A Testbed for Managing Dynamic Mixed Workloads

Stefan Krompass™", Harumi Kuno™*, Janet L. Wiener"*, Kevin Wilkinson*,
Umeshwar Dayal**, Alfons Kemper™"

TUMTechnische Universitat Muinchen,
Munich, Germany
{firstnane. | astnane}@n.tum de

ABSTRACT

Workload management for operational business intellige(il)
databases is difficult. Queries vary widely in length andeobj
tives. Resource contention is difficult to predict and totoonas
dynamically-arriving, long, analyst queries compete fesaurces
with ongoing online-transaction processing (OLTP) queaied batch
report queries. Currently, administrators struggle toosteowork-
load management policies and set their thresholds manuEilg
goal of our project is a software framework to make the manage
ment of such mixed workloads easier. Our framework incluales
policy controller that tunes workload management policaso-
matically to meet workload objectives. This demonstratbour
system illustrates (1) the difficulty of managing a Bl datdaiork-
load and (2) the benefits of tuning policies automaticallgl adli-
vidually for each service class of queries in a workload.ddigon,
our demonstrator is a useful research tool for understgnlaw
policies and a policy controller adapt as the system staaagds
under a mixed workload.

In our demo, the participant plays the administrator anesun
the policies for a variety of difficult-to-manage workloaats they
execute. These policies include admission control, sdivegand
execution control policies. We visualize the policies, tiser ob-
jectives, and the load on the system components (CPUs, myemor
disks) during execution, which helps the participant seethér
objectives are being met and make appropriate policy dewssiAt
the end of each workload, the participant is given the opymitit to
compare how their policies met workload objectives versligigs
determined by our automatic policy controller.

1. INTRODUCTION

Enterprise business intelligence (Bl) database systeensav-
ing towards supporting online, operational decision mglan all
levels in the enterprise [1, 7]. A single operational Bl systmight
need to maintain consistent throughput for OLTP-style igsayen-
erated by cashiers ringing up sales while also providing ifas
sponse times for queries submitted by financial analystsregan
immediate answer and reliable completion times for quésigsed
off by monthly status report generation. In general, openat

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct comiamleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0@/

HPLHewlett-Packard Laboratories
Palo Alto, CA, USA
{firstnane.| ast nane}@p. com

Diver se clients submit
avariety of workloads
and objectives

Policies selected a
priori do not adapt to
dynamic workloads

Diversity in query
complexity exacerbates
resour ce contention.

T \
. Workload DBMS
Manager
Objectives Adm.(;qntrol. Database
Policies Executor
Workload Ly,

Perfor-
mance
monitor

Scheduling.
Policies
Exec. rol
Policies

= ™ [
Report
Clients,

Ty

Figure 1. Architecture of management today: Traditional
workload management can compensate for short-term prob-
lems, but cannot adapt policiesin the presence of longer-term
problems caused by (dynamic) changesin the workload.

Bl systems must support mixed workloads composed of diftere
types of queries with different objectives and dynamicvatniates.

Figure 1 shows the conventional workload management archi-
tecture for such a system. The system is pre-configured to sup
port some number of service classes. Each service classas as
ciated with a static set of workload management policies @mnd
jectives. As queries from various service classes arre wtork-
load management system uses these statically selecteiepdb
make admission control, scheduling, and execution coualeol-
sions. As the query mix changes, a database administratst mu
recognize when and which new polices are needed, and mgnuall
adjust the system configuration. For example, if a set of -high
priority OLTP queries begins to arrive while an analyst isrmimg
resource-intensive ad hoc queries, then a new admissianoton
policy that sets absolute thresholds on resource usage enagds
essary for the analyst’s queries.

