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ABSTRACT

We studysequential dependenci¢isat express the semantics of
data with ordered domains and help identify quality problems
with such data. Given an interva), we write X —, Y

to denote that the difference between ftheattribute values of
any two consecutive records, when sorted &n must be in

g. For example,time — (9 ) sequence.number indicates

that sequence numbers are strictly increasing over time, whereas

sequence_number —4 5 time means that the time “gaps” be-
tween consecutive sequence numbers are between 4 and 5. Seque
tial dependencies express relationships between ordered attribute
and identify missing (gaps too large), extraneous (gaps too small)
and out-of-order data.

To make sequential dependencies applicable to real-world data,
we relax their requirements and allow them to hold approximately
(with some exceptions) and conditionally (on various subsets of
the data). This paper proposes the notion of conditional approxi-

mate sequential dependencies and provides an efficient framework

for discovering pattern tableaux, which are compact representations i Furth Ld ially th
ranges of values of the ordered at-confidenceneasure. urthermore, real data sets, especially those

of the subsets of the data (i.e.,
tributes) that satisfy the underlying dependency. We present anal-
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are withing. SDs of the formX —( ) Y andX —(_o 0 YV
specify thatY is strictly increasing and non-increasing, respec-
tively, with X, and correspond to classical Order Dependencies
(ODs) [11]. They are useful in data quality analysis (e.g., se-
quence numbers must be increasing over time) and data min-
ing (in a business database, delivery date increases with shipping
date, in a sensor network, battery voltage increases with temper-
ature, etc.) SDs generalize ODs and can express other interest-
ing relationships between ordered attributes. An SD of the form
fequence_number — 14 5] time specifies that the time “gaps” be-
tween consecutive sequence numbers are between 4 and 5. In the
context of data quality, SDs can measure the quality of service of
a data feed that is expected to arrive with some frequency, e.g., a
stock ticker that should generate updated stock prices every 4 to
5 minutes. In terms of data mining, the Sldte —20,00) price
identifies stock prices that rapidly increase from day to day (by at
least 20 points). Related examples may be found in [11, 23].

In practice, even “clean” data may contain outliers. We charac-
terize the degree of satisfaction of an SD by a given data set via a

with ordered attributes, are inherently heterogeneous, e.g., the fre-

yses of our proposed algorithms, and experiments on real dataduency of a data feed varies with time of day, measure attributes

demonstrating the efficiency and utility of our framework.

1. INTRODUCTION

Interesting data sets often contain attributes with ordered do-

fluctuate over time, etc. Thus, we considéonditional Sequen-

tial Dependencie$CSDs), which extend SDs analogously to how
Conditional Functional Dependencies extend traditional FDs [4].
A CSD consists of an underlying SD plus a representation of the
subsets of the data that satisfy this SD. Similar to CFDs, the repre-

mains: timestamps, sequence numbers, surrogate keys, measuregentation we use istableay but here the tableau rows are intervals
values such as sales, temperature and stock prices, etc. Understand@n the ordered attributes.

ing the semantics of such data is an important practical problem,
both for data quality assessment as well as knowledge discovery.
However, integrity constraints such as functional and inclusion de-

pendencies do not express any ordering properties. In this paper,

we studysequential dependenciésr ordered data and present a
framework for discovering which subsets of the data obey a given
sequential dependency.

Given an interval, a sequential dependency (SD) on attributes
X andY, written asX —, Y, denotes that the distance between
the Y-values of any two consecutive records, when sorted{on
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1.1 Network Monitoring Examples

Internet Service Providers (ISPs) collect various network perfor-
mance statistics, such as the number of packets flowing on each
link. These measurements are maintained by routers in the form
of cumulative counters, which are probed periodically by a data
collection system. A plot of packet counts versus time is shown
in Figure 1. While we expect the counts to increase over time,
counters are finite (e.g., 32 bits) and thus periodically loop around.
Furthermore, counters reset whenever the router is rebooted. Ad-
ditionally, spurious measurements may appear (e.g., at time 16 in
Figure 1), such as when the data collector probes the wrong router.
Due to the cyclic nature of the counters, the semantics of this data
set cannot be captured by the $fhe — (9,o0) count; we need a
conditionalSD whose tableau identifies subsets that satisfy the em-
bedded SD. For instance, each pattern in Tableau A from Figure 1
corresponds to an interval that exactly satisfies the embedded SD.
Alternatively, we may allow a small number of violations in order
to produce more informative tableaux and help avoid “overfitting”
the data. Tableau B from Figure 1 contains two patterns that cap-



count Tableau A: _time Tableau A: _time Tableau B: _time

[1,10] [9,11] [10,90] [20,) [30,60]
[11,15] [180,240] [120,200]
[17,20]
... ...
..' o b Tableau B: time 0000 oo cseee o oo o ocoee time
[ ] [ ] -
e’ o' o [1,11] 0 20 40 60 80 100 120 140 160 180 200 220 240
T time [11,20] ]
0 2 4 6 8 10 12 14 16 18 20 Figure 2: Tableaux for an SDpollnum —, time.

Figure 1: Tableaux for an SDtime — (o,00) count.

In our model, every tableau pattern must independently satisfy
the embedded SD. The brute force algorithm computes the con-
fidence of allo(N?) possible intervals (in a sequence &f ele-
ments) and identifies as candidates those which have a sufficiently
high confidence. Since our goal is to discover a concise tableau, we
prefer large intervals that cover more data, and therefore can ignore
candidate intervals contained in larger candidate intervals. Our first
observation is that CSDs obey a “prefix” property, whereby the con-
fidences of all prefixes of a given intervBhbre incrementally com-
puted en route to computing the confidencelafself. Thus, it
suffices to compute the confidence of tNentervals[i, N], where
1 < i < N, and, for each, find the maximumy such that the
interval [z, j] has the required confidence.

Our second observation is that CSDs also satisfy a “contain-
ent” property, which implies that the confidence of an interval
slightly larger than some intervélmust be similar to that of. We

ture the two mostly-increasing fragments of the data set (with one
violation at time 16). It not only identifies the intervals over which
the SD is obeyed but also pinpoints the time at which there is a dis-
ruption in the ordering (at time 11). Such tableaux are useful tools
for concisely summarizing the data semantics and identifying pos-
sible problems with the network or the data collector, e.g., a tableau
with many “short” patterns suggests premature counter roll-over.
An ISP may also be interested in auditing the polling frequency.
The data collector may be configured to probe the counters every
ten seconds; more frequent polls may indicate problems at the col-
lector (it may be polling the same router multiple times) while miss-
ing data may be caused by a misconfigured collector or a router that
is not responding to probes. A possible sequence of measurement
times (not the actual counter values) is shown in Figure 2, sorted in

polled order, along with a tapleau ('?be'ed Tableau A) for the em- give an approximation algorithm that computes the confidence of a
bedded Spolinum —9,11) time, which asserts that the gaps be- (o)) set of carefully chosen intervals such that, for each candidate
tween adjacent polls should be between 9 and 11 seconds. Again;yerq) 1 igentified by the exact algorithm, our algorithm is guar-
we allow each pattem to _contaln a s.maII numb_er of violations to anteed to identify a slightly larger interval whose confidence is not
better. capture the trends in the data, e.g., the first paftex0] much lower than that of. Instead of computing the confidence of
contains one gap of _Iength 20. . . the NV intervals described above, the approximation algorithm only
Furthermore, testing related SDs with different gap ranges re- needs to compute the confidenceflog N')/5) intervals, where
veals intervals that violatg the expected semaqtics. For example, + 6 is a bound on the approximation error. ’
pollnum —20,0) time finds subsequences with (mostly) long In addition to improving the efficiency of the candidate gener-

gafs,tas sho;vn 'P Tableau ? fS'm'Iar%O””“m H[o,lctn t_llfﬁe ation phase, our framework improves the efficiency of the tableau
Elects periods of excessively frequeént measurements. The COMre ., i ction step. This step solves the partial interval cover prob-

sponding tableaux provide concise representations of subsets tha}em by choosing the fewest candidate intervals that cover the de-
deviate from the expected semantics, and are easier to analyze b

) ; ; %ired fraction of the data. An exact dynamic programming algo-
a user than a raw (p055|_bly very Iengthy) list OT all pairs of_records rithm for this problem takes quadratic time in the number of can-
with incorrect gaps. It is worth noting that .s[mply'countln.g the didate intervals. We give a linear-time and -space greedy heuristic
number of polls to detect problems is insufficient: if the window

. ! .~ _and prove that it returns tableaux with sizes within a constant factor
size for counts is too small (say, ten seconds), then false positives : . .
if poll ive sliahtly late: if the wind eis 100 | (of nine) of the optimal solution.
can occur It polls arrive stightly 1ate; It the window siz€ IS oo large To summarize, our overall contributions are as follows.
(say, one hour), then false negatives can occur due to missing and

extraneous data “canceling each other out”. e We propose Conditional Sequential Dependencies as novel
integrity constraints for ordered data and give efficient algo-
1.2 Contributions rithms for testing their confidence.

