
Kosmix: High-Performance Topic Exploration using the
Deep Web

Anand Rajaraman
Kosmix Corporation

Mountain View, CA, USA
anand@kosmix.com

ABSTRACT
Kosmix lies at the intersection of two important trends:
topic exploration and the Deep Web. Topic exploration is
a new approach to information discovery on the web that
satisfies certain use cases not served well by conventional
web search. The Deep Web, an inhospitable region for web
crawlers, is emerging as a significant information resource.
We describe the anatomy of Kosmix, the first general-purpose
topic exploration engine to harness the Deep Web using
a federated search approach. We focus in particular on
the Kosmix approach to query tranformation and caching,
which is essential to ensure reasonable performance.

1. INTRODUCTION
Web search engines, such as Google, Yahoo, and Bing,

excel at finding the needle in a haystack: a single fact, a sin-
gle definitive web page, or the answer to a specific question.
Often, however, the user’s objective is not to find a needle
in a haystack, but to learn about, explore, or understand a
broad topic. For example:

• A person diagnosed with diabetes wants to learn all
about this disease. The objective is not just to read
the conventional medical wisdom, which is a commod-
ity available at hundreds of websites, but also to learn
about the latest medical advances and alternative ther-
apies, evaluate the relative efficacy of different treat-
ment options, and connect with fellow-sufferers at pa-
tient support groups.

• A reporter researching a story on Hillary Clinton needs
access to her biography, images, videos, news, opin-
ions, voting record as a lawmaker, statements of fi-
nancial assets, cartoons and other political satire.

• A traveler planning a trip to San Francisco needs to
learn about attractions, hotels, restaurants, nightlife,
suggested itineraries, what to pack and wear, and local
events.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

These are just three of numerous use cases where the goal
is to explore a topic. Topic exploration today is a laborious
and time-consuming task, usually involving several searches
on conventional web search engines. The problem in many
cases is knowing exactly what to search for; in the dia-
betes example above, if the diabetes sufferer knows there
are patient-support groups, or that there might be alterna-
tive therapies they might be interested in, it’s not hard to
find them through conventional search engines. The bigger
issue is that most people exploring a topic don’t know what
to look for.

Kosmix tackles this problem by creating a topic page for
any topic. The goal of a topic page is to provide a 360-
degree view of a topic. In each of the examples above, the
Kosmix topic page includes all the information listed. In ad-
dition, the topic page also provides a list of related topics,
conveniently grouped together, that suggest further areas
to explore. The topic page uses a two-dimensional layout
that is more reminiscent of a newspaper or a magazine than
a search results page. This is not a coincidence. Maga-
zines and newspapers, like topic pages, have been designed
for browsing as opposed to search; the goal is to facilitate
serendipitous information discovery. The need for topic ex-
ploration is validated by the fact that Kosmix and its sister
property RightHealth today serve topic pages to over 10
million unique visitors every month.

A second distinction between Kosmix and search engines
lies in the source of the information on the Kosmix topic
page. Search engines construct their search results pages
from their indexes, which in turn are built using web crawlers.
A Kosmix topic page consists of a collection of modules.
Each module is constructed using the result of an API call
to a web service, done at the time of page construction.
This allows Kosmix to tap into the Deep Web, the por-
tion of the web not accessible to crawlers: social network-
ing sites, media-sharing sites (photos, videos, documents),
library catalogs, airline reservation systems, phone books,
scientific databases and all kinds of information that lie con-
cealed from view behind web forms. Some estimates have
pegged the size of the Deep Web at upto 500 times larger
than the Surface Web [16].

Although there are differences in the ranking algorithms
used by different search engines, the fundamental architec-
ture of web search engines is well-understood [2]. Of late,
there has also been some interest in adding Deep Web data
to search engines using an enhanced web crawler [9]. A few
domain-specific vertical search engines, such as Mobissimo
and Kayak, have adopted a federated search approach to the



Deep Web, accessing deep web sources at query-time and
constructing results pages based on their responses. To our
knowledge, the Kosmix explore engine is the first general-
purpose, domain-independent service that uses a hybrid of
the two approaches to harness the Deep Web.

The basic anatomy of the Kosmix explore engine is de-
scribed in [12]. In this paper, we will focus on two chal-
lenges that arise in its implementation: query transforma-
tion and performance. We will provide a brief overview of
the overall architecture of the explore engine in order to set
the stage for understanding the query transformation and
performance issues.

