
Quantifying Isolation Anomalies

Alan Fekete
School of Information

Technologies
University of Sydney, Australia

fekete@it.usyd.edu.au

Shirley N. Goldrei
Didco Systems

shirley@dynalogics.com.au

Jorge Pérez Asenjo
University of Sydney, Australia

esyorcho@yahoo.es

ABSTRACT
Choosing a weak isolation level such as Read Committed is
understood as a trade-off, where less isolation means that
higher performance is gained but there is an increased pos-
sibility that data integrity will be lost. Previously, one side
of this trade-off has been carefully studied quantitatively –
there are well-known metrics for performance such as trans-
actions per minute, standardized benchmarks that measure
these in a controlled way, and analytic models that can
predict how performance is influenced by system parame-
ters like multiprogramming level. This paper contributes to
quantifying the other aspect of the trade-off. We define a
novel microbenchmark that measures how rapidly integrity
violations are produced at different isolation levels, for a
simple set of transactions. We explore how this rate is im-
pacted by configuration factors such as multiprogramming
level, or contention frequency. For the isolation levels in
multi-version platforms (Snapshot Isolation and the multi-
version variant of Read Committed), we offer a simple prob-
abilistic model that predicts the rate of integrity violations
in our microbenchmark from configuration parameters. We
validate the predictive model against measurements from
the microbenchmark. The model identifies a region of the
configuration space where a surprising inversion occurs: for
these parameter settings, more integrity violations happen
with Snapshot Isolation than with multi-version Read Com-
mitted, even though the latter is considered a lower isolation
level.

1. INTRODUCTION
Concurrency control is an essential component in any DBMS

platform, and many different algorithms are known [24].
The “gold standard” for concurrency control is to provide
serializability, which has the valuable feature that any in-
tegrity constraint will continue to hold in the database, pro-
vided it is true initially, and each transaction is coded to
preserve the constraint when run alone. Unfortunately, the
algorithms implemented in most platforms that ensure se-

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

rializable execution can have detrimental impact on perfor-
mance in cases of contention. These algorithms involve strict
two-phase locking (2PL), with locks, in shared or exclusive
(or other) modes being taken at various granularities cover-
ing data items as well as on indices, and these locks are held
till the end of the transaction.

From the earliest implementations like System R, it was
realized that many developers would desire better through-
put under contention, and so systems offer the option of
running a program at weaker isolation levels, where some of
the locks, needed for serializability, were released early, or
even not taken at all. For example, the Read Committed iso-
lation level is provided by releasing any shared lock once the
transaction has finished reading the item concerned. This
prevents a transaction reading dirty data, but it does allow a
transaction that reads several items to see information from
inconsistent states.

More recently, several prominent platforms including Or-
acle and PostgreSQL have used multiversion concurrency
control algorithms without any locks for reading. The Snap-
shot Isolation (SI) mechanism [3] makes each read see the
version of the data that had committed most recently before
the transaction started (that is, a read skips over versions
that committed after the reading transaction started); any
transaction’s writes are not visible to concurrent transac-
tions. As part of SI, the First Committer Wins rule prevents
lost updates, by forcing a transaction to abort if a concurrent
transaction has already committed, where both transactions
wrote to the same item. In multiversion systems, one can
also provide isolation in which each transaction sees only
committed data, but inconsistent states may be observed.
We call this algorithm RC MV or multiversion Read Com-
mitted1; here each read sees the version that was committed
most recently at the time of the read, by skipping over any
as yet-uncommitted versions. A write will be blocked till
after the commit of the previous version of the item2.

In commercial practice, weaker isolation levels such as
Read Committed are frequently used; most platforms (whether
they are based on locking or multiversion approaches) have
this as the default for concurrency control. It is widely de-
scribed as allowing the application developer to take advan-
tage of domain knowledge which means that their particular
code will work correctly with low isolation; however, there

1Some Oracle documentation and [3] use the term Oracle
Read Consistency for the RC MV algorithm.
2Unlike what happens with SI, under RC MV, a write does
not force the transaction to abort in case a concurrent trans-
action has already committed changes to the same item.

is no set of principles or guidelines to determine whether
this is so for given code. [17] reported examples of deployed
applications using SI which produced non-serializable execu-
tions. Thus in practice, what most developers actually see is
a trade-off between performance and correctness. Running
with strong isolation such as serializability will protect data
integrity but limit throughput under contention; conversely,
weak isolation offers better performance but with the risk
that data might be corrupted by undesirable interleavings
between concurrent activities.

A long-term goal of our research agenda is to allow de-
velopers to make this tradeoff quantitatively : they should
know how much data corruption will be the consequence
of a given improvement in throughput. The field has many
ways to quantify performance; there are benchmarks to mea-
sure it, simulations to study it, even analytical models that
can predict it. This paper proposes to give a number for
the extent to which data corruption occurs. We define a
microbenchmark that provides a single figure-of-merit, cap-
turing the extent to which data integrity is violated in exe-
cutions at various isolation levels. Some previous work [21]
has measured aspects of the trade-off, using the percent-
age of queries that return incorrect answers, rather than the
amount of corruption in the database state.

In Figure 1 we show an example of the use of our mi-
crobenchmark. We have measured the rate of violations of
the integrity constraint at different isolation levels, on a par-
ticular platform, and for a range of configurations which vary
only in the MPL (the number of concurrent clients that are
submitting transactions). We have not shown on the graph
any data from Serializable isolation (based on strict two-
phase locking), because there will never be any violations
in serializable executions3; similarly the particular transac-
tions we use never select rows by a predicate (except for
selection by primary key), nor are rows inserted or deleted
during execution, and so Repeatable Read isolation also can
not cause any violations. We clearly see confirmation of our
expectation that the locking and multiversion forms of Read
Committed produce many more violations than the rather
strong Snapshot Isolation level. Also we observe a trend of
approximately linear increasing violation rate as MPL in-
creases (as a sanity check, we realize that MPL=1 has no
concurrency in the server, and thus no violations, no matter
what concurrency control is used). Note that the number
of transactions run in a given time also increases approx-
imately linearly with MPL, at least for low MPL, so the
number of violations in the data after a given time will in-
crease approximately quadratically with MPL.

The ANSI SQL standard provides for 4 isolation levels
which the application developer can request. These levels
are arranged in a hierarchy, with Serializable at the top,
then Repeatable Read, Read Committed and finally Read
Uncommitted. Each level is “defined” to rule out some par-
ticular anomalous behaviors which the lower levels allow.
The standard does not however mandate particular imple-
mentation approaches, and there are some well-known flaws
in the way the behaviors of each level are specified[3]. If we
assume that the well-known locking-based concurrency con-
trol algorithms are used, then the hierarchy is valid. Each
algorithm holds all the locks of the lower levels, and also

3As a check on our code, we did measure some runs with
2PL for concurrency control; they reported no violations at
all.

0

0.005

0.01

0.015

0.02

0.025

0.03

5 10 15 20 25

MPL

V
io

la
t
io

n
 R

a
t
e

RC

RC_MV

SI

Figure 1: Example chart of measured Violation rate
vs MPL.

some extra locks (or it holds the same locks for longer).
Thus each locking algorithm permits a strict subset of the
interleavings permitted by the locking algorithm at the level
below, and so the higher levels will produce fewer violations
of integrity than the lower levels.