Our main contribution is a novel integrity constraint for ordered e We give a general framework that makes the discovery of
data. The mechanisms generating ordered data often provide the “good” tableaux for CSDs computationally feasible, pro-
order semantics—sequence numbers are increasing, measurements  vided that the confidence measure satisfies the prefix and
arrive every ten seconds, etc. However, finding subsets of the data containment properties.

obeying the expected semantics is laborious to do manually. We . . .
therefore assume that the embedded SD has been supplied and ® We present experimental results demonstrating the efficiency

solve the problem of discovering a “good” pattern tableau. Follow- (order-of-magniture improvement over the brute force ap-
ing the criteria set forth in [13], we desimarsimoniousableaux proach), as well as the utility (in revealing useful data seman-
that use the fewest possible patterns to identify a large fraction of tics and data quality problems), of the proposed framework
the data (“support”) that satisfy the embedded SD with few viola- on a wide range of real data sets.

tions (“confidence”). Our technical contribution is a general frame-  The rest of the paper is organized as follows. Section 2 defines
work for CSD tableau discovery, which involves generating candi- the problems we study. Section 3 presents our framework. Sec-
date intervals and constructing a tableau using a smallest subset ofion 4 summarizes our experimental results. Section 5 compares
candidate intervals (each of which has sufficiently high confidence) our contributions with related work. Section 6 concludes and sug-
that collectively “cover” the desired fraction of the data. gests areas for future work.



2. DEFINITIONS 2.2 Computing the Confidence of SDs

Let S be a relational schema on attributes,, Ao, ..., Ax Having defined the confidence of a SD, we now describe how to

with relation instanceR = {t1,t2,....,tn}. Let dom(X) = efficiently compute it (i.e., comput® PS) on a relation instance.
t1[X], t2[X], ..., tn [ X]} refer to the set of domain values ovEr, . .
évhferet[XH d]enotes [th(]a}relation tupleprojected on the attributes ~ 2-2-1  Confidence of Simple SDs
X. We model the input to our problem as a relation, some of whose  First, consider a “simple” SD of the forlX — o,y Y, which
attributes have ordered domains. requiresY to be increasing withX. Note that this SD does not
limit the maximum gap length, so we need not insert new records

DEFINITION 1 LetX andY, X C S andY C S, be two attribute to reduce the lengths of oversized gaps. Its confidence may be com-

sets,g be an interval, and be the permutation of rows dk in- puted from the length of thiengest increasing subsequeraeY’,
creasing onX (that is,t,1)[X] < tr@)[X] < - < tr(v)[X]). after ordering the relation oX . More formally, letr be the permu-
A sequential dependen¢$D) X —, Y is said to hold oveR if tation of rows ofR increasing onX . We wish to find a longest sub-
foralli such thatl < i < N — 1, tru11)[Y] — trp[Y] € g sequencer(iy) < w(iz) < -+ < 7w(ir) of m, i1 < iz < -+ <ir,
That is, when sorted oX, the gaps between any two consecutive such thatt,.;)[Y] < -+ < ¢ [Y], for someT < N. Let
Y -values must be withig. S be the sequence t.(1)[Y],...,t-(n)[Y] >. We denote the

length(not the subsequence itself) of the longest increasing subse-
We refer toX as the anteced_ent of the SD drias the consequent. quence ofSy by LIS(Sx). Then the confidence of an SD dhis
We assume that total orderings exist &nandY’, and that there LIS(Sx)/N, which can be computed i@ (N log N) time [10].
is a mappingf () which linearizes the different combinations of |, general, SDs of the foriX’ — (¢ ., Y, G a finite non-negative

attribute values inX andY” into integers. For example, iK' = integer, can be handled in a similar way, by finding longest se-
{hour, minute, second} then the tuplet[X] = (h,m, s) could guences increasing by at leaStat every step. We note that other

be mapped vig (h,m, s) = 3600 + 60m + s. measures of “sortedness” may be natural for some applications
21 Approximate Sequential Dependencies (such as based on number of inversions [16, 14], average inver-

sion length or “satisfaction within bounds”[8]) and could be used
in place of this quantity throughout this paper and can be computed
within the same time complexity by our framework.

In practice, an SD may not hold exactly: when orderedXn
the resulting sequence &f-values may not have the correct gaps.
Previous work on characterizing the extent to which ODs [8], FDs
[19] and CFDs [13] hold on a given relation instance employed a 2.2.2 Confidence of Other SDs
“deletion-based” metric that determines the largest possible sub-  \ye now consider general SDs of the forM —c, ¢, Y,

set of the relation that satisfies the constraint. Using this mea- \yherep < ¢, < Gs # 0. We say that a sequence (Bfvalues
sure,‘ theconfidenceof |n.ter;/al [11, 20] from Figure 1 w.r.t. the mapped to integers, when sorted &) is valid if it is non-empty,
SD time —(0,00) count is 15 since the largest subset that makes | glements are integers, and all its gaps are betwiéeand Go.

the SD valid contains every record except the one at lfghel'l'he Computing the confidence requires findiog?.S(N)—the mini-
confidence of the entire data set, i.e., the intefla0], is 55 since mum number of integers that must be added to or deleted from the
the largest satisfying subset contains (the first) ten points. length-N' sequence in order to obtain a valid sequence. For exam-

Now consider the intervdll0, 90] from Figure 2. To satisfy the ple, the confidence of an SD witi; = 4 andG> = 6 on the
SD pollnum —19 11 time, we select either the first four points or sequences 5,9, 12,25, 31,30, 34,40 > is 1 — 4/8 = 1/2: delet-
the last four points in this interval, for a conﬂdencegof‘l'hl? CoN- " ing 12 and inserting 15 and 20 in its place (or deleting 5, 9 and 12)
fidence value seems low since this interval has only one “problem”, 5 then deleting 31 will convert the sequence into a valid one, and
namely a missing record around time 50. We thus define the confi- 5 series of three or fewer insertions and deletions will make the

dence of a CSD using the following edit distance metric, which is gequence valid. In general, the sequence need not be sorted, i.e.,
a natural extension of the well-known deletion metric. some gaps may be negative.

Given a sequencel ai,as,...,any > of integers, fori =
1,2, ..., N letv = a; and defin€l’(7) to be the minimum number
of insertions and deletions one must make<toas, as, ...,a; >
in order to convert it into a valid sequence ending in the num-
berv. (Note that since the value might appear more than once

Note that confidence cannot be negative since in the worst case " the sequence, one might get a sequence ending in a copy of
we can “delete” all but one record, which will trivially satisfy ~ Which is not theith element in the sequence.) Now computing
the SD. This metric has several useful properties. it is robust OFS(IV) from theT'(i)'s can be done as followsOPS(N) =
to occasional missing data—in the above example, the interval minp<r<n—1{r + T(N —r)}, as proven in Claim 3.

[10,90] has a confidence of since only one edit operation (in- - ‘ ) .
sertion) needs to be made to satisfy the SD. It is also robust to CLAIM 3 The minimum numbeO PS(i) of insertions and dele-

spurious values. Returning to the above example, the sequencd0’S required to convert an input sequereinto a valid one

< 10,20, 30,1000,40 > has a relatively high confidence ¢f Is given bymino<,<i—1{r + T(i — r)}. Furthermore,OP.S(z)
since it suffices to delete the suspicious elemii). Further- can be calculated inductively By PS(1) = 0 andOPS(i) =
more, our metric penalizes based on gap sizes, unlike just count-min{1 + OPS(i — 1), T(i)} foralli > 2.

ing the fraction of “bad gaps” (i.e., those not in the specified gap =~ PRoOF We first prove thaO P.S(i) > mino<,<;—1{r+7 (i —
range). For example, if one is expecting all gaps to be bet@een r)}. In the optimal transformation, let be the exact number of
and5, then a gap of 6 can be corrected by one insertion, but a gap terms at the end of the sequern€e=< a1, as, ..., a; > which are

of size 1000 requires 199 insert operations. We will point out sev- removed; henceyg;—, remains and appears in the final sequence.
eral other metrics that are compatible with our tableau generation Clearly,0 < r < i — 1. After removing those terms, the optimal
framework in Section 3.3. algorithm must transform the prefix consisting of the fiist r

DEFINITION 2 Theconfidenceof a suggested SD over a given re-
lation instance (or subset thereof) of sideis X=9L5  where
OPS is the smallest possible number of records that need to be
inserted or deleted to make the SD hold.



terms into a valid sequence endingdn_,.. The cost to do this is
T'(i — r), and hence the optimal total costris- T'(i — ). Since
there is some, 0 < r <i—1, suchthaOPS(i) =r+T(i—r),
we can infer thaOPS(¢) > ming<,<;—1{r + T(i — r)}.

