
Locking Key Ranges with Unbundled Transaction Services

David Lomet

Microsoft Research, Redmond, WA, USA
lomet@microsoft.com

Mohamed F. Mokbel

University of Minnesota, Minneapolis, MN, USA
mokbel@cs.umn.edu

ABSTRACT
To adapt database technology to new environments like
cloud platforms or multi-core hardware, or to try anew to
provide an extensible database platform, it is useful to sep-
arate transaction services from data management elements
that need close physical proximity to data. With “generic”
transactional services of concurrency control and recovery in
a separate transactional component (TC), indexing, cache
and disk management, now in a data component (DC), can
be simplified and tailored more easily to the platform or to a
data type extension with a special purpose index. This de-
composition requires that details of the DC’s management
of data be hidden from the TC. Thus, locking and logging
need to be “logical”, which poses a number of problems.
One problem is the handling of locking for ranges of keys.
Locks need to be taken at the TC prior to the records and
their keys being known to the TC. We describe generic two
approaches for dealing with this. (1) Make a “speculative”
visit” to the DC to learn key values. (2) Lock a “covering
resource” first, then learn and lock key values and ultimately
release the covering resource lock. The “table” is the only
logical (and hence known to the TC) covering resourse in
the traditional locking hierarchy, but using it limits con-
currency. Concurrency is improved with the introduction of
new partition resources. We show how partitions as covering
resources combine high concurrency with low locking over-
head. Using partitions is sufficiently effective to consider
adapting it for a traditional database kernel.

1. INTRODUCTION

1.1 Overview
Evolving database systems to deal with the new environ-

ment of cloud computing and multi-core hardware requires
carefully re-thinking their architectural decomposition. This
was already an issue for extensible database systems where
new types with their own unique forms of indexing are been
added by means of “data cartridges” , but are not provided

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

the same concurrency control and recovery properties as the
natively supported types of data.

In a recent paper [11], an architecture is proposed in which
the transactional services of concurrency control and recov-
ery are separated from the data management services in-
volving indexing, cache, and disk management. That paper
suggested a decomposition of a database kernel in which con-
currency control and recovery are encapsulated in a trans-
actional component (TC) with data services then placed in
a data component (DC). These components are configured
into a system in which the DC is the inner component that
acts as a server to the TC. All requests for transactional
access to stored data proceed first to the TC. After the TC
performs appropriate concurrency control and recovery ac-
tions, it passes requests to the DC where the desired data
management functions are executed. Figure 1 illustrates this
architecture.

Database KernelDatabase Kernel

Transactional
Component

Query Query

RuntimeRuntime

Lock/Log for

Transactions

Existing

Interface

New “Logical”

Interface:

Record oriented

RuntimeRuntime

Database KernelDatabase Kernel

B-tree Data
Component

DiskDisk

Heap Data
Component

Existing

Interface

Figure 1: Unbundled Services

This architecture introduces a set of new problems in how
one realizes transactional services. The TC has an “arms
length” relationship to the DC, via a carefully constrained
interface that is designed to hide the details of data indexing
and how the data is mapped to physical devices. Because of
this, the TC does not know how data is stored and so can-
not exploit physical concepts such as pages when it performs
concurrency control and recovery. Some of the recovery is-
sues of this architecture were explored in [11], where a new
recovery approach was described. There are analogous issues
to be dealt with for concurrency control as well. This paper
studies these issues, first carefully examining and circum-
scribing where new technology is needed, and then describ-
ing two generic ways of tackling the remaining problems.
One of these approaches is then further elaborated and ex-
tended to produce a very effective solution with respect to
both performance and concurrency. This is done within the
context of lock based concurrency control, but many of the
considerations touched on here apply to optimistic concur-
rency control as well.

1.2 Lock Based Concurrency Control

1.2.1 Simple Situations
Database management systems typically use locking for

concurrency control, and support several transaction isola-
tion levels. Providing lock based concurrency control for
many of these isolation levels is straightforward. A request
comes to the TC from the query processing (QP) compo-
nent of the system. The request contains the identity of the
record for which an operation is desired (read or update).
For “read” operations, the TC takes a share mode lock on
the identified record, and a read request is sent to the DC for
the record. The lock is held before the requested operation
is executed at the DC and is not released until sometime
after the request is finished. Hence the resource is protected
during access. For “write” operation, the TC takes an ex-

clusive mode lock on the identified record, and requests to
read and update the record. The lock is held before the re-
quested operation is executed at the DC and is not released
until after the record is read and updated. The DC returns
to the TC the before and after versions of the record, which
the TC uses to construct a redo/undo log record, which is
then posted to the log while the lock is held.

Being provided with a record identifier in the data access
request permits the TC to maintain its lock based on this
record identifier, which is a “logical” entity that does not
contain any physical location information. This is exactly
what we need to effectively separate TC from DC. In con-
ventional locking protocols, a lock is needed on a resource
that protects the resource from conflicting accesses for the
duration in which conflicts are possible. This is typically
for the duration of the transaction, with strict two-phased
locking usually used so as to guarantee that transactions
are abortable. Of course, such an abort guarantee does not
apply to read locks, and some isolation levels, e.g., read com-
mitted, which permits early dropping of share mode locks.

1.2.2 Locking Ranges
Separating transaction services from data management re-

quires a more adventurous departure from existing technol-
ogy in some cases. Relational databases permit a query to
select a set of tuples based on a predicate. The predicate is
not necessarily expressed in terms of a specific key or set of
keys. Sometimes there is no substitute but to a full table
scan for the predicate, in which case a table level lock is ap-
propriate. However, database systems work hard to reduce
the concurrency impact of query predicates. So such pred-
icates are frequently mapped to key range scans of a table
by finding a key range conjunct of the predicate.

Key ranges are locked by locking the records of the range
and applicable to primary and secondary keys clustered by
a B-tree [1, 2, 3, 4, 6, 13, 9]. But here a problem arises
when we separate concurrency control from data manage-
ment. Our separate TC may know the end points of the key
range, but it does not know the keys of the specific records
currently in the range prior to actually reading records by
sending requests to the DC. And if the TC were to naively
request records (with their keys) in the range prior to lock-
ing them, this would undermine the fundamental premise
of lock based concurrency control, namely that records are
locked prior to being accessed. If this premise is violated,
race conditions exist that permit records of the range to
change between an initial access and when they are locked.

Serializable transaction isolation level requires even more
than that the records found in the range not be updated
between when they are accessed and when they are locked.
The selected key range set must not change until transaction
completion. And this includes not just prohibiting changes
to existing records, but also preventing new records from
being added to the range for the duration of the transaction.
Such inserted records are called “phantoms”, in that they
elude locking conflicts that only involve locks on the records
of the range. For example, consider the following UPDATE

transaction T that aims to update the salary of all employees
with IDs in the range [10,40].

UPDATE Employee SET Salary = Salary + 2000
WHERE ID > 10 AND ID 6 40

In this case, the lock manager needs to grant transaction
T an exclusive X lock over all the records in the required
range [10,40]. Consider the case where another transaction
T ′ inserts a new record within the range [10,40] before trans-
action T has committed. If transaction T runs under the
SERIALIZABLE isolation level, then, it needs to lock not only
the records with keys in the range but also the ranges be-
tween any two keys, e.g. using a key range lock mode [10,
12]. The main purpose of a key range lock mode is to pre-
vent phantoms. Prior to a transaction inserting a new key
and its record between two existing key identified records,
the inserting transaction must lock one of these records in
a mode which permits the insert to occur. An existing key
range lock on the key prevents that insertion lock from be-
ing acquired until the range accessing transaction commits
and releases its conflicting key range lock on the key.