However, as we saw, many platforms implement multiver-
sion algorithms for concurrency control. Snapshot Isolation
is treated as a strong algorithm (in particular, it prevents all
the anomalies described in the ANSI standard as shown by
[3], although it does allow an anomaly called Write-Skew).
It is generally assumed that the multiversion Read Com-
mitted algorithm is weaker than SI, because it does allow
anomalies like Inconsistent Reads and Phantoms. Indeed,
several platforms use SI when an application is declared to
be Serializable, and they use the multiversion form of Read
Committed when the application requests the lower isola-
tion level. Despite this, [3] shows that SI is not strictly less
permissive than RC MV. Consider the interleaving shown
in Eq (1), where rX(A) denotes transaction X reading item
A, cY is the commit of transaction Y, etc.

rX(A)rY (A)rY (B)wY (B)cY rX(B)wX(A)cX (1)

Under SI, the interleaving in Eq (1) is allowed, and when
X reads B, it does not see the value produced by Y; in-
stead, X sees the version of B as it was when X started.
This is non-serializable, an example of Write-Skew[3]. How-
ever, under RC MV, the same interleaving is serializable:
when X reads B, it sees the version which was committed
by B before the read occurred, and the execution is view-
equivalent to running Y then running X. This suggests that
SI may sometimes produce more violations than RC MV; of
course, there are also many interleavings where RC MV is
non-serializable, but SI is serializable. The question is: can
we tune the configuration so that cases like the one in Eq (1)
happen more often than the cases where RC MV produces
a violation while SI does not? If this happens we say there
is an “inversion”; more violations occur at what is regarded
as a higher isolation level, than at a lower isolation level.

The key contributions of this paper are:

• We have designed a measurement approach so we can
determine, for a particular system configuration and
isolation level, a single figure of merit which reports the
rate at which transactions introduce violations of data

integrity into the database. We call our measurement
a microbenchmark to stress that it is not intended as a
realistic application for making purchase decisions, but
rather is to be used to explore how different features
of the configuration impact on the rate of violation.
Section 2 gives details of the data and programs, the
way measurements are done, and the main parameters
of the configuration space.

• For the widely-implemented multiversion concurrency
control algorithms, Section 3 introduces a mathemat-
ical model based on simple probability calculations,
that predicts the rate of violations in our microbench-
mark for any system configuration.

• We compare the predictions with measurements, across
a range of parts of the total configuration space. In
large part the results (presented in Section 4) validate
the usefulness of our model, showing that our formu-
lae mostly predict within 15% of the measured value.
As well, these graphs show many trends that provide
guidance in how different parameters of the configura-
tion impact on the rate of violations.

• Based on the predictive model, we find that there are
some (rare) combinations of configuration parameters,
for which the rate of violation introduction is actu-
ally higher at the strong SI level, than at the weaker
RC MV level. We have used our microbenchmark to
confirm the existence of this inversion, in Section 5.

These contributions combine to begin the quantitative study
of how weak isolation actually damages the integrity of data.
Finally, in Section 6 we give references to the most relevant
prior work, and in Section 7 we conclude the paper and
suggest directions for future work.

2. THE MICROBENCHMARK
The anomaly-measuring microbenchmark we designed fol-

lows closely the format of traditional performance bench-
marks from Debit-Credit [2] onwards. There is a set of ta-
bles, and a set of transaction types that operate on those
tables. The experiment begins by creating the appropriate
tables, and loading data into them, to achieve a particu-
lar database size and a given distribution of contents. A
number of client computations run, each of which repeat-
edly chooses a random transaction to run on the database
engine (the choice is made according to some distribution
on the transaction types, and also on a distribution on the
parameters passed to that transaction type, which is set so
that some part of the tables is a hotspot with high con-
tention between transactions). The clients are run for a
warm-up period, and then the measurement period starts,
lasting a predetermined duration. After the measurement
period has finished, the clients cease sending operations to
the database engine and statistics are collected and written
to a file. The whole run (with warmup then measurement)
is repeated multiple times so that confidence intervals can
be determined for the results. The rest of this section is de-
voted to describing the details of the microbenchmark, and
also we discuss the issues that influenced our design.

We are designing a microbenchmark, whose purpose is to
elucidate the impact of various factors on the rate of isola-
tion anomalies (in contrast to a benchmark whose purpose

BEGIN TRANSACTION

SELECT @oldA = valueA

FROM TableA

WHERE id = @id

delay for sleeptimeAB millisecs

SELECT @oldB = valueB

FROM TableB

WHERE id = @id;

delay for sleeptimeBU millisecs

IF (((@oldA + @oldB) < 0) OR

((@oldA + @oldB) >= 100))

SET @delta = 0;

ELSE

IF ((@oldA + @oldB) < 50)

SET @delta = (50 * @deltaMultiplier);

ELSE

SET @delta = (-50 * @deltaMultiplier);

UPDATE TableA

SET valueA = (valueA + @delta)

WHERE id = @id;

COMMIT TRANSACTION

Figure 2: Pseudocode for changeA

is to evaluate an overall system on performance and cost).
Thus, we do not need to have a database whose contents or
transactions are in any way realistic or meaningful; rather
they should be very simple so that different factors can be
explored separately. The schema of our database has only
two tables. TableA has 3 columns: id (an integer, the pri-
mary key), valueA (an integer) and description (a string,
of variable length up to 100 characters). Similarly we have
TableB(id, valueB, description). An undeclared integrity
constraint is that for any given id, the sum of the corre-
sponding values across the two tables must be between 0
and 99 inclusive. This is enforced as the data is loaded, by
choosing a random sum in the allowed range, choosing a ran-
dom valueA, and then setting valueB so that valueA+valueB
is the particular sum.

There are three transaction types, changeA, changeB and
changeAB. Each transaction type has a parameter which
is an id and controls which row of each table is touched;
there are some other parameters as well, which control the
waits between steps, and there is a parameter deltaMul-
tiplier which is set to zero during the warmup period, so
that data is changed only during the measurement interval.
Each transaction type is given as a stored procedure in the
database engine. The pseudocode for changeA is in Fig-
ure 2. ChangeB is similar except that the update is applied
to TableB.valueB, while in changeAB half the calculated
delta is added to TableA.valueA and half to TableB.valueB.

Note that when run alone, each of these transactions pre-
serves the integrity constraint. If for the given id, the sum
TableA.valueA+TableB.valueB is between 0 and 49, then
delta is 50, so the sum ends up between 50 and 99; while
if the sum is initially between 50 and 99 inclusive, it ends

between 0 and 49 when 50 is subtracted.
After the end of the measurement interval, we scan the

tables and calculate the number of violations, that is, how
many rows there are for which the integrity constraint does
not hold. We also report the number of transactions that
were submitted by all the clients during the measurement
interval, and the number of transactions that committed.
The main metric we are concerned with in this paper is the
rate of introduction of violations, defined as the number of
violations found at the end of the run, divided by the num-
ber of transactions that committed during the measurement
interval. Note that the transactions are coded (with delta-
Multiplier) so that no violations are ever introduced during
warmup, so it makes sense to normalize to the transactions
which committed during measurement interval. We do not
intend to report on overall throughput or other performance
measures; that aspect of the isolation tradeoff is very well
covered by existing benchmarks.

