Sort vs. Hash Revisited: Fast

Join Implementation on

Modern Multi-Core CPUs

Changkyu Kim?
Tim Kaldewey~*
Victor W. Leet

Contact: changkyu

Eric Sedlar+
Anthony D. Nguyenf
Nadathur Satish'

Jatin Chhuganit
Andrea Di Blas*
Pradeep Dubey’

.kim@intel.com

TThroughput Computing Lab, Intel Corporation

*Special Projects Group,

ABSTRACT

Join is an important database operation. As computer aathies
evolve, the best join algorithm may change hand. This paper r
examines two popular join algorithms — hash join and sontgme
join — to determine if the latest computer architecture deeshift

the tide that has favored hash join for many years. For a fair-c
parison, we implemented the most optimized parallel versib
both algorithms on the latest Intel Core i7 platform. Botipiei
mentations scale well with the number of cores in the systedh a
take advantages of latest processor features for perf@enadur
hash-based implementation achieves more than 100M tuples p
second which is 17X faster than the best reported perforenanc
CPUs and 8X faster than that reported for GPUs. Moreover, the
performance of our hash join implementation is consistesatr o

a wide range of input data sizes from 64K to 128M tuples and
is not affected by data skew. We compare this implementation
to our highly optimized sort-based implementation thatieds
47M to 80M tuples per second. We developed analytical mddels
study how both algorithms would scale with upcoming prooess
architecture trends. Our analysis projects that curregiti@ctural
trends of wider SIMD, more cores, and smaller memory banttwid
per core imply better scalability potential for sort-mejgi@. Con-
sequently, sort-merge join is likely to outperform hasimjon up-
coming chip multiprocessors. In summary, we offer multicon-
plementations of hash join and sort-merge join which caestsy
outperform all previously reported results. We furtherctade that
the tide that favors the hash join algorithm has not changédoyt

the change is just around the corner.

1. INTRODUCTION

Join is a key operation in relational databases that fatglt the
combination of two relations based on a common key. Join is an
expensive operation and an efficient implementation wifiave
the performance of many database queries. There are two aomm
join algorithms: sort-merge join and hash join. The debater o

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct corialeadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0@/

Oracle Corporation

which is the best join algorithm has been going on for decades
Currently, for in-memory database operations, the hashglyo-
rithm has been shown to outperform sort-merge join in masgsa

Today's commaodity hardware already provides large degoées
parallelism, with multiple cores on a single chip, multipkrdware
threads on each core (SMT) and vector instructions (SIM2y-op
ating on 128-bit vectors whose capability will increasehia hear
future. Coupled with growing compute density of chip muibip
cessors (CMP) and memory bandwidth challenges, it is nat de
hash join will continue to ourperform sort-merge join. lnstipa-
per, we re-examine both algorithms under the context of Civ® t
offers thread-level parallelism (TLP), data-level pagtidim (DLP),
large on-die caches, and high memory bandwidth.

For a fair comparison, we optimize the implementations ahbo
algorithms for the latest multi-core platform. Our haslsdxhim-
plemenation can join 100 million tuples per second on a 3.2GH
quad-core Intel Core i7 965 platform which is faster than esy
ported CPU implemenation thus far. We implemented sorgmer
join algorithm by exploiting all salient features of CMP kuas
TLP, DLP, blocking for on-die caches, and utilizing high namn
bandwidth judiciously. Moreover, our implementations @lerant
of data skew without sacrificing performance.

In our study, we observe a number of interesting featuresiof |
implementations. First, both join algorithms benefit gye&iom
multi-threading. Second, sort-merge join benefits grebyiyex-
ploiting SIMD architecture offered by today’s processts.derfor-
mance will continue to improve with the trend of wider SIMDL[2
34]. Based on our analytical model, we project that sortgagoin
will surpass hash join with 512-bit SIMD. For hash join to realse
of SIMD execution, we believe that hardware support for effit
scatter and atomic vector operations are necessary (B&0tid-i-
nally, by efficiently managing memory bandwidth usage, wash
that both hash join and sort-merge join are compute bounded o
today’s CMP system. However, our analytical model shows tha
hash join demands at a minimum 1.5X more memory bandwidth
than sort merge join. If the gap between compute and bandwidt
continues to grow for the future computer systems, the merge
join will be more efficient than hash join.

