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ABSTRACT
We studysequential dependenciesthat express the semantics of
data with ordered domains and help identify quality problems
with such data. Given an intervalg, we write X →g Y
to denote that the difference between theY -attribute values of
any two consecutive records, when sorted onX, must be in
g. For example,time →(0,∞) sequence number indicates
that sequence numbers are strictly increasing over time, whereas
sequence number →[4,5] time means that the time “gaps” be-
tween consecutive sequence numbers are between 4 and 5. Sequen-
tial dependencies express relationships between ordered attributes,
and identify missing (gaps too large), extraneous (gaps too small)
and out-of-order data.

To make sequential dependencies applicable to real-world data,
we relax their requirements and allow them to hold approximately
(with some exceptions) and conditionally (on various subsets of
the data). This paper proposes the notion of conditional approxi-
mate sequential dependencies and provides an efficient framework
for discovering pattern tableaux, which are compact representations
of the subsets of the data (i.e., ranges of values of the ordered at-
tributes) that satisfy the underlying dependency. We present anal-
yses of our proposed algorithms, and experiments on real data
demonstrating the efficiency and utility of our framework.

1. INTRODUCTION
Interesting data sets often contain attributes with ordered do-

mains: timestamps, sequence numbers, surrogate keys, measured
values such as sales, temperature and stock prices, etc. Understand-
ing the semantics of such data is an important practical problem,
both for data quality assessment as well as knowledge discovery.
However, integrity constraints such as functional and inclusion de-
pendencies do not express any ordering properties. In this paper,
we studysequential dependenciesfor ordered data and present a
framework for discovering which subsets of the data obey a given
sequential dependency.

Given an intervalg, a sequential dependency (SD) on attributes
X andY , written asX →g Y , denotes that the distance between
the Y -values of any two consecutive records, when sorted onX,
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are withing. SDs of the formX →(0,∞) Y andX →(−∞,0] Y
specify thatY is strictly increasing and non-increasing, respec-
tively, with X, and correspond to classical Order Dependencies
(ODs) [11]. They are useful in data quality analysis (e.g., se-
quence numbers must be increasing over time) and data min-
ing (in a business database, delivery date increases with shipping
date, in a sensor network, battery voltage increases with temper-
ature, etc.) SDs generalize ODs and can express other interest-
ing relationships between ordered attributes. An SD of the form
sequence number →[4,5] time specifies that the time “gaps” be-
tween consecutive sequence numbers are between 4 and 5. In the
context of data quality, SDs can measure the quality of service of
a data feed that is expected to arrive with some frequency, e.g., a
stock ticker that should generate updated stock prices every 4 to
5 minutes. In terms of data mining, the SDdate →[20,∞) price
identifies stock prices that rapidly increase from day to day (by at
least 20 points). Related examples may be found in [11, 23].

In practice, even “clean” data may contain outliers. We charac-
terize the degree of satisfaction of an SD by a given data set via a
confidencemeasure. Furthermore, real data sets, especially those
with ordered attributes, are inherently heterogeneous, e.g., the fre-
quency of a data feed varies with time of day, measure attributes
fluctuate over time, etc. Thus, we considerConditional Sequen-
tial Dependencies(CSDs), which extend SDs analogously to how
Conditional Functional Dependencies extend traditional FDs [4].
A CSD consists of an underlying SD plus a representation of the
subsets of the data that satisfy this SD. Similar to CFDs, the repre-
sentation we use is atableau, but here the tableau rows are intervals
on the ordered attributes.

1.1 Network Monitoring Examples
Internet Service Providers (ISPs) collect various network perfor-

mance statistics, such as the number of packets flowing on each
link. These measurements are maintained by routers in the form
of cumulative counters, which are probed periodically by a data
collection system. A plot of packet counts versus time is shown
in Figure 1. While we expect the counts to increase over time,
counters are finite (e.g., 32 bits) and thus periodically loop around.
Furthermore, counters reset whenever the router is rebooted. Ad-
ditionally, spurious measurements may appear (e.g., at time 16 in
Figure 1), such as when the data collector probes the wrong router.
Due to the cyclic nature of the counters, the semantics of this data
set cannot be captured by the SDtime →(0,∞) count; we need a
conditionalSD whose tableau identifies subsets that satisfy the em-
bedded SD. For instance, each pattern in Tableau A from Figure 1
corresponds to an interval that exactly satisfies the embedded SD.
Alternatively, we may allow a small number of violations in order
to produce more informative tableaux and help avoid “overfitting”
the data. Tableau B from Figure 1 contains two patterns that cap-
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Figure 1: Tableaux for an SDtime →(0,∞) count.

ture the two mostly-increasing fragments of the data set (with one
violation at time 16). It not only identifies the intervals over which
the SD is obeyed but also pinpoints the time at which there is a dis-
ruption in the ordering (at time 11). Such tableaux are useful tools
for concisely summarizing the data semantics and identifying pos-
sible problems with the network or the data collector, e.g., a tableau
with many “short” patterns suggests premature counter roll-over.

An ISP may also be interested in auditing the polling frequency.
The data collector may be configured to probe the counters every
ten seconds; more frequent polls may indicate problems at the col-
lector (it may be polling the same router multiple times) while miss-
ing data may be caused by a misconfigured collector or a router that
is not responding to probes. A possible sequence of measurement
times (not the actual counter values) is shown in Figure 2, sorted in
polled order, along with a tableau (labeled Tableau A) for the em-
bedded SDpollnum →[9,11] time, which asserts that the gaps be-
tween adjacent polls should be between 9 and 11 seconds. Again,
we allow each pattern to contain a small number of violations to
better capture the trends in the data; e.g., the first pattern[10, 90]
contains one gap of length 20.

Furthermore, testing related SDs with different gap ranges re-
veals intervals that violate the expected semantics. For example,
pollnum →[20,∞) time finds subsequences with (mostly) long
gaps, as shown in Tableau B. Similarly,pollnum →[0,10) time
detects periods of excessively frequent measurements. The corre-
sponding tableaux provide concise representations of subsets that
deviate from the expected semantics, and are easier to analyze by
a user than a raw (possibly very lengthy) list of all pairs of records
with incorrect gaps. It is worth noting that simply counting the
number of polls to detect problems is insufficient: if the window
size for counts is too small (say, ten seconds), then false positives
can occur if polls arrive slightly late; if the window size is too large
(say, one hour), then false negatives can occur due to missing and
extraneous data “canceling each other out”.

1.2 Contributions
Our main contribution is a novel integrity constraint for ordered

data. The mechanisms generating ordered data often provide the
order semantics—sequence numbers are increasing, measurements
arrive every ten seconds, etc. However, finding subsets of the data
obeying the expected semantics is laborious to do manually. We
therefore assume that the embedded SD has been supplied and
solve the problem of discovering a “good” pattern tableau. Follow-
ing the criteria set forth in [13], we desireparsimonioustableaux
that use the fewest possible patterns to identify a large fraction of
the data (“support”) that satisfy the embedded SD with few viola-
tions (“confidence”). Our technical contribution is a general frame-
work for CSD tableau discovery, which involves generating candi-
date intervals and constructing a tableau using a smallest subset of
candidate intervals (each of which has sufficiently high confidence)
that collectively “cover” the desired fraction of the data.

time
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[9,11]

time

[30,60]
Tableau B:
[20,∞)
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Figure 2: Tableaux for an SDpollnum →r time.

In our model, every tableau pattern must independently satisfy
the embedded SD. The brute force algorithm computes the con-
fidence of allΘ(N2) possible intervals (in a sequence ofN ele-
ments) and identifies as candidates those which have a sufficiently
high confidence. Since our goal is to discover a concise tableau, we
prefer large intervals that cover more data, and therefore can ignore
candidate intervals contained in larger candidate intervals. Our first
observation is that CSDs obey a “prefix” property, whereby the con-
fidences of all prefixes of a given intervalI are incrementally com-
puted en route to computing the confidence ofI itself. Thus, it
suffices to compute the confidence of theN intervals[i, N ], where
1 ≤ i ≤ N , and, for eachi, find the maximumj such that the
interval [i, j] has the required confidence.

Our second observation is that CSDs also satisfy a “contain-
ment” property, which implies that the confidence of an interval
slightly larger than some intervalI must be similar to that ofI. We
give an approximation algorithm that computes the confidence of a
small set of carefully chosen intervals such that, for each candidate
intervalI identified by the exact algorithm, our algorithm is guar-
anteed to identify a slightly larger interval whose confidence is not
much lower than that ofI. Instead of computing the confidence of
theN intervals described above, the approximation algorithm only
needs to compute the confidence ofO((log N)/δ) intervals, where
1 + δ is a bound on the approximation error.

In addition to improving the efficiency of the candidate gener-
ation phase, our framework improves the efficiency of the tableau
construction step. This step solves the partial interval cover prob-
lem by choosing the fewest candidate intervals that cover the de-
sired fraction of the data. An exact dynamic programming algo-
rithm for this problem takes quadratic time in the number of can-
didate intervals. We give a linear-time and -space greedy heuristic
and prove that it returns tableaux with sizes within a constant factor
(of nine) of the optimal solution.