The rest of this paper is organized as follows. Section
2 describes the two approaches to harnessing the power of
the Deep Web and evaluates their advantages and disad-
vantages, making the case for a hybrid approach. Section 3
describes the anatomy of the Kosmix explore engine, with
emphasis on query transformation and performance. Sec-
tion 4 describes related work. Section 5 concludes with some
thoughts on the evolution of the Deep Web.

2. APPROACHES TO DEEP WEB SEARCH
AND EXPLORATION

There are two fundamentally different approaches to in-
corporating the deep web into search or topic exploration
engines.

• Deep Web Crawl. Crawl as much of the deep web as
possible and incorporate it into a conventional search
engine index.

• Federated Search. Use APIs to access deep web
sources at query-time and construct results pages based
on their responses.

Wright [16], using a fishing analogy, calls these approaches
trawling and angling respectively, while Madhavan et al. [9]
calls them surfacing and virtual integration. These approaches
are also analogous to the warehousing and mediation ap-
proaches in data integration.

2.1 Deep Web Crawling
The crawl-based approach has the advantage that it fits

well with the conventional web search model. The additional
documents can be added to the search index and ranked us-
ing the existing ranking algorithm. The deep web crawl
approach has been employed very effectively at Google, es-
pecially for tail queries [9].

As the web evolves from a broadcast medium to a par-
ticipative medium, however, some drawbacks of the crawl
based approach are becoming apparent.

User-generated content and social media. The Web
2.0 revolution has seen an explosion of sites dedicated to
user-generated content (UGC). Examples include Wikipedia,
YouTube, Flickr, and specialized sites in many subject areas
such as TripAdvisor and Yelp. Such sites have removed fric-
tion from the content-creation process and lead to a sharp
increase both in the number of contributors and in content
of various media types. While search engines have strived to
keep up with the deluge, the amount of information avail-
able on such services is growing faster than search engine
index sizes. Social media sites such as Facebook, MySpace,
and Twitter take this trend even further. The information

on such sites is subject to various access controls. For ex-
ample, users may permit only their “friends” to view certain
information. In such cases, web crawlers may not have ac-
cess to the information, since they don’t work on behalf of
a real user.

Real-Time. One of the weaknesses of the conventional
web search architecture is the time lag introduced by the
crawl and index process. While search engines have reduced
this latency considerably over the past years, it is still a
problem for information of a time-sensitive nature. Exam-
ples include ticketing and reservation systems of all kinds,
auctions and shopping sites with limited product availabil-
ity, and financial information related to the stock market.

One example that has captured the popular imagination
of late is Twitter. When breaking-news events happen,
Twitter users are often the first to post news and images
online, often within seconds. Instances of this kind include
the earthquake in China (May 2008) and the landing of US
Airways 1549 on the Hudson River (February 2009). In
such cases, there is a window of time where Twitter Search
produces superior results over any conventional web search
engine.

Specialized search engines. Search ranking algorithms
such as PageRank evolved at a time when the web con-
sisted primarily of hyperlinked HTML documents. How-
ever, a large fraction of useful content available today does
not fit the old model and requires different ranking method-
ologies. For example, media-sharing sites such as YouTube
and Flickr have access to information such as the reputa-
tion of the person who uploaded the content, number of
views, and ratings. Another trend is the emergence of spe-
cialized search engines for specific tasks, such as Mobissimo
and Kayak for travel; SimplyHired for job listings; Shop-
ping.com and TheFind.com for products; and so on. As
the web evolves from static documents to dynamic content
repositories, it would seem that the most natural approach
is to let such sites develop their own site-specific search en-
gines, and then federate the results of these engines, or of
domain-specific aggregators.

Information presentation. The results presentation
model of web search engines has not evolved significantly in
over 10 years. In the meantime, specialized services (either
site-specific search engines, or category-specific aggregators)
have developed innovative information presentation models
for specific use cases. For example, Zillow for home prices;
TheFind for products; Facebook for user profiles; and so
on. Once again, a federated approach makes a lot of sense.
Yahoo’s SearchMonkey effort is a first step by search engines
to address this issue. It allows content owners to submit a
catalog of rich snippets for a set of queries. The limitation
of this aproach is that the set of queries needs to be specified
in advance, together with a static snippet for each query.