A central design decision for our transactions is that we
do not want to risk removing a violation once it has been
produced. If a violation could be removed (by a transaction
running alone, or by some interleaving of transactions), then
counting the violations at the end would show merely the
difference between rate of production of violations and the
rate of their removal, and it would be hard to understand the
impact of any factors that affect both rates in similar ways.
Thus, once an id has sum of valueA and valueB which falls
outside the permitted range, we want to keep the sum there;
we achieve this by having all transactions leave the data
unchanged once they observe a violation4. We make the
transaction leave data unchanged through an update that
adds zero, rather than by skipping the update, thus keeping
the CPU and I/O demands steady during the execution.

This feature of our transaction design has an unfortu-
nate side-effect on the meaningfulness of our measurements.
Once integrity has failed for a given id, subsequent non-
serializable interleavings of transactions on that same pair
of rows will not introduce another violation. Thus, over
time, as more violations build up in the data, the rate of
new violations reduces; in the limit, once all rows of the
hotspot have a violation, almost no further violations will
be added, and the calculated rate will drop towards zero, as
more and more transactions are committed. Thus we need
to ensure that we calculate our rate in runs that are not too
long. We discuss this point further, below.

The main choices that the client makes, each time a trans-
action is to be submitted, are the transaction type, the id
(determining the row to be examined in each table, and
perhaps altered) and the delays we introduce as simulated
busytimes, one between read(valueA) and read(valueB), the
other between read(valueB) and the updates. These choices
are all randomized according to distributions parameterized
by aspects of the system configuration.

• The transaction type is chosen from a discrete distri-
bution: a fraction fA of transaction instances have
type changeA, and similarly fractions fB are changeB,
and fAB are changeAB. Of course these fractions are
dependent: fA + fB + fAB = 1.

• The id of the affected rows is chosen from a piecewise

4Of course, in principle, a transaction at low isolation may
observe a violation even when there is none, through incon-
sistent reading of the tables.

uniform distribution. Two parameters of the configu-
ration define the distribution on ids. H denotes how
many rows of each table make up the hotspot, and F
denotes the proportion of transaction instances that
operate on the hotspot. Thus, for a fraction F of the
instances, the client chooses an id uniformly within
the hotspot; for the remaining 1-F fraction of transac-
tions, the id is chosen uniformly outside the hotspot.
The hotspot rows are equally spaced out, among the
whole table. In future work, we would like to allow the
hotspot rows to shift over time through the run, but
so far we just make rows 1, 1+H, 1+2H etc as being
in the hotspot.

• Each delay is chosen from a normal5 distribution, whose
mean and standard deviation are configurable.

To perform our measurements, we use a commercial database
platform with stored procedures encoding the three trans-
action types. To submit requests we have a Java implemen-
tation, where a single “client” machine (different from the
database server) hosts concurrent threads that represent the
clients, repeatedly choosing a transaction instance to run,
and invoking one stored procedure with appropriate param-
eters. At the start of a run, the Java program cleans up
the database tables and ensures that the data has no viola-
tions; it then launches the threads, establishes a connection
from each thread to the DBMS server, sets the appropriate
isolation level for the connections; then after a warmup pe-
riod6, the main program sets a shared variable that tells each
thread to begin counting transactions (also to set deltaMul-
tiplier to 1, so that updates will begin to change the data
in the tables). After the measurement period is over, the
threads that represent the clients are stopped, and data is
collected from each (eg how many transactions were sub-
mitted and how many committed; we also learn how many
aborts were due to different causes). As well, the program
runs a query that counts the rows where the sum is outside
the allowed range. All the statistics are written to files after
the measurement period is finished; another file keeps the
configuration information that controlled the execution.

We discuss two aspects of the configuration space that
were quite problematic because of practical considerations.
The first concerns the length of the measurement interval.

As we noted above, the longer the measurement interval,
the more the hotspot will fill with violations, and the more
non-serializable interleavings that occur but are missed in
our metric, because the conflicting transactions detect the
violation and add zero to the values, instead of altering them
again. We call this “under-reporting”; a simple estimate of
its presence is to calculate the number of violations as a
percentage of H, the size of the hotspot, and average this
changing quantity over the duration of the measurement in-
terval. Since the curve of violation count has decreasing
slope, the time average is at least half the final count. Thus

5To be precise, since a delay can not be negative, we trun-
cate the distribution at zero; to keep it symmetric, we also
truncate the distribution so the maximum sleep time is twice
the mean.
6We have a warmup period in order that during measure-
ment, we can be sure that all threads are running evenly;
typically thread start is staggered, so that effective concur-
rency is not as high as expected, for a short period at the
start of a run.

we see that our measurements will generally give a measure
of the rate of introducing violations that is low by about
half the final percentage of violations in the hotspot. In
our experiments we aim to keep the measurement interval
small enough, that this discrepency is below 5% of the true
amount; that is, we try to ensure that the final count of
violations is less than 0.1 of the size of the hotspot. We
reach this goal in all experiments reported in this paper,
except for H=100 with RC MV isolation, where the under-
reporting can be estimated at about 13% of the true value.

However, there is a problem of precision with short mea-
surement intervals. Usually, experimental work measures
the same quantity in many runs, and then one averages the
figure from the different runs to find a more precise deter-
mination of the true quantity; one uses the standard devia-
tion of the measurements to report a 95% confidence interval
about the calculated mean. Readers can then see differences
between quantities as significant if each falls outside the con-
fidence interval surrounding the other. We wish to follow
this approach, but the usual way to obtain more precision
(take many runs) does not work well for our microbench-
mark. The number of violations in a run follows close to
a binomial distribution with small probability7, and this is
approximately a Poisson distribution. The standard devia-
tion of a large sample from this distribution stays constant
as the size of the sample increases; in many of our exper-
iments, we would see a confidence interval whose width is
half the quantity being measured, no matter how many runs
we took! Instead, to get a sufficiently precise estimate, we
want to make each run involve many transactions. The well-
known results for Poisson distribution show that to obtain a
confidence interval of width 0.002 around a value near 0.01
(as most violation rates are, in our part of the configura-
tion space) we would need to have each run involve about
10000 transactions. But so many transactions leads to plac-
ing violations on many rows (about 100), and contradicts
our policy of controlling the amount of under-reporting.

We escape this dilemma by taking many short runs, and
grouping them into a super-run. Rather than calculate the
violation rate in each run, we take the sum of all the anoma-
lies produced in all the runs of the super-run; we divide this
by the total number of transactions committed among all
the runs of the super-run. This ratio is the rate of viola-
tion introduction during the super-run, and constitutes one
measurement of the quantity we seek8. We repeat the whole
super-run a few times, and we report the mean of these
super-run measurements; also we give a 95% confidence in-
terval using the standard deviation among the super-run
measurements. In our experiments, we have done 5 super-
runs; mostly each super-run has 50 runs, and about 25000
transactions; the least transactions per super-run is 12500
for MPL=25. Each point on a graph in this paper is pro-
duced from a total of up to 3 real-time hours of execution.