It can be extremely difficult to determine the best policy and
threshold values to meet the objectives of all queries instse
tem. Once policies and thresholds have been set, administra
must constantly monitor system performance and make manaual
justments. This administration greatly increases the @ostvner-
ship. However, members of the academic database commuimity w
have not worked as database administrators typically domaér-
stand how difficult these choices are or what makes them fiduid.
demonstration gives participants a hands-on experieratevit il-
lustrate the difficulty and the importance of these chaksn@nd,
we hope, encourage database researchers to apply thétulzart
skills to advancing the state of the art in database workhoad-
agement.

In Figure 2, we propose a new architecture with three feddbac
loops to guide (or automate) the administrator’s tasks.

Workload Manager
Workload Admission
Objectives | == == = Controller >
Businesg
Workload control | Scheduler Query port
foop - control| " €mor
Execution oo mance
Controller P | monitor
&

oo ole g

Figure 2: The three feedback control loops in workload man-
agement: the query control loop (solid blue arrows), the policy
control loop (dotted red arrows) that is the focus of this demo,
and the business control loop (dashed green arrows).

e Thequery control loop uses feedback from performance mon-
itoring and applies traditional workload management poli-
cies to decide which queries to admit, when to run them, and
if and when to kill them. It can compensate for incomplete

2. RELATED WORK

Our focus in this demonstration is on the automated policy co
trol loop. Although other researchers consider the probbéme-
source allocation with regard to service objectives or sidjolicy
thresholds based on runtime feedback, our work is uniquban t
our policy control loop automates both selecting and sgttinesh-
olds for workload management policies for dynamically ajiag
workloads with heterogeneous objectives.

Panget al. [5] propose aPriority Memory Management algo-
rithm that uses feedback to adjust both scheduling and &recu
control policies while running workloads composed of npiéiser-
vice classes. However, their workloads are homogeneods;@an
tain only deadline-driven queries against real-time dagabsys-
tems. They do not consider multiple service classes witierdint
types of objectives (e.g., one deadline-driven and one el&fin
terms of throughput). Also, they adjust policy thresholoist do
not make fundamental changes to the policies themselves.

Niu et al. [4] have built a framework that uses feedback from a
performance monitor to implement something similar to aaliqy
control loop that manages a mixed OLTP/OLAP workload. How-
ever, their workload composition is known a priori, and thein-

knowledge about query resource usage and arrival times. They | oo sets policy thresholds but does not change theigslthat

admission controller, scheduler, and execution coniratte
plement this loop.

e Thepolicy control loop responds to the dynamic changes in
mixed workloads common to operational Bl systems. The
policy controller defines and assigns admission contrbkede
uling, and execution control policies, and adapts them {o ac
commodate changes in the queries or their objectives.

e The business control loop identifies situations when the un-

apply to the various classes of queries. Furthermore, thesry
control loop does not include execution control actions.
Teradata Dynamic Workload Manager [6] allows administisto

to specify explicitly-named states that reflect both theesyiscon-
dition (e.g., “normal” or “degraded”) as well as the type afwthe
database system is expected to perform (e.g., “daily load¥3p-
erational queries”). Each state has associated workloathgea
ment policies, and a state change may activate differenitloed
management policies. Administrators can provide fixed tivie

derlying system is not appropriate for the workload. In such gows in which a state, and thus a set of workload managemént po
cases, either the workload objectives may be redefined(@hro cjes, is active. In addition, the administrator can set wpvitork-
revised service level agreements) or the database systgm ma |pad manager to detect specific changes in system conditions
be resized to better accommodate the workload. workload composition, and to trigger state changes basetiese

Most commercial database workload management systems im-€vents. Thus, although the Teradata Dynamic Workload Meriag

plement some admission control, scheduling, and execeton
trol policies. Our earlier work [3, 2] explores the effeetess of
several static admission control, scheduling, and exacutntrol
policies in the query control loop. This loop can remedy siem
fluctuations in the workload such as a single long-runningrgu
that unexpectedly hogs resources or lock contention tleattes a
convoy. However, it cannot change the policies themselves.

