
A Testbed for Managing Dynamic Mixed Workloads

Stefan KrompassTUM , Harumi KunoHPL, Janet L. WienerHPL, Kevin WilkinsonHPL,
Umeshwar DayalHPL, Alfons KemperTUM

TUMTechnische Universität München,
Munich, Germany

{firstname.lastname}@in.tum.de

HPLHewlett-Packard Laboratories
Palo Alto, CA, USA

{firstname.lastname}@hp.com

ABSTRACT
Workload management for operational business intelligence (BI)
databases is difficult. Queries vary widely in length and objec-
tives. Resource contention is difficult to predict and to control as
dynamically-arriving, long, analyst queries compete for resources
with ongoing online-transaction processing (OLTP) queries and batch
report queries. Currently, administrators struggle to choose work-
load management policies and set their thresholds manually. The
goal of our project is a software framework to make the manage-
ment of such mixed workloads easier. Our framework includesa
policy controller that tunes workload management policiesauto-
matically to meet workload objectives. This demonstrationof our
system illustrates (1) the difficulty of managing a BI database work-
load and (2) the benefits of tuning policies automatically and indi-
vidually for each service class of queries in a workload. In addition,
our demonstrator is a useful research tool for understanding how
policies and a policy controller adapt as the system state changes
under a mixed workload.

In our demo, the participant plays the administrator and tunes
the policies for a variety of difficult-to-manage workloadsas they
execute. These policies include admission control, scheduling, and
execution control policies. We visualize the policies, theuser ob-
jectives, and the load on the system components (CPUs, memory,
disks) during execution, which helps the participant see whether
objectives are being met and make appropriate policy decisions. At
the end of each workload, the participant is given the opportunity to
compare how their policies met workload objectives versus policies
determined by our automatic policy controller.

1. INTRODUCTION
Enterprise business intelligence (BI) database systems are mov-

ing towards supporting online, operational decision making at all
levels in the enterprise [1, 7]. A single operational BI system might
need to maintain consistent throughput for OLTP-style queries gen-
erated by cashiers ringing up sales while also providing fast re-
sponse times for queries submitted by financial analysts seeking an
immediate answer and reliable completion times for querieskicked
off by monthly status report generation. In general, operational

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

OLTP
Clients

BI
Clients

Objectives

Batch
Report
Clients

DBMS

Workload

Queries

Diversity in query
complexity exacerbates

resource contention.

Diverse clients submit
a variety of workloads

and objectives

Policies selected a
priori do not adapt to
dynamic workloads

Workload
Manager

Adm.Control.
Policies

Scheduling.
Policies

Exec.Control.
Policies

Database
Executor

Perfor-
mance

monitor

Figure 1: Architecture of management today: Traditional
workload management can compensate for short-term prob-
lems, but cannot adapt policies in the presence of longer-term
problems caused by (dynamic) changes in the workload.

BI systems must support mixed workloads composed of different
types of queries with different objectives and dynamic arrival rates.

Figure 1 shows the conventional workload management archi-
tecture for such a system. The system is pre-configured to sup-
port some number of service classes. Each service class is asso-
ciated with a static set of workload management policies andob-
jectives. As queries from various service classes arrive, the work-
load management system uses these statically selected policies to
make admission control, scheduling, and execution controldeci-
sions. As the query mix changes, a database administrator must
recognize when and which new polices are needed, and manually
adjust the system configuration. For example, if a set of high-
priority OLTP queries begins to arrive while an analyst is running
resource-intensive ad hoc queries, then a new admission control
policy that sets absolute thresholds on resource usage may be nec-
essary for the analyst’s queries.

It can be extremely difficult to determine the best policy and
threshold values to meet the objectives of all queries in thesys-
tem. Once policies and thresholds have been set, administrators
must constantly monitor system performance and make manualad-
justments. This administration greatly increases the costof owner-
ship. However, members of the academic database community who
have not worked as database administrators typically do notunder-
stand how difficult these choices are or what makes them hard.This
demonstration gives participants a hands-on experience that will il-
lustrate the difficulty and the importance of these challenges, and,
we hope, encourage database researchers to apply their particular
skills to advancing the state of the art in database workloadman-
agement.

