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ABSTRACT
We propose a novel technique for estimating the size of set
similarity join. The proposed technique relies on a succinct
representation of sets using Min-Hash signatures. We ex-
ploit frequent patterns in the signatures for the Set Similar-
ity Join (SSJoin) size estimation by counting their support.
However, there are overlaps among the counts of signature
patterns and we need to use the set Inclusion-Exclusion (IE)
principle. We develop a novel lattice-based counting method
for efficiently evaluating the IE principle. The proposed
counting technique is linear in the lattice size. To make
the mining process very light-weight, we exploit a recently
discovered Power-law relationship of pattern count and fre-
quency. Extensive experimental evaluations show the pro-
posed technique is capable of accurate and efficient estima-
tion.

1. INTRODUCTION
Given a similarity measure and a minimum similarity thresh-

old, a similarity join is to find all pairs of records whose
similarity under the measure is greater than or equal to the
minimum threshold. Since a set can generalize many data
types, the Set Similarity Join (SSJoin) is a common abstrac-
tion of a similarity join problem. For instance, a large scale
customer database may have many redundant entries which
may lead to duplicate mails being sent to customers. To
find candidates of duplicates, addresses are converted into
sets of words or n-grams and then an SSJoin algorithm can
be used. SSJoin has a wide range of applications including
query refinement for web search [28], near duplicate docu-
ment detection and elimination [5]. It also plays a crucial
role in data cleaning process which detects and removes er-
rors and inconsistencies in data [29, 2]. Accordingly, the
SSJoin problem has recently received much attention [29, 2,
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7, 3, 17, 16].
It is noted that SSJoin is often used as a part of a larger

query [2]. In this scenario, a user may want to retrieve
all similar pairs possibly conditioned by other predicates
or constraints. Thus, it is not a one-time operation and
is performed repeatedly with different predicates by users.
To handle these general similarity queries, Chaudhuri et al.
identified the SSJoin operation as a primitive operator for
performing similarity joins [7]. The SSJoin operation can
also be important in inconsistent databases. Fuxman et
al. [15] proposed a system to answer SQL queries over in-
consistent databases where the data cleaning operation is
performed on-the-fly.

To successfully incorporate the SSJoin operation in rela-
tion database systems, it is imperative that we have a re-
liable technique for the SSJoin size estimation. The query
optimizer needs an accurate estimation of the size of each
SSJoin operation to produce an optimized query plan. How-
ever, to the best of our knowledge, this problem has not
been studied previously in the literature. This motivates us
to study the SSJoin size estimation problem.

A variety of (dis)similarity measures have been used in
the literature such as Jaccard similarity, cosine similarity
and overlap threshold [29, 7, 3]. The Jaccard similarity for
two sets r, s, JS(r, s) is defined as |r ∩ s|/|r ∪ s|. It is one of
the most widely accepted measures because it can support
many other similarity functions [5, 29, 7]. Thus, we focus
on the Jaccard similarity for our similarity measure in this
paper.

Definition 1 (SSJ Problem). Given a collection of
sets R and a threshold τ on Jaccard similarity JS , estimate
the number of pairs (r, s), SSJ(τ ) such that JS(r, s) ≥ τ ,
r, s ∈ R and r 6= s.

Several facts are worth mentioning in the problem formu-
lation. First it corresponds to a self-join case. Although the
join between two collections of sets is more general, many
applications of SSJoin are actually self-joins: query refine-
ment [28], duplicate document or entity detection [19, 5], or
coalition detection of click fraudsters [26]. Naturally, a ma-
jority of the SSJoin techniques proposed are evaluated on
self-joins [29, 7, 2, 3]. Second, self-pairs (r, r) are excluded
in counting the number of similar pairs so that the answers
are not masked by the big count, |R|. In addition, we do
not distinguish between the two different orderings of a pair
(i.e., (r, s) = (s, r)). It is, however, trivial to adapt the pro-
posed technique to consider the self-pairs or the ordering of
pairs in the answer if necessary.



Random sampling is a natural technique for the selectivity
(or size) estimation problems since it does not suffer from
the attribute value independence assumption and is not re-
stricted to equality and range predicates. Recently, the tech-
nique of Hashed Sampling was proposed for the result size
estimation of the set similarity for selection queries [17]. It
builds a randomly sampled inverted index structure for the
selection queries and the selectivity of a query is estimated
by performing selection query processing on the samples.
Basically join size can be estimated using the Hashed Sam-
pling by applying an SSJoin algorithm on the constructed in-
verted index. However, it suffers from quadratic processing
time and may not be useful for query optimization purposes.
Furthermore, we observe that the estimate is highly depen-
dent on the actual samples used (i.e., large variance). This
can be compensated by having much larger sample sizes,
which makes it impractical for query optimization.

In this paper, we hypothesize that it is possible to per-
form SSJoin size estimation in a sample-independent fash-
ion. As an overview, our approach works as follows. We
first generate Min-Hash signatures for the samples filtered
by other predicates. As a succinct representation of a set,
min-hash signatures generally result in a faster operations
due to its smaller size [11, 5]. Then we perform frequent
pattern mining on the signatures. The distribution infor-
mation of the signature patterns, captured in Power-laws, is
used in estimating the size of union. Finally, the estimated
size is adjusted so that it correctly reflects the SSJoin size
in the original set space. Specifically, we make the following
contributions.

• We reduce the SSJ problem to a pattern mining prob-
lem on the signatures, which enables very efficient count-
ing of pairs.

• Naive approaches using the signature patterns fail since
a pair could be counted multiple times in several pat-
terns. We propose a novel counting technique called
Lattice Counting which counts the number of pairs sat-
isfying the threshold minimizing overcounting.

• Recently, it was observed in [10] that pattern frequency-
count distribution generally follows a Power-law distri-
bution. We exploit this observation to efficiently ex-
tract the necessary information for the Lattice Count-
ing formula. It is possible because we only need the
count information and do not need the actual patterns.
A high minimum support threshold can be used so that
it is fast enough to be used in query optimization.

• We observe that there is a systematic overestimation
when Min-Hashing is used. We establish a model to
simulate the count shift. An efficient method for cor-
recting the overestimation is proposed.

This paper is structured as follows. Section 2 lists re-
lated work. Section 3 introduces the Min-Hash signature
and signature pattern, and gives an overview of the frame-
work. Section 4 presents the Union Formula which gives the
SSJoin size based on the mined pattern distribution. Effi-
cient processing based on the Power-law distribution is pro-
posed in Section 5. A procedure to overcome the systematic
overestimation by Min-Hashing is introduced in Section 6.
The experimental results are presented in Section 7. Section
8 concludes with future directions.

2. RELATED WORK
Hadjieleftheriou et al. studied the problem of selectiv-

ity estimation for set similarity queries [17]; they did not
consider the join size estimation problem. They proposed
the ‘Hashed Sampling’ technique which performs sampling
from the inverted index using Min-Hashing. We extend this
technique to the SSJoin problem and compare it with the
proposed technique.