Conventional lock managers rely on the traditional ar-
chitecture of database management systems, which started
with system R [7, 8], where the recovery, concurrency con-
trol, and access methods logic is tightly bound together in a
monolithic storage engine. The lock manager, as part of the
storage manager, has complete knowledge of the keys inside
a given range because the point of execution when locks are
posted is within the code accessing records of a page. And
access to the page is protected (serialized), usually using a
light weight lock called a latch.

Splitting the storage engine into TC and DC is a challenge
for conventional lock managers when locking a range of keys
is required. Consider the above example of transaction T
that needs to put range locks on all the records in the range
R = [10, 40]. The TC, if it is to do the locking, needs to
hold the necessary lock(s) before sending its request for the
records in R to the DC. But the TC does not know what
keys are inside the range R. So, we face a dilemma where
the TC has no idea about keys and their records that it
should lock while the DC knows about the keys and records
but has no idea about concurrency control issues.

One might propose that the TC request the keys of R from
the DC, one at a time. Then the TC can lock these records
and subsequently submit the requested operation. However,
that protocol does not work as the keys in the range may
have changed between the time it were determined by the
DC and the time that the locks were taken by the TC. An in-
sertion might have occurred that changed the set of records
in the range or an update might have occurred to one of
the records. To be an effective locking protocol, the lock
on a resource needs to be from a time before the resource
is examined continuing until after all use of the resource is
completed. This protocol simply does not do that.

1.3 Our Contribution
The problem we solve is to provide lock protocols that

use a lock manager correctly in the context of the new ar-
chitecture in which the transactional services of a TC are
separated from the data services of a DC. We explored three
workable alternatives that have very different performance
versus concurrency trade-offs. Our preferred alternative, the
[partition covering locks, provides an effective balance of
performance and concurrency.

Speculative Visit: The main idea of the speculative visit
protocol is that the TC makes two requests to the DC to
retrieve each record in a range R. The first request, termed
a speculative visit is an effort to get the next key of the range,
which is then locked. The second request for the same next
record, termed a certification visit is used to verify that the
initial visit successfully identified the next key and the data
of its record. If both visits return the same key, that is a
success, otherwise, the process repeats. The speculative visit
protocol has fine concurrency but it has the disadvantages
of high execution overhead (two visits) and complexity.

Table Covering Lock: The main idea of the table locking
protocol is to have the TC post a lock on a table prior to
accessing records of the table via the DC. Under the um-
brella of the locked table, which sits above records in the
multi-granularity locking hierarchy, the TC can safely re-
quest records of R from the DC. This has excellent perfor-
mance as only a single lock is required. It has, however, a
serious concurrency problem. An exclusive (X mode) table
lock prevents any other transaction T ′ from accessing this
table even if T ′ is concerned with a totally different part of
the table that does not overlap with R. To increase con-
currency, we expand this protocol to include taking locks
in an appropriate mode on the records returned, dropping
the table lock as soon as we have finished locking the range.
Thus, after we have finished with our locking phase, only
the precise range that we need is protected.

Partition Covering Lock: We call our preferred approach
key partition locking where we introduce a set of resources
in the multi-granularity locking hierarchy called partitions,
which are higher in the granularity hierarchy than records
but lower than tables. The set of partition resources consti-
tute a mathematical partition of the table, i.e., members of
the set are disjoint and the union of all members covers the
entire table. This gives us the opportunity to lock only the
partitions of the table that we need, which provides much
finer granularity than table locking provides, and hence bet-
ter concurrency. Partition locking is not only relevant for
unbundled transaction services but also for traditional data-
base architectures, where it may provide better performance
than conventional key range locking since the number of
locks is greatly reduced. As with the table covering lock
approach, we do record level locking, here with boundary
partitions whose locks we then drop, in order to minimize
the lock protected range.

Paper Organization: The rest of this paper is organized
as follows: Section 2 gives needed background. Section 3
presents table lock and speculative visit techniques. The par-

tition locking technique is described in Section 4. Section 5
compares performance of the proposed techniques. Finally,
Section 6 provides a discussion and summary.

2. BACKGROUND
This section gives a background for the rest of the paper.

The interface that we assume between transactional compo-
nent and data component, the operations involved and how
requests are executed are described. We then review trans-
action isolation levels, multi-granularity locking hierarchies,
and locking modes.

2.1 TC:DC Interface
The TC:DC interface is sketched in [11],. Here we focus on

the normal database requests, which are invoked in that in-
terface using the perform-operation operation. This gen-
eral purpose operation takes as an argument a description
of the specific function desired. Among these functions are
“update-record” and “read-record”, both of which take a
table name and key value to identify the record desired.

Since we are interested in range queries, the operation
of interest is “read-next”, which takes a table name, start
key value, and perhaps an end key value and predicate used
to filter records of the range. This reflects that the TC
passes on to the DC operations that the SQL Server storage
engine would have received in the SQL Server unified storage
engine architecture. SQL Server permits an additional filter
predicate to be attached to a range search request. This
filter, executed at the lowest level of the storage engine,
reduces (via the filter) the number of records that need to
be passed up from the storage engine to the query processor,
a valuable performance enhancement.

The “read-next” operation returns a record (perhaps a set
of records) that are greater then the start key, less than the
end key if provided, and that are not filtered out by the
filter predicate. These records are passed through the TC
back to the query processor runtime. The query processor
runtime issues a sequence of these “read-next” calls as it
scans through records of the range of interest to the query.
Thus, this call is executed repeatedly as part of a query
processor iterator examining a base table or index.

2.2 Isolation Levels
The isolation level for a transaction determines the

transaction locking behavior. The SQL-92 standard pro-
vides four isolation levels. Ordered from the least to
the most restrictive isolation levels, these are (1) READ

UNCOMMITTED, (2) READ COMMITTED, (3) REPEATABLE READ,
and (4) SERIALIZABLE.

Transactions executing under the READ UNCOMMITTED iso-
lation level can read modified data values that have not yet
been committed by other transactions. This is known as
dirty reads. The READ COMMITTED isolation level prevents
dirty reads by preventing transactions from reading modi-
fied data items that are not committed yet. However, it
may result in a transaction seeing a different values for a
data item read more than once. This is known as non-

repeatable read. The REPEATABLE READ isolation level avoids
the non-repeatable read problem by holding shared locks for
the duration of the transaction. However, it does not pre-
vent the phantom problem [5] described in Section 1.2.2.
The SERIALIZABLE isolation level is the most restrictive iso-
lation level that avoids phantoms. It must lock in such a way
as to ensure that the predicates used in reading data remain
correct for the duration of the transaction, hence ensuring
serializable transactions. Our proposed locking protocols
are applicable to all isolation levels.

2.3 Locking Hierarchy and Modes
Conventional locking exploits multi-granularity locking

that allows a transaction to request and hold locks in a hier-
archy of resources. Lockable resources are organized in a hi-
erarchy where lower level resources are completely contained
inside higher level resources in the hierarchy. A common
resource hierarchy might, from the highest to the lowest, in-
clude database, table, page, and record. Locking a resource at
a smaller granularity, e.g., record, increases concurrency but
has a higher overhead because more locks must be held if
many records need to be locked. On the other hand, locking
at a larger granularity, e.g., table, may greatly reduce con-
currency as locking an entire table restricts access to any
part of the table by other transactions. However, it has
a lower overhead because fewer locks are needed. A con-
ventional lock manager deals with multi-granularity locking
by supporting two distinct forms of lock modes, intention
modes and explicit modes.