ClearlyOPS(i) < ming<,<;,—1{r + T'(¢ — r)} as well, since
for each suchr one could get a valid sequence by deleting the last
r integers and then, at co%t(: — r), converting the sequence
ai,as,...,a;—r > into a valid sequence ending in the value ,..

The second statement follows fromOPS(7)
ming<,<;—1{r + T'(¢ — r)} by splitting off ther = 0 case
fromthel <r <i-—1case. [J

In order to show how to compute ti¥#(:)’s, we need a defini-
tion of and a lemma abouicost, a function which specifies the

Then T'(7) min{mini, minz} if Gy
min{mini, minz, mins} if G = 0.

> 0 and T (i)

PROOF Choose, letv = a;, and consider an optimal sequence
of moves which converts: a4, as, ..., a; > into a valid sequence
whose last entry is. By Lemma 6, we may assume that the optimal
sequence of moves does not deleteitheentry. Either the optimal
sequence deletes the figst 1 integers or it does not. If it does, its
cost is obviously; — 1. If it does not, then lej be the maximum
index less thar such that thejth symbol is not deleted. Clearly
aj+1,0j5+2,...,ai—1, atotal ofi — 1 — j integers, are deleted.

If G1 > 0, then, sinces; is not deletedg; < a;. The adversary,
who converts the input sequence into a valid sequence using the

fewest integers one must append to a length-1 sequence to get d4ewest operations, will then “bridge the gap” from to a;, and

valid sequence whose last element is exadtigrger than its first.

DEFINITION 4 Definedcost(d), ford = 0, 1,2, ..., to be the mini-

convert< a1, ..., a; > into a valid sequence endingat, at a cost
of T'(j). Given a length-2 integral sequeneey, z >, y < z, the
number of integers one must insert betwegeand z to get a valid

mum number of integers one must append to the length-1 sequencé&eduence (i.e., to “bridge the gap” frayto z) is

< 0 > to get a valid sequence endingdpnandoc if no such se-
quence exists.

It is nontrivial but not hard to prove the following lemma, whose
proof we omit due to space constraints.

LEMMA 5 If G1 = 0, thendcost(d) [d/G2]. Otherwise,
deost(d) = [d/G2] if [(d + 1)/G1] > [d/G2] andco other-
wise.

For example, ifG; = 4 andG2 = 6, thendcost(7) = oo.
Furthermoredcost(8) = 2, uniquely obtained with two gaps of
length 4. This is interesting since one might be tempted to infer
from “dcost(d) = [d/G2]” that all but one gap have length..

LEMMA 6 Choose ani, 1 < i < N. Letv = a;. Then among all
ways to converk a1, a2, ...,a; > into a valid sequence ending in
the numbew, there is one in which thah symbol is never deleted.

Keep in mind thaty = a, may appear more than once in the
sequence< ai,aq,...,a; >. If one generates a valid sequence
ending in the value, just whichwv is it? Thewv which is theith
symbol in the sequence? Or thavhich is thejth, for somej < 4
with a; = a; = v? The content of this lemma is that there is
always a minimum-cost way of transforming the sequence into a
valid sequence in which is theith symbol, not theith.

PrROOEF If theith symbol is deleted, letbe the largest index of
a nondeleted symbol (which must exist). Clearly< a;, since in
the final list all integers are at most= a;. If a; < a;, then the
algorithm must at some point append@anbut then it was wasteful
to delete theth integer in the first place, and so it should not have.
Hence we may assume that = a;. Now instead of deleting the
ith symbol and not deleting theh, delete thegth and do not delete
theith. [

THEOREM7 Suppose that we have already computed
7(1),7(2),....,T(t — 1), for somei < N. We can compute
T'(4) using the existing’(1), ..., T(i — 1) as follows. Define

ming =1 — 1,

ming ;== min  {T(j)+ (i —1—j)+ [dcost(a; — a;) — 1]},
J:i<t,aj<a;
and define
ming:= min {T(G)+(E—-1-5}
J:i<t,aj=a;

e Oify=zandG;, =0,

e xif y=zandG; > 0, and

o deost(z —y) —1ify < z.
Hence, the total costig — 1 — j) + (dcost(a; — a;) — 1) + T'(j).

If G1 = 0, there is the additional possibility thaj = a;. The
cost of bridging the gap is zero, for a total cost(of- 1 — j) +
T@). O

Now that we have a recurrence for computing th&)’s, we
discuss how one can use the recurrence to calculate all'thés
quickly. If, for eacha;, everya;-value withj < i is evaluated for
the recurrence, then the algorithm will run in linear time for each
1, or quadratic time in total. However, it is possible, for edcto
find the bestj without trying all the linearly-manyj’s. The idea
here is that theicost values are either finite or infinite. Clearly
any term having an infinitdcost can be ignored. The observation
is that the infinitedcosts come in a limited number of consecutive
blocks, and hence the finit&osts also come in a limited number
of consecutive blocks (all but one of which have finite size), which
we callbands We will show how to quickly compute the minimum
over one band, and therefore, for edcthe time to compute; will
be bounded by the product of the number of bands and the time per
band. The overall time will be jusV times this product.

Given some gap rangér1, G2|, the bands of finite values for
dcost are the input value ranggsG1, kG-], for integersk > 1.
Note that these bands widen with increasingf G1 < G2). In-
deed, wherk becomes large enough, the bands will overlap and,
therefore, no morelcost values ofoco will occur for d this large.
Exactly when will the overlap first occur? There is no space for a
d with deost(d) = oo between the banffG:, /G;] and the next
band[(¢ 4+ 1)G1, (¢ + 1)Gz] ifand only if (£ +1)G1 < £G2 + 1,
i.e., > [(G1—1)/(G2 —G1)] (if G1 # G2). We shall deal with
the case wheré&';, = G separately below.

Given a fixeda;, the formula forT'() requires that we com-
putedcost(a; — a;); hence, we wish to find the values ef for
whichdcost(a; —a;) is finite. Sincelcost(d) is finite within bands
kG1 < d < kG, for eachk, substitutingd = a; — a; and solving
for a; yields bandsy; — kG2 < a; < a; — kG1. So the bands
with respect toa; are nowja; — Ga,a; — Gi], [ai — 2G2,a; —
2G4, ..., [ai — (¢ = 1)G2,a; — (£ —1)G1] and one band of infinite
length[—o0, a; — £G4]. Since thea;'s come from sequence ele-
ment values, clearly we never need to consigdervalues less than
the smallest value..., in the sequence. Thus, we can threshold
any band extending below,, .., ensuring that no band is of infinite
length (i.e., ifamn lies within[—oco, a; — £G+] then this band gets



truncated tdamin, a; — £G1]) and possibly resulting in fewer than

¢ bands to search. Note that, since in each of these bands is
finite, dcost(d) is equivalently defined agd/G2]. Furthermore,

since0 < [z] —z < 1 for all z, we can substitute the function

interval of ¢, as[i, j] (for example, the position interval of the pat-
tern[30, 60] from Tableau B in Figure 2 i3, 5]). We also define
thetotal support or global supportof a CSD as the support of the
union of the intervals identified by the tableau patterns (note that

d/G> in place of[d/G2] and obtain the same result, because all patterns may overlap).

the other variables are integers so adding a fractional amount less

than 1 will not change the rank order for the best

Here is how the algorithm proceeds. For a fixedh any band
(with finite dcost) arg min;.j<i,a;<a; {T(4) + (i — 1 — J) +
[dcost(a; —a;) — 1]} is equivalent tawrg ming.j<;,a;<a; {T(4) —
j — a;/G2}. So for each band (1 < k < ¢), we findj* =
argmin;{T(j)—j—a;/G2} subjectta; € [a;—kG2,a;—kG1],
or subjecttar; € [amin, a;i —kG1]if a; — kG2 < amin. Letj" be
the minimumyj from among these bands, thatj§,= miny, {j*)}.
Thenmins = T(5*) + (i — 1 — 5*) + [deost(a; — aj*) — 1].
We also need to consider thgs for which a; = a;. So we
let jl = argminj;jd,aj:ai{T(j) — ] — aj/Gg} andming =
T(5')+ (i —1—j3"). Finally, we takel'(i) = min{mini, mina}
if G1 > 0andT(i) = min{mini, minz, mins} if G, = 0.

For the case of71 = G2 = G, given some intege > 0,
the algorithm is simpler and can be computedifiV log V) time.
The idea is to partition the sequence elementsnto G classes
0,1,...,G — 1 based on theifmod G)-values. Then, given;, we
search only ther;'s whosea; = a;(modG),a; < a;, and take
the j with smallestl’'(j) — j — a;/G asj*. Clearly, ;* can be
found inO(log V) time. As usual, we letnine = T'(5%) + (i —
1—75%) + [deost(a; — a;+) — 1].