Many algorithms have been proposed on the set similar-
ity join (or selection) problem [29, 2, 7, 3, 16]. In general,
SSJoin algorithms rely on a nested loop, where the inner
loop seeks all the matching sets for each set in the outer
loop. As will be shown later, the SSJoin size is in general
very skewed and for high similarity thresholds, the selectiv-
ity is very high. In this case, we may need relatively bigger
samples and the quadratic complexity may make applying
SSJoin algorithms on the samples less scalable.

Frequent pattern mining has received considerable atten-
tion for the last decade [6]. The proposed technique uses
frequent pattern mining algorithms and to the best of our
knowledge our work is the first to apply frequent pattern
mining to join size estimation problem. Specifically, we use
the trie-based Apriori algorithm [14]; virtually any frequent
pattern mining algorithms can be used for our estimation
purposes since we only rely on the most basic problem for-
mulation [1]. For instance, we can run the frequent pattern
mining algorithms with memory-constraints or top-k con-
straints. See [6] for a survey on this topic.

Power-laws have been observed in a wide range of man-
made and natural worlds [30, 9]. They have been success-
fully used in the literature. e.g., ‘query optimizer’ [21], ‘self-
join size estimation’ [27], or ‘spatial join selectivity’ [13].
In relation to frequent pattern mining, Chuang et al. ob-
served that pattern frequency-count distribution follows a
Power-law distribution [9]. We exploit this finding in effi-
cient estimation of the SSJoin size.

Recently, several algorithms have been proposed to esti-
mate the number of frequent patterns [4, 9, 22]. Accurate
and efficient estimation of the number of frequent patterns is
a key factor in our estimation of SSJoin size. Although the
proposed technique is primarily based on the observation by
Chuang et al. [9], it can benefit from these new developments
as well.

Bellman synopsis is a system that performs data mining
on the structure of the database [12]. Diverse synopsis struc-
tures including Min-Hash signatures are proposed. A join
size estimation method using signatures is proposed, but the
semantic is different since the similarity between two fields
are measured after collapsing all values in fields and the ex-
act join is considered.

3. SIGNATURE PATTERN

3.1 Min-Hash Signature
We first review the Min-Hash signature which has widely

been used in similarity related applications [11, 5, 8, 12, 25].
Consider a set of random permutations Π = {π1, . . . , πM}

on a universe U ≡ {1, . . . , U} and a set r ⊂ U . Let min(πi(r))
denote min({πi(x)|x ∈ r}). Π is called min-wise inde-
pendent if for any subset r ⊂ U and any x ∈ r, when
πi is chosen at random in Π, we have Pr(min(πi(r)) =
πi(x)) = 1

|r|
. Then with respect to two sets r and s, if Π



is min-wise independent, Pr(min(πi(r)) = min(πi(s))) =
JS(r, s)(= |r ∩ s|/|r ∪ s|) [5, 11]. To estimate JS (denoted

as ĴS), the signature vector of r is constructed as: sigr =
[min(π1(r)), . . . , min(πM (r))]. We call it the Min-Hash sig-
nature of r. Using the Min-Hash signatures, JS is estimated
with

ĴS(r, s) =
|{i|mhi(r) = mhi(s), 1 ≤ i ≤ M}|

M
. (1)

The Min-Hash signature of r is denoted by sig(r) and we
will call it the signature of r in the remainder of the paper.
As truly random permutation π is expensive, hash functions
are usually used.

3.2 A Motivating Example
Figure 1 shows an example DB and corresponding signa-

tures, sig(DB). The signature size M = 4 and the universe
of hash functions is [1, 5]. Hash functions are not shown.

DB

r1 {7, 10, 19, 52, 67}
r2 {10, 19, 43, 52}
r3 {10, 13, 43, 52, 67, 85}
r4 {10, 38, 43, 49, 80, 94}
r5 {3, 25, 29, 47, 50, 66, 73, 75}

sig(DB)
sig(r1) [4, 3, 5, 2]
sig(r2) [4, 3, 3, 5]
sig(r3) [4, 3, 2, 2]
sig(r4) [3, 3, 3, 2]
sig(r5) [1, 1, 1, 3]

Figure 1: An example DB

Suppose τ = 0.5 is given. Using Equation (1), we can es-
timate JS(ri, rj) for ri, rj ∈ DB with their signatures. For

instance, ĴS(r1, r2)= 0.5 since sig(r1) and sig(r2) match at
two positions (i.e., the first and the second) out of 4 posi-

tions. The true similarity, JS(r1, r2) is |{10,19,52}|
|{7,10,19,43,52,67}|

=

0.5. Considering all 5 sets in DB, there are 6 pairs {(r1, r2),
(r1, r3), (r2, r3), (r1, r4), (r3, r4), (r2, r4)} that have at least
two matching positions out of 4 positions in their signatures
and thus ĴS ≥ 0.5.

Using the Min-Hash signatures, SSJoin size estimation
can be done by estimating the number of pairs (r, s) such
that sig(r) and sig(s) overlap at least at ⌈τ · M⌉ positions.
A naive way to estimate the join size using the signatures
is to first build signatures for all sets and then to compute
every pairwise similarity. Although similarity computation
between two signatures are generally assumed to be cheaper,
this approach still has quadratic complexity.

3.3 The FSP Problem
An interesting observation is that any pair (r, s) from a

group of records which shares the same values at least at
⌈τM⌉ positions in their signatures satisfy JS(r, s) ≥ τ with
high probability. For instance, in the above example, r1, r2

and r3 have 4 and 3 at the first and the second signature
positions. Any pair from r1, r2, r3 matches at least at those
two positions in their signatures. There are 3 such pairs:
(r1, r2), (r1, r3), (r2, r3) and they are estimated to have JS ≥
0.5. We formalize this intuition with signature patterns.

Definition 2 (Signature Pattern). A signature pat-
tern is a signature where any of its values is possibly substi-
tuted with X which denotes a ‘don’t care’ position. A signa-
ture (or a set in the database) matches a signature pattern
if its signature values are the same as the pattern values at
all positions that are not X. Signature values at positions
marked by X do not matter. For a pattern, sig, we define
the following notations.

signature pattern length matching sets freq.
[4, 3, X, X] 2 r1, r2, r3 3
[4, X, X, 2] 2 r1, r3 2
[X, 3, 3, X] 2 r2, r4 2
[X, 3, X, 2] 2 r1, r3, r4 3
[4, 3, X, 2] 3 r1, r3 2

Figure 2: An example of signature patterns (freq ≥ 2)

• length, len(sig): the number of non-X values in the
pattern;

• frequency, freq(sig): the number of sets in the database
whose signatures match the pattern.

Example 1. Figure 2 shows signature patterns with freq ≥
2 found in the example of Figure 1 with their lengths, match-
ing sets and frequencies. For instance, len([4, 3, X, X]) = 2
since it has two non-X values. Its frequency is 3 because
three sets, r1,r2,r3 match the pattern.

Based on the signature pattern, we define the Frequent Sig-
nature Pattern problem as follows.

Definition 3 (FSP Problem). Given a threshold t on
the pattern length, FSP (t) is the number of pairs which
share a pattern sig such that len(sig) ≥ t and freq(sig) ≥ 2.