Another pragmatic concern has led to our choices of values
for the delays between steps, which we implement using the
DBMS wait command to sleep for a duration. The values we

7This is because each transaction has a particular small
probability to introduce a violation.
8Another way to think about this, is to consider a super-
run as an activity in which the measuring is interrupted
periodically, and the anomalies so far are calculated, then
the database is reset to a clean state, and we resume warmup
and then measurement.

used lead to transactions that are unrealistically long (600
ms in most of our experiments, from two sleeps of 300 ms
each). Unfortunately, the database platform on which we are
running is quite inaccurate in delivering the exact sleep time
which is requested. Trials from the database console have
shown that each sleep request falls short of the requested
time, by rounding down to a multiple of a quantum which is
about 15ms. Thus in our experiments, we have a standard
deviation for the requested sleep time of at least 30ms, so
there is reasonable variation among the actual sleep time
(we want to avoid any chance of convoy effects which could
happen if all transactions run for exactly the same time).
This also forces the average sleep time to be significantly
above 60ms, so truncation of the distribution at zero is not
a serious worry. We can thus estimate the true average sleep
time as about 8ms less than the mean we request.

In Figure 3, we show a summary of the configuration pa-
rameters. We also give here the range of values for each
that we used in the experiments we report in Figure 1 and
in Secs 4 and 5; but we note that our microbenchmark design
is not limited to these particular ranges.

Above, we described the microbenchmark as we ran it.
Many OLTP systems run with frequent cross-network com-
munication within a transaction, and the client makes a
separate call (eg through JDBC) for each SQL statement,
rather than a single-shot call of a stored procedure. An ad-
vantage for us of the stored-procedure approach is that it
makes behavior more predictable for the probability model
in Section 3, since each extra message delay adds to the
variability. An advantage of multiple JDBC calls would be
that we could set delays that are more realistic as simu-
lated busy time; we would not need to choose values that
are large compared to the 15ms quantum in the implemen-
tation of the DBMS sleep command. We have done some
measurements with a variant of our microbenchmark, with
a separate JDBC call for each select or update statement,
and interstatement delays smaller by one order of magnitude
than those reported in this paper; we saw the same trends,
including the existence of the inversion.

3. PREDICTIONS FOR MULTIVERSION ISO-
LATION LEVELS

In this section, we show a simple probability model that
predicts the rate of violation introduction for a given config-
uration, in terms of the parameters that define the configu-
ration. Our model deals with both the multiversion isolation
levels: SI and RC MV. We were inspired by Gray et al’s pre-
dictions of deadlock rates [12, 11], and by the Elnikety et
al model predicting performance of replication algorithms
[7]. We illustrate our approach on a particular configura-
tion (where MPL=10 and with SI) from the experiment of
Figure 1, and then we present the general formula for iso-
lation level SI. Afterwards, we deal with multiversion Read
Committed isolation.

Throughout this section we will use greek symbols for
quantities that cannot be set directly in the configuration;
for example δSC will denote the average duration of a trans-
action, that is, the period from its start (at the server) till its
completion (at the server). We break this up at the signifi-
cant events within the transaction, into δSA, δAB , δBU , δUC

as shown in Figure 4; for example, δSA is the average time
from the transaction’s start till the read of valueA, and δBU

Symbol Explanation Range
of values
we used

Iso The isolation level set for
all transaction instances

2PL, SI,
RC MV,
RC

MPL Multiprogramming level;
How many concurrent
client threads are running

1 to 25

F The fraction of transac-
tions that access a row in
the hotspot

0.9

H How many rows in each ta-
ble make up the hotspot

100 to
500

fA Fraction of transaction in-
stances that are changeA

0 to 0.66

fB Fraction of transaction in-
stances that are changeB

0 to 1

fAB Fraction of transaction in-
stances that are changeAB

0 or 0.33

sleeptimeAB Mean of distribution
used to request delay
between read(valueA) and
read(valueB)

100ms to
900ms

sdevsleepAB Standard deviation
of distribution used
to request delay be-
tween read(valueA) and
read(valueB)

30ms to
120ms

sleeptimeBU Mean of distribution used
to request delay between
read(valueB) and updates

100ms to
500ms

sdevsleepBU Standard deviation of
distribution used to re-
quest delay between
read(valueB) and updates

30ms to
90ms

warmup Time to run client threads
before measurement inter-
val

1s

MI Measurement interval 30s or
50s

Figure 3: Configuration Parameters

is the average time from reading valueB till the update(s).
Similarly, δCS will denote the average time from one trans-
action completing at the server, until the next transaction
starts from the same client (this is the message time from
server to client, plus the delay in the client while the result
is recorded and then the next transaction is prepared, plus
the message time back to the server). We will discuss below
how we estimate the value for expressions that involve these
indirect quantities, and which appear in our final formulae.

3.1 Isolation level = SI
When we consider the SI isolation level, we first think

about an arbitrary pair of transaction instances X and Y,
and we examine the way Y impacts on the outcome for X.
We can give a prediction for the probability that X will
produce a violation in the database, as the product of three
quantities.

(i) The number of possible choices for Y; this is the number

Complete
StartX readX(valueA) readX(valueB)

UpdatesX CompleteX

!CS !SA !AB !BU !UC

Previous

transaction in

same thread

!CS is the round-trip

communication server->

client -> server

sleepTimeAB sleepTimeBU

!SC

Figure 4: Diagram of the times between events of a
transaction

of transactions on other threads during the measure-
ment interval, in our case there are 9 other threads,
and each thread has one transaction at intervals of
δCS + δSA + δAB + δBU + δUC = δCS + δSC . Overall
there will be 9 ∗MI/(δCS + δSC) choices of Y.

(ii) The probability that X and Y collide (that is, that
they act on the same row). This is approximately
(0.9)2/500 = 0.00162, since a collision occurs when
both X and Y choose within the hotspot (each chooses
the hotspot with probability 0.9), and they choose the
same one out of 500 possible rows in the hotspot. We
neglect here the much smaller chance of collision on a
row outside the hotspot.

(iii) Now, when X and Y have a collision, we look at the
possible outcomes for X, classified according to the
transaction types for X and Y; each outcome may also
depend on the timing of the completion of Y, com-
pared against the events of X. The analysis is given
in the Table of Figure 5. We refer to the condition
during(Y,X) which means that commit(Y) occurs be-
tween start(X) and completion(X). Lines 1, 3, and 5-9
of the table in Figure 5 derive from the fact that when
two concurrent transactions write to the same row, the
later one aborts (the ”First-Committer-Wins” rule of
SI). However, when changeA and changeB are concur-
rent, and collision occurs, we have a non-serializable
write-skew [3]; furthermore, in this case, each will see
the same state of the rows concerned, and so each will
choose the same delta. If before these two transac-
tions, the sum of TableA.valueA and TableB.valueB
for this row is between 0 and 49, each transaction will
add 50 to its column, and thus the sum will increase by
100 (falling outside the permitted range); similarly if
the sum each sees is between 50 and 99, the effect will
be to decrease each column by 50, and the sum will
fall by 100, so it becomes below 0. Thus when a colli-
sion occurs between concurrent changeA and changeB,
the one to commit later will inevitably create a viola-
tion. This is illustrated in Figure 6. Thus we have
all together a chance of 2/9 that X and Y will con-
sist of one changeA and one changeB, and a chance of
(δSA + δAB + δBU + δUC)/MI = δSC/MI that Y will
commit during the period when a violation will even-
tuate, if the appropriate transactions collide. Overall
the probability of a violation by X, given a collision
between X and Y, is 2δSC

9MI
.

Combining the calculations above, we see that the proba-

bility of a violation caused by X at SI is 9∗MI
δCS+δSC

(0.9)2

500
2δSC
9MI

.