THEOREM8 The confidence of an S — (g, ¢, Y on a se-

quence of lengttN can be computed in tim@( GQchl Nlog N)

whenG1 # G2 and in timeO(N log N) whenG, = Gs.

2.4 Tableau Discovery Problem

The goal of tableau discovery is to find a parsimonious tableau
whose patterns all provide sufficient confidence and describe a suf-
ficient portion of the data. Thus, given a relation instance and an
embedded SD, we wish to find a smallest tableau (if any exists)
subject to confidence and (global) support threshold constraints.

DEFINITION 10 TheCSD Tableau Discovery Problers, given a
relation instance?, an embedded SX —, Y, a global support
thresholds and a confidence threshold to find a tablead’, of
minimum size such that the CSp= (X —, Y,T,) has a global
support at least and that each,. € T has confidence at least

Naturally, one could optionally impose a local support threshold
that is met by each tableau pattern, in order to ensure that spurious
and uninteresting patterns are not reported. Furthermore, rather
than seeking a tableau with a sufficiently high global support, it
may be useful to ask for thee “best” patterns (e.g., those having
the highest local support) regardless of the global support.

3. TABLEAU DISCOVERY

Here we propose a general tableau discovery framework. We as-
sume that the confidence of an inter¥atontainingNV' points may
be written as%, where f is some aggregate function, and that
0 < f(I) < N to ensure that confidence is between zero and one.
For our confidence metri¢f;(I) = N — OPSandl < f(I) < N
since we never need to make more tén 1 edit operations (recall

PROOF. For each ofV sequence elements, we search in at most Section 2.1). Our framework consists of two phases: (1) generating

G1—1 _ _Go
Go—C1 +1= Go-C

bands for thewrg min, and each band can be
searched and updateddn(log N) time using a standard data struc-

candidate intervals and (2) choosing from these candidates a small
subset providing suitable (global) support to be used for the tableau.

ture for rangemin over arbitrary ranges of values. In fact, we can What makes the first phase inherently challenging is that the con-
afford to first sort the sequence element values, thus transforming fidence of an interval may not be readily composed from those of
them into their ranks, and store thein over each dyadic interval its subintervals due to the complex nature of whatever aggregate
in rank-space. That way, the ranges can be transformed into beingfunction is employed in measuring confidence. Take Figure 1 for
over a universe of siz&/ (i.e., the ranks) — which makes updates example. The confidence of the interyl 10] is 1, the confidence
much easier — and a rangein can be stored for every possible bi-  of [11,20] is 0.9, but the confidence 91, 20] is only0.5. However,

nary partition of the values with respect to their ranks. Then range the following properties can be exploited.

query intervals can be decomposed ittdog N) adjacent dyadic

intervals, from which the result can be obtained. The total query DEFINITION 11 An aggregate functiorf over a sequence is said

time is the product of thes€)(

52— NlogN). O

2.3 Conditional Dependencies

DEFINITION 9 A Conditional Sequential Dependen@@SD) is a
pairp = (X —, Y,T.), whereX —, Y, referred to as the

embeddedSD, andT’. is a “range pattern tableau” which defines

over which rows ofR the dependency applies. Each patterre
T, specifies a range of values of that identify a subset oR
(subsequence oK ). The CSD states that, for eath € T, the

to satisfy theprefix propertyif the time to computg on all prefixes

of a sequence is no more than a constant greater than the time to
compute it on the sequence itself. Hence the prefix property is a
property of thealgorithm computingf, rather thanf itself. For-
mally, we are given some time boup@\) and we need to assume
that the property can be computed onldllprefixes of a sequence

of lengthN in timeg(NN), in total.

DEFINITION 12 An aggregate functioffi is said to satisfy theon-
tainment propertyf for any sequence and subsequengeappear-
ing in consecutivepositions ofy, f(1) < f(o).

embedded SD independently holds over the subset of the relation

(subsequence aHN ) identified byt

Let [T [ X], Tr(;)[X]] be the interval represented by a tableau

patternt,.; again, we letr be the permutation of rows iR sorted
on X. We define theconfidenceof ¢, as the confidence of its in-
terval w.r.t. the embedded SD, tkapportof ¢,- as the number of
records contained in its interval, i.g.,— i + 1, and theposition

First we show that our framework can be used to speed up inter-
val generation with any confidence measure whose aggregate func-
tion f obeys both the prefix property and the containment property.
Our emphasis will be on developing scalable algorithms (i.e., run-
ning in time NpolylogN). We then illustrate the framework using
the confidence measure from Definition 2, followed by a discussion
of other applicable metrics.



3.1 Generating Candidate Intervals point. Break the intervals into groups according to their lengths:

Only intervals satisfying the supplied confidence threshold are those with lengths ifil, 2), those with lengths ifi2, 4), those with
considered as tableau candidates. Given a choice between anyengths in[4,8), etc. There are obviouslyg NV groups. Within a
two candidates, where one is contained in the other, choosing thedroup, our intervals have length for varying ’s; their left end-
smaller one may unnecessarily increase the size of the tableauPOints are multiples of/,. We now change their left endpoints as
Hence, for eachi, we want maxj > i (if any) such that the po-  follows. For intervals with lengths if4, 2A4), now make the left
sition interval[i, j] has confidence at leaét(in the remainder of ~ €ndpoints multiples 0§ A < 4¢ (rather thanb¢y,), shrinking the
this section, we will refer to position intervals as intervals unless 9ap between consecutive left endpoints and enlarging the number
otherwise noted). There are at mastsuch intervals as there is at ~ Of intervals by less than a factor of 2. However, note the follow-
most one with each given left endpoint. (One could go further and ing important fact: all the intervals with lengths [, 2A4) start at

remove all intervals contained in others.) 0,0A,20A,30A,.... By the prefix property, it suffices to include in

A naive way to find candidate intervals would be to compute the the running time only the length of the longest interval with a given
confidence of allV (N + 1)/2 possible intervals betwedrandN. starting point. Hence we can process all the intervals with lengths
Using the prefix property this can be improved by a factoNoby in[A,2A)intimeg(N)/N multiplied byO(N/(5A))(2A), which
computing confidence over the intervéls. N1, [2..N], ..., [N — is g(IV)/N timesO(N/4). Since there are onlg N such groups

1..N] and using intermediate results. Unfortunately, this is still (@nd notlog, , 5 V', as before), the total time to process all intervals
too expensive for large data sets if computing the confidence on anWill be g(N)/N timesO((N1g N)/4). Hence, for LIS computa-
interval of length? requiresQ(¢) time, as it will requireQ(N?) tion, for example, for whicly(N)/N is O(log N), the overall time
time to find all maximal intervals. How can we find these intervals Will be O((N'1g” N)/4).

without testing all(z, ) pairs? The trick, at the price of “cheat-

ing” on the confidence (as described below), is to test only a proper CLAIM 13 LetZ be the set of intervals in an optimal solution, each
subset of the pairs, but enough so that, for any intefvehosen having confidence at leaét and.J be the set of intervals consid-
by an adversary (i.e., any interval which could appear in an opti- €red by our algorithm. For eadhe Z, there exists d € J with

mal tableau), our set of candidate intervals contains dnghich confidence> (%g) ¢ containingl .

containsI and whose length is only slightly larger, specifically,

|J] < (1+ €)|I|. Any aggregate functiorf satisfying the con- PROOF How small ad must we use such that for any interval
tainment property will satisfyf(J) > f(I), and hence its confi- I = [a,b] C [0, N] of length atleast 1, one of our intervals contains
dencef(J)/|J| will be at leastf(I)/|J| > f(I)/[(1 + €)|I|] = I and has length at most+ € times as large? Choogesmallest

(f(I)/11])/(1 + €), and hence at leadt/(1 + €) times as large such tha¥, — ¢, > b—a,i.e. l, > (b—a)/(1 —4). Thenone
asI's. Thus, by “cheating” on confidence (but only by the small of our intervals starts at or no more thard¢;, to the left ofa, and
factor1/(1 + €)), we can ensure that every adversary interval is ends at or to the right of. That interval containg, clearly. By
(barely) covered by some candidate interval. minimality of h, £,_1 < (b—a)/(1 — §), and therefore the length

We give an approximation algorithm for efficiently generating (14 6)" of our interval is at mostl + §) /(1 — §) timesI’s length,
candidate intervals. The algorithm takes a reat 0 and builds proving Claim 13. [

a set ofreal intervals in[0, N], with the following property. For Claim 13 implies that it suffices to choosesmall enough that
any subinterval of [0, N] of length at least 1, among the intervals (1 +6)/(1 —6) < 1+¢,i.e.,d <e¢/(2+¢).

generated by the algorithm is an intervAlwhich contains/ and (For brevity, we have omitted some implementation details on
whose length is at mogt+ ¢ times as largé. converting the real intervals into sets of contiguous integers.)