In Figure 2, we propose a new architecture with three feedback
loops to guide (or automate) the administrator’s tasks.

Workload

Workload
Objectives

DBMS

Queries

Workload Manager

Execution
Controller

Admission
Controller

Scheduler

Database
Executor

Perfor-
mance

monitorP
ol

ic
y

co
nt

ro
lle

r
Policy control loop

Query
control
loop

Business
control
loop

Figure 2: The three feedback control loops in workload man-
agement: the query control loop (solid blue arrows), the policy
control loop (dotted red arrows) that is the focus of this demo,
and the business control loop (dashed green arrows).

• Thequery control loop uses feedback from performance mon-
itoring and applies traditional workload management poli-
cies to decide which queries to admit, when to run them, and
if and when to kill them. It can compensate for incomplete
knowledge about query resource usage and arrival times. The
admission controller, scheduler, and execution controller im-
plement this loop.

• Thepolicy control loop responds to the dynamic changes in
mixed workloads common to operational BI systems. The
policy controller defines and assigns admission control, sched-
uling, and execution control policies, and adapts them to ac-
commodate changes in the queries or their objectives.

• The business control loop identifies situations when the un-
derlying system is not appropriate for the workload. In such
cases, either the workload objectives may be redefined (through
revised service level agreements) or the database system may
be resized to better accommodate the workload.

Most commercial database workload management systems im-
plement some admission control, scheduling, and executioncon-
trol policies. Our earlier work [3, 2] explores the effectiveness of
several static admission control, scheduling, and execution control
policies in the query control loop. This loop can remedy short-term
fluctuations in the workload such as a single long-running query
that unexpectedly hogs resources or lock contention that creates a
convoy. However, it cannot change the policies themselves.

We focus here on the policy control loop. Our demo challenges
a participant to make the policy controller’s decisions. Wehope
to demonstrate that making these decisions is, in fact, difficult as
query arrival rates and objectives (e.g., minimize response time,
complete within 45 minutes, or maintain query throughput) change.

In our current work, we are designing a novelpolicy controller
that detects when existing workload management policies will fail
to meet objectives, chooses the appropriate corrective policies and
thresholds for the current workload, and notifies the workload man-
agement components of the new policies. In our demo, the partic-
ipant plays against our policy controller during the execution of a
challenging and changing workload. The participant tries to man-
ually tune the workload management policies to meet serviceclass
objectives using the database administrator interface. This interface
visualizes the policies, the objectives, and the load on thesystem
components (CPUs, memory, disks). At the end of each workload,
the demo contrasts the participant’s ability to meet the workload ob-
jectives with that of the system’s automatic policy controller. In the
future, we plan to examine the business control loop, which must
recognize when the system cannot satisfy the workload objectives.

2. RELATED WORK
Our focus in this demonstration is on the automated policy con-

trol loop. Although other researchers consider the problemof re-
source allocation with regard to service objectives or adjust policy
thresholds based on runtime feedback, our work is unique in that
our policy control loop automates both selecting and setting thresh-
olds for workload management policies for dynamically changing
workloads with heterogeneous objectives.

Panget al. [5] propose aPriority Memory Management algo-
rithm that uses feedback to adjust both scheduling and execution
control policies while running workloads composed of multiple ser-
vice classes. However, their workloads are homogeneous, and con-
tain only deadline-driven queries against real-time database sys-
tems. They do not consider multiple service classes with different
types of objectives (e. g., one deadline-driven and one defined in
terms of throughput). Also, they adjust policy thresholds,but do
not make fundamental changes to the policies themselves.

Niu et al. [4] have built a framework that uses feedback from a
performance monitor to implement something similar to our policy
control loop that manages a mixed OLTP/OLAP workload. How-
ever, their workload composition is known a priori, and their con-
trol loop sets policy thresholds but does not change the policies that
apply to the various classes of queries. Furthermore, theirquery
control loop does not include execution control actions.