We define a new parameter α = δSC/(δCS +δSC) so that we

Type(X) Type(Y) Outcome for X in case of collision
changeA changeA abort if during(Y,X)
changeA changeB violation if during(Y,X)
changeA changeAB abort if during(Y,X)
changeB changeA violation if during(Y,X)
changeB changeB abort if during(Y,X)
changeB changeAB abort if during(Y,X)
changeAB changeA abort if during(Y,X)
changeAB changeB abort if during(Y,X)
changeAB changeAB abort if during(Y,X)

Figure 5: Outcomes for colliding X and Y at SI

Complete
StartX readX(valueA) readX(valueB)

UpdatesX CompleteX

!CS !SA !AB !BU !UC

Violation if colliding write-skew

transaction commits here

Previous

transaction in

same thread

!CS is the round-trip

communication server-> client ->

server

SI

Figure 6: Diagram of the relationships in time for
violation at SI

can express the probability of a given instance X producing

a violation as 9 ∗ (0.9)2

H
∗ 2

9
α = 0.00324α.

In the same way we argue that the probability that a
transaction instance aborts due to First Committer Wins
rule is 9 (0.9)2

500
7
9
α = 0.0113α. That is because in 7/9 of the

cases where a collision occurs, the transactions write to the
same item and so the later one will abort if they are concur-
rent. Thus the rate of violations per committed transaction
is predicted as 0.00324α/(1−0.0113α). To make this useful,
we need to estimate α. For the configuration we have, we
know that δSC is greater than the sum of the sleep times,
which are requested to be 300ms each on average ; as we
noted above, the platform systematically sleeps less than re-
quested, by on average about 8ms per sleep; thus we know
that δSC will exceed (292+292)=584 ms. Measurements,
taken with a single client thread and very fast transactions
(sleeptimeAB and sleeptimeBU set to zero), show that the
throughput available on our platform is over 1500 transac-
tions per second, so the time needed for client-server round
trip communication is well below 1ms, that is δCS is below
1ms. Thus in our configuration, α is indistinguishable from
1, and so we predict a violation rate of 0.00328.

Generalizing this calculation, we consider a general sys-
tem configuration, with given MPL, hotspot of H rows ac-
cessed by fraction F of the transaction instances, and trans-
action mix with fraction fA of changeA, fB of changeB,
and fAB of changeAB. For this configuration, and isolation
level of SI, we predict a violation rate which we call SI*
and which is shown in Figure 7. Here (MPL-1) is the num-
ber of other threads to consider, (F 2)/H is the probability
of two instances colliding on a row of the hotspot, 2fAfB

is the probability of the instances forming a pair with one
changeA and one changeB (so write skew can occur). In
the denominator we correct for the number of aborts; here
[f2

A +2fAfAB +f2
B +2fBfAB +f2

AB] is the probability of the
instances forming a pair which write to the same item (and

(MPL−1)∗(F2)
H

[2fAfB]α

1− (MPL−1)∗(F2)
H

[f2
A + 2fAfAB + f2

B + 2fBfAB + f2
AB]α

Figure 7: SI*: Predicted violation rate for SI

Complete
StartX readX(valueA) readX(valueB)

UpdatesX CompleteX

!CS !SA !AB !BU !UC

Violation if colliding ChangeA

commits here

Previous

transaction in

same thread

!CS is the round-trip

communication server-> client ->

server

RC_MV

Figure 8: Diagram for violation at RCMV when Y
is changeA

so where the later one aborts), given that both a collision
occurs, and the transactions are concurrent.

3.2 Isolation level = RC MV
The calculation for multiversion Read Committed isola-

tion is more complicated, because the behavior of a transac-
tion instance X depends on how the commit of Y interleaves
among the operations of X, and it also sometimes depends
on the values in the database before X and Y begin. On the
other hand, the formula is simpler in one respect, because
there are no FCW aborts at Read Committed, and so we
do not need anything corresponding to the denominator in
Figure 7. As for SI above, the probability that X and Y
collide on a row is F 2/H.

The table showing the outcome of X is in Figure 11, whose
rows are derived from the illustrations in Figure 8, 9 and 10.
Throughout this discussion we assume that X and Y collide
on the same row. For example, Figure 8 shows that when Y
is changeA, if the commit of Y occurs after X reads valueA,
none of the operations in X will see the effect of Y, and so
both transactions will act on the same information9, namely
whatever was in valueA and valueB before X and Y began).
Thus, in this overlap, either both transactions will see a sum
from 0 to 49 (and both will add 50 to the sum, causing a
violation) or else both will see a sum between 50 and 99, both
will subtract 50, and again a violation will occur. That is, a
violation occurs when (there is a collision and) Y commits
between X’s read(valueA) and X’s completion. However, if
Y is changeA and it commits before X reads valueA, then
X sees the impact of Y, and the violation is not produced
(the interaction is serializable, as if Y ran entirely before
X). Thus the probability of a violation being introduced by
a given X because of a given Y that is changeA and that
collides with X, is (δAB + δBU + δUC)/MI.

A similar argument applies when Y is changeB (and it
collides with X). As shown in Figure 9, the probability of
X introducing a violation because of Y is (δBU + δUC)/MI
since when Y commits after X reads valueB but before X
commits, the transactions sees the same sum, and so both
add or both subtract from the sum, giving a violation.

9We neglect here the much smaller chance of a three-way
collision.

Complete
StartX readX(valueA) readX(valueB)

UpdatesX CompleteX

!CS !SA !AB !BU !UC

Violation if colliding ChangeB

commits here

Previous

transaction in

same thread

!CS is the round-trip

communication server-> client ->

server

RC_MV

Figure 9: Diagram for violation at RCMV when Y
is changeB

Complete
StartX readX(valueA) readX(valueB)

UpdatesX CompleteX

!CS !SA !AB !BU !UC

Violation if colliding ChangeAB

commits here

Previous

transaction in

same thread

!CS is the round-trip

communication server-> client ->

server

RC_MV

Violation if

colliding

ChangeAB

commits here,

and sum was

previously 0..24 or

75..99

Figure 10: Diagram for violation at RCMV when Y
is changeAB

The case when Y is changeAB (and it collides with X) is
more complicated, and is illustrated in Figure 10. This gives
rows 3, 6 and 9 of Figure 11. If Y commits after X reads
valueB, but before X commits, then the transactions see the
same sum and a violation occurs. If Y commits before X
reads A, then X sees the sum as produced by Y, and the
transactions behave like Y followed by X (so no violation).
But when Y commits between the two reads by X, we have
an inconsistent read in X. To deal with this case, we need to
think about the different values the sum might have, before
X and Y run. If the sum is form 0 to 24, then Y will add 25
to valueA (not seen by X) and it will add 25 to valueB (seen
by X). Thus X will see a sum that is 25 higher than what Y
saw; X will see a sum between 25 and 49, so X will choose
delta of 50 too. The combined effect of X and Y will be
that each added 50 to the sum, and so a violation is certain.
However, if the sum before X and Y ran was between 25 and
49, then Y will choose delta of 50, X will see a sum that is
increased by 25 (the part of Y’s changes that it sees), and
so X will calculate that the sum is between 50 and 74, and
X will take delta of -50. The overall impact of X and Y will
thus be to leave the sum as it was before, without a violation.
A similar argument shows that when the sum is previously
between 50 and 74, the combined effect is to leave the sum
unchanged, while when the sum was previously above 74,
both transactions subtract 50 from the sum and a violation
is produced. Thus we can see that when Y is changeAB and
commits between X’s reads, a violation occurs in half the
cases (when the sum is from 0 to 24 or from 75 to 99). That
is, the probability that a particular X produces a violation
because of this particular Y is ((1

2
δAB) + δBU + δUC)/MI.