Now we generate the intervals. Let us choose a small positive
whose value will be determined later. For each length of the form 3.2 Tableau Assembly

Ly, = (146" forh = 0,1,2,..., until (1 4+ )" first equals or Given a set of intervals ifd, V] satisfying the confidence thresh-
exceedsV, build a family of intervals each of length,, with left old, each with integral endpoints and no two with the same left
endpoints starting &, 645, 260, 3645, ..., in total, aboutV /(645 ) endpoint, we can assemble a tabl&auwith support at least by
intervals. selecting enough intervals to cover the desired number of points;

How much time will it take to compute the confidence of each in particular, we wish to choose the minimal number of intervals
such interval? Let us just compute the sum of the lengths of the needed. Each selected (position) interféalj] then determines
intervals, and multiply at the end by(N)/N. For each of the the tableau patterf,;)[X], t.(;[X]], i.e., the position interval

log, , s N valuesh, there areV/(04;,) intervals, each of lengtky,. mapped back to a range of-values. We first show that, unlike
Hence their sum of lengths i§¥/4. It follows that the sum of their the more general ARTIAL SET COVER problem, our problem is
lengths is the number of’s, i.e., log, s N, times N/6. Since in P, by exploiting the fact that we have intervals rather than ar-
log, 5 N is approximately(lg N)/é for small §, the product is bitrary sets. We give & (N?)-time dynamic programming algo-
(Nlog N)/8%. rithm to find a minimal (partial) cover. The algorithm takes as in-

However, we can do better. To date we have used only the con-put a set7 of intervals of the formi..j] = {i,i + 1,..., 5}, for
tainment property; now we use the prefix property. We modify somel < 4,5 < N, and assumes they are sorted on their left
the intervals’ design so that many will have the same left end- endpoints. Via dynamic programming, the algorithm computes, for
each0 < k,¢ < N, the valueT(k,¢) which equals the mini-

The perceptive reader may have noted a discrepancy between thénum number of the given intervals necessary to cover at least
sizej — i + 1 of a position intervali, j] and thelength j — ¢ points among{1, 2, ..., £} (or oo if it is not possible to do so); the
of the real intervalfi, j]. Since it is more natural to work with  final answer isT'([$N1],N). T(0,0) = 0 andT'(k,0) = oo
real intervals, we just “equate” the s@t,i + 1,..., j} with the forall k > 0. After T(k,¢') has been computed for all < ¢

real intervalli — 0.5,7 + 0.5]. The length of any union of such S04 ailk = 0.1.2. .. N the algorithm compute®(k, ¢) for all
real intervals equals the size of the corresponding union of sets Ofk: —0.1.2 ’]\} 17Jsir71g Lemma 14 ’

integers. This allows us to continue working with real intervals
with impunity.




LEMMA 14 If there is no input interval containindg, then CLAIM 16 The greedy algorithm gives a constant performance ra-
T(k,0) = T(k,¢ — 1). Otherwise, among all intervals contain-  tio. (See the Appendix for a proof.)
ing ¢, choose the one whose left endpoint is smallest; denote its left

endpoint by — z + 1. Then An important property of our framework is that the size of a gen-
erated tableau can be no larger than the tableau generated when
T'(k,0) = min{T(k,l —1),1+ T(k — z,{ — 2)}. there is no cheating on confidence in the candidate interval phase,

given the same confidence threshold. This is easy to see because
PROOF As the first statement is obvious, we move on to the cheating on confidence can only yield intervals subsuming optimal
second. The optimal way to cover at leastf the pointsl, 2, ..., ¢ intervals, and with better choices available an optimal (partial) set
either covers the point or it does not. If it does not, its costis  cover will be at most as large.
T(k,¢ — 1). If it does, it contains some interval which contains . .
¢. Without loss of generality it contains, among those intervals 3.3 Examples of Confidence Metrics

containing’, the one whose left endpoint is as small as possible.  First, we show that our tableau generation framework is compat-

Suppose that that interval has left endpdint z + 1 and therefore  ible with our definition of confidence (Definition 2). In the special

covers thez points{ — z + 1,£ — z + 2,...,£. ThenT'(k,{) = case of “simple” CSDs (recall Section 2.2.1), we need to compute

T(k—z{—2z)+1. O the length of a LIS in a given interval in order to compute its con-
Lemma 14 suggests an ea8yN?)-time algorithm for comput- fidence. Many implementations of longest increasing subsequence

ing all theT'(k, £) values. Since the quadratic complexity of the  incrementally maintain LIS on increasing prefixestriN log N
dynamic programming algorithm makes it infeasible for large data time; hence, LIS satisfies the prefix property. As for the contain-
sets, we consider an approximation to find a nearly minimal size ment property, clearly if one interval is contained in another, then
using a greedy algorithm forARTIAL SET COVER (see [18]). We any subsequence of the smaller interval must be contained in the
show that, for the special case in which the sets are intervals, the al-larger. Therefore, for simple CSDs, our framework is able to find
gorithm can be implemented in linear time and provides a constant candidates itQ((N log® N)/6) time.

performance ratio. While there is work on simultaneously computing LIS’s of mul-
- tiple (overlapping) windows of a sequence [2, 6], none of this work
—_ . —e breaks the quadratic complexity barrier. Recent work on comput-
—

. - ing the approximate size of a longest increasing subsequence on
: streams saves space but not time [14]. Hence, we are not aware of
2 4 6 8 10 12 14 16 18 20 22 24 a faster way to compute LIS that can help in our context.

@) The dynamic program from Section 2.2 provides values at every

*——e prefix en route to computing the confidence of the entire interval,

ot thus satisfying the prefix property. The containment property is

| : also satisfied because the same valid gap sequence converted from

2 4 6 8 10 12 14 16 18 20 22 24 an interval would also be available to any interval containing it; it

(b) would require no more deletions than the difference in the lengths

to transform the larger interval into the same valid gap sequence.

Figure 3: Adjusting marginal cardinalities. So for general CSDs, our framework is able to find candidates in

O(G,GfG (N log? N)/$) time. We know of no existing work that

coul heip improve the time complexity for general CSDs.

If one prefers to define confidence differently, such as based on
the average number of inversions for SDs of the fofm-( ) Y,
or based on the fraction of gaps witHii , G] for SDs of the form
—G1,a2] Y With G2 < oo, then our framework also applies.

. - . X
PROOF. A setof intervals is given sorted on left (and also right) '\ jeave it as an exercise to verify that the former can be computed
endpoints by the candidate generation phase. We separately maing, time O(N log? N/4) and the latter irO(N log N/8) using our
tain these intervals ordered by set cardinality in an array¥ Tof framework

linked lists, where the array index corresponds to cardinality. At

each step, we iterate down (initially frod¥) to the largest in-

dex containing a non-empty linked list, to find an interval with 4. EXPERIMENTS

the largest “marginal” cardinality (which only counts points that In this section, we present an experimental evaluation of our
have not already been covered by an interval that has already beerproposed tableau discovery framework for conditional sequen-
added to the tableau), and adjust the marginal cardinalities of anytial dependencies, which comprises candidate interval generation
overlapping intervals. Consider the intervals shown in Figure 3 (a) (CANDGEN) and tableau assembly ABASSMB). First, to justify

and suppose that the longest one has just been added to the tableathe motivation and utility of CSDs, we present sample tableaux
As seen in Figure 3 (b), six intervals need to have their marginal which unveil interesting data semantics and potential data quality
cardinalities updated. Further, of these six intervals, which are now problems. Second, for bothABIDGEN and TABASSMB, we in-
shorter, four are now contained in other ones and may be deleted.vestigate the trade-off between tableau quality and performance of
In general, each iteration of the algorithm deletes all but one inter- resorting to approximation. Finally, we demonstrate the efficiency
val intersecting the left endpoint of the currently longest interval; and scalability of the proposed tableau generation framework.
likewise for the right endpoint. Since there are at mysterations

and we adjust at most two intervals per iteration, the time spent 4.1~ Data Sources and Platform

adjusting the nondeleted intervalsi&x O(1) = O(N). The to- Experiments were performed on a 2.7 GHz dual-core Pentium
tal time spent deleting intervals, over the entire execution of the PC with 4 GB of RAM. The performance numbers presented are
algorithm, isO(N), since there are at moat intervals. based on real time as reported by the Unixre command. Ex-

CLAIM 15 The greedy partial set cover algorithm can be imple-
mented to run in tim&©(N).



