
DBToaster: A SQL Compiler for High-Performance Delta
Processing in Main-Memory Databases

Yanif Ahmad and Christoph Koch
Department of Computer Science

Cornell University, Ithaca, NY
{yanif, koch}@cs.cornell.edu

ABSTRACT
We present DBToaster, a novel query compilation frame-
work for producing high performance compiled query ex-
ecutors that incrementally and continuously answer stand-
ing aggregate queries using in-memory views. DBToaster
targets applications that require efficient main-memory pro-
cessing of standing queries (views) fed by high-volume data
streams, recursively compiling view maintenance (VM) que-
ries into simple C++ functions for evaluating database up-
dates (deltas). While today’s VM algorithms consider the
impact of single deltas on view queries to produce main-
tenance queries, we recursively consider deltas of mainte-
nance queries and compile to thoroughly transform queries
into code. Recursive compilation successively elides certain
scans and joins, and eliminates significant query plan inter-
preter overheads.

In this demonstration, we walk through our compilation
algorithm, and show the significant performance advantages
of our compiled executors over other query processors. We
are able to demonstrate 1-3 orders of magnitude improve-
ments in processing times for a financial application and
a data warehouse loading application, both implemented
across a wide range of database systems, including Post-
greSQL, HSQLDB, a commercial DBMS ’A’, the Stanford
STREAM engine, and a commercial stream processor ’B’.

1. INTRODUCTION
Static query workloads are commonly posed on relational

data management systems, in the form of view declaration
queries, repetitive (parameterized) queries from client-side
application logic, and continuous queries for stream pro-
cessing. However, in today’s data management systems,
these queries are answered using the same machinery as
for flexible, interactive query processing, namely query plan
interpreters and other runtime components. While many
database systems include a compiler that produces and op-
timizes query plans, we argue that this model of compila-
tion does not push the envelope far enough. We propose

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

DBToaster, a novel approach for compiling SQL aggregate
queries into extremely efficient C++ code for continuous
standing query evaluation.

DBToaster is a SQL query compilation framework for
main memory databases that produces C++ code to incre-
mentally maintain aggregate views at high update rates us-
ing aggressive delta processing techniques. Our work is mo-
tivated by applications that require highly efficient answer-
ing of fixed aggregate query workloads, as in data stream
processing, online data warehouse loading, and in finan-
cial applications. We focus on main-memory databases due
to the prevalence of standing queries in stream processors,
where compilation has only recently been considered [3, 6].

DBToaster works by recursively compiling queries into in-
cremental view maintenance code; that is, while data in-
crements for queries are traditionally expressed and evalu-
ated again as queries, we recursively compute increments
to these increments, and so forth. Recursive compilation
provides three key advantages. First, our C++ code pro-
cesses query plan execution paths, eliminating overheads in
interpreting query plans stored in dynamic data structures.
Next, we generate asymptotically simpler code at each recur-
rence, since computing increments allows us to avoid certain
database scans or joins. Finally, we tailor code generation
to produce native code, enabling modern C++ compilers to
apply aggressive inlining and other optimizations, resulting
in compact straight-line code sequences.

We showcase DBToaster in a few applications that are
served in limited fashion by today’s data management tools,
including algorithmic order book trading (algos), and an in-
tegrated approach to data warehouse loading and analysis.
Our compiled query processors are several orders of magni-
tude faster than state-of-the-art databases and significantly
outperform stream processing engines on such workloads.
In the case of queries on order book data for algos, our ap-
proach stands alone in its ability to support realistic data
rates without resorting to very substantial computing clus-
ters. Indeed, the memory consumption of our main-memory
techniques is sufficiently low to support applications such as
data warehouse loading.

2. DBTOASTER OVERVIEW
Data and Query Model. DBToaster focuses on appli-
cations issuing standing queries on a database which sub-
sequently process continuously changing, large volumes of
input tuples. DBToaster is capable of compiling a wide va-
riety of SQL queries including the core relational algebra,
standard aggregates (sum, avg, count, min, max), subqueries



Client 
application

DBToaster library

Embedded mode

Update
stream

Main-memory
database snapshot

Continuous
queries

DBToastercompiler

JIT compiler
(LLVM)

DBToaster runtime

C++
compiler

SQL

Standalone mode

Update
stream

Main-memory
database snapshot

Continuous
queries

Register query

DBToastercompiler

JIT compiler
(LLVM)

C++
compiler

SQL
Query processing

library

Figure 1: DBToaster architecture, illustrating stan-
dalone and embedded modes of query processing. In
standalone mode, DBToaster produces a lightweight
runtime, while in embedded mode, DBToaster can
alternatively produce a binary library that can be
used directly in client applications.