Based on the argument above, we find the prediction in
Figure 12. We have an overall prediction based on three

Type(X) Type(Y) Condition for X to violate in-
tegrity, supposing that a colli-
sion occurs

changeA changeA commit(Y) occurs between
readX(valueA) and commit(X)

changeA changeB commit(Y) occurs between
readX(valueB) and commit(X)

changeA changeAB commit(Y) occurs between
readX(valueB) and com-
mit(X), or else both (the
initial sum is not from 25 to
74) and (commit(Y) occurs
between readX(valueA) and
readX(valueB))

changeB changeA commit(Y) occurs between
readX(valueA) and commit(X)

changeB changeB commit(Y) occurs between
readX(valueB) and commit(X)

changeB changeAB commit(Y) occurs between
readX(valueB) and com-
mit(X), or else both (the
initial sum is not from 25 to
74) and (commit(Y) occurs
between readX(valueA) and
readX(valueB))

changeAB changeA commit(Y) occurs between
readX(valueA) and commit(X)

changeAB changeB commit(Y) occurs between
readX(valueB) and commit(X)

changeAB changeAB commit(Y) occurs between
readX(valueB) and com-
mit(X), or else both (the
initial sum is not from 25 to
74) and (commit(Y) occurs
between readX(valueA) and
readX(valueB))

Figure 11: Outcomes for colliding X and Y at
RCMV

factors. One is the number of possible choices of Y (as for

SI above this is (MPL−1)∗MI
(δCS+δSC)

). Another factor is the chance

of collision, which is F2

H
. Finally we have a weighted average

of the probability of violation for particular X and Y, where
the weights come from the frequency of transaction types.
The quantity MI cancels from the formula, and we see that
the impact of the different durations on the expression is
all based on indirect parameters β = δAB+δBU +δUC

δCS+δSC
and

γ = δBU +δUC
δCS+δSC

.

How can we estimate β and γ? For all the experiments we
do in this paper, we have that δCS , δSA and δUC are each
very short; their sum is less than the average spacing of
transactions without sleeps, which we saw is below 1ms. On
the other hand, δAB is at least the delay we explicitly sleep
between the read(valueA) and the read(valueB); we request
that this is on average the system parameter sleeptimeAB,
and so (given the weirdness of the platform’s quantum) it is
estimated to be (sleeptimeAB - 8ms); similarly we estimate
δBU to be sleeptimeBU - 8ms. Thus we estimate δCS + δSC

to be approximately (sleeptimeAB - 8)+(sleeptimeBU - 8),
and so β is less than 1/(sleeptimeAB + sleeptimeBU - 16),

(MPL− 1) ∗ (F 2)

H
Ψ

where Ψ = [(1− β)f2
A + (2− β − γ)fAfB

+(2− 3β

2
− γ

2
)fAfAB + (1− γ)f2

B

+(2− β

2
− 3γ

2
)fBfAB + (1− β

2
− γ

2
)f2

AB]

Figure 12: RCMV*: Predicted violation rate for
multiversion RC

or essentially 0. Similarly, γ is very close to (sleeptimeBU -
8)/(sleeptimeAB + sleeptimeBU - 16).

For the example of the configuration with MPL=10 from
Figure 1, we have F=0.9, H=500, fA = fB = fAB = 1/3.
SleeptimeAB = sleeptimeBU = 300ms, so β is indistinguish-
able from zero, while γ is almost 0.5. Thus we predict a
violation rate of 0.0109.

4. VALIDATING THE PREDICTIONS
To validate the predictions, we have run measurements

on a range of different configurations, exploring in turn the
impact of changes to one of the parameters of the configu-
ration. For these experiments we only consider the isolation
levels of Snaphot Isolation and multiversion Read Commit-
ted, since those are the ones for which we have predictions.
In each case we present the measured violation rates, and
also predicted rates using the formulae of Figure 7 and Fig-
ure 12. We denote the measured rates by SI and RC MV,
and the predictions by SI∗ and RC MV∗. Note that mea-
sured rates are shown with error bars indicating the 95%
confidence interval, but predictions have no error bars. All
the graphs shown here include the particular configuration
with MPL=10 from Figure 1. We did not repeat the exper-
iment, but reused data that produced Figure 1. The other
configurations presented were produced by varying one pa-
rameter systematically, and running new experiments with
250 runs, each measuring for 30s after 1s warmup. The runs
were grouped into 5 sets of 50, with each set treated as a
single super-run as described in Section 2.

Figure 13 shows experiments with varying MPL. There is
a hotspot of 500 rows per table in a database whose tables
have 5000 rows. The transactions are chosen equally from
changeA, changeB and changeAB. The sleep time requested
between read(valueA) and read(valueB) was chosen from a
normal distribution Normal(300, 60), with mean 300ms and
standard deviation 60ms (the distribution was truncated by
removing values below 0 or above 600ms). The same dis-
tribution was used (independently) for each sleep between
read(valueB) and the update in the transaction.

We note that the predictions show the correct trend, linear
in MPL-1. They are also fairly accurate numerically, though
there is a tendancy to predict above even the top of the
confidence interval. The prediction is never more than 18%
above the measured value (the worst accuracy happens for
SI at MPL=10). This seems more extreme than just due to
the under-reporting effect described in Section 2.

Next in Figure 14 we consider the impact of different
amounts of contention as we change the size of the hotspot.
All these experiments have MPL=10, equal amounts of the
three transaction types, and sleep times each chosen from a

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

5 10 15 20 25

MPL

V
io

la
t
io

n
 R

a
t
e

RC_MV

RC_MV*

SI

SI*

Figure 13: Measured and predicted Violation rate
vs MPL.

0

0.01

0.02

0.03

0.04

0.05

0.06

100 200 300 400 500

Hotspot Size

V
io

la
ti

o
n

 R
a
te

RC_MV

RC_MV*

SI

SI*

Figure 14: Measured and predicted Violation rate
vs Size of Hotspot.

normal distribution of mean 300ms. We did 250 runs each
measuring for 30s, and grouped them into 5 super-runs.

These predictions show the correct trend, decreasing as
H−1. They exceed the measurements by 28% in the case of
RC MV at Hotspot 100 (where we earlier showed we expect
13% under-reporting); in all the other cases the prediction is
within 20% of the actual measurement. The worst accuracy
(excepting the expected case) is for SI at H=500. This does
not seem to be explained by under-reporting.

For Figure 15 we vary the transaction mix. In each config-
uration shown, changeAB occurs as 2/6 of the transactions;
the frequency of changeA varies from 0 to 4/6, and the fre-
quency of changeB goes correspondingly from 4/6 to 0. Zero
violations are found with SI when no changeA is present.
This is expected, since when only changeB and changeAB
occur, any conflicts involve transactions that write a com-
mon item, and so SI’s First Committer Wins rule prevents
any non-serializable execution (a proof technique that im-
plies this special case is given in [9]). The same is seen when
all transactions are changeA or changeAB. Again the shape
of the curve fits the prediction, and the values are close;
except for the case of SI with 2:2:2, the discrepancy is al-
ways within 10% (though the confidence interval about the
measurement does not always contain the prediction).