To solve the SSJ(τ ) problem, we solve the FSP (t) problem
where t = ⌈τM⌉. In the sequel, we implicitly assume a
fixed value of M . If we view the signature of each set as a
transaction and each signature value along with its position
as an item, we can apply traditional frequent pattern mining
algorithms to the FSP problem. Given τ we discover the
signature patterns with length ≥ ⌈τM⌉ and freq ≥ 2. A
minimum frequency of 2 is necessary to produce a pair. If
the frequency of a pattern is k, there are at least npair(k) ≡
`

k

2

´

= k(k−1)/2 pairs satisfying the similarity threshold τ in
the database. Exploiting this observation, we can have the
following two step approach in estimating the SSJoin size.

1. Compute the frequent signature patterns with length
≥ ⌈τM⌉ and freq ≥ 2.

2. For each pattern of frequency k, count the number of
pairs by npair(k) = k(k−1)/2, and then aggregate all
the number of pairs.

However, this approach has several critical challenges.

• There are overlaps among the signature patterns. Con-
sider sig1 = [4, 3, X, X], sig2 = [X, 3, X, 2]. If τ = 0.5,
both patterns should be considered in the answer since
their length ≥ 2 = 0.5 · 4. There are 3 pairs from
sig1 and 3 pairs from sig2 satisfying τ = 0.5: (r1, r2),
(r1, r3), (r2, r3) from sig1 and (r1, r3), (r1, r4), (r3, r4)
from sig2. If we simply add the two counts 3 and 3, we
are counting the pair (r1, r3) twice. Without consid-
eration of this overlap, the estimate could be a large
overestimation.

• We need all signature patterns with freq ≥ 2. It is
equivalent to setting the minimum support threshold
to 2 in the frequent pattern mining problem. How-
ever, the search space for such a low threshold is not
generally feasible.

We will address the first issue in the next section and the
second issue in Section 5.



4. LATTICE COUNTING

4.1 Computing The Union Cardinality
Let Sp(sig) denote the set of pairs not including the self-

pairs that match with a pattern sig. We call Sp(sig) the
matching set of sig. Let Iℓ denote the index set of all the
signature patterns in DB such that length ≥ ℓ and freq ≥
2. The SSJoin size, SSJ(τ ), is the same as FSP (t) which
is the number of pairs that match any pattern sigi, i ∈ It,
where t = ⌈τ · M⌉. As a pair (r, s) can match with multiple
signature patterns, we need to compute the cardinality of
the union of the set of pairs as follows. Given τ ,

FSP (t) = |
[

i∈It

Sp(sigi)| where t = ⌈τ · M⌉ . (2)

Example 2. Consider Example 1 with τ = 0.5 and M =
4. Every signature pattern with freq ≥ 2 and length ≥ 0.5·4
contributes to FSP (2). As shown in Figure 2, there are 5
such patterns in DB, we have I2 = {1, 2, 3, 4, 5} and can
compute the size from Equation (2) as follows.

sigi Sp(sigi) or Si (matching set)
sig1 = [4, 3, X, X] {(r1, r2), (r1, r3), (r2, r3)}
sig2 = [4, X, X, 2] {(r1, r3)}
sig3 = [X, 3, 3, X] {(r2, r4)}
sig4 = [X, 3, X, 2] {(r1, r3), (r1, r4), (r3, r4)}
sig5 = [4, 3, X, 2] {(r1, r3)}

SSJ(0.5) = FSP (2) = |Sp(sig1) ∪ · · · ∪ Sp(sig5)| = 6

If we ignore the overlap, FSP (t) is
P

i∈It
|Sp(sigi)|. We call

this naive strategy the Independent Sum (IS) method. The
correct way of computing cardinality of the union is to use
the set Inclusion-Exclusion (IE) principle. However, the IE
formula has exponential complexity in the number of sets.

4.2 The Union Formula Exploiting Lattice
Consider an example of FSP (2) which computes |Sp(sig1)

∪ Sp(sig2) ∪ Sp(sig4)|. Let us use Si to denote Sp(sigi) for
simplicity. Using the IE principle, FSP (2) is computed in
the following way:

|S1| + |S2| + |S4| − (|S1 ∩ S2| + |S1 ∩ S4| + |S2 ∩ S4|)

+|S1 ∩ S2 ∩ S4| = 3 + 1 + 3 − (1 + 1 + 1) + 1 = 5.

Interestingly, if we look into all the intersections, we see that
many of them result in the same set: S1 ∩ S2 = S1 ∩ S4 =
S2 ∩ S4 = {(r1, r3)}.

We can structure this overlap with the semilattice shown
in Figure 3. The patterns and their matching sets are or-
ganized using lattices (or semilattices). The edges represent
the inclusion relationship. The level of a pattern is the
number of non-X values and the level of a matching set
is the level of the corresponding pattern. For instance, S5

has edges to S1 and S2 and S1 ∩ S2 = S5. S5 has three
children and an intersection between any two children will
result in S5. This implies that S5 appears three times in the
intersections between two sets in the IE formula since there
are three ways of choosing two children out of three. Like-
wise, it appears once in the intersections among three sets,
S1 ∩ S2 ∩ S4. The net effect is that S5’s contribution to the
IE formula is |S5| multiplied by (−3+1). The negative sign
of −3 is from the alternating signs in the IE formula. Incor-
porating this observation, the above IE formula is simplified

Figure 3: Overlapping relationship

as follows without actually performing any intersections.

|S1| + |S2| + |S2| + (−3 + 1)|S5| = 3 + 1 + 3 − 2 · 1 = 5.

Exploiting the lattice structure, each count (|Sp(sigi)|)
is processed exactly once whereas the IE method computes
every intersection unaware of the underlying structure. No-
tice that this approach only involves individual quantities,
|Sp(sig)|, which can be acquired by pattern mining through

|Sp(sig)| = npair(freq(sig)) =
`

freq(sig)
2

´

. From this exam-
ple, we make the following crucial observations.

• Signature patterns and their matching sets can be or-
ganized with the lattice structure. A node in the pat-
tern lattice represents a signature pattern and a node
in the matching set lattice represents the set of match-
ing pairs for each pattern.

• The FSP (t) problem can be solved by finding the car-
dinality of the union of matching sets at level t. In
Figure 3, FSP (2) is the cardinality of the union of
matching sets at level 2, |S1 ∪ S2 ∪ S4|.

• The multiplicity of a set in the IE formula is expressed
by a coefficient. The coefficient only depends on the
lattice structure. For instance, in the above example,
|S5| has a coefficient of −2.

Let us generalize this intuition. The pattern lattice and
the matching set lattice are isomorphic to a power set lat-
tice, 2{1,...,M}. Figure 4 shows the lattice structures for
the database in Figure 1. Figure 4 (a) depicts the under-

lying power set lattice, 2{1,...,4}. Figure 4 (b) shows the
pattern lattice. The pattern lattice needs some modifica-
tions; a pattern in the pattern lattice is a generalization of
a signature pattern where ‘ ’ denotes matching positions
and ‘X’ denotes don’t care positions. Figure 4 (c) is the
matching set lattice corresponding to the pattern lattice for
the database in Figure 1. A node in the matching set lattice
represents the set of pairs whose signatures match at the po-
sitions marked ‘ ’ in the corresponding pattern. The specific
matching values are not important. For instance, [ , , X, X]
is a pattern selecting all pairs which match at their first
and second positions, and {(r1, r2), (r1, r3), (r2, r3)} are the
corresponding matching sets. If there were r6, r7 such that
sig(r6) = [1, 1, 6, 2] and sig(r7) = [1, 1, 2, 4] then (r6, r7)
would have been in the matching set as well.