We focus here on the policy control loop. Our demo challenges
a participant to make the policy controller’s decisions. kdépe
to demonstrate that making these decisions is, in factcditfas
query arrival rates and objectives (e.g., minimize respdirae,
complete within 45 minutes, or maintain query throughphgrge.

In our current work, we are designing a noyelicy controller
that detects when existing workload management policididaili
to meet objectives, chooses the appropriate correctiveigsland
thresholds for the current workload, and notifies the watllman-
agement components of the new policies. In our demo, thé&part
ipant plays against our policy controller during the exemubf a
challenging and changing workload. The participant treeman-
ually tune the workload management policies to meet seolass
objectives using the database administrator interfaces. ifiterface
visualizes the policies, the objectives, and the load orsyistem
components (CPUs, memory, disks). At the end of each wadkloa
the demo contrasts the participant’s ability to meet theklead ob-
jectives with that of the system’s automatic policy corigrolin the
future, we plan to examine the business control loop, whicistm
recognize when the system cannot satisfy the workload tigsc

capable of selecting workload management policies auioaiigt

at runtime, given a set of anticipated conditions, the tio&ts used
by policies are also preset and are not adjusted autonigtioatk-

spond to runtime conditions.

3. DEMONSTRATION SCENARIO

We first demonstrate that the performance of a mixed workload
can be difficult to control, even when the individual quelieshe
workload are well understood. Second, we demonstrate tirat o
policy control loop can restore system balance, e. g., byyamp
resource usage policies when changes to the executing aaorkl
cause an overload.

In our demonstration, a database administrator attemptate
age a running workload so as to meet its service level obEsti
We periodically introduce complications into the runningris
load. The workload is executed by our simulator of a multil@o
shared-nothing database system, using the detailed pladsqed
by a commercial query optimizer as input, supplemented leyyqu
execution statistics, if available. The simulator lets emdnstrate
in minutes the management of workloads that run for hours.

We provide four different scenarios in our demo. We preserg h
one example scenario. The queries in our scenarios arediuitb
three service classes:

e The “CEO” service class has highest-priority, hand-writte
ad hoc queries written on behalf of a company executive.
They arrive at unpredictable times. The only informatioa th

Policy Control

Service classes

MPL history

[E]--;-Service classes
HEIEE
e
=

12

6

MPL

0

queue length history

1800

900

queue length

MPL change
-4| (automatic)

OLTP Policies

Policy

Rule

+ | Admission control

IF queue length >[1800 [y] THEN reject ELSE admit

+ | Execution control

none

+

Scheduling [FIFO]v]

IF MPL > 8 E THEN queue ELSE execute

Figure 3: Poalicy control window.

workload manager has about the expected resource usage an

behavior of these queries is the optimizer's cost estimates
The objective for each query is to complete it promptly — as

long as its cost estimates are accurate. In terms of workload
management policies, (1) each query should be immediately

admitted and scheduled, (2) these queries have higher prior
ity than other queries, and (3) a query may be killed if actual
resource usage exceeds twice that estimated.

e The “OLTP” service class has queries that are short and have

a fixed arrival rate. The queries are well-understood, and
we have high confidence in how we expect them to behave.
The objectives for these queries require the throughpuéeto b

above a certain transactions per second threshold and-the av
erage response time to be lower than another threshold, ex-

pressed in terms of milliseconds.

e The “Report” service class comprises medium-sized, rpll-u
report queries with an objective to complete all of the ceeeri
before a deadline. These queries are also well-understood.