Explicit locks. Explicit locks can be placed on any re-
source in the lock hierarchy. The most common types
of explicit locks are shared locks (S) and exclusive
locks (X). A shared lock allows concurrent transac-
tions to read the same resource while no other trans-
action can modify it. An exclusive lock prevents other
transactions from reading or modifying the locked re-
source. An exception is in the READ UNCOMMITTED iso-
lation level where a read operation is permitted even
if there is an exclusive lock because the “dirty read”
takes no locks.

Intention locks. An intention lock is placed on a resource
higher in the resource hierarchy to signal an intent to
place an explicit lock on a lower level resource that is
contained within the higher level resource. The pur-
pose is to block other transactions from using a lock
of a higher level resource to access the whole resource
in a way that would invalidate the lock at the lower
level which protects part of that resource. For exam-
ple, a transaction with an “intention” to read a record
of a table places an intention shared (IS) lock on the
table. The IS lock conflicts only with the X mode
explicit lock and hence prevents a table from being
locked for writing while another transaction is reading
its records. Examples of intention locks include inten-
tion shared (IS), intention exclusive (IX), and shared
with intention exclusive (SIX).

High concurrency requirements have led some systems to
lock key ranges instead of entire tables when providing the
SERIALIZABLE isolation level. A way of doing this without
introducing additional resources into the resource hierarchy
is by modifying the locking protocol used with the lock man-
ager. Now, instead of a lock on a record resource locking
just the record, a range lock locks both the record and the
range between it and the next record (or between it and its
predecessor). This is usually in the context of records or-
dered by a key, and when this is the case, it has been called
“key range” locking. When a key range is a conjunct of a
predicate used to select records read by a transaction, in-
terpreting the lock on each key of the range as a key range
lock prevents phantoms. Hence key range locks are used to
provide the SERIALIZABLE isolation level. Note again that
no new resource is introduced. Rather, an existing resource
is expanded to include an adjacent range.

One can use existing lock modes to lock key ranges [12].
However, it is also possible, via new lock mode that pair
the effects of prior modes, to enable additional concurrency
while still preventing phantoms [10]. In this case, the lock
mode is used to indicate whether the record, the adjacent
range, or the record and the range are to be protected.

Systems sometimes introduce a page resource into the
multi-granularity hierarchy. A page resource is between a
table and a record in the resource hierarchy. A page lock
protects all the records on the page, i.e. locks them. It
provides a useful tradeoff of less locking overhead via fewer
locks than record locking would require, while enabling much
higher concurrency than a table lock. Page locks are not
without difficulty however. Records may sometimes be re-
organized so that their page changes, and this can add sub-
stantial complexity, e.g., when dealing with a B-tree page
split. Further, with our unbundled architecture, the locking
protocol is executed in a context (the TC) where it does
not have any information about the page on which a record
resides.

In this paper, we do not introduce new locking modes or
replace existing ones. Instead, we show how to use con-
ventional multi-granularity locking to correctly lock records
when we split transaction services from data management.
Further, we introduce a new lockable resource, termed a
partition, that lies between the record and table resources in
the locking hierarchy. Unlike page resources, our partition
resource is strictly a logical resource. Then, we show how
to efficiently use explicit, intention, and key range locking
modes to lock the partitions so that the TC most of the time
holds locks only on records in a desired very specific range.

3. LOCKING EXISTING RESOURCES
In a traditional integrated storage engine, the code that

will submit lock requests to the lock manager has already ac-
cessed the page containing the records, and hence has knowl-
edge of the records and their identifiers. Our unbundled TC
executes without that prior knowledge of what resources it
needs to lock and hence protect in a key range. Thus, it
cannot directly request record granularity locks.

In this section, we present the details of two locking pro-
tocols that can be used to lock key ranges when transaction
services are unbundled into a separate TC. Importantly, nei-
ther of these protocols requires that we introduce new lock-
able resources into the resource hierarchy. The first protocol,
the speculative visit protocol uses existing record key lock-
ing, and has high concurrency, but it has not only locking
cost but also additional overhead to discover the key values
to lock. The second protocol, the table lock protocol, takes
out a covering lock on a table and is very simple. It should
have adequate performance, but potentially may have prob-
lematic concurrency.

3.1 The Speculative Visit Protocol
The main idea of the speculative visit protocol is to have

the TC make a speculative visit to the DC to find the keys
upon which to take out locks. The speculative visit is a
request to retrieve a next record in the range R. After this
speculative visit, the TC becomes aware of the record that it
needs to lock; which was the missing information it needed.
Now, the TC can lock the record read with the appropriate
lock mode , which mainly depends on the isolation level.
If the isolation level is SERIALIZABLE, the appropriate lock

mode is a key-range lock, otherwise, it is either an S or X lock
depends on the required operation. However, the protocol
thus far is not correct as the TC locks a record after it reads
it and it may be the case that this record is modified between
the time it is read and the time it is locked, or even that a
record with a lower key value has been inserted between the
prior record and the returned record.

To avoid such behavior, the TC follows its speculative visit
and record locking with a certification visit. The certification

visit is a second request from the TC to the DC to retrieve
again the next record in key sequence that was retrieved in
the previous speculative visit. If the retrieved record has the
same key and did not change between the speculative and
the certification visits, the TC considers reading this record
as a success and proceeds to read and lock the next record
in the requested range. If, on the other hand, the speculative

and certification visits give different results, the speculative
read is considered to fail. In this case, the TC treats the cer-

tification visit as a new speculative request and takes a lock
on the new returned record followed by another certification

visit. The TC repeats these alternating requests until the
returned record from both the speculative and certification

visits is the same. It then goes on to process and lock the
successor records of the range in the same way.

As in all multi-granularity protocols, before locking a
lower level resource, intention locks must first be taken on
the higher level resources of the resource hierarchy. So the
speculative locking protocol involves first taking the appro-
priate intention lock on the table resource (and higher re-
sources if they exist). But in this case the lock is a pure
intention lock (either IS or IX) which are compatible with
other pure intention locks. These intention locks are re-
quired in any use of a multi-granularity resource hierarch.

Finally, there is no need to restrict requests to acquiring
only a single record. One might speculatively request say
the next ten records, lock them all in the desired mode and
follow that with a certification request on these ten records.
One can advance the scan through this batch of records up
until a record, if one is present, where the speculative and
certification visits produce different results. Finally, one can
combine the speculative visit for a new batch of records with
a certification visit for the prior batch. Such optimizations
greatly reduce the number of times in which the DC needs
to be called in executing this protocol. However, there is no
way to avoid the transfer of all keys in the range across the
TC:DC interface.

The operator used to access a range of records is an adap-
tation of “read-next”. We need to extend “read-next” to re-
turn certified records together with speculative visit records.
One way to do this is for “read-next” to include an additional
argument that is the set of records to be certified. This is
in addition to a start key and end key. (Note that we do
not include a filter predicate as we need to lock all records
in the range.) “read-next” returns with a ”yes” (certified)
or ”no” (failed certification) indication, and a set of records
following the last certified record returned. One then uses
the highest certified record as the start record in the next in-
vocation of “read-next”. One can imagine variations on this
that return, e.g., the number of certified records instead of
”yes/no”.

The speculative visit protocol has two main advantages:
(1) It can be applied to resources already present in the
multi-granularity resource hierarchy, and (2) It provides

high concurrency as only the requested records are locked.
However, a major disadvantage of the speculative visit pro-
tocol is its extra overhead where each record needs to be
accessed at least twice before a read operation is confirmed.
One can anticipate that speculative and certification visits
will rarely differ as to their outcome. They are needed to
protect against the infrequent case when a change occurs.
An important negative, however, is that every record of the
range needs to be fetched from the DC even when only some
small number of the records might satisfy the full predicate
of interest to the transaction. This can explode the number
of times in which the TC:DC interface needs to be crossed.