Consider the coefficient of node [ , , , X] for FSP (2).
The sublattice structure whose top is [ , , , X] is the same
as the lattice in Figure 3 (a), and thus we can infer it has the
same coefficient. In other words, it appears the same num-
ber of times in the IE formula for union cardinality of sets at
level 2. Moreover, observe that all the other nodes at level
3 have the identical structure, which gives the same coeffi-
cient. We can see that all nodes at the same level will have



Figure 4: An example pattern lattice structure

the same coefficient since there will be the same number of
ways to choose a certain number of nodes at a level. Thus,
we can work with the sum of the cardinalities of matching
sets at each level since they all have the same coefficient. Let
the sum at level ℓ be Fℓ. We call it the level sum. Define
the index set Iℓ that lists all patterns at level ℓ, then

Fℓ =
X

i∈Iℓ

|Sp(pi)|. (3)

Using the level sum, the computation is as follows.

F2 = |Sp(sig1)| + |Sp(sig2)| + |Sp(sig3)| + |Sp(sig4)|

F3 = |Sp(sig5)|

FSP (2) = C2F2 + C3F3 = 1 · (3 + 1 + 1 + 3) + (−2) · 1 = 6

Formalizing this intuition, we define the pattern lattice struc-
ture and the Lattice Counting (LC) problem as follows.

Definition 4 (Pattern Lattice Structure). Given
a set collection of sets R and the signature size M , the pat-
tern lattice structure is a tuple L = (M,LP ,LR) where
M = {1, ..., M}, LP is the pattern lattice and LR is the
matching set lattice. For each m ⊂ M, the corresponding
p ∈ LP is a signature pattern such that p has ‘ ’ in the posi-
tion i ∈ m and ‘X’ in the other positions. For each p ∈ LP ,
Sp(p) ∈ LR is the set of pairs (r, s), r, s ∈ R such that sig(r)
and sig(s) have the same values at position marked ‘ ’ in p.

The partial order ≤, the least upper bound ∨, and the great-
est lower bound ∧ of x, y ∈ LP are defined by ⊆, ∪ and ∩
between the corresponding subsets in the power set respec-
tively. For any x, y, z ∈ LP the following conditions hold.

• Inclusion: x ≤ y iff Sp(x) ⊇ Sp(y)

• Refinement: x ∨ y = z iff Sp(x) ∩ Sp(y) = Sp(z)

Definition 5 (LC Problem). Given L = (M,LP ,LR)
and a level threshold t, the LC problem is to estimate the
cardinality of union of matching sets at level t in LR.

LC(t) = |
[

i∈It

Sp(pi)|

We can think of the LC(t) problem as the FSP (t) problem
defined on the lattice. We simplify the IE formula as the sum
of the cardinality of each matching set S ∈ LDB multiplied
by some coefficient. As all the matching sets at the same
level have the same coefficient, we can compute LC(t) using
PM

l=t Cℓ,t · Fℓ. We give the exact answer for LC(t) for an

arbitrary pattern lattice structure in the next equation.

LC(t) =
M
X

l=t

Cℓ,t · Fℓ, where (4)

Cℓ,t =

(M
t )
X

r=2

(−1)r+1Bℓ,t,r

Bℓ,t,r =

i<ℓ−t
X

i=0

(−1)i ·

 

ℓ

i

!

·

 

`

ℓ−i

ℓ−t−i

´

r

!

The coefficient C can be computed by counting how many
times a node appears at all intersections of size r ≥ 2 in the
IE formula. B keeps track of the occurrence at each r. The
intermediate derivation depends on the inclusion and the
refinement properties.

A similar lattice structure is used to estimate the selec-
tivity of string matching with edit distance [24]. Because
the focus of [24] is on low edit distance threshold, the lat-
tice used there is shallow and small in size. In contrast, the
lattice structure defined here is entirely new and represents
the whole set database. It leads to computational challenges
not seen in [24].

4.3 Level Sum Computation
Note that in Equation (4), only Fℓ depends on the data.

So computing LC(t) reduces to computing the level sums
Fℓ, t ≤ ℓ ≤ M . Fℓ is counted as follows.

Fℓ =
X

i∈Iℓ

|Sp(pi)| =
X

i∈Iℓ

npair(freq(pi)) (5)

The right hand side of Equation (5) uses the frequencies of
all the signature patterns of length ℓ, and Iℓ lists all such
patterns. We can simplify the Fℓ computation by noting
that patterns with the same freq value will have the same
npair(freq(pi)) value. Rather than repeatedly evaluating
the npair function for the same frequency, a better strategy
will be to count how many patterns have the frequency of
f for each f and to evaluate npair just once for each f . As
there are a large number of patterns at low frequencies this
reduction could be huge. Let us group all patterns pi, i ∈ Iℓ

by their frequencies. Let Il,f denote the index set for the
patterns such that |pi| = l and freq(pi) = f if and only if
i ∈ Il,f . For instance, I2,3 lists all the length-2 patterns
with frequency of 3. In the example I2,3 = {1, 4} since
|sig1| = |sig4| = 2 and freq(sig1) = freq(sig4) = 3 (see
Figure 2). Il,f defines a partitioning over Iℓ and |Il,f | is the
number of patterns with freq = f in the level ℓ. If we use



mf(Iℓ) for max(freq(xi)), i ∈ Iℓ,

Fℓ =
X

2≤f≤mf(Iℓ)

npair(f) · |Il,f | . (6)

A frequent pattern mining algorithm gives all the frequent
patterns above the minimum support threshold. We extract
the count information grouped first by pattern length and
then by pattern frequency. This gives us |Il,f | for all l and
f found in the database. For a specific ℓ, we call the set of
tuples (f, |Il,f |) pattern distribution for level ℓ.

Example 3. The next table is the signature pattern dis-
tribution for the running example.

pattern distribution
level ℓ f (freq) |Iℓ,f | sig. pattern matching sets

2 2 2
[4, X, X, 2] r1, r3

[X, 3, 3, X] r2, r4

3 2
[4, 3, X, X] r1, r2, r3

[X, 3, X, 2] r1, r3, r4

3 2 1 [4, 3, X, 2] r1, r3

|I2,2| = 2 since two signature patterns, [4, X, X, 2] and
[X, 3, 3, X], have two matching sets (f = 2). Likewise |I2,3| =
2 since two signature patterns have three matching sets (f =
3). For F2, each of the two patterns with f = 2 generates
one pair (

`

2
2

´

·2 = 2), and each of the two patterns with f = 3

generates three patterns (
`

3
2

´

· 2 = 6). So F2 = 2 + 6 = 8.
The whole level sum computation is as follows.

F2 =
X

2≤f≤3

npair(f) · |I2,f | =

 

2

2

!

· 2 +

 

3

2

!

· 2 = 8

F3 =
X

2≤f≤2

npair(f) · |I3,f | =

 

2

2

!