To summarize, our overall contributions are as follows.

• We propose Conditional Sequential Dependencies as novel
integrity constraints for ordered data and give efficient algo-
rithms for testing their confidence.

• We give a general framework that makes the discovery of
“good” tableaux for CSDs computationally feasible, pro-
vided that the confidence measure satisfies the prefix and
containment properties.

• We present experimental results demonstrating the efficiency
(order-of-magniture improvement over the brute force ap-
proach), as well as the utility (in revealing useful data seman-
tics and data quality problems), of the proposed framework
on a wide range of real data sets.

The rest of the paper is organized as follows. Section 2 defines
the problems we study. Section 3 presents our framework. Sec-
tion 4 summarizes our experimental results. Section 5 compares
our contributions with related work. Section 6 concludes and sug-
gests areas for future work.



2. DEFINITIONS
Let S be a relational schema on attributesA1, A2, ..., Ak

with relation instanceR = {t1, t2, ..., tN}. Let dom(X) =
{t1[X], t2[X], ..., tN [X]} refer to the set of domain values overX,
wheret[X] denotes the relation tuplet projected on the attributes
X. We model the input to our problem as a relation, some of whose
attributes have ordered domains.

DEFINITION 1 Let X andY , X ⊆ S andY ⊆ S, be two attribute
sets,g be an interval, andπ be the permutation of rows ofR in-
creasing onX (that is,tπ(1)[X] < tπ(2)[X] < · · · < tπ(N)[X]).
A sequential dependency(SD) X →g Y is said to hold overR if
for all i such that1 ≤ i ≤ N − 1, tπ(i+1)[Y ] − tπ(i)[Y ] ∈ g.
That is, when sorted onX, the gaps between any two consecutive
Y -values must be withing.

We refer toX as the antecedent of the SD andY as the consequent.
We assume that total orderings exist onX andY , and that there
is a mappingf() which linearizes the different combinations of
attribute values inX andY into integers. For example, ifX =
{hour, minute, second} then the tuplet[X] = (h, m, s) could
be mapped viaf(h, m, s) = 3600h + 60m + s.

2.1 Approximate Sequential Dependencies
In practice, an SD may not hold exactly: when ordered onX,

the resulting sequence ofY -values may not have the correct gaps.
Previous work on characterizing the extent to which ODs [8], FDs
[19] and CFDs [13] hold on a given relation instance employed a
“deletion-based” metric that determines the largest possible sub-
set of the relation that satisfies the constraint. Using this mea-
sure, theconfidenceof interval [11, 20] from Figure 1 w.r.t. the
SD time →(0,∞) count is 9

10
since the largest subset that makes

the SD valid contains every record except the one at time16. The
confidence of the entire data set, i.e., the interval[1, 20], is 10

20
since

the largest satisfying subset contains (the first) ten points.
Now consider the interval[10, 90] from Figure 2. To satisfy the

SDpollnum →[9,11] time, we select either the first four points or
the last four points in this interval, for a confidence of4

8
. This con-

fidence value seems low since this interval has only one “problem”,
namely a missing record around time 50. We thus define the confi-
dence of a CSD using the following edit distance metric, which is
a natural extension of the well-known deletion metric.

DEFINITION 2 Theconfidenceof a suggested SD over a given re-
lation instance (or subset thereof) of sizeN is N−OPS

N
, where

OPS is the smallest possible number of records that need to be
inserted or deleted to make the SD hold.

Note that confidence cannot be negative since in the worst case,
we can “delete” all but one record, which will trivially satisfy
the SD. This metric has several useful properties. It is robust
to occasional missing data—in the above example, the interval
[10, 90] has a confidence of7

8
since only one edit operation (in-

sertion) needs to be made to satisfy the SD. It is also robust to
spurious values. Returning to the above example, the sequence
< 10, 20, 30, 1000, 40 > has a relatively high confidence of4

5
since it suffices to delete the suspicious element1000. Further-
more, our metric penalizes based on gap sizes, unlike just count-
ing the fraction of “bad gaps” (i.e., those not in the specified gap
range). For example, if one is expecting all gaps to be between3
and5, then a gap of 6 can be corrected by one insertion, but a gap
of size 1000 requires 199 insert operations. We will point out sev-
eral other metrics that are compatible with our tableau generation
framework in Section 3.3.

2.2 Computing the Confidence of SDs
Having defined the confidence of a SD, we now describe how to

efficiently compute it (i.e., computeOPS) on a relation instance.

2.2.1 Confidence of Simple SDs
First, consider a “simple” SD of the formX →(0,∞) Y , which

requiresY to be increasing withX. Note that this SD does not
limit the maximum gap length, so we need not insert new records
to reduce the lengths of oversized gaps. Its confidence may be com-
puted from the length of thelongest increasing subsequenceonY ,
after ordering the relation onX. More formally, letπ be the permu-
tation of rows ofR increasing onX. We wish to find a longest sub-
sequenceπ(i1) < π(i2) < · · · < π(iT ) of π, i1 < i2 < · · · < iT ,
such thattπ(i1)[Y ] < · · · < tπ(iT )[Y ], for someT ≤ N . Let
SN be the sequence< tπ(1)[Y ], . . . , tπ(N)[Y ] >. We denote the
length(not the subsequence itself) of the longest increasing subse-
quence ofSN by LIS(SN ). Then the confidence of an SD onR is
LIS(SN )/N , which can be computed inO(N log N) time [10].
In general, SDs of the formX →[G,∞) Y , G a finite non-negative
integer, can be handled in a similar way, by finding longest se-
quences increasing by at leastG at every step. We note that other
measures of “sortedness” may be natural for some applications
(such as based on number of inversions [16, 14], average inver-
sion length or “satisfaction within bounds”[8]) and could be used
in place of this quantity throughout this paper and can be computed
within the same time complexity by our framework.

2.2.2 Confidence of Other SDs
We now consider general SDs of the formX →[G1,G2] Y ,

where0 ≤ G1 ≤ G2 6= 0. We say that a sequence (ofY -values
mapped to integers, when sorted onX) is valid if it is non-empty,
all elements are integers, and all its gaps are betweenG1 andG2.
Computing the confidence requires findingOPS(N)—the mini-
mum number of integers that must be added to or deleted from the
length-N sequence in order to obtain a valid sequence. For exam-
ple, the confidence of an SD withG1 = 4 andG2 = 6 on the
sequence< 5, 9, 12, 25, 31, 30, 34, 40 > is 1− 4/8 = 1/2: delet-
ing 12 and inserting 15 and 20 in its place (or deleting 5, 9 and 12)
and then deleting 31 will convert the sequence into a valid one, and
no series of three or fewer insertions and deletions will make the
sequence valid. In general, the sequence need not be sorted, i.e.,
some gaps may be negative.

Given a sequence< a1, a2, ..., aN > of integers, fori =
1, 2, ..., N let v = ai and defineT (i) to be the minimum number
of insertions and deletions one must make to< a1, a2, ..., ai >
in order to convert it into a valid sequence ending in the num-
ber v. (Note that since the valuev might appear more than once
in the sequence, one might get a sequence ending in a copy ofv
which is not theith element in the sequence.) Now computing
OPS(N) from theT (i)’s can be done as follows:OPS(N) =
min0≤r≤N−1{r + T (N − r)}, as proven in Claim 3.

CLAIM 3 The minimum numberOPS(i) of insertions and dele-
tions required to convert an input sequenceSi into a valid one
is given bymin0≤r≤i−1{r + T (i − r)}. Furthermore,OPS(i)
can be calculated inductively byOPS(1) = 0 andOPS(i) =
min{1 + OPS(i − 1), T (i)} for all i ≥ 2.

PROOF. We first prove thatOPS(i) ≥ min0≤r≤i−1{r+T (i−
r)}. In the optimal transformation, letr be the exact number of
terms at the end of the sequenceSi =< a1, a2, ..., ai > which are
removed; hence,ai−r remains and appears in the final sequence.
Clearly,0 ≤ r ≤ i − 1. After removing thoser terms, the optimal
algorithm must transform the prefix consisting of the firsti − r



terms into a valid sequence ending inai−r. The cost to do this is
T (i − r), and hence the optimal total cost isr + T (i − r). Since
there is somer, 0 ≤ r ≤ i− 1, such thatOPS(i) = r +T (i− r),
we can infer thatOPS(i) ≥ min0≤r≤i−1{r + T (i − r)}.

ClearlyOPS(i) ≤ min0≤r≤i−1{r + T (i − r)} as well, since
for each suchr one could get a valid sequence by deleting the last
r integers and then, at costT (i − r), converting the sequence<
a1, a2, ..., ai−r > into a valid sequence ending in the valueai−r.

The second statement follows fromOPS(i) =
min0≤r≤i−1{r + T (i − r)} by splitting off the r = 0 case
from the1 ≤ r ≤ i − 1 case.