Availability of APIs. A growing trend is the evolution
of websites into web services. Web services provide access
to the contents and capabilities of the site via APIs. A
handful of standards have evolved for such APIs, including
REST and JSON. Crucially, we have reached a tipping point
where the quantity of useful information available through
such APIs is sufficient to build useful services.

Business model issues. The dominance of search en-
gines as gateways to the web tends to commoditize web
content and intermediate between content creators and con-
sumers. Many content creators are therefore wary of allow-



ing search engines access to their entire data set. For exam-
ple, Twitter does not provide search engines except Twitter
Search access to its API. Facebook allows only limited ac-
cess to search engines. Several newspapers have digitized
archives that date back several decades, but do not make
these archives available to search engine crawlers. Record la-
bels do not make copyrighted music available for crawl. Such
information can in many cases be accessed only through an
API.

Infinite Wine in a Finite Bottle. Content created
by algorithms is an interesting new trend.The beginnings of
this trend can bee seen in the Wolfram Alpha, which can
answer questions that are mathematical computations over
data. Since the set of mathematical computations is infinite,
trying to represent the Alpha as a finite set of web pages to
fit in an index is a futile exercise. An API is the only sensible
way to access such sites.

2.2 Federated Search
The dynamic query approach overcomes many of the lim-

itations of the crawl-index-search approach outlined in Sec-
tion 2.1. However, the approach comes with its own set of
challenges.

Integrating APIs. Each web service comes with its own
API, which uses different parameters from every other API.
The results are also formatted differently. A piece of custom
code, conventionally called a wrapper, is required to connect
to each web service, limiting the scalability of the approach.

Source Selection. Given a topic and thousands of po-
tential information sources, it is not practical to query ev-
ery information source for each query. For example, it is
not meaningful to send the query “diabetes” to TripAdvi-
sor.com, a travel resource. If we indiscriminately query a
source for topics irrelevant to it, we run into two issues.
The first is the potential to clutter the results page with ir-
relevant information. The second is overloading web service
providers, potentially bringing down their systems or get-
ting them to reject future queries from the explore engine.
Unlike in the case of an index-based search engine, source
selection needs to be done without having access the content
of the source.

Query Transformation. Kosmix users enter free form
text queries, while the underlying information sources often
support a richer query model. Once we deem an information
source as potentially useful for a query, the next task is to
rewrite the query in the manner most suited for that source.
It should be noted that this problem is very different from
that of rewriting structured queries, which has been explored
in detail in the context of information integration [13, 8].

Results Layout. As we discussed in Section 2, many
data sources present results using innovative methods tai-
lored to the kind of data, and we would like to preserve
this richness rather than degenerate to the lowest common
denominator. In addition, since results are inherently of dif-
ferent types, it is unnatural to force a linear ranking across
them.

Performance. Unlike a web search engine, a federated
search engine needs to make external API calls in order to
construct its pages. Therefore, we should expect this ap-
proach to be inherently slower than web search. Long re-
sponse times can, however, have the effect of turning off
users. Therefore, it is a huge implementation challenge to
keep response times within acceptable limits.

!"#"$%&"'&#($&)'"#$*&
+#,#$%

-./#&!"#"$%&"'&#($&
)'"#$*&+#,#$%

!"#"$%&"'&!,0"1./'",

!"#"$%&"'&#($&+,'&
2/,'3"%3.&4,5&6/$,

!.,%#,0&!"#"$%&"'&
!,0"1./'",

+,'&2/,'3"%3.

Figure 1: A small fragment of the Kosmix taxonomy

3. THE KOSMIX EXPLORE ENGINE
In this section we first provide a brief overview of the

architecture of the Kosmix Explore Engine, followed by a
detailed discussion of our approach to query rewriting and
caching (to tackle the performance challenge described in
the previous section). A companion paper [12] provides a de-
tailed exposition of our approach to data access, data source
selection, and results layout.

3.1 Architecture Overview
In the previous section, we listed some of the pros and cons

of the crawl-based and federated search models. In practice,
Kosmix uses a hybrid approach that combines features of the
crawl and the federated search approaches. Some of the data
is indexed locally, while API calls are made in other cases.
Certain criteria are used to determine whether to locally
index the data from a data source, or to query it using its
API. These criteria are laid out in [12]. These criteria relate
to the drawbacks of the crawl and index approach desribed
in the foregoing section.