periments were run 5 times and the average time was reported. All EXACTI' NTVL Sup- APPRXI' NTVL Sup-
algorithms were implemented in C++. Tableau port . Tableau port
We used the following four data sources for our experiments. o Gap:[0.1] o
- s Tableau size: 2 Tableau size: 2
Table 1 displays a summary of data characteristics. 1945.11.06 - 1969.12.1% 6819 || 1944.02.07 - 1981.01.2§ 7536

e DOWJONES consists of daily closing figures of the 1980.12.09 - 1990.12.1p 3636 || 1981.02.05 - 2006.02.04 6999

Dow Jones Industrial Averade and has the schema _ Gap:[0,2] .
(DATE, AVGCLOSING).  The closing figures have been Tableau size: 2 Tableau size: 2

) . ' X : 1945.11.01 - 1969.12.15 6824 || 1944.02.07 - 1981.01.29 7542
smoothed using a 2-week moving window average. 1980.10.22 - 1991.01.2% 3681 || 1981.02.05- 2006.07.3i 7176

e WEATHERDATES consists of the days on which daily tem- Gap:[0,5]
peratures were recorded at Gabreski AirpamtLong Island, 1045 102%b|61a9u63i2192:12 6627 || 1043 07E%blez%%§%% 21 15588
NY, from 1943.07.18 - 2008.10.01 bglobal Summary of | 1945.10.29- 1995_05.1$ ge27 T
the Day. Gap.[2,10]

o NETWORKFEEDSconsists of data feeds of probed measure- Tableau size: 20 Tableau size: 20
ments from an ISP and the associated timestamps when they 1995.06.23 - 1995.06.28 3 1995.06.23 - 1995.06.28 3
were received. 1983.02.21 - 1983.02.23 2 1983.02.21 - 1983.02.23 2

1985.09.27 - 1985.10.01 2 1985.09.27 - 1985.10.01 2

e TRAFFICPOLLS contains the timestamps of traffic volume 1988.04.05 - 1988.04.08 2 1988.04.05 - 1988.04.08 2
measurements in an ISP that were configured to be taken ev- _ Gap:[6,10] _
ery 5 minutes. Tableau size: 1 Tableau size: 1

1991.01.01 - 1991.01.0$ 2 1991.01.01 - 1991.01.0$ 2
Gap:[10,20]

[ DATASET [ #TUPLES | DEPENDENCY | Tableau size: 6 Tableau size: 6
DOWJONES 27399 DATE — (0, 00) AVGCLOSING 1951.06.01 - 1951.06.12 2 1951.06.01 - 1951.06.12 2
NETWORKFEEDS | 916961 STARTTIME — (0,00) ENDTIME 1980.11.23 - 1980.12.09 2 1980.11.23 - 1980.12.09 2
WEATHERDATES 15716 ARRIVALORDER— [o,1) DATE 1990.12.20 - 1991.01.01 2 1990.12.20 - 1991.01.01 2
TRAFFICPOLLS 91522 | ARRIVALORDER—[270,330] TIME 1991.01.11-1991.01.28 2 1991.01.11-1991.01.28 2

1991.02.18 - 1991.03.01 2 1991.02.18 - 1991.03.01 2

Table 1: Summary of Data Sources 1994.07.15 - 1994.07.27 2 1994.07.15 - 1994.07.27 2

Gap]20, o)
: : Tableau size: 9 Tableau size: 9

) In the experiments that follow, we use the confidence threshold 1945.11.29 - 1951.04.30 2 1945.11.29 - 1951.04.30 2
¢ = 0.995, support thres_hol@ = 0.5 (note that the tableau assem- 1969.12.15 - 1980.10.29 2 1969.12.15 - 1980.10.29 2
bly algorithm may terminate before reaching the required support | 1991.10.02 - 1991.10.30 2 1991.10.02 - 1991.10.30 2
if it runs out of candidate patterns), and approximation tolerance | 1993.10.19 - 1993.11.16 2 1993.10.19 - 1993.11.16 2
parametep = 0.05, unless mentioned otherwise. 1994.02.03 - 1994.03.01 2 1994.02.03 - 1994.03.01 2
1995.05.10 - 1995.06.22 2 1995.05.10 - 1995.06.22 2

4.2 Sample Tableaux

We first show that CSDs with different gap values can capture in- 1able 2: Tableau sizes for various gap values on WATHER -
teresting semantics. We also show that our approximate framework PATES
discovers tableaux that are close to optimal.

Table 2 compares tableaux generated by exhaustive candidate . . .
generation (EACTINTVL) and our approximate candidate gener- gap range oft, 1.0] helps identify a.tlme-frame frqn]l991.01.01
ation (APPRXINTVL), for various gaps with greedyABASSMB t01991.01.08 which hass days of missing data. (since the support

on the WEATHERDATES dataset. The support of each pattern is :jsa?é)onslyr;.rl]aerlbe%n;Bngrett)or'zéggd tehr'eoceig(cj)?(r)r:rc])tcjg;grde:; nltolsnsthe
also shown, indicating the number of data values contained in the - Similarly[10, 20] retu per N

L ten to 20 days at a time. In order to capture regions of long gaps, a
corresponding interval. Gap ranges[0f1] (at least one temper- ! . 4
ature r%adinggper day) ar{d,pQ] (org1e r[ead]in(g every two daysg re. 9daprange 0f20, co) was used. The first two patterns identify the

sult in tableaux with two rows, indicating that there was at least two time periods of most significant l0s545to 1951 and1969 to

one major break in the data recording. Note that the exact and .1980’ when, according to the Wikipedia page for this airport given

approximate tableaux “latch onto” different endpoints. This was in Footnote 3, it was closed to the public.

due tod being set to 0.05, which meant that a confidence thresh- o Teé?:ltz d3 tp{;zsegts égﬁ:er?qptle;abliiggsf.eﬁf'zﬁszl‘;s;nl—]h?es or
old of 0.995 was used for the exact tableau whereas effectively xp ! gap WO su V€ p ! Inutes,

- _ : 300 seconds. Due to several factors from traffic delays to clock syn-
g,ngeg 5\(,\% er? ﬁi)ééé&;—_obog)l E)rot.r? eW? ursa?]d gr;}h ethaepgroxrlér:(ite chronization, this exact periodicity will hardly ever be met. There-
maté tableau was th;séme as the %cht or?e B P fore, we allow for+30 seconds and use a gap 20 seconds to

Next, we identify time ranges over different scales over which no 330 seconds. The gap rang70, 330] is satisfied by much of the

temperature data was recorded. A gap raage0] was used to find data and gives a tableau size of two. Next, a gap range, 50}
periods when the recording was discontinued for about ten days at\Vas used to identify regions of exiraneous polls. There are several

a time, possibly due to malfunctioning equipment. A comparison |n§]t§1rt1ces ofrvenrly f)rr]ioﬁ t'mﬁ dlﬁirerAces b:enrq/eer(;ﬁ%olls, ?Alljt these
of the tableau row start and end dates, as well as their associate end to occur only briefly (one poll). A gap range[850, co) was

supports, reveal that the exact and approximate tableaux were quite he.n used to identify regions with heavny Qelayed or missing data,
similar, and both indicate periods when no data was recorded. A which, when correlated with other information collected by the ISP,

helped solve problems with the data collection mechanism.

Table 4 presents sample tableaux for different gap ranges on the
DowJoNEs data set. Patterns fdf, co) show time ranges over
which Dow Jones stock market exhibited an increasing trend with

2www.economagic.com/sp.htm
Shttp://en.wikipedia.org/wiki/Franci$ . GabreskiAirport
“www.ncdc.noaa.gov/cgi-bin/res40.pl?page=climvisgsod.html



AP_IF_’RGTNTVL s . mate algorithms for the DwJoONES data.
ableau uppor For the gap rangf, co), Figure 4(a) compares the tableau sizes

Gap|270, 3391 obtained from candidate intervals generated baETINTVL and
Tableau size: 2

2008-10-09,05:17:06 - 2009-03-06,19:10:1739925 APPRX N'[VL _(using differentd’s), as a function of confidence
2008-04-22,23:15:38 - 2008-05-25,21:33:20 8683 thresholdé, using supporé = 0.5. (Exact tableau assembly was
Gapl0, 150] used on the candidates from both methods.) The tableau sizes are
Tableau size: 751 quite similar for low values of, and for high values of with
gggggzﬂiégggg gggggzﬂiégg g g low values ofs. For example, aé = 0.8 with § = 0.01, there
2008-05-26,05:05:31 - 2008-05-26,05:05:81 2 was only a difference in size of 12. For the gap raf@é], Fig-
2008-05-26.06-17-43 - 2008-05-26.06:17-47 2 ure 4(d) show§ a greatgr sensﬂwﬁyzjipas there was a much more
Gapi350, 00) pronounced difference in tableau sizegat 0.05, but again for
Tableau size: 4001 0 = 0.01 the difference was relatively small.
2008-09-14,13:18:38 - 2008-09-14,14:59:24 14 In the previous experiments, although a desired confidence
2008-09-17,07:33:51 - 2008-09-17,09:06:06 11 threshold ofé was supplied, the algorithm relaxes this value to as
2008-09-17,01:22:46 - 2008-09-17,02:11:02 7 1-5\ . . .
2008-04-13.03:48:21 - 2008-04-13.05:32:38 6 low as (1T<s) ¢ to guarantee that all optimal candidate intervals
are covered by some interval reported by the approximation algo-
Table 3: Tableaux for TRAFFIC POLLS rithm. Hence, the tableau size is never larger, and may be smaller,

than that of an optimal solution. However, if one does not wish
to allow such “cheating on confidence”, then an alternative is as

follows. Instead, we can “inflate” the desired confidence frlom

The first few patterns for galf, 5] are similar to those dfo, co). . 145 - ) .
This implies that successive increases in stock market prices, par-to i (1’ (ﬂ) C) so thatthe relaxed confidence is now no less

ticularly over long periods of time, are usually by small amounts thané (but no greater than one), and thus not “cheat”. Of course,
which mostly lie within the small range @, 5]. this may now result in larger tableaux than the optimal. As usual,