In order to show how to compute theT (i)’s, we need a defini-
tion of and a lemma aboutdcost, a function which specifies the
fewest integers one must append to a length-1 sequence to get a
valid sequence whose last element is exactlyd larger than its first.

DEFINITION 4 Definedcost(d), for d = 0, 1, 2, ..., to be the mini-
mum number of integers one must append to the length-1 sequence
< 0 > to get a valid sequence ending ind, and∞ if no such se-
quence exists.

It is nontrivial but not hard to prove the following lemma, whose
proof we omit due to space constraints.

LEMMA 5 If G1 = 0, then dcost(d) = ⌈d/G2⌉. Otherwise,
dcost(d) = ⌈d/G2⌉ if ⌈(d + 1)/G1⌉ > ⌈d/G2⌉ and∞ other-
wise.

For example, ifG1 = 4 andG2 = 6, thendcost(7) = ∞.
Furthermore,dcost(8) = 2, uniquely obtained with two gaps of
length 4. This is interesting since one might be tempted to infer
from “dcost(d) = ⌈d/G2⌉” that all but one gap have lengthG2.

LEMMA 6 Choose ani, 1 ≤ i ≤ N . Let v = ai. Then among all
ways to convert< a1, a2, ..., ai > into a valid sequence ending in
the numberv, there is one in which theith symbol is never deleted.

Keep in mind thatv = ai may appear more than once in the
sequence< a1, a2, ..., ai >. If one generates a valid sequence
ending in the valuev, just whichv is it? Thev which is theith
symbol in the sequence? Or thev which is thejth, for somej < i
with aj = ai = v? The content of this lemma is that there is
always a minimum-cost way of transforming the sequence into a
valid sequence in whichv is theith symbol, not thejth.

PROOF. If the ith symbol is deleted, letj be the largest index of
a nondeleted symbol (which must exist). Clearlyaj ≤ ai, since in
the final list all integers are at mostv = ai. If aj < ai, then the
algorithm must at some point append anai, but then it was wasteful
to delete theith integer in the first place, and so it should not have.
Hence we may assume thataj = ai. Now instead of deleting the
ith symbol and not deleting thejth, delete thejth and do not delete
theith.

THEOREM 7 Suppose that we have already computed
T (1), T (2), ..., T (i − 1), for somei ≤ N . We can compute
T (i) using the existingT (1), ..., T (i − 1) as follows. Define

min1 := i − 1,

min2 := min
j:j<i,aj<ai

{T (j)+ (i−1− j)+ [dcost(ai −aj)−1]},

and define

min3 := min
j:j<i,aj=ai

{T (j) + (i − 1 − j)}.

Then T (i) = min{min1, min2} if G1 > 0 and T (i) =
min{min1, min2, min3} if G1 = 0.

PROOF. Choosei, letv = ai, and consider an optimal sequence
of moves which converts< a1, a2, ..., ai > into a valid sequence
whose last entry isv. By Lemma 6, we may assume that the optimal
sequence of moves does not delete theith entry. Either the optimal
sequence deletes the firsti− 1 integers or it does not. If it does, its
cost is obviouslyi − 1. If it does not, then letj be the maximum
index less thani such that thejth symbol is not deleted. Clearly
aj+1, aj+2, ..., ai−1, a total ofi − 1 − j integers, are deleted.

If G1 > 0, then, sinceai is not deleted,aj < ai. The adversary,
who converts the input sequence into a valid sequence using the
fewest operations, will then “bridge the gap” fromaj to ai, and
convert< a1, ..., aj > into a valid sequence ending ataj , at a cost
of T (j). Given a length-2 integral sequence< y, z >, y ≤ z, the
number of integers one must insert betweeny andz to get a valid
sequence (i.e., to “bridge the gap” fromy to z) is

• 0 if y = z andG1 = 0,

• ∞ if y = z andG1 > 0, and

• dcost(z − y) − 1 if y < z.
Hence, the total cost is(i− 1− j)+ (dcost(ai −aj)− 1)+T (j).

If G1 = 0, there is the additional possibility thataj = ai. The
cost of bridging the gap is zero, for a total cost of(i − 1 − j) +
T (j).

Now that we have a recurrence for computing theT (i)’s, we
discuss how one can use the recurrence to calculate all theT (i)’s
quickly. If, for eachai, everyaj-value withj < i is evaluated for
the recurrence, then the algorithm will run in linear time for each
i, or quadratic time in total. However, it is possible, for eachi, to
find the bestj without trying all the linearly-manyj’s. The idea
here is that thedcost values are either finite or infinite. Clearly
any term having an infinitedcost can be ignored. The observation
is that the infinitedcosts come in a limited number of consecutive
blocks, and hence the finitedcosts also come in a limited number
of consecutive blocks (all but one of which have finite size), which
we callbands. We will show how to quickly compute the minimum
over one band, and therefore, for eachi, the time to computeai will
be bounded by the product of the number of bands and the time per
band. The overall time will be justN times this product.

Given some gap range[G1, G2], the bands of finite values for
dcost are the input value ranges[kG1, kG2], for integersk ≥ 1.
Note that these bands widen with increasingk (if G1 < G2). In-
deed, whenk becomes large enough, the bands will overlap and,
therefore, no moredcost values of∞ will occur for d this large.
Exactly when will the overlap first occur? There is no space for a
d with dcost(d) = ∞ between the band[ℓG1, ℓG2] and the next
band[(ℓ + 1)G1, (ℓ + 1)G2] if and only if (ℓ + 1)G1 ≤ ℓG2 + 1,
i.e.,ℓ ≥ ⌈(G1 − 1)/(G2 −G1)⌉ (if G1 6= G2). We shall deal with
the case whereG1 = G2 separately below.

Given a fixedai, the formula forT (i) requires that we com-
putedcost(ai − aj); hence, we wish to find the values ofaj for
whichdcost(ai−aj) is finite. Sincedcost(d) is finite within bands
kG1 ≤ d ≤ kG2 for eachk, substitutingd = ai − aj and solving
for aj yields bandsai − kG2 ≤ aj ≤ ai − kG1. So the bands
with respect toaj are now[ai − G2, ai − G1], [ai − 2G2, ai −
2G1], ..., [ai − (ℓ−1)G2, ai − (ℓ−1)G1] and one band of infinite
length [−∞, ai − ℓG1]. Since theaj ’s come from sequence ele-
ment values, clearly we never need to consideraj-values less than
the smallest valueamin in the sequence. Thus, we can threshold
any band extending belowamin, ensuring that no band is of infinite
length (i.e., ifamin lies within [−∞, ai − ℓG1] then this band gets



truncated to[amin, ai − ℓG1]) and possibly resulting in fewer than
ℓ bands to search. Note that, since in each of these bandsdcost is
finite, dcost(d) is equivalently defined as⌈d/G2⌉. Furthermore,
since0 ≤ ⌈x⌉ − x < 1 for all x, we can substitute the function
d/G2 in place of⌈d/G2⌉ and obtain the same result, because all
the other variables are integers so adding a fractional amount less
than 1 will not change the rank order for the bestaj .

Here is how the algorithm proceeds. For a fixedi, in any band
(with finite dcost) arg minj:j<i,aj<ai

{T (j) + (i − 1 − j) +
[dcost(ai −aj)− 1]} is equivalent toarg minj:j<i,aj<ai

{T (j)−

j − aj/G2}. So for each bandk (1 ≤ k ≤ ℓ), we find j(k) =
arg minj{T (j)−j−aj/G2} subject toaj ∈ [ai−kG2, ai−kG1],
or subject toaj ∈ [amin, ai−kG1] if ai−kG2 < amin. Let j∗ be
the minimumj from among these bands, that is,j∗ = mink{j

(k)}.
Thenmin2 = T (j∗) + (i − 1 − j∗) + [dcost(ai − aj∗) − 1].
We also need to consider thej’s for which aj = ai. So we
let j′ = arg minj:j<i,aj=ai

{T (j) − j − aj/G2} andmin3 =
T (j′) + (i− 1− j′). Finally, we takeT (i) = min{min1, min2}
if G1 > 0 andT (i) = min{min1, min2, min3} if G1 = 0.

For the case ofG1 = G2 = G, given some integerG > 0,
the algorithm is simpler and can be computed inO(N log N) time.
The idea is to partition the sequence elementsaj into G classes
0, 1, ..., G − 1 based on their(modG)-values. Then, givenai, we
search only theaj ’s whoseaj = ai(modG), aj ≤ ai, and take
the j with smallestT (j) − j − aj/G as j∗. Clearly, j∗ can be
found inO(log N) time. As usual, we letmin2 = T (j∗) + (i −
1 − j∗) + [dcost(ai − aj∗) − 1].

THEOREM 8 The confidence of an SDX →[G1,G2] Y on a se-
quence of lengthN can be computed in timeO( G2

G2−G1
N log N)

whenG1 6= G2 and in timeO(N log N) whenG1 = G2.

