J. Witold Lipski. Incomplete information in
relational databases. JACM, 31(4):761–791, 1984.

[4] J. Lechtenbörger, H. Shu, and G. Vossen. Aggregate queries
over conditional tables. J. Intell. Inf. Syst., 19(3):343–362,
2002.

[5] H. Shu. View maintenance using conditional tables. In
DOOD, pages 67–84, 1997.

[6] H. Shu. Using constraint satisfaction for view update. J. Intell.
Inf. Syst., 15(2):147–173, 2000.

4Aggregation can be supported through the algorithm described
in [4] but some unresolved issues remain at present.