Teradata Dynamic Workload Manager [6] allows administrators
to specify explicitly-named states that reflect both the system con-
dition (e.g., “normal” or “degraded”) as well as the type of work the
database system is expected to perform (e.g., “daily loads”or “op-
erational queries”). Each state has associated workload manage-
ment policies, and a state change may activate different workload
management policies. Administrators can provide fixed timewin-
dows in which a state, and thus a set of workload management poli-
cies, is active. In addition, the administrator can set up the work-
load manager to detect specific changes in system conditionsor
workload composition, and to trigger state changes based onthese
events. Thus, although the Teradata Dynamic Workload Manager is
capable of selecting workload management policies automatically
at runtime, given a set of anticipated conditions, the thresholds used
by policies are also preset and are not adjusted automatically to re-
spond to runtime conditions.

3. DEMONSTRATION SCENARIO
We first demonstrate that the performance of a mixed workload

can be difficult to control, even when the individual queriesin the
workload are well understood. Second, we demonstrate that our
policy control loop can restore system balance, e. g., by applying
resource usage policies when changes to the executing workload
cause an overload.

In our demonstration, a database administrator attempts toman-
age a running workload so as to meet its service level objectives.
We periodically introduce complications into the running work-
load. The workload is executed by our simulator of a multi-node
shared-nothing database system, using the detailed plans produced
by a commercial query optimizer as input, supplemented by query
execution statistics, if available. The simulator lets us demonstrate
in minutes the management of workloads that run for hours.

We provide four different scenarios in our demo. We present here
one example scenario. The queries in our scenarios are divided into
three service classes:

• The “CEO” service class has highest-priority, hand-written,
ad hoc queries written on behalf of a company executive.
They arrive at unpredictable times. The only information the

��� ������	
����
�
������
����

������� ����� ������ ������	

���� ����
���

����
	 �������

������� !"# ����$%$$&'$$(&) (* (+ ()('(&$,-./01 234567849:;<4:=2>
?@A $*&)(&) (* (+ ()('(&$,-.

BC DE�E� F�,G�H I �JKL M�N�O� K�
K PQ���RSRTBC UVW I �JKL DE�E� K�
K �X�OE��Y�������
	Z�[������
������K\�
�����
������

��������]]] ^_^` ' &'$$

����
�
�������K�Y�a�������

Figure 3: Policy control window.

workload manager has about the expected resource usage and
behavior of these queries is the optimizer’s cost estimates.
The objective for each query is to complete it promptly — as
long as its cost estimates are accurate. In terms of workload
management policies, (1) each query should be immediately
admitted and scheduled, (2) these queries have higher prior-
ity than other queries, and (3) a query may be killed if actual
resource usage exceeds twice that estimated.

• The “OLTP” service class has queries that are short and have
a fixed arrival rate. The queries are well-understood, and
we have high confidence in how we expect them to behave.
The objectives for these queries require the throughput to be
above a certain transactions per second threshold and the av-
erage response time to be lower than another threshold, ex-
pressed in terms of milliseconds.

• The “Report” service class comprises medium-sized, roll-up
report queries with an objective to complete all of the queries
before a deadline. These queries are also well-understood.

3.1 Problem injection
Our workload management dashboard includes a policy control

window where the admission, scheduling, and execution control
policies are defined for each service class, as shown in Figure 3.
The system is in steady state initially, with the OLTP queries run-
ning and meeting objectives, the report query batch runningand
on-track to meet its objective, and no ad hoc CEO queries in the
system. Then an ad hoc CEO query arrives, is admitted, and starts
executing. After a brief delay, system performance degrades and
the OLTP queries are in danger of not meeting their objectives,
as can be seen in the performance objective window in Figure 4,
which shows how well each service class is meeting its objectives.
Multiple CEO queries may execute simultaneously (causing even
more contention), while there may be no such query in the system
at other times. The workload management policies and thresholds
may need adjusting with each increase or decrease in the number
of these queries: resources that are reserved for these queries may
be wasted when none is executing.