PROOF. For each ofN sequence elements, we search in at most
G1−1

G2−G1
+1 = G2

G2−G1
bands for thearg min, and each band can be

searched and updated inO(log N) time using a standard data struc-
ture for range-min over arbitrary ranges of values. In fact, we can
afford to first sort the sequence element values, thus transforming
them into their ranks, and store themin over each dyadic interval
in rank-space. That way, the ranges can be transformed into being
over a universe of sizeN (i.e., the ranks) – which makes updates
much easier – and a range-min can be stored for every possible bi-
nary partition of the values with respect to their ranks. Then range
query intervals can be decomposed intoO(log N) adjacent dyadic
intervals, from which the result can be obtained. The total query
time is the product of these,O( G2

G2−G1
N log N).

2.3 Conditional Dependencies

DEFINITION 9 A Conditional Sequential Dependency(CSD) is a
pair φ = (X →g Y, Tr), whereX →g Y , referred to as the
embeddedSD, andTr is a “range pattern tableau” which defines
over which rows ofR the dependency applies. Each patterntr ∈
Tr specifies a range of values ofX that identify a subset ofR
(subsequence onX). The CSD states that, for eachtr ∈ Tr, the
embedded SD independently holds over the subset of the relation
(subsequence onX) identified bytr.

Let [Tπ(i)[X], Tπ(j)[X]] be the interval represented by a tableau
patterntr; again, we letπ be the permutation of rows inR sorted
on X. We define theconfidenceof tr as the confidence of its in-
terval w.r.t. the embedded SD, thesupportof tr as the number of
records contained in its interval, i.e.,j − i + 1, and theposition

intervalof tr as[i, j] (for example, the position interval of the pat-
tern [30, 60] from Tableau B in Figure 2 is[3, 5]). We also define
the total support, or global support, of a CSD as the support of the
union of the intervals identified by the tableau patterns (note that
patterns may overlap).

2.4 Tableau Discovery Problem
The goal of tableau discovery is to find a parsimonious tableau

whose patterns all provide sufficient confidence and describe a suf-
ficient portion of the data. Thus, given a relation instance and an
embedded SD, we wish to find a smallest tableau (if any exists)
subject to confidence and (global) support threshold constraints.

DEFINITION 10 TheCSD Tableau Discovery Problemis, given a
relation instanceR, an embedded SDX →g Y , a global support
thresholdŝ and a confidence threshold̂c, to find a tableauTr of
minimum size such that the CSDφ = (X →g Y, Tr) has a global
support at least̂s and that eachtr ∈ T has confidence at leastĉ.

Naturally, one could optionally impose a local support threshold
that is met by each tableau pattern, in order to ensure that spurious
and uninteresting patterns are not reported. Furthermore, rather
than seeking a tableau with a sufficiently high global support, it
may be useful to ask for thek “best” patterns (e.g., those having
the highest local support) regardless of the global support.

3. TABLEAU DISCOVERY
Here we propose a general tableau discovery framework. We as-

sume that the confidence of an intervalI containingN points may
be written asf(I)

N
, wheref is some aggregate function, and that

0 ≤ f(I) ≤ N to ensure that confidence is between zero and one.
For our confidence metric,f(I) = N − OPS and1 ≤ f(I) ≤ N
since we never need to make more thanN−1 edit operations (recall
Section 2.1). Our framework consists of two phases: (1) generating
candidate intervals and (2) choosing from these candidates a small
subset providing suitable (global) support to be used for the tableau.
What makes the first phase inherently challenging is that the con-
fidence of an interval may not be readily composed from those of
its subintervals due to the complex nature of whatever aggregate
function is employed in measuring confidence. Take Figure 1 for
example. The confidence of the interval[1, 10] is 1, the confidence
of [11, 20] is0.9, but the confidence of[1, 20] is only0.5. However,
the following properties can be exploited.

DEFINITION 11 An aggregate functionf over a sequence is said
to satisfy theprefix propertyif the time to computef on all prefixes
of a sequence is no more than a constant greater than the time to
compute it on the sequence itself. Hence the prefix property is a
property of thealgorithmcomputingf , rather thanf itself. For-
mally, we are given some time boundg(N) and we need to assume
that the property can be computed on allN prefixes of a sequence
of lengthN in timeg(N), in total.

DEFINITION 12 An aggregate functionf is said to satisfy thecon-
tainment propertyif for any sequenceσ and subsequenceτ appear-
ing in consecutivepositions ofσ, f(τ) ≤ f(σ).

First we show that our framework can be used to speed up inter-
val generation with any confidence measure whose aggregate func-
tion f obeys both the prefix property and the containment property.
Our emphasis will be on developing scalable algorithms (i.e., run-
ning in timeNpolylogN ). We then illustrate the framework using
the confidence measure from Definition 2, followed by a discussion
of other applicable metrics.



3.1 Generating Candidate Intervals
Only intervals satisfying the supplied confidence threshold are

considered as tableau candidates. Given a choice between any
two candidates, where one is contained in the other, choosing the
smaller one may unnecessarily increase the size of the tableau.
Hence, for eachi, we want maxj ≥ i (if any) such that the po-
sition interval[i, j] has confidence at leastĉ (in the remainder of
this section, we will refer to position intervals as intervals unless
otherwise noted). There are at mostN such intervals as there is at
most one with each given left endpoint. (One could go further and
remove all intervals contained in others.)

A naive way to find candidate intervals would be to compute the
confidence of allN(N + 1)/2 possible intervals between1 andN .
Using the prefix property this can be improved by a factor ofN by
computing confidence over the intervals[1..N ], [2..N ], . . . , [N −
1..N ] and using intermediate results. Unfortunately, this is still
too expensive for large data sets if computing the confidence on an
interval of lengthℓ requiresΩ(ℓ) time, as it will requireΩ(N2)
time to find all maximal intervals. How can we find these intervals
without testing all(i, j) pairs? The trick, at the price of “cheat-
ing” on the confidence (as described below), is to test only a proper
subset of the pairs, but enough so that, for any intervalI chosen
by an adversary (i.e., any interval which could appear in an opti-
mal tableau), our set of candidate intervals contains one,J , which
containsI and whose length is only slightly larger, specifically,
|J | ≤ (1 + ǫ)|I|. Any aggregate functionf satisfying the con-
tainment property will satisfyf(J) ≥ f(I), and hence its confi-
dencef(J)/|J | will be at leastf(I)/|J | ≥ f(I)/[(1 + ǫ)|I|] =
(f(I)/|I|)/(1 + ǫ), and hence at least1/(1 + ǫ) times as large
asI ’s. Thus, by “cheating” on confidence (but only by the small
factor 1/(1 + ǫ)), we can ensure that every adversary interval is
(barely) covered by some candidate interval.

We give an approximation algorithm for efficiently generating
candidate intervals. The algorithm takes a realǫ > 0 and builds
a set ofreal intervals in[0, N ], with the following property. For
any subintervalI of [0, N ] of length at least 1, among the intervals
generated by the algorithm is an intervalJ which containsI and
whose length is at most1 + ǫ times as large.1

Now we generate the intervals. Let us choose a small positiveδ
whose value will be determined later. For each length of the form
ℓh = (1 + δ)h, for h = 0, 1, 2, ..., until (1 + δ)h first equals or
exceedsN , build a family of intervals each of lengthℓh, with left
endpoints starting at0, δℓh, 2δℓh, 3δℓh, ..., in total, aboutN/(δℓh)
intervals.

How much time will it take to compute the confidence of each
such interval? Let us just compute the sum of the lengths of the
intervals, and multiply at the end byg(N)/N . For each of the
log1+δ N valuesh, there areN/(δℓh) intervals, each of lengthℓh.
Hence their sum of lengths isN/δ. It follows that the sum of their
lengths is the number ofh’s, i.e., log1+δ N , timesN/δ. Since
log1+δ N is approximately(lg N)/δ for small δ, the product is
(N log N)/δ2.

However, we can do better. To date we have used only the con-
tainment property; now we use the prefix property. We modify
the intervals’ design so that many will have the same left end-

1The perceptive reader may have noted a discrepancy between the
sizej − i + 1 of a position interval[i, j] and thelength j − i
of the real interval[i, j]. Since it is more natural to work with
real intervals, we just “equate” the set{i, i + 1, ..., j} with the
real interval[i − 0.5, j + 0.5]. The length of any union of such
real intervals equals the size of the corresponding union of sets of
integers. This allows us to continue working with real intervals
with impunity.

point. Break the intervals into groups according to their lengths:
those with lengths in[1, 2), those with lengths in[2, 4), those with
lengths in[4, 8), etc. There are obviouslylg N groups. Within a
group, our intervals have lengthℓh for varyingh’s; their left end-
points are multiples ofδℓh. We now change their left endpoints as
follows. For intervals with lengths in[A, 2A), now make the left
endpoints multiples ofδA ≤ δℓh (rather thanδℓh), shrinking the
gap between consecutive left endpoints and enlarging the number
of intervals by less than a factor of 2. However, note the follow-
ing important fact: all the intervals with lengths in[A, 2A) start at
0, δA, 2δA, 3δA,.... By the prefix property, it suffices to include in
the running time only the length of the longest interval with a given
starting point. Hence we can process all the intervals with lengths
in [A, 2A) in timeg(N)/N multiplied byO(N/(δA))(2A), which
is g(N)/N timesO(N/δ). Since there are onlylg N such groups
(and notlog1+δ N , as before), the total time to process all intervals
will be g(N)/N timesO((N lg N)/δ). Hence, for LIS computa-
tion, for example, for whichg(N)/N is O(log N), the overall time
will be O((N lg2 N)/δ).