The cornerstone of the Kosmix explore engine is its tax-
onomy and categorization technology. The Kosmix taxon-
omy consists of millions of topics organized hierarchically,
reflecting is-a relationships. For example, San Francisco is-a
city. The resulting hierarchical structure is a directed acyclic
graph (DAG). Figure 1 shows a small piece of the Kosmix
taxonomy. Details on how the taxonomy is constructed and
the challenges we faced are in [12].

The second key to the Kosmix explore engine is the Kos-
mix Categorization Service (KCS). Given a user query, KCS
determines the nodes in the taxonomy that are most closely
connected with the query. Let us say the query is “Pinot
Noir.” KCS determines that Pinot Noir is a kind of wine,
which is a related to foods and beverages. It also determines
that Pinot Noir is a kind of wine grape, and is related to
viticulture and vineyards. Figure 2 shows a small selection
of the full list of topics KCS determines are related to Pinot
Noir.

In addition, KCS also determines the data sources in the
system that are most likely to have data relevant to the
query. Continuing with the Pinot Noir example, sites deemed
relevant to this topic include Epicurious and Food Network
(food and recipe-related websites), DailyPlate and FatSe-



Figure 2: Topics related to Pinot Noir

cret (both databases listing nutritional value of food), and
Amazon.com (for wine shopping). In addition, there are
also many general-purpose services that have content on a
wide variety of topics, including Wikipedia, Google Image
Search, and YouTube.

The next step is to query each of the selected sources and
gather results. The user query may need to be transformed
before sending it to certain data sources, as described in
Section 3.2. The results so gathered are not laid out in
a linear fashion, but grouped together by information type
into a 2-dimensional layout: text, audio, video, user profiles,
shopping, conversations and so on. The page real estate
allotted to a group varies based on various factors, such as
the relevance scores of the data sources in the group. Within
a group, each data source gets a variable amount of real
estate depending upon its relevance and other factors.

The Related in the Kosmos module enables exploration
by surfacing topics in the taxonomy that are related to the
query, grouped in a fashion that makes it easy to to scan.
Figure 2 shows some of the related topics for the query
“Pinot Noir.” Clicking on one of these links takes the user
to the page for that topic.

3.2 Query Rewriting
The general problem of reformulating a query to conform

to an arbitrary API is a very difficult one. It is related to the
work on query transformation done in the context of data
integration [8, 13]. In the context of the explore engine,
we made the observation that most of the data sources of
interest support freeform text queries. We made a conscious
design choice to restrict ourselves to such sources.

In practice, this is not a huge restriction. Topic explo-
ration queries tend to be simpler and shorter than web
search queries. For example, “flights from seattle to boston”
is not a common use case for topic exploration. There are
some exceptions, such as location inputs (e.g., zipcodes) that
can be handled as special cases.

There are one scenario where query rewriting makes a
big difference: ambiguous queries. These are queries such
as “jaguar”, which might mean the animal, the car, or the
football team, among its many different meanings. When a
user enters an ambiguous query, the explore engine presents
choice of meanings: e.g., Jaguar (Animal), Jaguar (Car),

Jacksonville Jaguars. The user can pick one of these mean-
ings to get the topic page for the corresponding topic.

The question is, how to send such queries to the selected
data sources? Sending the query in its unmodified form
will likely produce many irrelevant results. There are two
approaches the explore engine uses in such cases:

• Textual Disambiguation. Add keywords to the orig-
inal query so as to convery the desired meaning. For
example, add the keyword “car” to the original query
“jaguar” to convey that the user meant that sense of
the term.

• Category Filter. Many web services, especially those
with large amounts of data such as YouTube and Flickr,
support a search option that allows both a freeform
text query and a category input. A category is usu-
ally a broad subject area, such as “health”, “travel”,
or “science.” The query is interpreted as: Find results
containing the specified category, and also belong to
the specified category. For example, the query “jaguar
category:auto” on YouTube produces very different re-
sults than the standalone query “jaguar.”