and nested aggregates. Our data model differs from today’s
data stream processors, in that we consider a database as a
set of relations each subject to an arbitrary sequence of in-
serts, updates and deletes. In contrast, data stream proces-
sors assume a well-defined separation between tuples’ insert
and delete operations on the stream (value- or count-based
windows), or assume ordered deletion semantics (punctua-
tions or heartbeats). In DBToaster, each tuple has an arbi-
trary lifetime, thus our standing queries process a database
spanning an arbitrary valid time using temporal database
terminology. Indeed, many stream applications, such as or-
der book trading and moving object applications, are self-
managing, in that the application logic and delta patterns
ensure that state does not grow unboundedly in practice.
System Model. At its core, DBToaster consists of a parser,
an algebraic compiler and a code generator. Our compila-
tion workflow produces a delta-processing function for each
type of delta (insert, update or delete) on any base rela-
tion used in the query. In addition, compilation defines in-
memory aggregate views that are maintained during runtime
to support our delta-processing functions. We will see how
these data structures are defined in the description of our
algorithm below. The DBToaster runtime may be used as a
standalone query processor accepting input over a network
interface or archived stream, or as an embeddable query
processor that can be directly compiled into the same ad-
dress space as application logic. DBToaster also exposes a
read-only interface to its internal data structures to support
ad-hoc client-side queries. DBToaster includes a debugger
and profiler for tracing delta processing functions and their
maintenance of internal data structures.

3. QUERY COMPILATION
We now present DBToaster’s compilation algorithm through

an example illustrating how queries are turned into efficient
procedural code. Our compilation framework applies to the
core relational algebra and group-by aggregates, and uses a
custom query algebra to define map data structures. These
maps are closely related to views definable by SQL aggre-
gate group-by queries but at the same time are main memory

data structures that are easy to access in applications. Due
to space limitations, we present a small fraction of our map
algebra simplifications as needed for our example query. Our
full map algebra is approximately 70 simplification rules.
Compilation example. Consider the query below on three
relations and schemas R(A,B), S(B,C), T (C,D):

select sum(A*D) from R, S, T

where R.B=S.B and S.C=T.C

Given the data and query model above, we assume re-
lations R,S, T are manipulated via update streams which
consist of the standard requests of inserting, updating and
deleting tuples. For ease of presentation, we can consider up-
dates as pairs of delete and insert requests. We start with
handling an insert to the relation R, with a tuple {〈a, b〉}.
Assuming the variable q maintains the query result, we can
show:

Insert R(a,b):

∆q = sumA∗D({〈a, b〉} ./ S ./ T )

= sumA∗D({a} × σB=b(S) ./ T )

= suma∗D(σB=b(S) ./ T )

= a ∗ sumD(σB=b(S) ./ T )| {z }
qD [b]

Above qD[b] is an example of a map that we use to com-
pute the change in query result q, a map with key-value
entries of keys b, and values defined as the result of the
query: sumD(σB=b(S) ./ T ). While we do not go into the
full details of the derivation validity, we can see it is a sim-
plification of the original query by considering the relation
R as a singleton relation {〈a, b〉}. We can symmetrically de-
rive for inserting into relation T as: ∆q = d∗qA[c], resulting
in a map qA[c] = sumA(R ./ σC=c(S)). An insert on S is:

Insert S(b,c):

∆s = sumA∗D(R ./ {〈b, c〉} ./ T )

= sumA∗D(σB=b(R)× σC=c(T ))

= sumA(σB=b(R))| {z }
qA[b]

∗ sumD(σC=c(T ))| {z }
qD [c]

Note the elimination of any join in the above query since
we are able to exploit distributivity properties of summation
and multiplication, and the cross product operator. At this
point we have presented one level of compilation, for an in-
sertion into each base relation R,S, T , resulting in incremen-
tal query result computation code, a set of maps which we
have to maintain, and queries defining the map contents. At
this point, we recursively compile the map definition queries,
considering each of the three types of insertion (to R,S, T ).
We subsequently aggressively inline any code generated into
a handler for each type of insertion. For example, consider
the maps qA[c], qA[b] above, whose entries are dependent on
the relation R. We recursively compile incremental mainte-
nance of this map for insertions to R as:

Insert R(a,b):

∆qA[b] = sumA({〈a, b〉}) = a

foreach c: ∆qA[c] = sumA({〈a, b〉} ./ σC=c(S))

= suma(σBC=bc(S))

= a ∗ sum1(σBC=bc(S))| {z }
q1[b,c]