CLAIM 13 LetI be the set of intervals in an optimal solution, each
having confidence at leastĉ, andJ be the set of intervals consid-
ered by our algorithm. For eachI ∈ I, there exists aJ ∈ J with

confidence≥
“

1−δ
1+δ

”

ĉ containingI.

PROOF. How small aδ must we use such that for any interval
I = [a, b] ⊆ [0, N ] of length at least 1, one of our intervals contains
I and has length at most1 + ǫ times as large? Chooseh smallest
such thatℓh − δℓh ≥ b − a, i.e.,ℓh ≥ (b − a)/(1 − δ). Then one
of our intervals starts ata or no more thanδℓh to the left ofa, and
ends at or to the right ofb. That interval containsI, clearly. By
minimality of h, ℓh−1 < (b− a)/(1− δ), and therefore the length
(1+ δ)h of our interval is at most(1+ δ)/(1− δ) timesI ’s length,
proving Claim 13.

Claim 13 implies that it suffices to chooseδ small enough that
(1 + δ)/(1 − δ) ≤ 1 + ǫ, i.e.,δ ≤ ǫ/(2 + ǫ).

(For brevity, we have omitted some implementation details on
converting the real intervals into sets of contiguous integers.)

3.2 Tableau Assembly
Given a set of intervals in[0, N ] satisfying the confidence thresh-

old, each with integral endpoints and no two with the same left
endpoint, we can assemble a tableauTr with support at least̂s by
selecting enough intervals to cover the desired number of points;
in particular, we wish to choose the minimal number of intervals
needed. Each selected (position) interval[i..j] then determines
the tableau pattern[tπ(i)[X], tπ(j)[X]], i.e., the position interval
mapped back to a range ofX-values. We first show that, unlike
the more general PARTIAL SET COVER problem, our problem is
in P, by exploiting the fact that we have intervals rather than ar-
bitrary sets. We give aO(N2)-time dynamic programming algo-
rithm to find a minimal (partial) cover. The algorithm takes as in-
put a setJ of intervals of the form[i..j] = {i, i + 1, ..., j}, for
some1 ≤ i, j ≤ N , and assumes they are sorted on their left
endpoints. Via dynamic programming, the algorithm computes, for
each0 ≤ k, ℓ ≤ N , the valueT (k, ℓ) which equals the mini-
mum number of the given intervals necessary to cover at leastk
points among{1, 2, ..., ℓ} (or ∞ if it is not possible to do so); the
final answer isT (⌈ŝN⌉, N). T (0, 0) = 0 and T (k, 0) = ∞
for all k > 0. After T (k, ℓ′) has been computed for allℓ′ < ℓ
and allk = 0, 1, 2, ..., N , the algorithm computesT (k, ℓ) for all
k = 0, 1, 2, ..., N , using Lemma 14.



LEMMA 14 If there is no input interval containingℓ, then
T (k, ℓ) = T (k, ℓ − 1). Otherwise, among all intervals contain-
ing ℓ, choose the one whose left endpoint is smallest; denote its left
endpoint byℓ − z + 1. Then

T (k, ℓ) = min{T (k, ℓ − 1), 1 + T (k − z, ℓ − z)}.

PROOF. As the first statement is obvious, we move on to the
second. The optimal way to cover at leastk of the points1, 2, ..., ℓ
either covers the pointℓ or it does not. If it does not, its cost is
T (k, ℓ − 1). If it does, it contains some interval which contains
ℓ. Without loss of generality it contains, among those intervals
containingℓ, the one whose left endpoint is as small as possible.
Suppose that that interval has left endpointℓ− z + 1 and therefore
covers thez pointsℓ − z + 1, ℓ − z + 2, ..., ℓ. ThenT (k, ℓ) =
T (k − z, ℓ − z) + 1.

Lemma 14 suggests an easyO(N2)-time algorithm for comput-
ing all theT (k, ℓ) values. Since the quadratic complexity of the
dynamic programming algorithm makes it infeasible for large data
sets, we consider an approximation to find a nearly minimal size
using a greedy algorithm for PARTIAL SET COVER (see [18]). We
show that, for the special case in which the sets are intervals, the al-
gorithm can be implemented in linear time and provides a constant
performance ratio.
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Figure 3: Adjusting marginal cardinalities.

CLAIM 15 The greedy partial set cover algorithm can be imple-
mented to run in timeO(N).

PROOF. A set of intervals is given sorted on left (and also right)
endpoints by the candidate generation phase. We separately main-
tain these intervals ordered by set cardinality in an array 1..N of
linked lists, where the array index corresponds to cardinality. At
each step, we iterate down (initially fromN ) to the largest in-
dex containing a non-empty linked list, to find an interval with
the largest “marginal” cardinality (which only counts points that
have not already been covered by an interval that has already been
added to the tableau), and adjust the marginal cardinalities of any
overlapping intervals. Consider the intervals shown in Figure 3 (a)
and suppose that the longest one has just been added to the tableau.
As seen in Figure 3 (b), six intervals need to have their marginal
cardinalities updated. Further, of these six intervals, which are now
shorter, four are now contained in other ones and may be deleted.
In general, each iteration of the algorithm deletes all but one inter-
val intersecting the left endpoint of the currently longest interval;
likewise for the right endpoint. Since there are at mostN iterations
and we adjust at most two intervals per iteration, the time spent
adjusting the nondeleted intervals isN ∗ O(1) = O(N). The to-
tal time spent deleting intervals, over the entire execution of the
algorithm, isO(N), since there are at mostN intervals.

CLAIM 16 The greedy algorithm gives a constant performance ra-
tio. (See the Appendix for a proof.)

An important property of our framework is that the size of a gen-
erated tableau can be no larger than the tableau generated when
there is no cheating on confidence in the candidate interval phase,
given the same confidence threshold. This is easy to see because
cheating on confidence can only yield intervals subsuming optimal
intervals, and with better choices available an optimal (partial) set
cover will be at most as large.

3.3 Examples of Confidence Metrics
First, we show that our tableau generation framework is compat-

ible with our definition of confidence (Definition 2). In the special
case of “simple” CSDs (recall Section 2.2.1), we need to compute
the length of a LIS in a given interval in order to compute its con-
fidence. Many implementations of longest increasing subsequence
incrementally maintain LIS on increasing prefixes inO(N log N)
time; hence, LIS satisfies the prefix property. As for the contain-
ment property, clearly if one interval is contained in another, then
any subsequence of the smaller interval must be contained in the
larger. Therefore, for simple CSDs, our framework is able to find
candidates inO((N log2 N)/δ) time.

While there is work on simultaneously computing LIS’s of mul-
tiple (overlapping) windows of a sequence [2, 6], none of this work
breaks the quadratic complexity barrier. Recent work on comput-
ing the approximate size of a longest increasing subsequence on
streams saves space but not time [14]. Hence, we are not aware of
a faster way to compute LIS that can help in our context.

The dynamic program from Section 2.2 provides values at every
prefix en route to computing the confidence of the entire interval,
thus satisfying the prefix property. The containment property is
also satisfied because the same valid gap sequence converted from
an interval would also be available to any interval containing it; it
would require no more deletions than the difference in the lengths
to transform the larger interval into the same valid gap sequence.
So for general CSDs, our framework is able to find candidates in
O( G2

G2−G1
(N log2 N)/δ) time. We know of no existing work that

could help improve the time complexity for general CSDs.
If one prefers to define confidence differently, such as based on

the average number of inversions for SDs of the formX →[0,∞) Y ,
or based on the fraction of gaps within[G1, G2] for SDs of the form
X →[G1,G2] Y with G2 < ∞, then our framework also applies.
We leave it as an exercise to verify that the former can be computed
in time O(N log2 N/δ) and the latter inO(N log N/δ) using our
framework.

4. EXPERIMENTS
In this section, we present an experimental evaluation of our

proposed tableau discovery framework for conditional sequen-
tial dependencies, which comprises candidate interval generation
(CANDGEN) and tableau assembly (TABASSMB). First, to justify
the motivation and utility of CSDs, we present sample tableaux
which unveil interesting data semantics and potential data quality
problems. Second, for both CANDGEN and TABASSMB, we in-
vestigate the trade-off between tableau quality and performance of
resorting to approximation. Finally, we demonstrate the efficiency
and scalability of the proposed tableau generation framework.

4.1 Data Sources and Platform
Experiments were performed on a 2.7 GHz dual-core Pentium

PC with 4 GB of RAM. The performance numbers presented are
based on real time as reported by the Unixtime command. Ex-



periments were run 5 times and the average time was reported. All
algorithms were implemented in C++.