· 1 = 1

After computing the level sums, the rest of the LC compu-
tation is summing those level sums multiplied by coefficients
in Equation (4). SSJ(0.5) = LC(2) = 6 is computed as
follows.

level ℓ Fℓ C4,ℓ C4,ℓ · Fℓ

2 F2 = 8 1 1 × 8 = 8
3 F3 = 1 -2 −2 × 1 = −2
4 F4 = 0 3 0 × 3 = 0

LC(2) =
P

4

ℓ=2
C4,ℓ,2 · Fℓ 6

5. POWER-LAW BASED ESTIMATION
Note from Equation (6) that we only need the frequency of

patterns not the actual patterns for our estimation purposes.
Thus, our framework only counts patterns and does not ex-
actly generate and store patterns. Equation (6) also requires
the distribution of all signature patterns with freq ≥ 2.
Most frequent pattern mining algorithms are not designed
to handle such a low support threshold. Even if they could,
it would take too long to be used for the query optimization
task. In this section, we address this issue and show how we
can efficiently compute Equation (6).

5.1 Level Sum with Power-Law Distribution
Chung et al. recently discovered that a Power-law rela-

tionship is found in the pattern support distribution [9]. A
Power-law is a special relationship between two quantities.
It is found in many fields of natural and manmade worlds. A

quantity x obeys a Power-law if it is drawn from a probabil-
ity distribution p(x) ∝ xα, α < 0 [10]. The Zipf distribution
is one of related discrete Power-law probability distributions
and it characterizes the “frequency-count” relationship [9].
When ci is the count of distinct entities that appear fi times
in the data set, the distribution is described by

ci = fα
i · 10β . (7)

Chung et al’s hypothesis refers to the distribution of the
pattern count versus the pattern frequency.
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Figure 5: Signature pattern distribution

Figure 5 plots the signature pattern distributions of level
3 and 9 in the DBLP data set when M = 10. The x-axis
is pattern frequency and y-axis is pattern count. For in-
stance, x=10, y=121 for level 3 in the plot means there are
121 length-3 patterns that appear 10 times in the DB. The
pattern count (y-value) decreases as the frequency (x-value)
increases; a majority of patterns appear only in a small num-
ber of sets and a few patterns appear in many sets. We can
also observe that the points of a higher level (e.g., level 9)
distribution are on the lower side of points of a low level
(e.g., level 3) distribution. This is because when a pattern
is frequent, its sub-patterns are at least as frequent.

This distribution corresponds to (f, |Il,f |) for each level ℓ.
If we have this information for all f ≥ 2 and ℓ, we have the
exact level sums by Equation (6) and thus the exact answer
for the SSJ problem. Consider a practical minimum support
threshold of ξ > 2, e.g., ξ = 10 in Figure 5. It is shown as
the vertical line in Figure 5. The problem of having ξ > 2 is
that we will miss the pattern distribution on the left side of
the vertical line, i.e., patterns with 2 ≤ freq < ξ, because
the frequent pattern mining algorithm will only find patterns
with freq ≥ ξ. For patterns at level 3, we see the pattern
distribution on the left of the ξ line is missing.

We address the problem of the missing pattern distribu-
tion with the Power-law distribution. In accordance with
Chung et al’s hypothesis, a linear relationship between the
pattern count and the frequency is observed in Figure 5.
Exploiting this relationship, the strategy is as follows.

1. Find frequent patterns with ξ > 2 for efficiency.

2. Estimate the parameters for the Power-law distribu-
tion at each level with the acquired patterns.

3. Compute the necessary level sums with the pattern
distribution based on the estimated parameters.



Algorithm 1 Power-Law Estimation

Input: A collection of set DB, a Jaccard threshold τ , minimum
support ξ, Min-Hash functions {mh1, ..., mhM}

1: build sig(DB) by computing sig(s) for all s ∈ DB
2: run a frequent pattern mining algorithm on sig(DB) with ξ
3: for all 1 ≤ ℓ ≤ M do
4: estimate αℓ and βℓ (using a linear regression)
5: end for
6: t = ⌈τ · M⌉
7: Est = 0
8: for all t ≤ ℓ ≤ M do
9: Fℓ =

P

2≤f≤mf(Iℓ) npair(f) · fαℓ · 10βℓ

10: Est += Cℓ,t · Fℓ

11: end for
12: return Est

Our algorithm is independent of the specific choice of the
frequent pattern mining algorithm. This gives an opportu-
nity to exploit the extensive studies in the literature.

Algorithm 1 outlines this approach. At line 4, we use lin-
ear regression based on the least square fitting to estimate
the parameters of the Power-law distribution αℓ and βℓ for
each level ℓ. Other methods such as maximum likelihood
estimation could be more reliable, but we use linear regres-
sion as in [9] since it is very efficient and is sufficient for our
purposes. See [9, 10] for more discussions on this topic.

The next challenge is that we may not have enough points
for estimating the parameters when we use a high ξ. This
is likely for the distribution at higher levels since patterns
at higher levels (longer patterns) are fewer than the ones at
lower levels. For instance, we cannot estimate the distribu-
tion at level 9 in Figure 5 since most of the points are on the
left side of the ξ line and we cannot estimate the parameters.
Equation (4) requires all the level sum Fℓ, t ≤ ℓ ≤ M . For
example, when M = 10, LC(5) needs F5, F6, ..., F10. We
present our solution below.

5.2 Approximate Lattice Counting
To compute LC(t), we use the pattern lattice structure to

consider all the intersections among the patterns at level t.
In the lattice, nodes at a higher level represent more com-
plex relationships among nodes at level t. Observe that the
counts of those complex intersections are relatively small as
we can infer from Figure 5; the pattern counts of higher
levels are much smaller than those of lower levels. Based
on this intuition, we employ a truncation heuristic which
considers only parts of the lattice ignoring some of the com-
plex intersections in the IE formula. Consider {1, 2, 3, 4}

Figure 6: Relaxed lattice

in Figure 6 (a). It represents complex intersections such
as {1, 2} ∩ {1, 3} ∩ {3, 4}. If we ignore such higher level
intersections, we have a part of the original lattice as in Fig-
ure 6 (b) where we only consider intersections between two
nodes. Intersections like {1, 2} ∩ {1, 3} ∩ {3, 4} are ignored
in the relaxed lattice structure. Generalizing this intuition,
we define Max-k relaxed lattice where given LC(t), we only
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Figure 7: # pair-similarity plot of 2 subsets of the

DBLP data set

consider nodes between level t and min(M, t + k) ignoring
more complicated intersections at level t + k + 1 or higher.
This gives us the relaxed form of Equation (4).

LCk(t) =

K
X

ℓ=t

Ĉℓ,t(k) · Fℓ, where (8)

Ĉℓ,t(k) =

(K
t )
X

r=2

(−1)r+1Bℓ,t,r

K = min(M, t + k)

Notice the replacement of M by K in the summations. We
now only sum up to the level t+k. This approximate Union
Counting formula lets us estimate the SSJoin size when not
all the signature lines are available. With LCk(t) where k is
the relaxing parameter, we only need Fℓ for t ≤ ℓ ≤ t + k.
For instance, when M = 10, LC2(5) can be computed with
only F5, F6 and F7 without F8, F9 and F10.