Our contributions include: first, we implement the most éfi¢
hash join and sort-merge join on the latest computer platfdrhe
performance of hash join is 17X faster than the best puldistfeU
numbers and 8X faster than that reported for GPUs [18]. Skcon
our join performance is constant for a wide range of inpuésiz
and data skews. Third, we compare the performance of sagene
and hash join for current architectures, and conclude thstifjoin

is superior in performance. Fourth, by constructing an ditaill the parallel nature of these devices with associated highpate
model for both hash join and sort-merge join, we concludéfira density and bandwidth and show significant performanceflisne

ture architectural trends towards increasing SIMD widtd &m- (from 2-7X on the GPU and 8X on Cell) over optimized CPU-based
ited per-core memory bandwidth will favor sort-merge joarsus counterparts.
hash join. Current trends in general purpose CPUs have also been in the

The rest of the paper is organized as follows: Section 2 digesi direction of increasing parallelism, both in terms of thenfer of
related work. Section 3 examines modern computer architest cores on a chip and with respect to the SIMD width on each core.
and their implications on the join performance. Sectionespnts Chip multiprocessors are different from conventional iputtces-
our hash join algorithm and the considerations for paiafiébn. sor systems in that inter-thread communication is muclefasith
Section 5 describes our sort-merge join implementation taed shared on-chip caches [17] and the cost for thread synctaton
considerations for parallelization. Section 6 preserggésults on and atomic operations is much lower. Cieslewicz et al. [@lneixe

the two join implementations. Section 7 discusses ardhiteém- aggregation operations on 8-core chip multiprocessorseaphbit
provements that are beneficial to both join algorithms asdugises thread-level parallelism (TLP) and the shared on-chip eador
future architecture trends that would influence the pertoroe of high performance aggregation. Zhou et al. [39] implemenbus
hash join and sort-merge join. Section 8 concludes. database operations to exploit data-level parallelismRPwith
SIMD instructions. In this work, we show that by efficiently-e
2. RELATED WORK ploiting the capabilities of modern CPUs, we can obtainificant

performance advantages over previous join implementation

Sort-merge join is highly dependent on a good sort implemen-
tation. Quicksort is one of the fastest algorithms in p@gtibut
it is unclear whether it can be mapped efficiently to the SIMD a
chitecture. In contrast, bitonic sort [2] uses a sortinguoek that
predefines all comparisons without unpredictable branahdper-
mits multiple comparisons in the same cycle. These chaisiits
make it well suited for SIMD processors. Bitonic sort hasdisen
implemented on GPUs [16, 13, 32] since it mapped well to tga hi
compute density and bandwidth of GPUs. Chhugani et al. [@ivsh
an efficient implementation of a merge sort algorithm by eitpl
ing both TLP and DLP on recent multi-core processors. Our pa-
per adopts the fastest CPU sorting implementation by Chiwaga
al. [7] and extends it to sort tuples afdy, rid).

With regards to the choice of the join algorithm, Graefe gflal]
compare sort-merge join and hash-join and recommend thht bo
algorithms be included in a DBMS and be chosen by a query opti-
mizer based on the input data. The hash join algorithm is@ralat
choice when the size of two relations differ markedly. Thésoa
show that data skew hurts the performance of hash join; they t
recommend sort-merge join in the presence of significant ske
the input data. Our paper revisits this comparison of botjo-al
rithms focusing on in-memory join operations. Our hash jair
plementation is not affected by data skew and is optimizedhfe
modern multi-core CPUs.