Each data source selected for the query at hand falls in
one of three buckets:

1. The data source is known to contain data only for cer-
tain subject areas in the taxonomy, and the subject
areas covered by the data source admit of only the
user-selected meaning of the query term. For exam-
ple, Vast.com is a service for listing used cars for sale.
The term “jaguar” has precisely one meaning for this
data source.

2. The data source covers a range of subjects that admits
multiple meanings for the original user query, and sup-
ports a category filter. e.g., YouTube.

3. The data source covers a range of subjects that admits
multiple meanings for the original user query, but does
not support a category filter.

In the case of Type 1 data sources, we can send the user
query without any modifications. For Type 3 data sources,
the explore engine uses textual disambiguation. If a data
source supports a category input (Type 2), that method is
usually preferable to textual disambigaution. This is be-
cause most textual disambiguation is lossy: it forces the
data source to find data items that mention more keywords
than the original query, and therefore hurts recall. A prop-
erly implemented category filter does not have this problem.
In practice, many data sources do not implement their cat-
egory filters in the best possible manner, but the general
point still holds.

For sources that support a category filter, the challenge
is to pick the right category input. The explore engine uses
the query categorization provided by KCS to find the closest
category input from a menu of known choices for each data
source.

3.3 Caching
It should be apparent from the foregoing discussion that

building a topic page requires many calls to external services
outside the control of the explore engine. In a naive imple-
mentation, that could lead to unacceptable response times



for users. As traffic to the explore engine scales, it could
also place an unacceptable load on data sources.

The solution we have adopted at Kosmix is an intelligent
caching layer. The simplest approach would be to cache
topic pages. This, however, is not ideal, because different
data types have different freshness requirements, e.g., news,
Twitter and TripAdvisor hotel reviews. Therefore, we cache
the results of each request to a data source, and assemble
the topic page on the fly from these. The cache key therefore
is a pair (data source, query).

Each cache entry has two different expiry times: a soft
expiry and a hard expiry. When a query hits a soft-expired
cache entry, the data in the cache may still be used to satisfy
the query, but the (data source, query) pair is added to a
background cache priming queue. When a query hits a hard
expired cache entry, a call must be made to the external
source on the fly to construct the topic page, and the cache
entry gets refreshed as a by-product. A continuously run-
ning backgound priming process runs through entries in the
cache priming queue, refreshing soft-expired cache entries in
order of popularity.

Consider a query being processed by the explore engine.
The data source selection process typically identifies 20-30
data sources for every query. Thus, a single query results
in 20-30 cache lookups. We clearly cannot store the entire
cache in memory (it is of the order of several terabytes of
data, and grows constantly). Therefore, each cache lookup
results in a random access to disk. For the SATA-2 disks
that are in common use, the seek time is around 10 millisec-
onds, and so a cache lookup might take over half a second.

Half a second is clearly unacceptable for cache lookups.
Fortunately, a new technology that is becoming popular
comes to our rescue: solid-state disks. A solid-state disk
(SSD) [15] uses solid-state memory (such as flash) to store
persistent data. The random access time for the solid-state
disks we use is 100 microseconds, which is two orders of mag-
nitude faster than conventional disks. Thus, cache lookup
for a query takes no more than a few milliseconds. In addi-
tion to much faster random seeks, SSDs also support many
more I/O operations per second (IOPS) than hard disks,
thus leading to better throughput under concurrent query
loads. The price-point of SSDs is falling rapidly and is at a
point where it is practical for us to use in our cache.

Kosmix uses a distributed cache, where each cache node
runs a modified verion of ehCache [5], a widely-used open
source cache. We have modified ehCache extensively, opti-
mizing it both for SSD-based storage as well as large-scale
data (in the order of several terabytes). Each cache entry
is replicated, so data is not lost when a cache node fails.
Kosmix plans to open-source our modifications to ehCache
in the near future.

The cache allows us to render topic pages with acceptable
latencies. Pages where most of the data is in the cache
render in under a second, while most other pages render
with a a few seconds. That definitely is slower than modern
web search engines, but users appear to understand that the
freshness of the data is often worth the additional wait.

4. RELATED WORK
Broder [3] and several other works have classified search

queries into three categories: navigational, informational,
and transactional. While the exact proportions have var-
ied, there is agreement that a large fraction of queries are

informational. Topic exploration is a good metaphor for
informational queries.