5.3 Estimation With Limited Pattern Distri-
bution

Depending on the available pattern distributions and the
similarity threshold, the approximation formula may not
be enough to answer SSJ(t). Assume that signature size
M = 10 and we acquire pattern distributions up to level
6: F0, ..., F6. Using the Max-2 relaxed lattice, we can com-
pute LC2(4) since it only needs F4, F5 and F6. However,
we still cannot answer LC(t), t ≥ 7 since we do not have
Fℓ, ℓ ≥ 7. Recall that the value of t corresponds to the
Jaccard similarity threshold. For instance, when M = 10,
t = 7 corresponds to τ = 0.7. Thus, we still cannot handle a
threshold such as 0.7 or higher. For this situation, we make
use of a new observation found in a skewed distribution.

Let T (i) denote the number of pairs (r, s) such that JS(r, s) =
i/M with rounding. The difference with LC(i) is that LC(i)
counts pairs (r, s) such that JS(r, s) ≥ i/M . Thus LC(t) =
P

ℓ=t
T (ℓ). Figure 7 (a) and (b) plot the number of pairs

versus the Jaccard similarity in log-log scale in two randomly
selected 80K subsets of the DBLP data set. That is it plots
(i, T (i)). Again a Power-law relationship is observed. This
result may be of independent interest but it is beyond the
scope of this paper.

We can estimate the missing T (i) values using a linear re-
gression. Figure 7 (b) shows an example. If we acquired pat-
tern distributions up to level 6, we can compute LC(0), ..., LC(4)
with the Max-2 relaxed lattice. Since T (i) = LC(i)−LC(i+
1), we have T (0), T (1), T (2), T (3). These are depicted as
circles in Figure 7 (b). We use these points to estimate the
missing T (i)’s which are shown as rectangles: T (4), ..., T (10).
Now we can answer, for example, LC(7) = T (7)+...+T (10).



This enables us to estimate SSJoin size even when we have
very limited pattern distribution and the Equation (8) can-
not be applied. Parameter estimation will produce poor
estimations if the initial estimations produced by the Lat-
tice Counting, which are the circles in Figure 7 (b), are not
accurate. Section 7 verifies the hypothesis and the accuracy
of Lattice Counting.

6. CORRECTION OF THE ESTIMATION

6.1 Systematic Overestimation By Min-Hash
While Min-Hash signatures present several benefits, they

can cause overestimation. Figure 8 shows the SSJoin size
by the original sets and by their Min-Hash signatures in the
DBLP data set. We see that the overestimation by Min-

Figure 8: SSJoin Size Distribution in the DBLP data
JS True # pairs # pairs by Min-Hash Relative Error
0 3,167,244,255 3,167,244,255 0.00%

0.1 22,750,745 306,062,044 1245.28%
0.2 577,313 51,556,984 8830.51%
0.3 128,078 6,470,509 4952.01%
0.4 5,634 587,761 10332.39%
0.5 2,049 55,623 2614.64%
0.6 980 6,597 573.16%
0.7 495 1,477 198.38%
0.8 384 645 67.97%
0.9 298 419 40.60%
1 286 318 11.19%

Hash is rather huge. Figure 9 log-plots the true SSJoin size
and the size by Min-Hashing. A clear distribution shift is
observed. This is problematic since similarity thresholds
between 0.5 and 0.9 are typically used [3]. One may suspect
that the hash collision is the problem. However, through
experiments, we found that this is not the dominating cause
as long as the hash domain is not too small. We study
the cause of this systematic overestimation and propose a
correction procedure below.
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6.2 Error Correction By State Transition Model
Recall that T (i) denotes the true number of pairs (r, s)

such that JS(r, s) = i/M . When JS(r, s) = i/M , we call the
pair is in state i assuming the signature size M is fixed. We
define O(i) to be the number of observed pairs (r, s) such
that JS(r, s) = i/M . Let us define two vectors T and O
as T = [T (0), ..., T (M)]T and O = [O(0), ..., O(M)]T . The
state transition of a pair from state i to state j means that

the pair’s true similarity is i/M but is estimated to be j/M .
For example, if M = 4 and there are 100 pairs such that
JS = 2/4, we say that 100 pairs are in state 2. If there is
a 30% chance of state transition from state 2 to 3, 30 of
them are falsely estimated to have JS = 3/4. The key point
is that when the distribution of T is skewed, it can cause
overestimation in O.

Figure 10: An example of imbalance in transitions

Example 4. Assume M = 4 and the distribution of T (i)
is as in Figure 10. For instance, 100 pairs have JS =
2/4 and they are in state 2. There exist state transitions
since Min-Hash is probabilistic. In the example of Figure 1,
JS(r3, r4) = 1/5 so the pair’s true state is 1 (rounding up
1/5 to 1/4). However with the signatures, it is estimated as

ĴS(r3, r4) = 2/4 and is in state 2. Suppose there is a 10%
of state transition probability to each neighboring state. If
the distribution of T (i) is skewed, it causes unbalance in the
transitions. For instance, although T (2) = 100, O(2) = 181
since 20 pairs go to state 1 or 3, and 100 pairs come from
state 1, and 1 pair comes from state 3.

Given a pair (r, s) such that JS(r, s) = i/M , let I denote
its state i, and J denote the actual number of matching
positions in sig(r) and sig(s). At each position, the match-
ing probability Pr(πk(r) = πk(s)) is i/M and all πk are
independent. Thus J is a binomial random variable with
parameter i/M . That is

Pr(J = j|I = i) =

 

M

j

!

(
i

M
)j(1 −

i

M
)M−j . (9)

If we use P (j|i) for Pr(J = j|I = i), Pr(j|i) is the proba-
bility of having j matching positions when the true number
of matching positions is i. The observed count O(j) is the
sum of all T (i) multiplied by P (j|i) which is moving in mass

from state i. Thus
PM

i=0 Pr(j|i)T (i) = O(j). This gives us
a system of equations for 0 ≤ j ≤ M . Define the matrix A
as Aj,i = Pr(j|i). The system is described by

AT = O. (10)

Example 5. When M = 4, based on Equation (9), A is
as follows.

A =

0

B

@

P (0|0) P (0|1) P (0|2) P (0|3) P (0|4)
P (1|0) P (1|1) P (1|2) P (1|3) P (1|4)
P (2|0) P (2|1) P (2|2) P (2|3) P (2|4)
P (3|0) P (3|1) P (3|2) P (3|3) P (3|4)
P (4|0) P (4|1) P (4|2) P (4|3) P (4|4)

1

C

A

Then by Equation (10), AT = O becomes
0

B

@

1.000 0.316 0.063 0.004 0
0 0.422 0.250 0.047 0
0 0.211 0.375 0.211 0
0 0.047 0.250 0.422 0
0 0.004 0.063 0.316 1.000

1

C

A

0

B

@

T (0)
T (1)
T (2)
T (3)
T (4)

1

C

A
=

0

B

@

O(0)
O(1)
O(2)
O(3)
O(4)

1

C

A
.