3.2 The Table Lock Protocol
To ensure that a lock is held on a record before we access

it, we look for a resource higher in the multi-granularity re-
source hierarchy of which the TC is aware and lock that
instead. One resource above a record in the resource hier-
archy is the page. However, the TC knows nothing about
the pages involved in the requested range. Hence, even if
it wanted to lock pages and deal with the complexity of
physical data placement changing, the TC cannot exploit
pages. The next resource in the hierarchy is the whole ta-
ble, and that is a logical resource known to the TC. Thus,
the main idea of the Table Lock protocol is to let the TC
request to “temporarily” lock the whole table. Locking the
whole table gives the TC a covering lock in which it can
safely talk to the DC while it discovers the records inside
the requested range. Then, the TC can read the records
inside the requested range one by one. After reading each
record, the TC would know that this record is inside the
requested range. It can then, redundantly but temporarily,
lock this record. Notice that locking this record is the goal
of the TC, but could not be achieved until we had the ta-
ble lock covering the records. Once the TC reads and locks
all the required records, using record locks, it demotes the
table lock into a weaker intention lock while retaining locks
on the records in the range.

The Table Lock protocol is simple to implement with a
very modest overhead. However, a major disadvantage of
the Table Lock protocol is its low concurrency as it locks
the whole table while it is initially accessing and locking
records, even when it may need to access very few records.
Other transactions that need to modify other parts of the
table would be blocked during this period. The concur-
rency limitations of the Table Lock protocol suggest that
we need smaller grained resources for our covering lock(s),
which leads us to introduce our Partition Lock protocol in
the next section.

4. LOCKING WITH PARTITIONS
In this section, we present our main locking protocol,

termed the partition lock protocol, for locking a range of
values R with a lock mode M . The main idea is to in-
troduce a new “logical” resource into the multi-granularity
locking hierarchy between table and record. We call this
new resource a partition. A partition can be considered as
a logical replacement for page resources where a partition

may include several pages and vice versa. Similar to tables
and in contrast to both pages and records, the TC has full
knowledge of the partitions of a given table as it is the TC
that does the partitioning. Thus, the TC can request to lock
a partition without having to contact the DC first.

4.1 The Partition Resource
Without loss of generality and for the simplicity of the

discussion, we assume that a table is pre-partitioned into a
set of N equal ranges based on its key domain. The number
N of partitions can be used as a database parameter that
achieves a trade-off between concurrency and locking over-
head. The smallest value of N is one where the whole table
is considered as the only partition resource. In this case,
the partition locking protocol degenerates to the table lock-
ing protocol described in Section 3.2. The largest possible
value for N is the cardinality of the key domain, though this
is usually impossible to support in practice as there would
then usually be many more partition resources than there
are records, which makes no sense. The TC can map a key
to its containing partition resource. Perhaps most simply, it
can divide the key domain into a number of equal size sub-
ranges, where each subrange serves as a partition resource.
We note that the locking protocol that will be described in
Section 4.2 is orthogonal to the way that the table is par-
titioned. More sophisticated techniques for partitioning a
table into a set of ranges to assign to partition resources
will be described in Section 4.3.

4.2 The Locking Protocol
The main idea of the partition locking protocol is that

the TC first maps the range R = [kl, ku] requested by a
query into the set of partition resources on which the TC
can request locks. The TC can request a lock on the parti-
tion resource prior to accessing the records included in the
partition resource. By first requesting a lock on a partition
resource, the TC obtains a cover in which it can talk safely
with the DC to discover the records inside this part of the
range. This is the same idea behind the table lock approach
described in Section 3.2 in which the TC obtained a table
lock as a cover to be able to safely access the records in the
requested range. The difference here is that we do this for
only a small partition rather than the whole table. In case
that the requested range R is included in only one partition,
this protocol ends up to be very similar to the table lock pro-
tocol. But the common case will be that N is not one, and
that it will require multiple partitions to cover the range.

When multiple partitions are required to cover a range,
we lock them one at a time as we access records sequentially
within R. We expect the common case to be that R and
the partition resources that cover it will frequently be only
a small part of the entire key range in the table. Thus
we expect that concurrency will commonly be much better
than the concurrency provided by the table lock protocol as
we only need to lock the partitions covering R rather than
the whole table. There are also additional opportunities to
improve the locking protocol performance by reducing the
number of locks required.

The TC distinguishes between two types of partition re-
sources with respect to a requested range R, boundary parti-
tions and internal partitions. A boundary partition is a par-
tition resource that includes either the start key, kl, or the
end key, ku, of the requested range R and hence, for which
the range R only partially overlaps the partition resource
and in particular, where the partition resource covers keys
that are not in R. An internal partition resource is com-
pletely included within the requested range R, and hence
all keys covered by an internal partition are in R. Consider-
ing the SERIALIZABLE isolation level as the most strict one,

our protocol treats boundary partition resources and internal

partition resources differently.

Boundary Partition: A boundary partition B is first
locked in the requested lock mode M . As we access
records in B, we lock them using record locking, as we
did using the table lock protocol. When we are finished
with the records of B, we demote the lock on B to the
appropriate intention lock mode, leaving the records
locked, usually until transaction end.

Internal Partition: An internal partition I is locked in
the requested lock mode M . We access the records of
I but do not lock these records. Rather, the M mode
lock on I is retained until end of transaction. Since
the entire set of records in I need to be locked, the
lock on I already exactly matches the range of records
we want to lock.

Intuitively, partition locking provides much higher con-
currency than table locking and can reduce the number of
record locks needed as well. There are, however, additional
potential complications with which we need to deal.

Preventing phantoms at the end points of the range.

When using key range locking, we need to ensure that
the keys for the records in a range provide protection
for an adjacent range. We do need to choose, however,
which range a key range lock protects, the range
between it and the next higher key, or the range
between it and the next lower key. Given that a range
search ordinarily returns with the first key that is in
the range, it is convenient to have a key range lock
on that key protect the range between it and the
preceding key. In this way, we guarantee that a key
range lock on the first key of the range will cover the
start of R that precedes this initial key. At the end of
the range, we need the DC to return to us not only
the keys of records in the range, but the first key past
the end of the range, so that we can use a key range
lock on that key to cover the part of R that follows
the last key.

Indicating the end of the partition. In the “likely”
case where the requested range R spans more than
one partition, the TC needs to know when the record
being accessed is within the next partition so that
it can proceed to lock the next partition prior to
accessing records whose keys are within it. One way
(among a number) of dealing with this is to submit
requests to the DC, each request being for a closed
range of records of the single partition resource. When
there are no more records within the partition, the
DC indicates this by providing an end record (or other
indication). At that point, the TC locks the next
partition resource and proceeds to request records
from the DC that are within the range covered by the
next partition.

Preventing phantoms between partitions. We need
our locks for the range R to be “seamless”, i.e.,
there is never a place in the range where a phantom
insertion can be made. To accomplish that, we need
to be careful about the interaction between boundary
partition B and the first internal partition I1. When
we partition R so as to request a sequence of ranges

from the DC, we need to place a key range lock on
the first key value in I1 before demoting the partition
lock on B. This prevents a second transaction from
inserting a record after the current last record of B
but below the boundary of I1.