Recursion level Event Query, Q, to compile Code for ∆Q Maps used in code Map definition
1 ±R sumA∗D(R ./ S ./ T ) ±a ∗ qD[b] qD[b] sumD(σB=b(S) ./ T )
1 ±S sumA∗D(R ./ S ./ T ) ±qA[b] ∗ qD[c] qA[b] sumA(σB=b(R))

qD[c] sumD(σC=c(T ))
1 ±T sumA∗D(R ./ S ./ T ) ±d ∗ qA[c] qA[c] sumA(R ./ σC=c(S))
2 ±R sumA(R ./ σC=c(S)) foreach(c): ± a ∗ q1[b, c] q1[b, c] sum1(σBC=bc(S))
2 ±R sumA(σB=b(R)) ±a (no new maps)
2 ±S sumA(R ./ σC=c(S)) ±qA[b] (no new maps)
2 ±S sumD(σB=b(S) ./ T ) ±qD[c] (no new maps)
2 ±T sumD(σB=b(S) ./ T ) foreach(b): ± d ∗ q1[b, c] q1[b, c] sum1(σBC=bc(S))
2 ±T sumD(σB=b(T )) ±d (no new maps)
3 ±S sum1(σBC=bc(S)) ±1 (no new maps)

Figure 2: DBToaster’s recursive compilation of the ’select sum(a*d) from R, S, T’ query, showing the query
being compiled, the procedural code required to incrementally compute the query result, maps required by
the code, and the query defining the map. Above, the event ±R indicates both an insert and delete on R,
and we present the code in one piece, although DBToaster would produce different event handlers.

Above, we use sum1 to refer to a count aggregate, that
is sum1(σBC=bc(S)) is a count of 〈b, c〉 tuples in S. Note
the foreach statement when computing ∆qA[c]. This arises
since a single tuple 〈a, b〉 in R affects all map entries with
keys c∗ where the relation S contains tuples 〈b, c∗〉. Again
our compilation is symmetric for the relations R and T due
to the nature of the join graph in this query. Thus the
maintenance code for maps qD[b], and qD[c] is:

Insert T(c,d):

∆qD[c] = d

∆qD[b] = foreach(c): d ∗ q1[b, c]

For an insertion to S, we must maintain maps qA[c], qD[b]:

Insert S(b,c):

∆qA[c] = sumA(R ./ {〈b, c〉})
= sumA(σB=b(R)× {c})
= sumA(σB=b(R)) =: qA[b]

∆qD[b] = sumD({〈b, c〉} ./ T )

= sumD({b} × σC=c(T ))

= sumD(σC=c(T )) =: qD[c]

Note that we are already maintaining maps qA[b], qD[c] above,
that is, we can exploit map sharing opportunities across
event handler functions. Finally, we maintain q1[b, c] for
insertions to S simply as: ∆q1[b, c] = 1. We show the re-
sulting handler functions from this example, including the
inlining of code fragments generated at each recursive step.

// Declarations

result q;

map q_A_b, q_A_c, q_D_b, q_D_c, q_1_bc;

// Event handlers

void on_insert_into_R (attribute a, attribute b) {

q += a * q_D_b[b]; q_A_b[b] += a;

foreach (c in q_A_c.keys()) do

q_A_c[c] += a * q_1_bc[b][c];

}

void on_insert_into_S (attribute b, attribute c) {

q += q_A_b[b] * q_D_c[c]; q_A_c[c] += q_A_b[b];

q_D_b[b] += q_D_c[c]; q_1_bc[b][c] += 1;

}

void on_insert_into_T (attribute c, attribute d) {

q += q_A_c[c] * d; q_D_c[c] += d;

foreach (b in q_D_b[b].keys()) do

q_D_b[b] += q_1_bc[b][c] * d;

}

Additionally Table 2 compactly describes this compilation
example, including the case of deletion events which turn out
to be strictly analogous in this case due to the fact that sum
aggregates have a well defined inverse as subtraction.

4. DEMONSTRATION SETUP
The DBToaster demonstration presents the map algebra,

the compilation workflow, and the performance advantages
of compiled query processors over alternative database ar-
chitectures. In this section we describe the application sce-
narios that act as motivating use cases for DBToaster, as
well as the visualization tools that convey the technical as-
pects of query transformations and compiled executor per-
formance. Since DBToaster is suited for applications ex-
hibiting high volume update streams, in this demonstration,
we show DBToaster processing queries for an automated
trading application making use of NASDAQ TotalView or-
der book data [2], and emulating a combined data warehouse
loading and analysis application for TPC-H data.