We used the following four data sources for our experiments.
Table 1 displays a summary of data characteristics.

• DOWJONES consists of daily closing figures of the
Dow Jones Industrial Average2, and has the schema
(DATE, AVGCLOSING). The closing figures have been
smoothed using a 2-week moving window average.

• WEATHERDATES consists of the days on which daily tem-
peratures were recorded at Gabreski Airport3 in Long Island,
NY, from 1943.07.18 - 2008.10.01 byGlobal Summary of
the Day4.

• NETWORKFEEDSconsists of data feeds of probed measure-
ments from an ISP and the associated timestamps when they
were received.

• TRAFFICPOLLS contains the timestamps of traffic volume
measurements in an ISP that were configured to be taken ev-
ery 5 minutes.

DATA SET #TUPLES DEPENDENCY

DOWJONES 27399 DATE →(0,∞) AVGCLOSING

NETWORKFEEDS 916961 STARTTIME →(0,∞) ENDTIME

WEATHERDATES 15716 ARRIVAL ORDER→[0,1]DATE

TRAFFICPOLLS 91522 ARRIVAL ORDER→[270,330]TIME

Table 1: Summary of Data Sources

In the experiments that follow, we use the confidence threshold
ĉ = 0.995, support threshold̂s = 0.5 (note that the tableau assem-
bly algorithm may terminate before reaching the required support
if it runs out of candidate patterns), and approximation tolerance
parameterδ = 0.05, unless mentioned otherwise.

4.2 Sample Tableaux
We first show that CSDs with different gap values can capture in-

teresting semantics. We also show that our approximate framework
discovers tableaux that are close to optimal.

Table 2 compares tableaux generated by exhaustive candidate
generation (EXACT INTVL ) and our approximate candidate gener-
ation (APPRXINTVL ), for various gaps with greedy TABASSMB

on the WEATHERDATES dataset. The support of each pattern is
also shown, indicating the number of data values contained in the
corresponding interval. Gap ranges of[0, 1] (at least one temper-
ature reading per day) and[0, 2] (one reading every two days) re-
sult in tableaux with two rows, indicating that there was at least
one major break in the data recording. Note that the exact and
approximate tableaux “latch onto” different endpoints. This was
due toδ being set to 0.05, which meant that a confidence thresh-
old of 0.995 was used for the exact tableau whereas effectively
0.995(1 − 0.05)/(1 + 0.05) = 0.9 was used for the approximate
one. When we usedδ = 0.01 for the gap range[0, 2], the approxi-
mate tableau was the same as the exact one.

Next, we identify time ranges over different scales over which no
temperature data was recorded. A gap range[2, 10] was used to find
periods when the recording was discontinued for about ten days at
a time, possibly due to malfunctioning equipment. A comparison
of the tableau row start and end dates, as well as their associated
supports, reveal that the exact and approximate tableaux were quite
similar, and both indicate periods when no data was recorded. A
2www.economagic.com/sp.htm
3http://en.wikipedia.org/wiki/FrancisS. GabreskiAirport
4www.ncdc.noaa.gov/cgi-bin/res40.pl?page=climvisgsod.html

EXACT INTVL Sup- APPRXINTVL Sup-
Tableau port Tableau port

Gap:[0,1]
Tableau size: 2 Tableau size: 2

1945.11.06 - 1969.12.15 6819 1944.02.07 - 1981.01.23 7536
1980.12.09 - 1990.12.10 3636 1981.02.05 - 2006.02.04 6999

Gap:[0,2]
Tableau size: 2 Tableau size: 2

1945.11.01 - 1969.12.15 6824 1944.02.07 - 1981.01.29 7542
1980.10.22 - 1991.01.23 3681 1981.02.05 - 2006.07.31 7176

Gap:[0,5]
Tableau size: 2 Tableau size: 1

1945.10.29 - 1969.12.15 6827 1943.07.18 - 2008.05.25 15588
1980.11.23 - 1995.05.10 5115

Gap:[2,10]
Tableau size: 20 Tableau size: 20

1995.06.23 - 1995.06.28 3 1995.06.23 - 1995.06.28 3
1983.02.21 - 1983.02.23 2 1983.02.21 - 1983.02.23 2
1985.09.27 - 1985.10.01 2 1985.09.27 - 1985.10.01 2
1988.04.05 - 1988.04.08 2 1988.04.05 - 1988.04.08 2

Gap:[6,10]
Tableau size: 1 Tableau size: 1

1991.01.01 - 1991.01.08 2 1991.01.01 - 1991.01.08 2
Gap:[10,20]

Tableau size: 6 Tableau size: 6
1951.06.01 - 1951.06.12 2 1951.06.01 - 1951.06.12 2
1980.11.23 - 1980.12.09 2 1980.11.23 - 1980.12.09 2
1990.12.20 - 1991.01.01 2 1990.12.20 - 1991.01.01 2
1991.01.11 - 1991.01.23 2 1991.01.11 - 1991.01.23 2
1991.02.18 - 1991.03.01 2 1991.02.18 - 1991.03.01 2
1994.07.15 - 1994.07.27 2 1994.07.15 - 1994.07.27 2

Gap:[20,∞)
Tableau size: 9 Tableau size: 9

1945.11.29 - 1951.04.30 2 1945.11.29 - 1951.04.30 2
1969.12.15 - 1980.10.22 2 1969.12.15 - 1980.10.22 2
1991.10.02 - 1991.10.30 2 1991.10.02 - 1991.10.30 2
1993.10.19 - 1993.11.16 2 1993.10.19 - 1993.11.16 2
1994.02.03 - 1994.03.01 2 1994.02.03 - 1994.03.01 2
1995.05.10 - 1995.06.22 2 1995.05.10 - 1995.06.22 2

Table 2: Tableau sizes for various gap values on WEATHER -
DATES

gap range of[6, 10] helps identify a time-frame from1991.01.01
to 1991.01.08 which has6 days of missing data. (since the support
is 2, only the beginning point and the endpoint are present in the
data). Similarly,[10, 20] returned 6 periods of moderate data loss—
ten to 20 days at a time. In order to capture regions of long gaps, a
gap range of[20,∞) was used. The first two patterns identify the
two time periods of most significant loss:1945 to1951 and1969 to
1980, when, according to the Wikipedia page for this airport given
in Footnote 3, it was closed to the public.

Table 3 presents the sample tableaux for TRAFFICPOLLS. The
expected time gap between two successive polls is 5 minutes, or
300 seconds. Due to several factors from traffic delays to clock syn-
chronization, this exact periodicity will hardly ever be met. There-
fore, we allow for±30 seconds and use a gap of270 seconds to
330 seconds. The gap range[270, 330] is satisfied by much of the
data and gives a tableau size of two. Next, a gap range of[0, 150]
was used to identify regions of extraneous polls. There are several
instances of very short time differences between polls, but these
tend to occur only briefly (one poll). A gap range of[350,∞) was
then used to identify regions with heavily delayed or missing data,
which, when correlated with other information collected by the ISP,
helped solve problems with the data collection mechanism.

Table 4 presents sample tableaux for different gap ranges on the
DOWJONES data set. Patterns for(0,∞) show time ranges over
which Dow Jones stock market exhibited an increasing trend with



APPRXINTVL

Tableau Support

Gap:[270, 330]
Tableau size: 2

2008-10-09,05:17:06 - 2009-03-06,19:10:1739925
2008-04-22,23:15:38 - 2008-05-25,21:33:20 8683

Gap:[0, 150]
Tableau size: 751

2008-03-17,21:07:02 - 2008-03-17,21:08:56 2
2008-04-14,16:00:23 - 2008-04-14,16:00:23 2
2008-05-26,05:05:31 - 2008-05-26,05:05:31 2
2008-05-26,06:17:43 - 2008-05-26,06:17:47 2

Gap:[350,∞)
Tableau size: 4001

2008-09-14,13:18:38 - 2008-09-14,14:59:24 14
2008-09-17,07:33:51 - 2008-09-17,09:06:06 11
2008-09-17,01:22:46 - 2008-09-17,02:11:02 7
2008-04-13,03:48:21 - 2008-04-13,05:32:38 6

Table 3: Tableaux for TRAFFIC POLLS

very high confidence of0.995.
The first few patterns for gap[0, 5] are similar to those of(0,∞).

This implies that successive increases in stock market prices, par-
ticularly over long periods of time, are usually by small amounts
which mostly lie within the small range of[0, 5].

Gaps[50, 100] and [100,∞) capture regions where the stock
market average closing price increased rapidly. The resulting
tableau suggests that sharp increases in stock prices were mostly
observed during the late nineties and early years of the21st cen-
tury, probably due to the “dotcom boom” and “housing bubble”.