Dealing with empty partitions. If any partition re-
source has no records from our range R, we need to
hold the lock on this partition resource as long as we
would need locks on the underlying records. For inter-
nal partitions, our locking protocol is unchanged. We
simply lock the partition as usual, whether empty or
populated with records. However, we must adapt our
protocol for empty end partitions where we normally
demote the partition resource lock to an intention lock
because we have taken out record locks. An empty
partition has no records for us to lock. Hence, for a
final boundary partition, we retain the partition lock,
treating an empty end partition like an internal par-
tition. For an initial boundary partition, we continue
to demote the partition lock to an intention lock, but
need to ensure that the first record in the range has a
key range lock to protect this early part of the range.

4.2.1 Pseudo Code
In this section, we present the pseudo code for the par-

tition locking protocol code for locking a range of values
R = [kl, ku] with lock mode M assuming the SERIALIZABLE

isolation level as the most restrictive isolation level where
phantoms are avoided. In general, the partition locking pro-
tocol goes through four main steps: (1) processing the first
boundary partition, (2) processing all internal partitions,
(3) processing the last boundary partition, and (4) prevent-
ing phantoms at the end of the range.

In the first step, the TC locates the first boundary parti-
tion resource B that includes the lower range boundary kl.
Then, Algorithm 1 gives the detailed pseudo code for locking
a boundary partition. The input to this part of the protocol
is the partition number to lock B, the requested lock mode
M , and the requested range R. Based on whether the re-
quested lock mode M is exclusive or shared, the TC locks
the boundary partition resource with either an SIX or S lock
mode, respectively. This is similar to the case of locking the
whole table in the Table lock protocol, however, we do it
here only for a partition resource. Once the TC has such an
appropriate lock for the partition resource, the TC keeps re-
questing the records from the DC one by one. The TC locks
each retrieved record with a key range lock that prevents
phantoms. If the DC returns null instead of the retrieved
record, this means that there are no more records in the DC
in the current partition. With this null value returned, the
TC knows that it needs to move to the next partition.

In the second step, the TC aims to process all internal
partitions. The TC goes through this step only if there is at
least one internal partition. Algorithm 2 gives the detailed
pseudo code for locking N consecutive internal partitions.
The input to this procedure is the first boundary partition
B, the number of internal partitions N , and the requested
lock mode M . This step goes through all the internal par-
titions and locks them one by one using the requested lock
mode M . For each locked internal partition, the TC reads
all the records from the DC without locking these records.
The only exception and complication in this step is for the
TC to lock the first record in the internal partitions with

Algorithm 1 Locking a Boundary Partition

1: Procedure ProcessBoundary (Partition B, Mode M ,
Range R)

2: if M is an exclusive lock (X) then
3: Obtain an SIX lock on B
4: else
5: Obtain an S lock on B
6: end if
7: r ← Read the first record in B that overlaps with R
8: if r = NULL then
9: return

10: end if
11: repeat
12: Lock r with key range lock
13: r ← Read next record in B that overlaps with R
14: until r = NULL
15: return

a key range mode and then demotes the lock on the first
boundary partition to an intentional lock. In this case, a
key range lock is needed on this retrieved record to pre-
vent phantoms between the last record in the first boundary
partition and the end of the first boundary partition. Re-
gardless of whether the first boundary partition is empty,
or R within this partition is empty, or not, this key range
lock will protect the range starting at the immediately ear-
lier key, regardless of where that key is. If there are records
within R that are in the boundary partition, this key will
then block access to the records between the last key of the
boundary partition and the first internal partition. The part
of the table that is blocked will be a smaller than would be
the case by retaining the partition lock except in the case
where the entire partition is empty.

In the third step, the TC locates the last boundary parti-
tion that includes the end boundary of the requested range
ku. If this partition is different from the first partition, i.e.,
the requested range R spans more than one partition re-
source, then the TC performs the same exact procedure it
did for the first boundary partition (Algorithm 1), i.e., lock-
ing the partition resource with either SIX or S mode, locking
the keys inside the partition resource with a key range mode,
and reports a flag that indicates whether this end range par-
tition is empty or not.

Finally, in the fourth step, the TC aims to find and lock
the first record after the requested range with a key range
lock. The objective is to prevent phantoms at the end of the
requested range R. This step would take place only if there
is at least one record in the last boundary partition, other-
wise, the TC would deal with this partition as an internal
one, i.e., there is no need to demote its lock, hence, there is
no need to look for the next key. In this step, the TC dis-
tinguishes between two cases: (a) The first record after the
requested range is located in the final partition. In this case,
the TC locks this record with a key range lock that covers
the end of the requested range R. Then, the TC demotes
the lock on the final partition to an intention mode lock.
(b) The first record after the requested range is not located
in the final partition. In this case, the TC does nothing as
it will retain the explicit lock on the last partition. This
lock already covers the end of the range R, and prevents
phantoms at the end of the range. It is important to note
that we could simply retain the partition lock in both cases,
and that would work fine. However, case (a) permits us to
provide more concurrency in the last boundary partition by

Algorithm 2 Locking Internal Partitions

1: Procedure ProcessInternalPartitions (Partition B,
Number N , Mode M)

2: FirstInternalRecord ← TRUE
3: for i =1 to N do
4: Lock partition B + i with lock mode M
5: r ← Read the first record from partition BL + i
6: if r 6= NULL AND FirstInernalRecord = TRUE then
7: Lock r with key range lock
8: Demote the lock on B to an intentional lock
9: FirstInternalRecord ← FALSE

10: end if
11: repeat
12: r ← Read next record from partition B + i
13: until r = NULL
14: end for

using key range locks that block access to only part of this
partition instead of all of it.

4.2.2 Example
Figure 2 gives a detailed example of the partition locking

protocol where a shard lock (S) is requested on a range of
values R = [kl, ku] under the SERIALIZABLE isolation level.
Figure 2a shows that the requested range includes five par-
tition resources; two boundary partitions and three internal

partitions. Figure 2b depicts the case of dealing with the
first boundary partition where we initially hold the requested
shared lock on the partitions resource, followed by reading
and locking all the records inside this range with key range
locking mode. A locked partition resource is presented by
bold line while a record that is read and locked is represented
by a black circle. As we are working in the SERIALIZABLE

isolation level, ranges between consecutive records are also
locked. Also, the range from the first record in the parti-
tion and the record before it, which is outside R, is locked
(depicted as bold line). Figure 2c depicts the case of deal-
ing with the first internal partition where we: (a) lock this
partition using a shared lock mode, (b) read and lock the
first record in this partition by the a key range lock mode
(depicted by a black circle and solid line between it and the
last record in the boundary partition), (c) demote the lock
on the boundary partition to an intent lock, and (d) read the
records inside the internal partitions without locking them
(depicted by gray circles).

Figure 2d depicts the case where (a) all internal ranges are
locked while reading their records, (b) we start to process
the last boundary partition by holding a shared lock over it.
Finally, Figure 2e gives the final locking result after process-
ing the last boundary partition where (a) The records inside
this partition are locked with a key range mode, (b) The
first record that is outside R is also locked with a key range
mode, and (c) the lock mode on the final partition resource
is demoted to an intent lock.

Figure 2f gives an example of the final result when there
are special case partitions. In particular, both the first
boundary partition and one of the internal partitions do not
contain any record from the requested range R. Also, the
final boundary partition does not include any records after
the requested range. For these three special cases, we can
notice that: (a) there is no difference in dealing with the
empty internal partition as it will be treated as if it is a
non-empty one, (b) the lock on the first empty boundary

partition is demoted to an intent lock, while the first record

in R is locked with a key range mode that covers all the
empty range of the first boundary partition, (c) the lock on
the final boundary partition is not demoted to an intent lock
as it does not include any record after the last record in R.