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

 0:4:2 1:3:2 2:2:2 3:1:2 4:0:2

Transaction Mix (A:B:AB)

V
io

la
ti

o
n

 R
a
te

RC_MV

RC_MV*

SI

SI*

Figure 15: Measured and predicted Violation rate
vs Transaction Mix.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

 100:500 200:400 300:300 400:200 500:100

SleepTime (AB:BU)

V
io

la
ti

o
n

 R
a
te

RC_MV

RC_MV*

SI

SI*

Figure 16: Measured and predicted Violation rate
vs Sleep times.

Finally, we consider varying the balance between the sleep
times. At the left of Figure 16 is the configuration where the
sleep between read(valueA) and read(valueB) has an aver-
age of only 100ms (and standard deviation of 30ms), while
the sleep from read(valueB) till the update has mean 500ms
(and standard deviation 90s). At the righthand side we re-
verse the distributions used to choose the sleep times. Notice
that as predicted, the relative placement of the read(valueB)
within the transaction is not important for the behavior un-
der SI; however at multiversion Read Committed, we see
more violations when the gap between read(valueA) and
read(valueB) is relatively more of the overall duration of
the transaction. Aside from the case of SI at 300:300 (which
comes from Figure 1 rather than being measured anew), the
discrepancies are all below 12%.

5. AN INVERSION FOR VIOLATION RATE
The multiversion Read Committed concurrency control

mechanism is not strictly more permissive than the Snap-
shot Isolation mechanism, even though the latter is usually
seen as a stronger isolation level. That is, there are some
executions allowed by the RC MV algorithm that are not al-
lowed by SI. This raises the question of whether any system

0 0.1 0.2 0.3 0.4 0.5

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

γ = 0.84
γ = 0.84

γ = 0.9
γ = 1

⨍A

RC_MV*
 SI*

Figure 17: Predicting an Inversion.

configuration could be tuned so that an application would
create more anomalies when run with the stronger SI al-
gorithm than when run with weaker RC MV concurrency
control. Our predictive model guides us to find a part of the
configuration space, where this “inversion” actually occurs.

To make it easier to search through the multidimensional
space of configuration parameters, we consider each config-
uration parameter in turn. Consider the trends shown in
the measurements we have reported, and also predicted by
our model. Changes in MPL, F and H each impact of the
violation rate of each isolation level in the same way: the vi-
olation rate increases linearly with MPL, quadratically with
F, and inversely with H. Thus choice of MPL, F or H will
not be crucial in finding an inversion. Changing the relative
duration of sleepAB to sleepBU has no effect on the viola-
tions under SI, but there are more violations under RC MV
when sleepAB is large. That is, γ should be as close to
1 as possible, in order to see an inversion. The impact of
transaction mix is more complicated. We note first that any
pair of transactions, one of which is changeAB, never pro-
duces anomalies at SI, but may do so when running under
RC MV. Thus we have the best hope of seeing an inversion
if we do not run any changeAB instances, that is, we will
take fAB = 0. Now the trend shows clearly that the rate of
violations under SI is highest when changeA and changeB
are evenly balanced; and the rate is lower when the rates fA

and fB are far apart. Under RC MV, the rate is higher as
fB increases and fA decreases. To find an inversion we will
need to carefully choose the balance between changeA and
changeB; the rate fA should be low but not too low.

We illustrate this is Figure 17. This shows on the y-axis
the ratio of RC MV* to SI* (to be precise, we use a sim-
plified SI* which neglects the correction from transactions
that abort, which is the denominator of the formula in Fig-
ure 7). The x-axis shows different values for the fraction fA

of changeA; throughout this graph we assume fAB = 0, so
fB = 1 − fA. We also assume α = 1 and β = 0, which is
very close to true for the systems we can experiment on. The
remaining configuration that matters is γ. We have drawn
the curves for γ being 0.84 (corresponding to sleep times
of 500:100), for γ = 0.9, and for γ = 1 (the limiting case,
where read(valueB) occurs right at the end of the transac-
tion). When γ < 0.83 the curve lies entirely above the ratio
of 1, and so inversion is not possible; even at γ = 0.84 the
ratio is never far below 1; so detecting this situation reliably
will be difficult. We measured this case, with sleeptimes
500:100 and fA = 0.25 or 0.3; we found the violation rate
for RC MV below that for SI, but not significantly so. Thus

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

10% 20% 30% 40% 50%

Transaction Mix (%A)

V
io

la
ti

o
n

 R
a
te

RC_MV

SI

Figure 18: An Inversion.

we decided to look at cases with higher γ: we choose to
measure when γ = 0.9, for which an inversion ought to be
found for fA values between 0.11 and 0.42, with the clearest
difference occurring between 0.2 and 0.3.

In Figure 18 we show measurements we took at the config-
urations where this prediction suggests an inversion is most
likely to be detectable. The points where fA is 0.2 or 0.3
clearly demonstrate the existence of an inversion: the con-
fidence interval around the violation rate for RC MV is en-
tirely below the confidence interval around the violation rate
for SI, for these points. These quantities are all based on
sleeptimeAB with mean 900 and standard deviation 120,
and sleeptime BU with mean 100 and standard deviation
30. These sleeptimes mean that γ is close to 0.9, as we in-
tended. Other configuration parameters in the system that
we measured are MPL=10, H=500, warmup = 1s, MI=30s.
In this graph we have fAB = 0, and fA varies as shown on
the x-axis; of course fB is 1− fA. Note that the y-axis does
not extend down to 0.

We are not claiming that inversion will occur at realistic
configurations or for realistic application code; indeed most
of the graphs in this paper show the expected situation with
more violations at the weaker RC MV level than at SI. It
is surprising that any situation could be chosen to reliably
have more violations at the stronger level. Finding this also
demonstrates the usefulness of our predictive model.

6. RELATED WORK
The proposal to provide application developers with a

choice of isolation levels comes from [14]. In this paper the
proposal gives specific locking algorithms that provide each
level; the levels are named “Degree 0”, “Degree 1”, etc. De-
gree 2 is what was later called Read Committed in the SQL
standard. The phantom problem, and the distinction be-
tween Repeatable Read and Serializable is described in [8].

The state-of-practice concurrency control for DBMS en-
gines is presented very clearly in [15]. For locking approaches,
the widely-used techniques include an efficient lock manager
[13], with phantoms prevented by some form of next-key or
index lock [19, 20, 18].

The alternative multiversion approach to concurrency con-
trol usually provides Snapshot Isolation; indeed several prod-
ucts run with SI even if the application declares its isolation

level to be Serializable[16]. The fact that SI does not en-
sure serializable execution was shown in [3]. A graph-based
condition can determine whether particular application pro-
grams give rise to non-serializable execution under SI [9],
and checks for this condition can be automated [17]. A
variant of the SI algorithm provides true serializability [4];
however, this is not yet available in commercial platforms.

There are several different ways in which the database
community has quantified the performance of different sys-
tem designs (in particular, investigating the impact of dif-
ferent concurrency control algorithms). One approach has
focused on measuring the performance under controlled con-
ditions[10]. Jim Gray was responsible for much of [2] which
introduced a small banking set of programs as a benchmark,
to allow fair comparison of performance, especially peak sus-
tainable throughput. A consortium (TPC) has standardized
many benchmarks, fixing precisely what is to be measured,
and under what conditions [23]. [21] reports measurements
of both throughput, and the number of erroneous answers
to queries, among transactions at different isolation levels.