Let us analyze O(3). 0·T (0)+0.047·T (1)+0.25·T (2)+0.422·
T (3)+0 · T (4) = O(3). 4.7% of T (1) constributes to O(3).
25% of T (2) goes to O(3) and 42.2% of T (3) goes to O(3).



Algorithm 2 LC with Error Correction

Procedure LCWithErrorCorrection

Input: similarity threshold t, max iteration count θ
Output: LC(t)
1: Compute LC(ℓ) for 1 ≤ ℓ ≤ M (estimates without correction)
2: O(0) = N · (N − 1)/2, O(M) = LC(M) // N : data set size
3: O(ℓ) = LC(ℓ) − LC(ℓ + 1), 1 ≤ ℓ < M
4: SanityCheck(LC(ℓ), O(ℓ), 1 ≤ ℓ ≤ M) // desc. in Sec 7.1
5: PowerLawInterpolate(O)
6: minimize ‖WAX − WO‖ with θ, subject to X ≥ 0
7: PowerLawInterpolate(X)

8: return LC(t) =
PM

ℓ=t X(ℓ)

Procedure PowerLawInterpolate

Input: vector V = [V1, ..., Vk ]
Output: modified V = [V1, ..., Vk]
1: Estimate Power-law parameter α and β from (ℓ, Vℓ)
2: for all V (ℓ) ≤ 0 do
3: V (ℓ) = ℓα · 10β

4: end for

The huge incoming counts from T (i) to O(j), i < j can in-

flate O(j). Since L̂C(t) =
PM

i=t
O(i), without appropriate

correction, LC(t) is doomed to be a massive overestimation.
A tempting option is to compute T by solving the system
of linear equations. A is non-singular and only depends on
the choice of M . The join size is computed by T̂ = A−1O.

However, this simple approach does not work for two rea-
sons. First, T̂ might have negative values. Second, O is
highly skewed: O(i) ≫ O(j) when i < j. So lower entries in
O, say O(0), O(1) and O(2), will have a dominating effect
making higher entries negligible.

Thus, rather than solving the system of linear equations,
we solve a NNLS (non-negative least square) constrained
optimization problem [23]. To prevent the solution from
being dominated by lower entries, we scale the matrix by
a weight matrix W so that higher entries in O will have
approximately the same effect in the least square solution.
We could use W defined as Wi,i = 1/O(i) and Wi,j = 0, i 6=
j. In summary, the final step of our estimation corrects the
estimation by solving the next NNLS problem.

minimize ‖WAX − WO‖ subject to X ≥ 0 (11)

The dimension of the matrix of interest is not big, say 10,
and we can solve the system fairly efficiently. (i.e., millisec-
onds)

The NNLS may fail for several reasons. It may diverge
or have zero estimates in X. We use the technique in Sec-
tion 5.3 in these cases. Missing T or X values are inter-
polated using the found values. Algorithm 2 outlines the
Lattice Counting with correction. It applies the NNLS cor-
rection step at line 6. Missing O or X values are estimated
using the Power-law hypothesis in Section 5.3.

7. EXPERIMENTAL EVALUATION

7.1 Experimental Setup
Data sets: We have conducted experiments using two

types of data sets: real-life data and synthetic data. The
DBLP data set is used as the real-life data. It is built as de-
scribed in [2]. The DBLP data set consists of 794,061 sets.
We call this full data set the 800K data set. Note that this
full data set corresponds to more than 300 billion pairs! We
also use part of this data set to show scalability. In partic-

ular, we use 40K, 80K, 160K, 240K and 400K randomly
selected subsets. The average set size is 14, and the smallest
is 3 and the biggest is 219. The synthetic data set is gen-
erated using the IBM Quest synthetic data generator [20].
The data set contains 50,000 sets and the universe of sets is
10,000. We varied the average set size from 15 to 50. The
pattern correlation parameter is set to 0.25.

Algorithms compared: We implemented the following
algorithms for the SSJoin size estimation.

• LC(ξ): It is Lattice Counting with the approximation
in Section 5.2. ξ gives the minimum support threshold
and we use a value between 0.015% and 0.10%. The
estimation is corrected with Algorithm 2. The exact
LC is not used due to its long pattern mining time.

• LCNC(ξ): It is identical to LC(ξ) except that the
error correction procedure, Algorithm 2, is not applied
after the initial estimation.

• IS: This estimation does not rely on the IE principle
and Lattice Counting; it only relies on Power-law es-
timation. Given LC(t), it assumes that all signature
patterns are independent and, sums Fℓ’s, ℓ ≥ t.

• HS(ρ): This is an adaptation of Hashed Sampling [17]
to SSJoin problem. ρ gives the sampling ratio.

A signature size of 10 is used with a hash space of 215.
For LC and LCNC, we use the relaxing parameter k = 2 as
described in Section 5.2. Linear regression for the Power-law
parameter estimation needs special attention. In general,
the tail of the Power-law distribution is not reliable. We
used only up to 40 leftmost points. The max iteration count
θ in Algorithm 2 is set to 100. However, the solution of
Equation (11) converged without reaching the count limit
most of the time. We apply sanity bounds to LC and O
values in line 4 of Algorithm 2. Specifically, we make sure
LC(ℓ) is no smaller than LC(ℓ + 1) by setting it to LC(ℓ +
1) if LC(ℓ)<LC(ℓ + 1). Moreover, if LC(ℓ) < 0, we take
the geometric mean of LC(ℓ′) and LC(ℓ′′) that are the first
positive values such that ℓ′ < ℓ and ℓ′′ > ℓ. In the extreme
case of O(ℓ) = 0 for 1 ≤ ℓ ≤ M , we set O(M) to 1. For
the SSJoin algorithm in HS, we used the ProbeOptMerge
algorithm [29], which can be used with Hashed Sampling
and Jaccard similarity. We did not implement the clustering
version since the the improvement was marginal [29, 3].

Evaluation metric: We use absolute count and average
(absolute) relative error to show the accuracy. A relative
error is defined as |est size− true size|/|true size|. We use
both measures since the average relative error favors un-
derestimation and can be misleading. That is even if we
always answer with 0, the error is capped by -100%. Counts
are shown in log scale as the distribution is highly skewed.
Given the nature of random sampling, accuracy figures are
given with the median value across three runs. This applies
to HS, as well as the subsets of the full DBLP data set.

For efficiency, we measure the runtime, which is divided
into pre-processing time and estimation time. HS assumes
pre-complied samples and pre-processing time corresponds
to the time for building the sampled inverted index. For LC,
LCNC and IS, it is the time necessary for Min-Hash signa-
ture generation. The estimation time is the time required
for the actual estimation. For HS, it is the SSJoin time
on the samples. For LC, LCNC and IS, the time includes



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
10

0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Jaccard similarity

S
S

Jo
in

 s
iz

e

 

 
True
LC(0.1%)
LC(0.04%)
HS(5%)
HS(2%)

Figure 11: Accuracy on the DBLP data set

the frequent pattern mining time, level sum computation
time, as well as the time for Lattice Counting. LC adds the
NNLS solving time on top of it. All the times measured
include disk I/O’s.