4.2.3 Discussion
We have implemented the partition locking protocol inside

Microsoft SQL Server Storage Engine. This requires that we
add the “partition” resource to the set of resources that can
be locked by a transaction. In the mean time, we did not
make any change in the locking modes, the locking compat-
ibility matrix, or the locking manager algorithms, i.e., we
use the same available locking modes, the compatibility ma-
trix between various locking modes still hold, and the way
that a transaction locks a resource or waits for a lock to be
released did not change. With that change, the partition

locking protocol can also be applied to the case of conven-
tional lock managers where everything is tightly integrated
within the storage engine. In general, the newly introduced
partition granule along with the partition protocol results in
much higher concurrency than conventional lock managers
where it provides a lockable resource whose size is between
a single record and the whole table.

4.3 Range Partitioning
In this section, we discuss how to partition a table into a

set of partition resources. This is an orthogonal issue from
the locking protocol itself as the locking protocol is applied
to any set of partitions. A table could be either partitioned
into a set of fixed or dynamic partitions as follows:

4.3.1 Fixed Partitioning
In this case, the whole space is divided into a fixed set of

partitions based on the record space domain. For example, if
the domain record key is from 1 to 1024, and we can accom-
modate 128 range resources, then all record keys between
1 and 128 lie on the first partition resource, records with
keys between 129 to 256 lie on the second partition resource
and so on. The fixed partitioning scheme has the advan-
tage of being simple and easy to implement with no over-
head. All is needed is a simple mapping function that maps
a record key to its corresponding partition source. However,
fixed partitioning may be very inefficient for skewed data
distributions. A way to compromise this skewed data is to
increase the number of partition resources, i.e., a partition
would have less number of keys, however, this would result
in maintaining more lock resources.

4.3.2 Dynamic Partitioning
The main idea is to avoid skewed data distributions by

adaptively changing the sizes of the partition resources so
that each partition has similar number of records. This can
be done in either a space-dependent or data-dependent way.
With space-dependent partitioning, the main idea is to start
by having only one partition resource that spans the whole
space domain. Then, once the number of entries exceeds a
certain number m, we split the partition resource into two
halves so that each half includes less than m entries. If it
ends up that all entries are on one half, we split this half into
another two equal halves recursively. Similarly, if two sibling
partition resources have a total of less than m entries, they
can be merged to one range resource. With data-dependent

partitioning, the main idea is to have the range resource

S Lock

(f) Example of empty boundary and internal partitions

(e) The final obtained locking resources

IS LockS LockS LockS LockIS Lock

(d) Locking all internal ranges while reading its records

(c) Locking the first internal partition and reading its records

(b) Locking the first partition resource and its records

(a) Boundary and Internal partition resources

Internal Partitions Boundary PartitionBoundary Partition

uklk uklk

uklk

uklk

S LockS LockS LockS LockIS Lock

ul k

klk

S LockIS Lock

k

S LockS LockS LockS LockIS Lock

u

Figure 2: Example of the partition locking protocol for SERIALIZABLE isolation level with S lock request.

boundaries determined by the current data records. Data-
dependent partitioning dynamically assigns the ranges and
their sizes based on the density of the key values so that all
records in the table are assigned almost evenly to partition
resources. This can be achieved by utilizing the histogram
information maintained by the query optimizer to evenly
distribute the key record values on a set of range resources.

In both cases, dynamic partitioning avoids the drawbacks
of fixed partitioning by tolerating data skewness where the
size of a partition resource is proportional to the number of
key records that are contained in this resource. However,
a major disadvantage in the dynamic partitioning methods
is the overhead of splitting and merging partition resources.
For example, consider a partition resource P that needs to
be split into two partitions P1 and P2. In this case, the
partition resource P will disappear from the lock manager
table along with its waiting queue. Then, all transactions
that either hold a lock on P or in the waiting list of locking
P need to be investigated to check if they need to hold a
lock on P1, P2, or both of them. The merging case is also
as complicated as the splitting case. For example, assume
a transaction T1 that holds a shared lock over resource P1

and another transaction T2 that holds an exclusive lock over
resource P2. In case that both resources are to be merged
together to a resource P , then either T1 or T2 can hold
a lock on P while the other transaction will be inserted
in P waiting list. To reduce the overhead of splitting and
merging, we can employ one of two techniques: (a) bulk a set
of required changes and do them at once, thus, amortizing
the cost of merging and splitting, or (2) restrict the splitting
and merging of range resources to only the ones that are not
locked by any transaction, where in this case, there will be
no overhead of splitting or merging.

Another disadvantage of data-dependent partitioning
scheme is that, unlike the case of space-dependent partition-

ing, there is no straightforward mapping function that can
be used by the TC to map a certain record r to its parti-
tion granular. Instead, the DC should explicitly pass to the
TC all boundaries for all partition resources. This results
in passing information between the two components which,
to some extent, violates the main objective of unbundling
transaction services.

4.4 Pages as Partitions
Many DBMSs already have a resource in the multi-

granularity hierarchy that is between a table and a record. It
is the page. A page is, indeed, a very good partiton resource,
as it typically covers anywhere from 20 to 100 records, and
pages form a disjoint partition of a table. One has to exer-
cise care when executing B-tree structure modification oper-
ations, as those can change the mapping between pages and
the records that they cover, though that should be man-
agable. Thus, in a database system with a unified storage
engine that has access to page information when locking
is done, using pages as the partitions in the protocols de-
scribed below works fine. In that case, our protocols, where
key range locks are used in boundary partitions, improve the
concurrency of traditional page based locking. In our split-
ting of database kernel into TC and DC, page information
is not available in the TC when it requests locks from the
lock manager. Hence, we cannot lock page based resources.

4.5 Our Prototype
In our implementation inside Microsoft SQL Server stor-

age engine, we opt to use the fixed partitioning method as it
is the simplest one to validate our ideas, and we cannot use
page based resources. Further research may be dedicated
to experimentally analyze the effect of other partitioning
methods. It is important to emphasize that our proposed
partition locking protocol is applicable regardless of the un-
derlying partitioning scheme.

Description

R Requested range for the interval [kl, ku]
NT Number of records in the table
NR Number of records in the requested range R

PR Number of partitions in R

tr Time to read a record from the DC
tl Time to lock a record by the TC
T Transaction execution time without the locking part
v Average number of lock attempts for validating

a record in the speculative visit protocol

Table 1: Used Symbols in Performance Analysis

5. PERFORMANCE ANALYSIS
In this section, we analyze the performance of our pro-

posed three locking protocols, speculative visit, table lock,
and partition lock protocols. As a base of comparison, we
will also include the conventional locking protocol, termed
the key lock protocol, with the understanding that this lock-
ing protocol is not feasible when locking is done by an un-
bundled transaction service. Our performance analysis will
be based on two main factors: (a) Concurrency control over-
head due to locking and reading the data in the requested
range, and (b) Loss of concurrency incurred by holding locks
on resources for some period of time.

Table 1 contains the symbols used in our analysis. The
number of records in the table is NT while the requested
range R has NR records and PR partitions. The time it takes
for the TC to read a record is tr and the time to lock a record
is tl. The transaction execution time not covered by reading
and locking the records in the requested range and which
we assume follows the locking activity is T . Finally, for the
speculative visit protocol, the average number of attempts
(visits) to read and lock a record is v. So the number of
failed attempts is v − 1.

5.1 Locking Overhead
The locking overhead is measured by the time it takes

from the transaction to acquire locks and read the data in
the requested range. Since all the four locking protocols will
need to have either an intent or explicit lock on the table T ,
we will not include this minor cost in our analysis.