3.1 Problem injection

Our workload management dashboard includes a policy dontro
window where the admission, scheduling, and executionrabnt
policies are defined for each service class, as shown in €&igur
The system is in steady state initially, with the OLTP qu&rien-
ning and meeting objectives, the report query batch runaimd
on-track to meet its objective, and no ad hoc CEO querieséan th
system. Then an ad hoc CEO query arrives, is admitted, artd sta
executing. After a brief delay, system performance degraxtel
the OLTP queries are in danger of not meeting their objestive
as can be seen in the performance objective window in Figure 4
which shows how well each service class is meeting its obgEst
Multiple CEO queries may execute simultaneously (causirem e
more contention), while there may be no such query in theeayst
at other times. The workload management policies and thtésh
may need adjusting with each increase or decrease in theetumb
of these queries: resources that are reserved for thesies|neay
be wasted when none is executing.

Performance Objectives _ox
Service classes CEO

number of CPU cydies per second > 300,000
complete within 45 minutes
if actual CPU time > estimates after 45 minutes, kill after 90 minutes

Z 1200

[-y-Service classes
lam
=loLTe)
= [Report

7 min

|

0 min 45 min 90 min|

2
5

CPU cycles
second (in thousal

0
-12 -10 8 6 4 -2 now
time

oLTP
avg response time < 80 ms
throughput > 30 QpS

m

153
@
3

3
Throughput (QpS)
a
3

0
-12 -10 8 -6 -4 -2 now -2 -10 -8 6 -4
time time

Avg resp time (ms)
°

-2 now,

Report
complete before 8am

est. completion: 7am

RS - .

started: 11pm gam

Figure 4: Performance objective window after problem injec-
tion showsthe OLTP service class not meeting obj ectives.

3.2 Attempt at manual correction

Our demo challenges the participant to adjust the policias-m
ually. In an attempt to diagnose the situation, the paicipnay
view a system resource utilization window like that in Fig\,
which shows excessive resource utilization (memory and JARU
the CEO queries. Note that diagnosing the cause of degraated p
formance is itself a challenge — it is not always obvious wdrat
where the problem is. Our demonstration is also intendedko h
train database system administrators in this task.

There are multiple possible effective policy changes taiced
contention. For example, reducing the scheduling threlsfPL)
for the batch report queries will reduce resource contantiio ad-
dition, it may be necessary to kill or suspend some activertep
queries to achieve the newly lowered threshold. What maties t
task particularly difficult is that re-allocating resousazan have un-

System Resowrceutlzatin |
[[CPU_Main memory | Diske |

—ax

— CPUs

1][2)|3]|4]5/6|7|8
9 |[10][11 15
18][19]

g

z
g
&

8

Memory
utilization (%)

31

[251[25][z7] 28] 29

-12 -10 -8 -6

— Main memory

1)|2)[3]|45/6]7]8
11
19]/20]21 3]|24]

Node 12

Memory
utilization (%)

5,

on (%)

i
8

11
19]20] 21 3

mory

Node 23

25]|2627] 28]

33]
41
49

51

Average Memory
Utilization (%)

5
(® 1/0s per second
(O Bandwicth (read)
(O Bandwicth (write)

Figure5: In thesystem resource utilization window, the admin-
istrator can seethat after thearrival of along-running, heavy-
weight, CEO query, resource contention interfereswith therest
of theworkload.

Performance Objectives
Service classes [
number of CPU cycles per second > 300000
complete within 45 minutes
if actual CPU time > estimate after 45 minutes, kill after 90 minutes

0-

-2 -10 -8 6 -4 -2 now
time.

—ax

El-—i-Service classes
rEIEE
LEED
Lo

g
8

43 min

[-

0 min 45 min 90 min|

CPU cycles per
second (in thousands)
3
8

oLTP
avg response time < 80 ms
throughput > 30 QS

B
8

3
Throughput (QpS)
£

0
-12 -10 8 6 -4 -2 now
time

0
-2 -10

Avg resp time (ms)

8 6
time

4 -2 now,

Report
complete before 8am

started: 11pm

Figure 6: Performance objective window after a run has com-
pleted. Thedemo participant can see how well the management
actionsthey took wor ked with regard to service class objectives.

expected effects. For example, slowing down a long-rungineyy
may mean that it continues to occupy system resources foigato
time. The demonstration participant can use our interfa@aljust
various thresholds and policies and see the impact of titores
on system performance and service objectives.