We implemented all the estimation algorithms in Java.
We downloaded the NNLS solver package from [18]. For
the pattern mining algorithm, we downloaded the trie-based
Apriori algorithm from [14], but almost any frequent pattern
mining algorithms can be used for our estimation purposes.
We ran all our experiments on a desktop PC running Linux
Kernel 2.6.22 over a 3.00 GHz Pentium 4 CPU with 1GB of
main memory.

7.2 DBLP Data set: Accuracy and Efficiency
We first report the results on the accuracy and runtime

using the 40K DBLP data set. Figure 11 shows the true and
estimated SSJoin sizes of LC(0.1%), LC(0.04%), HS(5%),
and HS(2%). HS(5%) and HS(2%) deliver relatively ac-
curate estimates for τ ≤ 0.3. However, we may be more
interested in higher threshold ranges. For τ ≥ 0.4, both
HS(5%) and HS(2%) consistently estimate the join size to
be zero, which is not a meaningful estimate. LC(0.1%) per-
forms better than HS(5%) and HS(2%) for τ between 0.4
and 0.7. However, the clear winner is LC(0.04%) which is
by far the closest to the true size.

Figure 12 shows the runtime performance. It is clear that
for both estimation time and pre-processing time, LC is at
least as efficient as HS. Yet, as shown in Figure 11 and dis-
cussed before, LC can be significantly more accurate, par-
ticularly for τ ≥ 0.4.

7.3 Effectiveness of Lattice Counting and Er-
ror Correction

Figure 13 (a) shows the average relative error of IS, LC(0.02%)
and LCNC(0.02%) in the 160K DBLP data set. Recall
that IS does not apply Lattice Counting and LCNC does
not apply the error correction procedure in Section 6. A
huge overestimation is observed in IS. LCNC is better
than IS but still shows a rather large overestimation. LC
shows the best accuracy. Its errors are very small especially
in the high threshold range. This verifies that the Lattice
Counting effectively considers the overlaps in counting and
that the error correction step indeed offsets the systematic
overestimation by Min-Hashing.

Figure 13 (b) shows the results of the full data set. An in-
teresting difference is that IS almost consistently produces
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Figure 12: Performance on the DBLP data set

a relative error of −1. At first glance, −1 might seem bet-
ter than LCNC; but this indicates that the IS estimation
is zero and is not useful. The underestimation is due to
the poor estimation of Power-law parameters. As stated in
Section 5.3, we use the Power-law distribution of number
of pairs-similarity relationship. In this case, IS performs
poor parameter estimation, i.e., an overestimation of α, and
this results in the severe underestimations. We can see IS
produces very unstable estimation. The overestimation of
LCNC is again apparent and we can see that the error cor-
rection step is very effective.

Figure 13 (c) shows of the estimation time for each algo-
rithm using the 160K DBLP data set. This graph clearly
shows that lattice counting (Section 4), the Power-law pa-
rameter estimation (Section 5) and overestimation correc-
tion (Section 6) all take negligible runtime overhead. The
NNLS optimization generally takes less than 50 milliseconds.

7.4 Scalability
Figure 14 compares the accuracy and runtime of LC(0.02%)

and HS(1%) varying the data set size with τ = 0.8. HS(1%)
does not provide meaningful estimates until the data set size
reaches 400K where there are sufficiently many highly sim-
ilar pairs. Its produces zero estimates for size between 40K
and 160K.

The estimates of LC(0.02%) are quite reliable being con-
sistently below a relative error of 10. A relative error of 10
may seem big; but it is reasonable considering the high se-
lectivity of a high threshold such as τ = 0.8. For instance,
in the 80K data set, there are more than 6 billion pairs and
the selectivity of τ = 0.8 is about 0.000012% compared to
the total number of pairs.

Figure 14 (b) and (c) show the pre-processing and esti-
mation time of HS(1%) and LC(0.02%). LC(0.02%) has
consistently lower pre-processing time than HS(1%). We
can observe the quadratic increase of estimation time of
HS(1%). LC(0.02%) also exhibits an increase in the es-
timation time primarily due to the increase in the frequent
pattern mining time. However the increase is rather mild.
Chuang et al. proposed a sampling method for computing
the pattern distribution [9]. Such a technique should make
LC even more scalable.

7.5 Synthetic Data set: Accuracy, Efficiency
and Scalability

We now report the results on the synthetic data set. We
varied the average set size parameter from 15 to 50. Fig-
ure 15 (a) and (b) show the accuracy when the average set
size is 20 and 25 respectively. In both cases, the estimation
of LC(0.04%) is close to the true SSJoin size. The estimates
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Figure 14: Scalability using the DBLP data set

generated by LC(0.1%) are not as good as those generated
by LC(0.04%). However, the estimation is still close to
the true size and and generates reasonable estimates. Both
HS(5%) and HS(10%) produce reliable estimates at lower
similarity ranges, but fail to create non-trivial estimates at
high simialrity ranges.

The following table shows how the estimation time (in
seconds) of LC(0.1%) and HS(5%) varies with average set
size. LC is not much affected by increasing the average set
size. LC performs analysis on the standardized representa-
tion of sets, Min-Hash signatures. Thus, its runtime is al-
most invariant to the original set size. In contrast, HS(5%)
is affected greatly by increasing the average set size. This is
due primarily to the size of the inverted index.

avg. set size 15 20 25 30 50
LC(0.1%) 1.34 1.39 1.39 1.38 1.34
HS(5%) 0.71 1.17 1.77 2.47 6.43

7.6 On Power-law Hypotheses
In this paper, the key hypothesis is that using sampling

to estimate SSJoin size is unreliable. A better approach is
to rely on Power-laws and to estimate the parameters of
Power-laws in a sample-independent fashion. Certainly, one
can argue that the minimum support threshold is effectively
doing “subsetting”. But we believe that subsetting by the
minimum support threshold is a more principled way of se-
lection than sampling is. The experimental results shown so
far support this hypothesis.

An interesting question would be if the Power-law really
holds in the data set. In Section 5, we rely on two Power-law

hypotheses. The first one is on the count-frequency relation-
ship in the patterns and the second one is on the number
of pairs-similarity relationship. Proving that a distribution
really follows a Power-law distribution is not a trivial task.
Some of the efforts to quantify the relationship includes the
p-value for the Kolmogorov-Smirnov test [10]. However, in
our case, the number of points are not sufficient for draw-
ing a conclusion with statistical significance. Moreover, an
approximate modeling was enough for our purposes. There-
fore we show the log-log plots instead. Figure 7 and Fig-
ure 16 present the number of pairs distribution-similarity
distribution and the pattern count-frequency distribution.
Our observations agree with the findings in [9], but formally
verifying the relationship is an open problem.

8. CONCLUSION
We propose an accurate and efficient technique for the

SSJoin size estimation. Our technique uses Min-Hash signa-
tures which are succinct representation of sets. We propose
a lattice based counting technique called Lattice Counting to
efficiently count the number of pairs satisfying the similarity
threshold. We exploit Power-law distributions to efficiently
compute the pattern distribution necessary for the Lattice
Counting. A systematic overestimation by relying on Min-
Hash signatures is observed and we also propose a procedure
to correct it. In the future, we plan to exploit sampling in
the frequent pattern mining for the pattern distribution [4,
9].
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