Key Lock Protocol. In this conventional locking proto-
col, the TC needs time lock (tl) to lock each record
of the NR records in the requested range R. So, the
number of locks is NR and the locking overhead is
NR(tl + tr) as we also read the NR records.

Speculative Visit Protocol. In this protocol, the TC
needs time to read a record with a speculative visit
(tr), followed by time to lock this record (tl), followed
by time to read the same record again through a certi-
fication visit (tr). The TC needs to do this procedure,
on average, v times for each single record NR until the
certification visit validates the speculative visit. So,
the locking overhead is vNR(tl + 2tr)

Table Lock Protocol. This protocol will have the same
overhead as the conventional key locking protocol
where the TC reads and locks the NR records. So,
the locking overhead is NR(tl + tr).

Partition Lock Protocol. The locking overhead in this
protocol has three components: (a) The TC needs to
read all the NR records in the requested range, NRtr,
(b) The TC needs to lock all the internal and bound-

ary partitions, PR, in the requested range, PRtl, and
(c) The TC needs to lock all the records in the bound-

ary partitions that are contained within the requested
range R. On average, half of the records in a boundary

partition will be in R. For two boundary partitions, the
TC needs to lock, on average, the number of records
per partition, NR

PR
tl. So, the total number locking over-

head is: (PR + NR

PR
)tl + NRtr

Figure 3 gives the comparison between the four locking
protocols with respect to locking overhead. Unless men-
tioned otherwise, the number of records and of partitions
in the requested range, NR and PR, are set to 256 and 20,
respectively. The locking time tl is set equal to the reading
time tr as one time unit. This is mainly to penalize large
span locks held to end of transaction. The factor v for the
speculative visit protocol is set to 1.1, i.e., on average 10%
of the records will be locked twice before they are certified.

In Figure 3a, NR is varied from 2 to 2048 in a log scale.
The partition locking protocol is superior to the other pro-
tocols in our “average case” analysis. The conventional key
locking protocol has similar performance to that of the table
locking protocol while the speculative visit protocol exhibits
the worst performance. The main reason for the partition
locking protocol advantage is that it does not need to lock
all the records NR. Instead, it needs to only lock those
records in NR that lie in boundary partitions. On the other
hand, both key locking and table locking protocols need to
lock every record in NR. Finally, for the speculative visit
protocol, it always needs to read every record at least twice
(speculative and certification reads), so it must have worse
performance, even if every speculative visit is followed by
successful certification. And, occasionally, it needs to visit
and lock multiple times before certification succeeds.

Figure 3b gives the effect of increasing the number of par-
titions per range PR on the partition lock protocol. As other
locking protocols are not affected by PR, they are plotted
only for comparison. If the range includes only one parti-
tion, the partition locking protocol degenerates to the per-
formance of both the key and table locking protocols. The
speculative visit protocol is, as before, always the worst. In-
creasing the number of partitions PR first results in signifi-
cantly reducing the locking overhead as the partition locking
protocol needs only to lock the partition resources. In our
setting, having 15 partitions in the range gives the lowest
locking overhead. However, increasing PR past 15 results in
a very slight increase of the locking overhead as the increase
in number of partitions becomes larger than the reduction
in the number of records in the boundary partitions.

Figure 3c gives the effect of varying the number of visits
v in the speculative visit protocol from 1 to 2 compared
to other locking protocols. Even in the best case scenario
for the speculative visit protocol, i.e., v = 1, this protocol
still exhibits the worst performance. And its performance
dramatically worsens with the increase of v.

Finally, Figure 3d shows the effect of increasing the ratio
of reading time tr to locking time tl form 1 to 10. All the
locking protocols exhibit a similar linear increase in time
and, except for the speculative visit protocol, the percent
differences narrow as the locking overhead becomes a smaller
part of the overall time. However, the speculative visit pro-
tocol gets even worse trend as its need to read each record
at least twice becomes the dominant factor.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 2 8 32 128 512 2048

L
o
ck

in
g
 O

ve
rh

e
a
d

No. of records in R

Key
Speculative
Table
Partition

(a) NR

 200

 300

 400

 500

 600

 700

 800

 900

 1 10 20 30 40 50

L
o
ck

in
g
 O

ve
rh

e
a
d

No. of partitions in R

Key
Speculative
Table
Partition

(b) PR

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1 1.2 1.4 1.6 1.8 2

L
o
ck

in
g
 O

ve
rh

e
a
d

v

Key
Speculative
Table
Partition

(c) v

 0

 1000

 2000

 3000

 4000

 5000

 6000

 1 2 3 4 5 6 7 8 9 10

L
o
ck

in
g
 O

ve
rh

e
a
d

Ratio of reading to locking time

Key
Speculative
Table
Partition

(d) tr

Figure 3: Locking Overhead

5.2 Loss of Concurrency
To measure the loss of concurrency for each locking proto-

col, we multiply the fraction of the table that is locked, and
hence is blocked from being accessed by other transactions
by the time period in which it is locked. This represents
the hold time for locks integrated over time. This is our
proxy for lost concurrency. We understand that it is not the
same, but it does determine lost concurrency. To perform
our analysis, we need to consider the total execution time
for the underlying transaction. This consists of the time
spent doing the locking plus the time T introduced before.
The time T would penalize any protocol that retained large
grained locks until end of transaction. None of our proto-
cols retain those large grained locks. Indeed, they all hold
exactly the locks that they need once the locking activity is
completed. So this part of the lost concurrency is constant
for all protocols and is NR

NT
(T). We include this as part of

the lost concurrency for each of the protocols below.

Key Lock Protocol. In the conventional protocol, the TC
only locks the part of the table that it needs. The
time to perform this locking is NR(tl + tr). Only the
fraction of the table NR/NT will be locked, and on
average, over the time in which locking is being done,
only half these records will be locked. So, the total loss
of concurrency will be .5NR

NT
(NR(tl + tr)) + NR

NT
(T).

Speculative Visit Protocol. Similar to conventional
locking, the speculative visit protocol needs to lock
only the range it is interested in. And again, only
the fraction of the table NR/NT will be locked,
and on average over the time in which locking is
being done, only half these records will be locked.
As a result, the total loss of concurrency will be
.5NR

NT
(vNR(tl + 2tr)) + NR

NT
(T).

Table Lock Protocol. The table lock protocol locks the
entire table, while it reads and acquires locks on the
records inside the requested range. This time is the
locking overhead time. Thus, the loss of concurrency
is NT

NT
(NR(tl + tr) + NR

NT
T or NR(tl + tr) + NR

NT
T .

Partition Lock Protocol. Even though this protocol uses
partition locks during the locking phase, it remains
the case that, on average, during the period when
locks are being acquired, only about half of the range
is locked. This protocol’s superior concurrency is
mostly due to the shortening of the time required to
do this locking. As partition locks are taken, how-
ever, before the records are accessed within the parti-
tion, we have a sequence of partition locks that lock
1/PR, ...i/PR, ...PR/PR of the range. Summing and di-
viding by PR (the number of steps) gives us the average

part of the range that is locked as .5 (PR+1)
PR

. Thus, the

TC Overhead Loss of concurrency

Key × NR(tl+tr) .5
NR

NT
(NR(tl+tr)) +

NR

NT
(T)

Speculative
√

vNR(tl+2tr) .5
NR

NT
(vNR(tl+2tr)) +

NR

NT
(T)

Table
√

NR(tl+tr) NR(tl+tr)+
NR

NT
T

Partition
√

NRtr+ .5
(PR+1)

PR

NR

NT
((PR +

NR

PR
)tl

(PR +
NR

PR
)tl + NRtr) +

NR

NT
(T)

Table 2: Performance Analysis

lost concurrency for this protocol is .5 (PR+1)
PR

NR

NT
((PR+

NR

PR
)tl + NRtr) + NR

NT
(T).