Another way to investigate performance is by detailed
simulations, where a computer program representation of
a whole system is evolved through many steps. An early
paper was [6]. [1] compares the throughput obtained at dif-
ferent MPL, under different assumptions about the level of
disk and CPU resources. A similar simulation study has
focused on multiversion concurrency control algorithms [5].

Instead of measuring performance in a real system or a
computer model, another approach tries to find a formula
which relates performance to configuration parameters. In
the analytical style, the formula is based on queueing theory
and the focus is on the impact of different distributions for
the random choices, such as the variance in the work needed
for different requests, or in the inter-arrival spacing [22]. A
different style aims for much simpler formulas, usually with
grossly simplified assumptions and estimates of the proba-
bility of various situations arising. The seminal example is
the prediction of waiting and deadlock probabilities in [12];
later examples include [11, 7].

7. CONCLUSIONS AND FUTURE WORK
We have described a way to quantify the extent to which

different, weak, isolation levels allow data corruption. Our
microbenchmark allows us to explore carefully the impact
of different system and application features on the rate of
serialization errors for each isolation level. While the mi-
crobenchmark uses a few simple transaction types, the trends
we observe should apply more widely. For example, the rate
of violation introduction is proportional to MPL − 1, and
inversely proportional to the size of the hotspot.

We have provided a novel predictive model for the rate
of violations introduced when our microbenchmark is run
using the multiversion concurrency control algorithms. Our
model gives appropriate predictions of the trends, and the
actual values are also quite accurate, within 20% of the mea-
surement in almost all cases, and frequently within 10%.

Using our predictive model, we found a carefully tuned
configuration where an unexpected inversion occurs: more
violations are produced with the fairly strong SI isolation
level (which is even used for serializability by some plat-
forms) than with the multiversion Read Committed mecha-
nism which is considered a weaker level.

In future work, we hope to invent a microbenchmark that

includes some predicate-based reads, and insert and delete
statements, so that we can measure the violations allowed
by Repeatable Read. We would hope to examine some in-
dustry installations, and see how frequently isolation errors
are in data used by realistic application code. Another di-
rection is to extend our predictive model from the particular
transactions in the microbenchmark, to deal with arbitrary
mixes of application code, in particular so it can be applied
to more realistic programs. This will be based on a static
dependency graph [9] which shows which pairs of transac-
tions deal with the same item, but it will also need careful
analysis of which interleavings actually cause violation of
integrity constraints.

8. ACKNOWLEDGMENTS
Research supported by Australian Research Council grant

DP0987900. Early versions of the microbenchmark were
coded with help from Mohammad Alomari and Michael Cahill.
The University of Sydney Database Research Group pro-
vided feedback on the paper.

9. REFERENCES
[1] R. Agrawal, M. J. Carey, and M. Livny. Concurrency

control performance modeling: alternatives and
implications. ACM Transactions on Database Systems,
12(4):609–654, 1987.

[2] Anon, et al. A measure of transaction processing
power. Datamation, 1985.

[3] H. Berenson, P. Bernstein, J. Gray, J. Melton,
E. O’Neil, , and P. O’Neil. A critique of ANSI SQL
isolation levels. In Proceedings of ACM SIGMOD
International Conference on Management of Data,
pages 1–10. ACM Press, June 1995.

[4] M. J. Cahill, U. Röhm, and A. D. Fekete. Serializable
isolation for snapshot databases. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, pages 729–738,
New York, NY, USA, 2008. ACM.

[5] M. J. Carey and W. A. Muhanna. The performance of
multiversion concurrency control algorithms. ACM
Transactions on Computer Systems, 4(4):338–378,
1986.

[6] M. J. Carey and M. Stonebraker. The performance of
concurrency control algorithms for database
management systems. In U. Dayal, G. Schlageter, and
L. H. Seng, editors, Tenth International Conference on
Very Large Data Bases (VLDB’84), pages 107–118,
1984.

[7] S. Elnikety, S. Dropsho, E. Cecchet, and
W. Zwaenepoel. Predicting replicated database
performance from standalone database profiling. In
Proc EuroSys’09, pages 303–316, 2009.

[8] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger.
The notions of consistency and predicate locks in a
database system. Commun. ACM, 19(11):624–633,
1976.

[9] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable.
ACM Transactions on Database Systems,
30(2):492–528, 2005.

[10] J. Gray. The Benchmark Handbook (2nd ed). Morgan
Kaufmann, 1993.

[11] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The
dangers of replication and a solution. In H. V.
Jagadish and I. S. Mumick, editors, Proceedings of
ACM SIGMOD International Conference on
Management of Data, pages 173–182. ACM Press,
1996.

[12] J. Gray, P. Homan, R. Obermarck, and H. Korth. A
strawman analysis of the probability of waiting and
deadlock in a database system. Technical Report
RJ3066, IBM San Jose Research Laboratory, February
1981.

[13] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann, 1993.

[14] J. N. Gray, R. A. Lorie, G. R. Putzolu, and I. L.
Traiger. Granularity of locks and degrees of
consistency in a shared data base. In G. M. Nijssen,
editor, Modelling in Data Base Management Systems,
pages 365–394. North Holland Publishing Company,
1976.

[15] J. M. Hellerstein, M. Stonebraker, and J. R. Hamilton.
Architecture of a database system. Foundations and
Trends in Databases, 1(2):141–259, 2007.

[16] K. Jacobs, R. Bamford, G. Doherty, K. Haas, M. Holt,
F. Putzolu, and B. Quigley. Concurrency control,
transaction isolation and serializability in SQL92 and
Oracle7. Oracle White Paper, Part No A33745, 1995.

[17] S. Jorwekar, A. Fekete, K. Ramamritham, and
S. Sudarshan. Automating the detection of snapshot
isolation anomalies. In VLDB ’07: Proceedings of the
33rd international conference on Very Large Data
Bases, pages 1263–1274. VLDB Endowment, 2007.

[18] D. B. Lomet. Key range locking strategies for
improved concurrency. In VLDB ’93: Proceedings of
the 19th International Conference on Very Large Data
Bases, pages 655–664, San Francisco, CA, USA, 1993.
Morgan Kaufmann Publishers Inc.

[19] C. Mohan. ARIES/KVL: a key-value locking method
for concurrency control of multiaction transactions
operating on b-tree indexes. In Proceedings of
international conference on Very Large Databases
(VLDB’90), pages 392–405, San Francisco, CA, USA,
1990. Morgan Kaufmann Publishers Inc.

[20] C. Mohan and F. Levine. ARIES/IM: an efficient and
high concurrency index management method using
write-ahead logging. In Proceedings of ACM SIGMOD
international conference on Management of Data
(SIGMOD’92), pages 371–380, New York, NY, USA,
1992. ACM.

[21] D. Shasha and P. Bonnet. Database tuning: principles,
experiments, and troubleshooting techniques. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA,
2003.

[22] A. Thomasian. Concurrency control: Methods,
performance, and analysis. ACM Comput. Surv.,
30(1):70–119, 1998.

[23] Transaction Processing Performance Council. TPC-E
Benchmark Specification, 2007.

[24] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms and the Practice of
Concurrency Control and Recovery. Morgan
Kaufmann, San Francisco, California, 2002.