Gaps|[50, 100] and [100, co) capture regions where the stock the effect of this will depend of: when/ is small,é will only be
market average closing price increased rapidly. The resulting inflated by a small amount and thus the tableau sizes will be closer

tableau suggests that sharp increases in stock prices were mosthjo optimal. The trade-off is that the algorithm takes longer with

very high confidence d$.995.

observed during the late nineties and early years oftHé cen- smaller values of but, as we shall show in the next subsection
tury, probably due to the “dotcom boom” and “housing bubble”. when we investigate performance, even with relatively small val-
ues of§ there is a significant improvement over running the exact
APPRXINTVL Sup- APPRXINTVL Sup- algorithm.
Tableau port Tableau port Figures 4(b) and 4(e) compare the results of
T SaDiOV_OO) ot : blGapil(?B] 286 e OPTIM AL (EXACTINTVL with unmodifiedé),
apleau size: ableau size: P ~
1949.06.07 - 1950.06.22 261 || 1949.06.07 - 1950.06.22 261 * apprz (APPRXINTVL with inflatede)
1904.05.17 - 1905.04.26 237 1904.05.17 - 1905.04.26 237 e optimal (EXACTINTVL with inflated¢)
1921.08.15-1922.06.18 206 || 1921.08.15 - 1922.06.13 206 with variousd-values. Note that the tableau size@PTIM AL

1953.09.18 - 1954.06.08 179 1953.09.18 - 1954.06.08 179
1942.07.28 - 1943.04.12 176 1942.07.28 - 1943.04.12 176
1925.03.24 - 1925.11.16 166 1925.03.24 - 1925.11.16 166

lower-bounds that ofpprz, which lower-bounds that afptimal.
Figure 4(b) assumes gaps[6f co), whereas Figure 4(e) uses gaps

1915.05.19 - 1916.01.07 162 1915.05.19 - 1916.01.07 162 of [0,5] In all cases, the tableau sizes foPPRXINTVL (Wlth
1898.09.30 - 1899.05.05 149 1898.09.30 - 1899.05.05 149 inflated ¢) are lower-bounded b PTIM AL (with unmodified
1958.04.11 - 1958.10.24 138 1935.03.14 - 1935.09.24 135 ¢). This implies that, in order to obtain an “exact” tableau (using
1935.03.14 -1935.09.24 135 || 1945.07.26 - 1946.02.18 134 EXACTINTVL) for a givené, one might as well assume an inflated
Gap:[50,100] Gap{100, co) confidence of1£2 (not exceeding) and obtain the same results
Tableau size: 45 Tableau size: 4 10

using the much faster ®RXNTVL CANDGEN. Similar behavior
was observed for othérvalues. For highe, the absolute value of
the tableau sizes increase, as expected.

Figures 4(c) and 4(f) show that the greedy set cover algorithm
(GREEDYASMBL) gives similar sized tableaux compared to the op-
timum that dynamic programming (&CTASMBL) obtains—the
curves are almost indistinguishable—at a variety of support thresh-
olds with N = 10000. Figure 4(c) assumes gaps [6f o) and
¢ = 0.63, whereas Figure 4(f) uses gaps[06f5] andé = 0.7.
Both the exact and approximata A ssMB algorithms ran on the
Table 4: Tableaux for DOWJONES same set of input candidate intervals, which were generatedby A
PRXINTVL. Similar figures were obtained for other values:@ind
other data sets.

2000.10.27 - 2000.11.0
1998.10.14 - 1998.10.2
1999.03.10 - 1999.03.1
2001.04.24 - 2001.05.0
2001.11.08 - 2001.11.1
2002.03.01 - 2002.03.0
2003.03.19 - 2003.03.2
1999.04.13 - 1999.04.1
1999.04.20 - 1999.04.2
1999.07.08 - 1999.07.1

2000.03.20 - 2000.03.2
2001.04.17 - 2001.04.1
2002.10.18 - 2002.10.2
2002.10.22 - 2002.10.2

NN NN

ArBRAPMOOOO N

4.3 Quality .
In this section, we reinforce our claims of good tableau qual- 4.4 Scalab”'ty
ity by comparing XACTINTVL and APPRXNTVL tableaux over a The previous two subsections highlight the fact that tableaux

wide variety ofé, § andd values. Since it is impractical to present  generated by APRXINTVL are close to that of EACTINTVL. In
actual tableaux for all the aforementioned cases, we use tableauthis subsection, we show thaPRRXINTVL can generate accurate
size as a substitute for tableau quality and compare tableau sizegableaux while still being faster thanxBcTINTVL by orders of
instead. Figure 4 demonstrates the quality results of our approxi- magnitude. For the sake of efficiency on large inputs, all tableau
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Figure 4: Tableau sizes obtained for ®WJONES using: (a) EXACTINTVL vs APPRXINTVL at different ¢ for [0, oco) (b) at different inflated é for
[0,00) (c) EXaACTASMBL vs GREEDYASMBL at different § for [0, 00) (¢ = 0.63) (d) EXACTINTVL vs APPRXINTVL at different ¢ for [0, 5] (e) at
different inflated ¢ for [0,5] (f) E XACTASMBL vs GREEDYASMBL at different § for [0, 5] (¢ = 0.7)

generation methods in this section usrREEDYA SMBL for assem- apply conditionallyon the data to be able to capture the semantics
bly; results are reported as combined running time afNGGEN of, and errors commonly found in, real data. Conditional Func-
and TABAssMB phases. tional Dependencies (CFDs) were proposed in [4]. Conditional In-

Figure 5 compares the performance (FERXNTVL (using var- clusion Dependencies were proposed in [5]. In a similar vein, we

ious §-values) with EXACTINTVL for different data set sizes. For  have proposed Conditional Sequential Dependencies to express the
the gap rangg0, co), Figure 5(a) and Figure 5(b) present results sequential semantics commonly found in ordered data and to detect
using DowJoNES and NETWORKFEEDS data, respectively. A potential data quality problems.

PRXINTVL scales more gracefully, especially in Figure 5(b) where  The problem ofdiscoveringdependencies in data was first stud-
we had to halt the exhaustive algorithm because it ran too long. Fig- ied in [17, 19] where the goal was to find antecedent and conse-
ure 5(e) and Figure 5(f) show results usinge¥fHERDATES with guent attributes from among different subsets of attributes in the
gaps in[4, 6] and TRAFFICPOLLS with gaps in[270, 330], respec- schema satisfying an FD. The problem of CFD tableau discovery,
tively. As before, the RPRXNTVL algorithm results in substantial ~ given an embedded FD, was introduced in [13]. The problem of
improvement over EACTINTVL, particularly for large number of discovering CFDs (FDs as well as tableaux) was studied in [7, 9]
inputs as can be seen in Figure 5(f). While the performance is no- but used different criteria (e.g., no global support threshold)r Ou
ticeably better with larged-values, in all cases the performance tableau discovery framework is most closely related to that pro-
of APPRXINTVL is much faster (orders of magnitude) than that of posed in [13]. However, [13] deals with CFDs, which do not have

EXACTINTVL, even with very low values af (say,0.01). any sequential semantics. Moreover, thage tableauyproposed
Figure 5(c) and 5(d) separate out the performance comparison ofin [13] specify that the FD independently holds on each subset of
CANDGEN and TABASSMB phases, using DwJoNES data. Fig- tuples that agree on the antecedent attributes such that the value of
ure 5(c) compares the running times o PRXINTVL with EXACT- the ordered attribute is within the range. In this paper, a tableau
INTVL and 5(d) compares ®EEDYASMBL with EXACTASMBL. pattern denotes that the underlying SD holds in the entire interval.
In Figure 5(d), the curve for @EEDYASMBL is indistinguishable Thus, while our definitions of confidence and tableau “goodness”
from the x-axis. are analogous to those of [13], it is not possible to express SDs

using FDs (with or without range tableaux), and our pattern gener-
ation and tableau discovery algorithms are novel and non-trivial.
5. RELATED WORK Constraints pertaining to ordering have also been considered in