bcdefgc ghijjcj
klmnopq rstuvwts xyzs { |} ztx~rv�q~u�x � �} �u��c��d��vzu�sxs �s�vrs |oz

ncd��d�i�gc k��cg�fecj ��kw�z�sr v� ��� ����st usr ts�vw� � �}}�}}}�vzu�sxs �yx~yw �� zyw�xsty� o�x�o� ��� xyzs � stxyzoxst o�xsr �� zyw�xst� �y�� o�xsr �} zyw�xst�� ¡¢£¢¤¥¦§¥̈ ¦¥¢©ª«¬­ª®̄©°¦±ª«¦² xyzs}³}}´µ}}¶´µ ¶³ ¶� ¶µ¶|¶´} wv� �� zyw· zyw �} zyw} zyw
¸̈̄©°¹̄§°®¬º§»² xyzs}�}|}¶´µ ¶³ ¶� ¶µ¶|¶´} wv�¼½¹̈¥¦§®­¾¥¬¾¦² xyzs}³}´µ}¶´µ ¶³ ¶� ¶µ¶|¶´} wv� stx¿ �vzu�sxyvwÀ ·oz|ozurvqrstttxorxs�À ´´uz

bcdefgc ghijjcj��k�c��d�klmn

Figure 4: Performance objective window after problem injec-
tion shows the OLTP service class not meeting objectives.

3.2 Attempt at manual correction
Our demo challenges the participant to adjust the policies man-

ually. In an attempt to diagnose the situation, the participant may
view a system resource utilization window like that in Figure 5,
which shows excessive resource utilization (memory and CPU) by
the CEO queries. Note that diagnosing the cause of degraded per-
formance is itself a challenge – it is not always obvious whator
where the problem is. Our demonstration is also intended to help
train database system administrators in this task.

There are multiple possible effective policy changes to reduce
contention. For example, reducing the scheduling threshold (MPL)
for the batch report queries will reduce resource contention. In ad-
dition, it may be necessary to kill or suspend some active report
queries to achieve the newly lowered threshold. What makes this
task particularly difficult is that re-allocating resources can have un-

ÁÂÃÄÅÃÆÇÈÉÂ ÊËÌÍÅÃÂÃ ÎÁÏ ÐÇÑÈ ÆÂÆÅÃÒ
ÓÔÕÖÕ

×ÑØÙØ

ÚÛÜÝ Þßà Ýßáâãäåæãäçèäéê ëàßæäìåæãäçèäéê ëçàèéßì

íÒØîÂÆ ïÂØÅðÃÉÂ ÏîÑÍÑñÇîÑÅÈ òóôõö÷øùúûüýûþþÿ�üÿû�
������ �	
�
�
	
����� îÑÆÂ�âäß �� ��������� �� �� ������� ãâç������ �	
�
�
	
����� îÑÆÂ�âäß �� ��������� �� �� ������� ãâç������ �	
�
�
	
����� îÑÆÂ�âäß � ��������� �� �� ������� ãâç

����
�������� �	
�
�
	
����� îÑÆÂ��������� �� �� ������� ãâçÎÊ Report
 !"Á

#$%Õ� � � � � & �� �� �� �� �� �� �� ��' �� �' �� �� �� �� ���& �� �& �� �' �� �� ����()Ô* +,+-./� � � � � & �� �� �� �� �� �� �� ��' �� �' �� �� �� �� ���& �� �& �� �' �� �� ���� � � � � � & �� �� �� �� �� �� �� ��' �� �' �� �� �� �� ���& �� �& �� �' �� �� ���� �� �� �� �& �� �' ���� �� �� �� �� �� �& ���� �� �� �� �� �� �� ���' �� �' �� �� �� �� ���&
Figure 5: In the system resource utilization window, the admin-
istrator can see that after the arrival of a long-running, heavy-
weight, CEO query, resource contention interferes with the rest
of the workload.0123451 5678818

9:;<=>? @ABCDEBA FGHA I JK HBFL@DM?LCMF N OK PCQR1ST2UVDHCWAFA XAYD@A J=H J=HVDHCWAFAZ =F [=HBF=@FAZ\]]CH

<12^T2_7`51 9ab15U4318 cd9VDHCWAFA eGFLGE fg HGEMFABEMHXA@ DY hij VkVWAB CA@ BAVDEZ N OKKKKKGY =VFM=W hij FGHA N ABFGH=FA =YFA@ fg HGEMFABl mGWW =YFA@ [K HGEMFAB
nopqrsotruvwtxy FGHAKfKJKz]{ z| zf z{zJz]K EDe}~sp��tu���v��y FGHAK|K]{Kz]{ z| zf z{zJz]K EDe

����������t�p ���q��v��uoqr�����y FGHAK|KK]{KKz]{ z| zf z{zJz]K EDe fg HGEfO HGE [K HGEK HGE0123451 5678818cd9R1ST2U9:;<

Figure 6: Performance objective window after a run has com-
pleted. The demo participant can see how well the management
actions they took worked with regard to service class objectives.

expected effects. For example, slowing down a long-runningquery
may mean that it continues to occupy system resources for a longer
time. The demonstration participant can use our interface to adjust
various thresholds and policies and see the impact of their actions
on system performance and service objectives.