APPRXINTVL Sup- APPRXINTVL Sup-
Tableau port Tableau port

Gap:[0,∞) Gap:[0,5]
Tableau size: 246 Tableau size: 286

1949.06.07 - 1950.06.22 261 1949.06.07 - 1950.06.22 261
1904.05.17 - 1905.04.26 237 1904.05.17 - 1905.04.26 237
1921.08.15 - 1922.06.13 206 1921.08.15 - 1922.06.13 206
1953.09.18 - 1954.06.08 179 1953.09.18 - 1954.06.08 179
1942.07.28 - 1943.04.12 176 1942.07.28 - 1943.04.12 176
1925.03.24 - 1925.11.16 166 1925.03.24 - 1925.11.16 166
1915.05.19 - 1916.01.07 162 1915.05.19 - 1916.01.07 162
1898.09.30 - 1899.05.05 149 1898.09.30 - 1899.05.05 149
1958.04.11 - 1958.10.24 138 1935.03.14 - 1935.09.24 135
1935.03.14 - 1935.09.24 135 1945.07.26 - 1946.02.13 134

Gap:[50,100] Gap:[100,∞)
Tableau size: 45 Tableau size: 4

2000.10.27 - 2000.11.08 9 2000.03.20 - 2000.03.28 7
1998.10.14 - 1998.10.23 8 2001.04.17 - 2001.04.18 2
1999.03.10 - 1999.03.18 7 2002.10.18 - 2002.10.21 2
2001.04.24 - 2001.05.01 6 2002.10.22 - 2002.10.23 2
2001.11.08 - 2001.11.19 6
2002.03.01 - 2002.03.08 6
2003.03.19 - 2003.03.26 6
1999.04.13 - 1999.04.16 4
1999.04.20 - 1999.04.23 4
1999.07.08 - 1999.07.13 4

Table 4: Tableaux for DOWJONES

4.3 Quality
In this section, we reinforce our claims of good tableau qual-

ity by comparing EXACT INTVL and APPRXINTVL tableaux over a
wide variety ofĉ, ŝ andδ values. Since it is impractical to present
actual tableaux for all the aforementioned cases, we use tableau
size as a substitute for tableau quality and compare tableau sizes
instead. Figure 4 demonstrates the quality results of our approxi-

mate algorithms for the DOWJONESdata.
For the gap range[0,∞), Figure 4(a) compares the tableau sizes

obtained from candidate intervals generated by EXACT INTVL and
APPRXINTVL (using differentδ’s), as a function of confidence
thresholdĉ, using support̂s = 0.5. (Exact tableau assembly was
used on the candidates from both methods.) The tableau sizes are
quite similar for low values of̂c, and for high values of̂c with
low values ofδ. For example, at̂c = 0.8 with δ = 0.01, there
was only a difference in size of 12. For the gap range[0, 5], Fig-
ure 4(d) shows a greater sensitivity toδ, as there was a much more
pronounced difference in tableau sizes atδ = 0.05, but again for
δ = 0.01 the difference was relatively small.

In the previous experiments, although a desired confidence
threshold of̂c was supplied, the algorithm relaxes this value to as

low as
“

1−δ
1+δ

”

ĉ to guarantee that all optimal candidate intervals

are covered by some interval reported by the approximation algo-
rithm. Hence, the tableau size is never larger, and may be smaller,
than that of an optimal solution. However, if one does not wish
to allow such “cheating on confidence”, then an alternative is as
follows. Instead, we can “inflate” the desired confidence fromĉ

to min
“

1,
“

1+δ
1−δ

”

ĉ
”

so that the relaxed confidence is now no less

than ĉ (but no greater than one), and thus not “cheat”. Of course,
this may now result in larger tableaux than the optimal. As usual,
the effect of this will depend onδ: whenδ is small,ĉ will only be
inflated by a small amount and thus the tableau sizes will be closer
to optimal. The trade-off is that the algorithm takes longer with
smaller values ofδ but, as we shall show in the next subsection
when we investigate performance, even with relatively small val-
ues ofδ there is a significant improvement over running the exact
algorithm.

Figures 4(b) and 4(e) compare the results of
• OPTIMAL (EXACT INTVL with unmodifiedĉ),
• apprx (APPRXINTVL with inflatedĉ)
• optimal (EXACT INTVL with inflatedĉ)

with variousδ-values. Note that the tableau size ofOPTIMAL
lower-bounds that ofapprx, which lower-bounds that ofoptimal.
Figure 4(b) assumes gaps of[0,∞), whereas Figure 4(e) uses gaps
of [0, 5]. In all cases, the tableau sizes for APPRXINTVL (with
inflated ĉ) are lower-bounded byOPTIMAL (with unmodified
ĉ). This implies that, in order to obtain an “exact” tableau (using
EXACT INTVL ) for a givenĉ, one might as well assume an inflated
confidence of̂c 1+δ

1−δ
(not exceeding1) and obtain the same results

using the much faster APPRXINTVL CANDGEN. Similar behavior
was observed for other̂s values. For higher̂s, the absolute value of
the tableau sizes increase, as expected.

Figures 4(c) and 4(f) show that the greedy set cover algorithm
(GREEDYASMBL) gives similar sized tableaux compared to the op-
timum that dynamic programming (EXACTASMBL) obtains—the
curves are almost indistinguishable—at a variety of support thresh-
olds with N = 10000. Figure 4(c) assumes gaps of[0,∞) and
ĉ = 0.63, whereas Figure 4(f) uses gaps of[0, 5] and ĉ = 0.7.
Both the exact and approximate TABASSMB algorithms ran on the
same set of input candidate intervals, which were generated by AP-
PRXINTVL . Similar figures were obtained for other values ofĉ and
other data sets.

4.4 Scalability
The previous two subsections highlight the fact that tableaux

generated by APPRXINTVL are close to that of EXACT INTVL . In
this subsection, we show that APPRXINTVL can generate accurate
tableaux while still being faster than EXACT INTVL by orders of
magnitude. For the sake of efficiency on large inputs, all tableau
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Figure 4: Tableau sizes obtained for DOWJONES using: (a) EXACT I NTVL vs APPRXI NTVL at different ĉ for [0,∞) (b) at different inflated ĉ for
[0,∞) (c) EXACTASMBL vs GREEDYASMBL at different ŝ for [0,∞) (ĉ = 0.63) (d) EXACT I NTVL vs APPRXI NTVL at different ĉ for [0, 5] (e) at
different inflated ĉ for [0,5] (f) E XACTASMBL vs GREEDYASMBL at different ŝ for [0, 5] (ĉ = 0.7)

generation methods in this section use GREEDYASMBL for assem-
bly; results are reported as combined running time of CANDGEN

and TABASSMB phases.
Figure 5 compares the performance of APPRXINTVL (using var-

iousδ-values) with EXACT INTVL for different data set sizes. For
the gap range[0,∞), Figure 5(a) and Figure 5(b) present results
using DOWJONES and NETWORKFEEDS data, respectively. AP-
PRXINTVL scales more gracefully, especially in Figure 5(b) where
we had to halt the exhaustive algorithm because it ran too long. Fig-
ure 5(e) and Figure 5(f) show results using WEATHERDATES with
gaps in[4, 6] and TRAFFICPOLLS with gaps in[270, 330], respec-
tively. As before, the APPRXINTVL algorithm results in substantial
improvement over EXACT INTVL , particularly for large number of
inputs as can be seen in Figure 5(f). While the performance is no-
ticeably better with largerδ-values, in all cases the performance
of APPRXINTVL is much faster (orders of magnitude) than that of
EXACT INTVL , even with very low values ofδ (say,0.01).

Figure 5(c) and 5(d) separate out the performance comparison of
CANDGEN and TABASSMB phases, using DOWJONES data. Fig-
ure 5(c) compares the running times of APPRXINTVL with EXACT-
INTVL and 5(d) compares GREEDYASMBL with EXACTASMBL.
In Figure 5(d), the curve for GREEDYASMBL is indistinguishable
from the x-axis.

5. RELATED WORK
Since database relations are abstracted as (multi)sets, classical

integrity constraints do not directly apply to ordered data. One of
the few proposed constraints to do so is the order dependency (OD)
proposed in [11] and the related notion ofsort sets[12], approxi-
mate versions of which were studied in [8]. This paper is the first
to propose Sequential Dependencies, which generalize Order De-
pendencies and express a wider range of practical order semantics,
and to study their approximate and conditional variants.

Recently, traditional integrity constraints have been adapted to

applyconditionallyon the data to be able to capture the semantics
of, and errors commonly found in, real data. Conditional Func-
tional Dependencies (CFDs) were proposed in [4]. Conditional In-
clusion Dependencies were proposed in [5]. In a similar vein, we
have proposed Conditional Sequential Dependencies to express the
sequential semantics commonly found in ordered data and to detect
potential data quality problems.