In this simple example, one option is to suspend the repassscl
temporarily to enable the CEO class to complete. Anothéonjis
to reduce the priority of the OLTP class. However, the beategy
is actually to reduce the scheduling MPL for the OLTP quejtiss
a little (e. g., from 10 to 8 or 9) when the executive’s ad hoergu
starts executing. If the administrator lets the system kiagl too
high or else reduces the MPL too much, then the OLTP queriles fa
to meet their throughput objectives. If the administratoesi not
reduce the MPL enough, then the ad hoc query fails to meet its
response time objective. If the human administrator takeddng
to respond, then multiple objectives are missed.

In addition, as the CEO queries complete, the administsitould
raise the MPL for the OLTP and/or Report queries, so thaumess

are not leftidle. After a participant makes adjustmentseolicy
control window, the impact of those changes may be observed i
the performance objective window. Figure 6 shows how the win
dow might look at the end of a run. In the figure, one can see
that although the OLTP and CEO queries did meet their through
put and response time objectives, the participant was ngreag
sive enough in throttling down the OLTP queries, and the Repo
workload missed its completion deadline. The participant then
compare when and which workload management actions th&y too
as well as the impact of those actions, to the actions thahoia-
mated system would have taken.

3.3 Poalicy control feedback loop

After the demo participant corrects the policies duringeexien
of an entire workload, our demo replays the workload withmml¢
icy controller automatically adjusting the policies. Ttrare GUI
interfaces then show the participant’s actions and théacef side-
by-side with those of the policy controller. At the end of therk-
load, both are scored based on their ability to meet the watkl
objectives. The participant may then play a different sdena

4. SUMMARY

Extreme diversity of resource requirements, the potefarahow-
stopping resource contention, and dynamically-arrivisgruqueries
that require significant changes to the workload managepwidt
cies in effect all present significant challenges in manggirdy-
namic, mixed, operational Bl workload. We believe that dafin
and implementing new policy control feedback loops canraate
or greatly simplify many aspects of managing Bl workloadsir O
demonstration helps participants understand the impauolafies
on mixed workloads and provides some positive examples wf ho
to set policy choices. In addition, our demonstration frenord al-
lows us to create new workload scenarios so that we can sy h
our policy controller adapts to unexpected situations.s Exiami-
nation helps us to devise better policies and meta-policies

5. ACKNOWLEDGMENTS

We would like to thank Stefan Kinauer for his help implemegti
the workload management user interface.

6. REFERENCES

[1] P.Gillin. Bl @ the Speed of BusinesSomputer World
Technology, December 2007.

[2] S. Krompass, H. Kuno, U. Dayal, and A. Kemper. Dynamic
Workload Management for Very Large Data Warehouses:
Juggling Feathers and Bowling Balls. Bnoc. of the 33" Intl.
Conf. on Very Large Data Bases (VLDB), 2007.

[3] S. Krompass, H. Kuno, J. Wiener, K. Wilkinson, U. Dayal,

and A. Kemper. Managing Long-running QueriesTin

appear in: Proc. of the 12" Intl. Conf. on Extending

Database Technology (EDBT), 2009.

B. Niu, P. Martin, W. Powley, P. Bird, and R. Horman.

Adapting Mixed Workloads to Meet SLOs in Autonomic

DBMSs. InProc. of the 2007 Workshop on Self-Managing

Database Systems (SVIDB 2007), 2007.

H. Pang, M. J. Carey, and M. Livny. Multiclass query

scheduling in real-time database systelB&E Trans. on

Knowledge and Data Engineering, 7(4), 1995.

[6] Teradata Dynamic Workload Manager User Guide, 2006.

[7] C. White. The Next Generation of Business Intelligence:
Operational BIDM Review Magazine, 2005.

[4]

(5]