In this simple example, one option is to suspend the report class
temporarily to enable the CEO class to complete. Another option is
to reduce the priority of the OLTP class. However, the best strategy
is actually to reduce the scheduling MPL for the OLTP queriesjust
a little (e. g., from 10 to 8 or 9) when the executive’s ad hoc query
starts executing. If the administrator lets the system loadstay too
high or else reduces the MPL too much, then the OLTP queries fail
to meet their throughput objectives. If the administrator does not
reduce the MPL enough, then the ad hoc query fails to meet its
response time objective. If the human administrator takes too long
to respond, then multiple objectives are missed.

In addition, as the CEO queries complete, the administratorshould
raise the MPL for the OLTP and/or Report queries, so that resources

are not left idle. After a participant makes adjustments in the policy
control window, the impact of those changes may be observed in
the performance objective window. Figure 6 shows how the win-
dow might look at the end of a run. In the figure, one can see
that although the OLTP and CEO queries did meet their through-
put and response time objectives, the participant was not aggres-
sive enough in throttling down the OLTP queries, and the Report
workload missed its completion deadline. The participant can then
compare when and which workload management actions they took,
as well as the impact of those actions, to the actions that ourauto-
mated system would have taken.

3.3 Policy control feedback loop
After the demo participant corrects the policies during execution

of an entire workload, our demo replays the workload with ourpol-
icy controller automatically adjusting the policies. The same GUI
interfaces then show the participant’s actions and their effects side-
by-side with those of the policy controller. At the end of thework-
load, both are scored based on their ability to meet the workload
objectives. The participant may then play a different scenario.

4. SUMMARY
Extreme diversity of resource requirements, the potentialfor show-

stopping resource contention, and dynamically-arriving user queries
that require significant changes to the workload managementpoli-
cies in effect all present significant challenges in managing a dy-
namic, mixed, operational BI workload. We believe that defining
and implementing new policy control feedback loops can automate
or greatly simplify many aspects of managing BI workloads. Our
demonstration helps participants understand the impact ofpolicies
on mixed workloads and provides some positive examples of how
to set policy choices. In addition, our demonstration framework al-
lows us to create new workload scenarios so that we can study how
our policy controller adapts to unexpected situations. This exami-
nation helps us to devise better policies and meta-policies.

5. ACKNOWLEDGMENTS
We would like to thank Stefan Kinauer for his help implementing

the workload management user interface.

6. REFERENCES
[1] P. Gillin. BI @ the Speed of Business.Computer World

Technology, December 2007.
[2] S. Krompass, H. Kuno, U. Dayal, and A. Kemper. Dynamic

Workload Management for Very Large Data Warehouses:
Juggling Feathers and Bowling Balls. InProc. of the 33rd Intl.
Conf. on Very Large Data Bases (VLDB), 2007.

[3] S. Krompass, H. Kuno, J. Wiener, K. Wilkinson, U. Dayal,
and A. Kemper. Managing Long-running Queries. InTo
appear in: Proc. of the 12th Intl. Conf. on Extending
Database Technology (EDBT), 2009.

[4] B. Niu, P. Martin, W. Powley, P. Bird, and R. Horman.
Adapting Mixed Workloads to Meet SLOs in Autonomic
DBMSs. InProc. of the 2007 Workshop on Self-Managing
Database Systems (SMDB 2007), 2007.

[5] H. Pang, M. J. Carey, and M. Livny. Multiclass query
scheduling in real-time database systems.IEEE Trans. on
Knowledge and Data Engineering, 7(4), 1995.

[6] Teradata Dynamic Workload Manager User Guide, 2006.
[7] C. White. The Next Generation of Business Intelligence:

Operational BI.DM Review Magazine, 2005.