Figures 4 gives the comparison between the four locking
protocols with respect to loss of concurrency. Unless men-
tioned otherwise, the number of records and number of par-
titions in the requested range, NR and PR, are set to 256
and 20, respectively. Also, the ratio of the number of records
in range to the table, NR/NT , is set to 0.05. The locking
time tl is set equal to the reading time tr as one time unit
while the transaction execution time that does not include
reading and locking, T , is set to 128 time units. Finally, the
factor v for the speculative visit protocol is set to 1.1.

In Figure 4a, NR/NT is varied from 0.001 to 1 in a log
scale. The table lock protocol has an extremely bad perfor-
mance in all cases as it simply locks the whole table. In the
extreme case where the requested range covers the whole ta-
ble, the partition locking protocol is still better than the key
locking and speculative visit protocols. This is basically due
to the low overhead time required by partition locking. So,
even if partition locking will lock some unrequested records
in boundary partitions, it will does so only for a very short
period of time. Due to the extreme bad performance for the
table locking protocol, we will not include the table locking
protocol in further comparisons.

Figures 4b-d give similar performance trend to Figures 3a-
c, respectively. However, a surprising result is that the par-
tition locking protocol consistently gives better concurrency
than both the conventional key locking and speculative visit
protocols. This is surprising as the partition locking protocol
needs to lock the boundary partitions which results in lock-
ing extra records that are not covered by the requested range
while both the conventional key locking and speculative visit
protocols lock only the records inside the requested range.
However, locking extra records is compromised by the parti-
tion locking protocol by holding the locks over these records
and the records inside the requested range for a very short
time period as it has the lowest locking overhead. So, par-
tition locking protocol locks more records for a shorter time
periods while both key locking and speculative visit proto-
cols lock less records for longer time periods. As a total,
it ends up that the partition locking protocol gives better

 0

 100

 200

 300

 400

 500

 600

 700

 0.001 0.004 0.016 0.064 0.256 1

L
o
ss

 o
f
C

o
n
cu

rr
e
n
cy

Ratio of the range R to the table T

Key
Speculative
Table
Partition

(a) NR/NT

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 8 32 128 512 2048

L
o
ss

 o
f
C

o
n
cu

rr
e
n
cy

No. of records in R

Key
Speculative
Partition

(b) NR

 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34

 1 10 20 30 40 50

L
o
ss

 o
f
C

o
n
cu

rr
e
n
cy

No. of partitions in R

Key
Speculative

Partition

(c) PR

 10

 15

 20

 25

 30

 35

 40

 45

 1 1.2 1.4 1.6 1.8 2

L
o
ss

 o
f
C

o
n
cu

rr
e
n
cy

v

Key
Speculative
Partition

(d) v

Figure 4: Loss of Concurrency

concurrency than all other locking protocols.

5.3 Worst Case Analysis
In this section, we discuss some worst-case scenarios for

the proposed locking protocols. The worst case scenario
for the speculative visit protocol, as depicted by Figures 3c
and 4d, can go linearly was the increase of v. On the other
side, the table lock protocol does not suffer from special worst
case performance as in all cases, we need to lock the whole
table. The performance may go worse only if the number of
the records that need to be locked is increased.

The partition locking protocol could have several scenarios
for worst case performance: (a) The entire requested range
R is in only one partition resource. This case is depicted as
the first point in Figures 3b and 4c. In this case, the locking
overhead of partition locking is similar to that of the table
locking and key locking, yet still much better than that of
the speculative visit. For concurrency, partition locking will
be worse than key locking and speculative visit protocols,
as on average half the partition resource is locked unneces-
sarily. (b) The entire range R is empty. In this case, the
partition locking protocol will unnecessarily lock the parti-
tion resources in R while there are no records there. This
would be in the advantage of speculative visit and key lock
protocols as they do not need to lock any records in the
entire range. However, the difference is not really great as
can be seen by the first point in Figure 4a which gives the
case that the number of records in the range is 0.001 of the
number of records in the table.

5.4 Discussion
Table 2 summarizes the performance analysis for the four

locking protocols. The second column in the table has a
check mark (

√
) only for the locking protocols that are feasi-

ble for the unbundled transaction services environment. We
can conclude that: (a) The table lock protocol is not prac-
tical as it encounters extremes loss of concurrency, (b) The
speculative visit protocol is also not practical due to its very
bad performance in the locking overhead, which leads to
bad performance in terms of loss of concurrency, (c) Even if
we disregard the fact that the conventional locking protocol
is not feasible to our underlying environment of unbundled
transaction services, it still provides worse performance than
our proposed partition locking protocol. This indicates that
our proposed partition locking protocol is not only superior
than the table lock and speculative visit protocols for the
case of unbundled transactions services, but it also results
in better performance than the conventional key locking pro-
tocol for conventional environments.

6. CONCLUSION
This paper presented three locking protocols for lock-

ing key ranges in unbundled transaction services where the
transaction services are partitioned to a transaction compo-
nent (TC) and a data component (DC). The first two proto-
cols, speculative visit and table lock, utilize existing lockable
resources. The third protocol, partition locking, introduces
a new lockable resource in the locking hierarchy, a partition

resource, that lies between the key and table in the locking
hierarchy where the TC has a full knowledge of the parti-
tion resource. Performance analysis shows that the parti-
tion locking protocol has lower locking overhead and higher
concurrency than other protocols. We also compared the
partition locking protocols with the conventional key lock-
ing protocol, though it cannot be applied to unbundled ser-
vices, and showed that partition locking has lower overhead
and better concurrency. This shows that partition locking
protocol is also suitable for conventional locking managers.

7. REFERENCES
[1] P. A. Bernstein, V. Hadzilacos, and N. Goodman.

Concurrency Control and Recovery in Database Systems.
Addison-Wesley, 1987.

[2] P. A. Bernstein and E. Newcomer. Principles of
Transaction Processing: For the Systems Professional.
Morgan Kaufmann, 1997.

[3] R. F. Chong, X. Wang, M. Dang, and D. R. Snow.
Understanding DB2: Learning Visually with Examples.
IBM Press, 2007.

[4] K. Delaney. Inside Microsoft SQL Server 2005: The
Storage Engine. Microsoft Press, 2006.

[5] K. P. Eswaran, J. Gray, R. A. Lorie, and I. L. Traiger. The
Notions of Consistency and Predicate Locks in a Database
System. Commun. of the ACM, 19(11):624–633, 1976.

[6] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database
Systems: The Complete Book. Prentice Hall, 2002.

[7] J. Gray. et al. The Recovery Manager of the System R
Database Manager. ACM Computing Surveys,
13(2):223–243, 1981.

[8] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[9] R. Greenwald, R. Stackowiak, and J. Stern. Oracle
Essentials: Oracle Database 10g. O’Reilly, 2004.

[10] D. B. Lomet. Key Range Locking Strategies for Improved
Concurrency. In VLDB, pages 655–664, 1993.

[11] D. B. Lomet, A. Fekete, G. Weikum, and M. Zwiling.
Unbundling Transaction Services in the Cloud. In CIDR,
2009.

[12] C. Mohan. ARIES/KVL: A Key-Value Locking Method for
Concurrency Control of Multiaction Transactions
Operating on B-Tree Indexes. In VLDB, 1990.

[13] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, 2003.