Since database relations are abstracted as (multi)sets, classicd’® temporal database literature (e.g., [15]) but focus on satisfiabil-
integrity constraints do not directly apply to ordered data. One of 1Y @nd implication problems, which are orthogonal to our work.
the few proposed constraints to do so is the order dependency (OD)Cl0sest to our work from this literature is [24] which, given a de-
proposed in [11] and the related notionsafrt sets[12], approxi- pendencyX — Y, discovers operators ifi<,=, >} (approxi-
mate versions of which were studied in [8]. This paper is the first Mately) satisfying the dependency over the entire data set (using
to propose Sequential Dependencies, which generalize Order De-2 dlff_erent confidence metr_|c); condltl_onlng and tableaux_were not
pendencies and express a wider range of practical order semanticsconsidered. Other sequential constraints have been studied for data
and to study their approximate and conditional variants. streams such as PACs [20], which monitor properties such as poll

Recently, traditional integrity constraints have been adapted to time differences are approximately 5 minutes, with high probabil-
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Figure 5: Scalability: (a) DowJONES (¢ = 0.63,5 = 0.5) (b) NETWORK FEEDS (¢ = 0.99, § = 0.5) (c) EXACTINTVL and APPRXINTVL CANDGEN
for DowJONES (d) EXACTASMBL vs GREEDYASMBL TABASsMB for D owJONES (e) WEATHER DATES ([4, 6] gap range,é = 0.9,8 = 0.5) (f)

TRAFFIC POLLS ([270, 330] gap range,é¢ = 0.9, § = 0.5)

ity; and k-constraints [3], which monitor properties such as a SYN 7.

packet must be followed by an ACK withik packets in a TCP

stream. Neither considers conditioning or discovery.

Finally, there is some marginally related work in the area

(1]
(2]

of data mining including sequential association rules [1], which
find frequent subsequences contained in a sequence; frequent[3]
episodes [21], which find partially ordered event subsequences

that occur in a small time window; and correlations between at-

(4]

tributes [22, 25]. The patterns they find are different from SDs and
none of this work attempts to capture the semantics of a large por-

tion of the data via a global support threshold.

6. CONCLUSIONS

Detecting data quality problems and understanding data seman- [7]
tics are challenging in practice. Fortunately, there are some order
semantics implicit in sequential data that can be leveraged. Here [8] J. Dong and R. Hull. Applying approximate order depengetoc
we have initiated the study &equential Dependencieshich are
integrity constraints that define dependencies between two sets of [9] W. Fan, F. Geerts, L.V.S. Lakshmanan, and M. Xiong. Disting
attributes in terms of their co-orderings. We proposed a frame-

work for efficiently discovering tableaux for Conditional (Approx-

(5]
(6]

[20]

imate) Sequential Dependencies that satisfy specified support and[ll]
confidence constraints and are parsimonious; our framework runs

in sub-gquadratic time when the function for computing confidence 1

obeys certain properties. We have illustrated the efficiency and util-

ity of our framework on a variety of real data sets.

[13]

Since the mechanisms generating ordered data often suggest the
underlying order semantics, we have assumed that the underlying
sequential dependency is known. An interesting direction for fu- [14]

ture work is to discover reasonable sequential dependencies from
a relation instance or a sample. We are also interested in studying

(18]

the properties of sets of SDs and CSDs, including axiomatization,
inference and satisfiability. Finally, an aspect of our framework for [16]
tableau discovery that remains to be studied is how to efficiently
maintain tableaux in the presence of updates to the base relation. [17] Y. Huhtala, J. Karkkainen, P. Porkka, and H. Toivoneand: An
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APPENDIX

tm7. But this is clear becausBr > my +mo + -+ + my >
tmy > tmr. O
Here is a simple corollary, whose proof we omit.

COROLLARY 18 For arbitrary nonnegative realsi , hz, ..., he, if
we start withg? = h; for all i, then however the game is played,
by the time the adversary has made at l&ashoves of type 2,
C>Go=3"_ hyif T >t

LEMMA 19 The number of iterations in which the algorithm
chooses an interval which is disjoint from all of opt'sntervals
is at most.

PROOF Let I; be the adversary’sth optimal interval, when
sorted arbitrarily; = 1,...,t. LetY; be the portion ofl; which
is left uncovered by the greedy algorithm at a given time; note that
Y; is an interval. The algorithm is greedy and could have chosen
to add intervall;. Adding I; to the algorithm’s intervals would
have coveredength(Y;) additional length; it follows that the in-
crease in length of the greedily-covered region must be at least
maxi_, length(Y;).

C, initially 0, will denote the coverage of the greedy algorithm.
g:; Will denote thefractionally-weightedlength of Y;. Here we
mean that a portion of; that lies in some number. of the op-
timal intervals; is apportioned equally to those I;'s. Clearly
g: < length(Y;). Note that)_ g; is the length of the uncovered
portion ofU; I;.

When the algorithm chooses an intenl either J N Y; has
length O for allz, or it does not.

If JNY; has length 0O for alf, then noY; will change in length.
The coverageC' must increase by at leastax; length(Y;) >
max; g;. (This is a type-2 move.)

If JNY; has positive length for somis, let§; be the fractionally
oweighted length off N Y;. The coverage increases (at least) in the
regionJ N (U;Y;), whose length i, d;. C increases by at least

>, 0i. Eachg; decreases by exactly. (This is a type-1 move.)

Now let h; be the fractionally weighted length df. Note that
> h; = length(UI;) > L, the target coverage (since the optimal
algorithm is, of course, feasible). The corollary states that after
type-2 iterationsC' > " h; > L, and hence the greedy algorithm
will terminate. [

We are studying the following problem. Given a set of at most
closed real intervals, no one a subset of any other, and alreal
run the greedy RRTIAL SET COVER algorithm until the coverage
is at leastL. (Coverageis the length of the union of all chosen
intervals.)

Consider a set of the fewest input intervals which has coverage
at leastL. Call the intervals in the solutioopt intervals call those
obtained by the greedy algorithgreedy intervals Let ¢ be the
number of opt intervals.

We need to study a game involving an adversary. Given are
t nonnegative realg?, g, ..., g?. DefineGo := >'_, ¢?. Set
gi := g? for all i. In addition, there is a redl’ which is initially 0.
Repeatedly the adversary makes either a type-1 move or a type-
move.

In atype-1 movethe adversary specifiesyafor eachi, 1 < i <
t, with 0 < §; < g;. Eachg; is decreased by; andC is increased
by at least) ;.

In atype-2 movenog; changes, buf’ increases by some amount
§ > max’_; g;. Letd be thecostof this type-2 move.

LEMMA 17 Suppose that alf? = A, 1 < i < t, for some given . .
real A > 0. Then however the game is played, by the time the LEMMA 20 The algorithm chooses at most four intervals that con-

adversary has made at ledsmoves of type 20’ > Go = tA, if tain the left endpoint of an opt intervdl and at most four that
T >4 - contain the right endpoint df,.

PROOF Focus on two different type-2 moves with no type-2 SKETCH. It suffices to prove the lemma for the left endpoinof
moves between them. In the block of moves strictly between the fi- Assume the greedy algorithm chose five intervals containing
two type-2 moves, the adversary makes some number, possibly?- SOrt the five intervals by left endpoint. Use the fact that any se-
zero, of type-1 moves. During that block of type-1 move$,f g: quence of five distinct integers has either an increasing subsequence
decreases from to b, thenC increases by at least— b. of length t.hree ora decreasmg one of length three, and.assume the

After exactlyl type-2 moves to date have been performedZiet forr_ner to infer t_hat_ the aIg_onthm chose_three intervals, in chrono-
denote the sum of the costs of thiype-2 moves to date. Lef be logical order, with increasing left endpoint. But now one sees that
the value ofg; at the time when théth type-2 move is performed. instead of choosing the second one, the algorithm should have cho-
By induction, it is easy to prove that aftetype-2 moves have been ~ S€N the third, since it would have increased coverage mare.

performed,
THEOREM 21 The performance ratio of greedy is at most 9.

SKETCH. Greedy can choose at m@st 2-4 intervals intersecting

t t
C 2 (9—gh)+2 2 Y (g0 —maxg))+Zi = t{A—miax gi)+Zi.
y y JI= 1= .
i=1 i=1 each of OPT'g intervals, and, by Lemma 19, at masnhore. [

(1)
Letm; = maxigﬁ; mi > me > --- > myandZ; > m1 +mo +
---+my. Becausqd > t, Zr > Z; > mi+mao+---+my. Hence,
by equation (1), it suffices to show th&y > tmax!_, g7 =