The problem ofdiscoveringdependencies in data was first stud-
ied in [17, 19] where the goal was to find antecedent and conse-
quent attributes from among different subsets of attributes in the
schema satisfying an FD. The problem of CFD tableau discovery,
given an embedded FD, was introduced in [13]. The problem of
discovering CFDs (FDs as well as tableaux) was studied in [7, 9]
but used different criteria (e.g., no global support threshold). Our
tableau discovery framework is most closely related to that pro-
posed in [13]. However, [13] deals with CFDs, which do not have
any sequential semantics. Moreover, therange tableauxproposed
in [13] specify that the FD independently holds on each subset of
tuples that agree on the antecedent attributes such that the value of
the ordered attribute is within the range. In this paper, a tableau
pattern denotes that the underlying SD holds in the entire interval.
Thus, while our definitions of confidence and tableau “goodness”
are analogous to those of [13], it is not possible to express SDs
using FDs (with or without range tableaux), and our pattern gener-
ation and tableau discovery algorithms are novel and non-trivial.

Constraints pertaining to ordering have also been considered in
the temporal database literature (e.g., [15]) but focus on satisfiabil-
ity and implication problems, which are orthogonal to our work.
Closest to our work from this literature is [24] which, given a de-
pendencyX → Y , discovers operators in{<, =, >} (approxi-
mately) satisfying the dependency over the entire data set (using
a different confidence metric); conditioning and tableaux were not
considered. Other sequential constraints have been studied for data
streams such as PACs [20], which monitor properties such as poll
time differences are approximately 5 minutes, with high probabil-
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Figure 5: Scalability: (a) DOWJONES (ĉ = 0.63, ŝ = 0.5) (b) NETWORK FEEDS (ĉ = 0.99, ŝ = 0.5) (c) EXACT I NTVL and APPRXI NTVL CANDGEN

for D OWJONES (d) EXACTASMBL vs GREEDYASMBL TABASSMB for D OWJONES (e) WEATHER DATES ([4, 6] gap range, ĉ = 0.9, ŝ = 0.5) (f)
TRAFFIC POLLS ([270, 330] gap range,ĉ = 0.9, ŝ = 0.5)

ity; andk-constraints [3], which monitor properties such as a SYN
packet must be followed by an ACK withink packets in a TCP
stream. Neither considers conditioning or discovery.

Finally, there is some marginally related work in the area
of data mining including sequential association rules [1], which
find frequent subsequences contained in a sequence; frequent
episodes [21], which find partially ordered event subsequences
that occur in a small time window; and correlations between at-
tributes [22, 25]. The patterns they find are different from SDs and
none of this work attempts to capture the semantics of a large por-
tion of the data via a global support threshold.

6. CONCLUSIONS
Detecting data quality problems and understanding data seman-

tics are challenging in practice. Fortunately, there are some order
semantics implicit in sequential data that can be leveraged. Here
we have initiated the study ofSequential Dependencies, which are
integrity constraints that define dependencies between two sets of
attributes in terms of their co-orderings. We proposed a frame-
work for efficiently discovering tableaux for Conditional (Approx-
imate) Sequential Dependencies that satisfy specified support and
confidence constraints and are parsimonious; our framework runs
in sub-quadratic time when the function for computing confidence
obeys certain properties. We have illustrated the efficiency and util-
ity of our framework on a variety of real data sets.

Since the mechanisms generating ordered data often suggest the
underlying order semantics, we have assumed that the underlying
sequential dependency is known. An interesting direction for fu-
ture work is to discover reasonable sequential dependencies from
a relation instance or a sample. We are also interested in studying
the properties of sets of SDs and CSDs, including axiomatization,
inference and satisfiability. Finally, an aspect of our framework for
tableau discovery that remains to be studied is how to efficiently
maintain tableaux in the presence of updates to the base relation.
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APPENDIX
We are studying the following problem. Given a set of at mostn
closed real intervals, no one a subset of any other, and a realL,
run the greedy PARTIAL SET COVER algorithm until the coverage
is at leastL. (Coverageis the length of the union of all chosen
intervals.)

Consider a set of the fewest input intervals which has coverage
at leastL. Call the intervals in the solutionopt intervals; call those
obtained by the greedy algorithmgreedy intervals. Let t be the
number of opt intervals.

We need to study a game involving an adversary. Given are
t nonnegative realsg0

1 , g0
2 , ..., g0

t . DefineG0 :=
Pt

i=1 g0
i . Set

gi := g0
i for all i. In addition, there is a realC which is initially 0.

Repeatedly the adversary makes either a type-1 move or a type-2
move.

In a type-1 move, the adversary specifies aδi for eachi, 1 ≤ i ≤
t, with 0 ≤ δi ≤ gi. Eachgi is decreased byδi andC is increased
by at least

P

δi.
In atype-2 move, nogi changes, butC increases by some amount

δ ≥ maxt
i=1 gi. Let δ be thecostof this type-2 move.

LEMMA 17 Suppose that allg0
i = A, 1 ≤ i ≤ t, for some given

real A ≥ 0. Then however the game is played, by the time the
adversary has made at leastT moves of type 2,C ≥ G0 = tA, if
T ≥ t.

PROOF. Focus on two different type-2 moves with no type-2
moves between them. In the block of moves strictly between the
two type-2 moves, the adversary makes some number, possibly
zero, of type-1 moves. During that block of type-1 moves, if

P

i gi

decreases froma to b, thenC increases by at leasta − b.
After exactlyl type-2 moves to date have been performed, letZl

denote the sum of the costs of thel type-2 moves to date. Letgl
i be

the value ofgi at the time when thelth type-2 move is performed.
By induction, it is easy to prove that afterl type-2 moves have been
performed,

C ≥
t

X

i=1

(g0
i −gl

i)+Zl ≥
t

X

i=1

(g0
i −

t
max
j=1

gl
j)+Zl = t(A−

t
max
i=1

gl
i)+Zl.

(1)
Let ml = maxi gl

i; m1 ≥ m2 ≥ · · · ≥ ml andZl ≥ m1 + m2 +
· · ·+ml. BecauseT ≥ t, ZT ≥ Zt ≥ m1+m2+· · ·+mt. Hence,
by equation (1), it suffices to show thatZT ≥ t maxt

i=1 gT
i =

tmT . But this is clear becauseZT ≥ m1 + m2 + · · · + mt ≥
tmt ≥ tmT .

Here is a simple corollary, whose proof we omit.

COROLLARY 18 For arbitrary nonnegative realsh1, h2, ..., ht, if
we start withg0

i = hi for all i, then however the game is played,
by the time the adversary has made at leastT moves of type 2,
C ≥ G0 =

Pt

i=1 hi, if T ≥ t.

LEMMA 19 The number of iterations in which the algorithm
chooses an interval which is disjoint from all of opt’st intervals
is at mostt.

PROOF. Let Ii be the adversary’sith optimal interval, when
sorted arbitrarily,i = 1, ..., t. Let Yi be the portion ofIi which
is left uncovered by the greedy algorithm at a given time; note that
Yi is an interval. The algorithm is greedy and could have chosen
to add intervalIi. Adding Ii to the algorithm’s intervals would
have coveredlength(Yi) additional length; it follows that the in-
crease in length of the greedily-covered region must be at least
maxt

i=1 length(Yi).
C, initially 0, will denote the coverage of the greedy algorithm.

gi will denote thefractionally-weightedlength of Yi. Here we
mean that a portion ofYi that lies in some numberm of the op-
timal intervalsIj is apportioned equally to thosem Ij ’s. Clearly
gi ≤ length(Yi). Note that

P

gi is the length of the uncovered
portion of∪iIi.

When the algorithm chooses an intervalJ , eitherJ ∩ Yi has
length 0 for alli, or it does not.

If J ∩ Yi has length 0 for alli, then noYi will change in length.
The coverageC must increase by at leastmaxi length(Yi) ≥
maxi gi. (This is a type-2 move.)

If J∩Yi has positive length for somei’s, letδi be the fractionally
weighted length ofJ ∩ Yi. The coverage increases (at least) in the
regionJ ∩ (∪iYi), whose length is

P

i δi. C increases by at least
P

i δi. Eachgi decreases by exactlyδi. (This is a type-1 move.)
Now let hi be the fractionally weighted length ofIi. Note that

P

hi = length(∪Ii) ≥ L, the target coverage (since the optimal
algorithm is, of course, feasible). The corollary states that aftert
type-2 iterations,C ≥

P

hi ≥ L, and hence the greedy algorithm
will terminate.

LEMMA 20 The algorithm chooses at most four intervals that con-
tain the left endpoint of an opt intervalIi and at most four that
contain the right endpoint ofIi.

SKETCH. It suffices to prove the lemma for the left endpointz of
Ii. Assume the greedy algorithm chose five intervals containing
z. Sort the five intervals by left endpoint. Use the fact that any se-
quence of five distinct integers has either an increasing subsequence
of length three or a decreasing one of length three, and assume the
former to infer that the algorithm chose three intervals, in chrono-
logical order, with increasing left endpoint. But now one sees that
instead of choosing the second one, the algorithm should have cho-
sen the third, since it would have increased coverage more.

THEOREM 21 The performance ratio of greedy is at most 9.

SKETCH. Greedy can choose at most8 = 2·4 intervals intersecting
each of OPT’st intervals, and, by Lemma 19, at mostt more.