Processing order books in equities trading. Order
books provide a superior view of the market microstructure
for use in trading algorithms. The bid order book consists
of prices and volumes at which investors are willing to buy
equities, and correspondingly the ask order book indicates
investors’ selling orders. Investors continually add, mod-
ify or withdraw limit orders, thus we regard order books as
relations subject to high volumes of order deltas. Note or-
der books do not grow unboundedly in practice, but cannot
be expressed by windows given arbitrary input deltas. We
present a few queries in the automated trading application,
first a volume-weighted average price (VWAP) query which
computes the average price-volume product of orders mak-
ing up a given fraction of volume in the bid and ask order
books. One example usage of the VWAP metric is for a
static order book imbalance (SOBI) trading strategy, which
detects trade price movements based on whether there is
greater activity in the bids or asks order book. The final
query detects strategies being employed by market makers



Figure 3: DBToaster compilation process visualiza-
tion, displaying map algebra transformations, gen-
erated code, and internal views maintained.

through the order book, where market makers often submit
orders to entice buyers or sellers into the market to aid in
balancing their position.

Data warehouse loading. Loading large data warehouses
is a computation-intensive process, hence most data ware-
house loading is performed offline. While commercial ware-
house loaders use highly tuned code for aggregation, incom-
ing data is often the result of costly, inefficient data inte-
gration queries, which often blow up data sizes to cause
inefficient loading. Compiling data integration and aggre-
gation queries together yields efficient code for loading the
warehouse and may avoid the materialization of large in-
termediate results. We use DBToaster to jointly process
loading a warehouse from an OLTP database, and an ag-
gregation query on the warehouse. We emulate the data
integration step by using a data cleaning query to convert
a TPC-H dataset into a star schema from the Star Schema
Benchmark (SSB) [5]. We then evaluate query 4.1 from SSB
on the transformed TPC-H dataset.

Interactive demonstration. An integral part of this demo
is to support interaction with conference attendees, thus
in addition to providing canned queries implementing these
applications, we allow attendees to directly pose their own
queries on the TotalView and TPC-H datasets.

4.1 Query compilation and code generation
The first of our two visualization tools, Figure. 3, con-

veys the compilation process to demo attendees. This tool
visually displays a standard relational query plan, and il-
lustrates the compiler workflow in a step-by-step fashion,
including map algebra simplifications and the maps instan-
tiated during compilation. We place particular emphasis on
the recursive nature of our compilation, demonstrating com-
pilation of deltas on the queries corresponding to our map
data structures. At this point query compilation is com-
plete, and we use a pair of browser windows listing both the
maps and the event handling functions generated to aid in
discussions with attendees. We also use a debugging tool
to provide step-by-step tracing of map maintenance when
processing a delta.

Figure 4: DBToaster debugger supporting stepping
and tracing query processing and map maintenance,
and performance visualizer for comparing against
alternative databases in the DBMS bakeoff.

4.2 DBToaster vs. DBMS* Bakeoff
This demo also presents DBToaster’s competitiveness with

a variety of database tools, by performing a DBMS bakeoff.
Our comparison points are PostgreSQL, a pure Java main-
memory DBMS (HSQLDB [1]), a commercial DBMS ’A’,
the Stanford STREAM engine [4], and a commerical stream
processor ’B’. We have a visualization tool (Figure. 4) to
show the performance achieved by the each database system
including tuple throughput, memory usage and cache per-
formance. We also present detailed profiling of DBToaster’s
compiled code breaking down its overheads for each map,
the binary size, and finally the compile time including both
the C++ generation and the subsequent compilation to a na-
tive binary. To provide an entertaining audience experience,
we run an audience challenge to find queries both yielding
the greatest performance over the other database engines
in the bakeoff, as well as queries that illustrate the poorest
performance. Attendees will be provided with two laptops
at the demonstration booth to experiment with queries, and
encourage participation by displaying a leaderboard of the
running results.

5. REFERENCES
[1] HSQLDB, http://www.hsqldb.org.

[2] NASDAQ TotalView order book,
http://www.nasdaqtrader.com/Trader.aspx?id=TotalView.

[3] B. Gedik, H. Andrade, K.-L. Wu, P. Yu, and M. Doo.
SPADE: the System S declarative stream processing
engine. In Proc. of the 2008 ACM SIGMOD, pages
1123–1134, 2008.

[4] R. Motwani, J. Widom, et al. Query processing,
approximation, and resource management in a data
stream management system. In Proc. of the First
Biennial CIDR, Jan. 2003.

[5] P. O’Neil, E. O’Neil, and X. Chen. The star schema
benchmark.
http://www.cs.umb.edu/ poneil/StarSchemaB.PDF ,
2007.

[6] J. Salz and R. Tibbetts. StreamBase Systems. Stream
processor with compiled programs, U.S. Patent
Application, app. #11/644,189, pub. #US
2008/0134158 A1. Filed December 2006.