There is a significant body of work on creating vertical
search engines for specific domains by constructing semantic
mappings from a mediated schema (or form) to collections
of forms within a domain [4, 8, 14, 18]. Most of this work
assumes that the mediated schema can be created by hand.
Our work, on the other hand, focuses on a general-purpose,
domain-independent explore engine. The sheer breadth of
queries we need to handle makes it impossible to manually
create a mediated schema, leading us to the automated cre-
ation and maintenance of a taxonomy.

Google’s approach to crawling the Deep Web is described
in [9]. There has been prior work around acquiring docu-
ments from databases with restricted query interfaces, as
well as computing keyword distributions that summarize
database contents to facilitate source selection [1, 6, 7, 10,
11, 17]. There has been significant research on query trans-
formation and rewriting in the context of data integration [8,
13].

5. CONCLUSION
We described the anatomy of Kosmix, the first general

purpose Deep Web Explore Engine. Kosmix enables a new
approach to information finding, called topic exploration,
using a hybrid approach to the Deep Web that combines el-
ements of the crawl and federated search approaches. Traffic
to Kosmix and its specialized health property RightHealth
continue to increase at a rapid clip, demonstrating the value
of the Kosmix approach to deep web exploration.

The architecture of web search engines today reflects the
historical dominance of the Surface Web. The increasing
importance of the Deep Web is forcing a rethink of this ar-
chitecture. The hybrid approach to the Deep Web has sev-
eral advantages over both the crawl-only and pure federated
approaches. Some standardization around web service APIs
could dramatically increase the scalability of this approach.

Acknowledgements
The Kosmix explore engine described in this paper is the
collective effort of the Kosmix team. Special thanks to Tom
Macke, Guy Albertelli, and Bruce Wright for help with the
section on caching using SSDs.

6. REFERENCES
[1] L. Barbosa and J. Freire. Siphoning hidden-web data

through keyword-based interfaces. In SBBD, 2004.

[2] S. Brin and L. Page. The Anatomy of a Large-Scale
Hypertextual Web Search Engine. In WWW7, 1998.

[3] A. Broder. A taxonomy of web search. In SIGIR
Forum, 36(2):3-10, 2002.

[4] A. Doan, P. Domingos, A. Y. Halevy. Reconciling
schemas of disparate data sources: A machine-learning
approach. In SIGMOD, 2001.

[5] Ehcache. http://ehcache.sourceforge.net.

[6] L. Gravano, P. G. Iperiotis, M. Sahami. QProber: A
system for automatic classification of deep-web
databases. ACM Transactions on Information
Systems, 21(1):1-41, 2003.

[7] P. G. Iperiotis and L. Gravano. Distributed Search
over the Hidden Web: Hierarchical Database Sampling
and Selection. In VLDB, 2002.



[8] A.Y. Levy, A. Rajaraman, J.J. Ordille. Querying
Heterogeneous Information Sources Using Source
Descriptions. In VLDB, 1996.

[9] J. Madhavan, D. Ko, L. Kot, V. Ganapathy,
A. Rasmussen, A. Y. Halevy. Google’s Deep Web
crawl. PVLDB 1(2): 1241-1252, 2008.

[10] A. Ntoulas, P. Zerfos, and J. Cho. Downloading
textual hidden-web content through keyword queries.
In JCDL, 2005.

[11] S. Raghavan and H. Garcia-Molina. Crawling the
Hidden Web. In VLDB, 2001.

[12] A. Rajaraman. Kosmix: Exploring the Deep Web
using Taxonomies and Categorization. In IEEE Data
Engineering Bulletin, June 2009.

[13] A. Rajaraman, Y. Sagiv, and J.D. Ullman. Answering
Queries using Templates with Binding Patterns. In
PODS, 1995.

[14] J. Wang, J.-R. Wen, F. Lochovsky, and W.-Y. Ma.
Instance-based schema matching for web databases by
domain-specific query probing. In VLDB, 2004.

[15] Wikipedia. Solid-state Drive.
http://en.wikipedia.org/wiki/Solid-state drive.

[16] A. Wright. Searching the Deep Web. In CACM,
51(10):14-15, October 2008.

[17] P. Wu, J.-R. Wen, H. Liu, and W.-Y. Ma. Query
selection techniques for efficient crawling of structured
web sources. In ICDE, 2006.

[18] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query
interfaces on the Deep Web. In SIGMOD, 2004.