Over the past few decades, significant efforts have been made
to develop efficient join algorithms. Among the algorithms- d
veloped, sort-merge join and hash join algorithms are twatmo
popular algorithms for computing the equi-join of two réas.
The sort-merge join algorithm [3] was dominantly used iryegs-
lational database systems. Later, the hash join algoritboarine
popular and was shown to outperform sort merge join in many si
uations. The Grace hash join [23] and the hybrid hash joir} [38
algorithms were first proposed to overcome the disk /0 czadh
of general hash-based join algorithms. As the capacity ahma
memories increased over the years, researchers have doonse
main-memory join operations [35, 5, 27]. Shatdal et al. [3&]-
pose a cache partitioning algorithm, where they partitf@ iash
table to fit in cache memory so as to reduce the latency of ac-
cess to the hash table. Manegold et al. [27, 28] observe lieat t
partitioning stage itself incurs a lot of TLB and cache misaad
becomes the performance bottleneck when the size of netatto
too large and there are too many partitions required for éadit
in cache. They propose a radix-clustering algorithm thasfithe
number of partitions based on the number of TLB entries amd pe
forms a partial radix sorting. When the total number of pizris
is greater than some fixed number, they perform multi-pass pa
titioning. Our implementation also relies on a similar mplss
partitioning scheme. In contrast to algorithms based oheaar-
titioning, Chen et al. [6] argue that the trend towards corent
databases will create more cache conflicts, thus reducengftac-
tiveness of caches. Instead of exploiting caches, theyosmio 3. JOIN FOR MODERN PROCESSORS
use software prefetch schemes to hide the long latency esaec The performance of computer systems has improved steadily
ing hash tables. However, as memory bandwidth becomes an im-over the years, mainly from advances in semiconductor naaauf
portant consideration for performance, partitioningegzhschemes turing and processor architecture. In this section, we @idm-
that attempt to maintain the working set in cache will sttain ine how the architectural improvements have impacted thi@pe
an advantage. In this work, we use a partitioning-basednsehe mance of the join operation.
reduce memory bandwidth use. .

While the above join implementations are based on sequentia 3.1 Main Memory Databases

algorithms, there has been considerable research onglgratti- With the increase in capacity of main memory, a large num-
tioning [9] and join algorithms [10, 26]. One key issue in gl ber of database tables reside completely in main memoryi- Typ
joins is to achieve good load-balancing, especially whera dae cal databases consist of tables with numerous columns,eaith

skewed. Different schemes to handle data skew in paraliles jo column having different width (in bytes). User queries parfing
have been proposed for both sort-merge join and hash jom alg join on more than two such tables are decomposed into painais

rithms [20, 37, 36]. Unlike prior algorithms, our implematibn ble join operations. Performing join on the original tabkesot an
does not require an extra tuning and scheduling phase tessldr efficient utilization of the memory bandwidth and compuwiatiand
the problem of data skew. therefore the tables are stored using 2 colurkag,andrid, with
Recently, researchers have explored new architecturegprove key being the join key, andid storing the address of the tuple [5].
join performance. He at al. [18] present GPU-based impleaien For main-memory databases, the number of entries in a table i
tions of both sort-merge join and hash-join. Gedik et al] [d&i- typically less than the range of 32-bit numbers3j2 and hence

mize join code for the Cell processors. Both papers try tdaéxp rid can be represented using 32 bits. Althoughkthg can be of

any variable width, since the number of records is less ti#8n 2
the number oflistinct keys cannot be more thar®2, and should
also be represented using 32 bits. Of course, representiag-a
able lengttkey using 32 bits and without changing the information
content is computationally hard; schemes like key-prefiy ghd
32-hit XOR and shift hash function [6] have been used to =TE
keys using 32 bits.

Therefore, we focus, analyze and provide results for tatmes
sisting of32-bit key and 32-bit rid. We propose our join compu-
tation pipeline to include a prologue phase that conversrthuts
to the aforementioned representation, and an epilogueofhert
ates on the generated output, and removes the false pasisivis
while gathering the actual keys.

3.2 Optimizing for Memory Subsystem

Join is a memory intensive operation and consequentlyestjr

affected by the performance of memory subsystem. As compute

performance improves at a much faster rate than memory subsy
tem performance, memory access latency continues to woreen
address this performance gap, a number of architecturairésa
have been devised to improve average memory access latency.
Cache: A cache is a module of small but fast SRAM cells
that provides low latency accesses to recently used dataused
to bridge the performance gap between the processor anddine m
memory. Not only caches can reduce memory access lateergy, th
serve as memory bandwidth amplifiers by filtering out extiemem-
ory requests. Bandwidth between processor cores and ciaabres
ders of magnitude higher than external memory bandwidtlusTh
blocking data into caches is critical for data intensiverapiens
such as join.
TLB: Virtual memory is developed to alleviate programmers
from having to deal with memory management. It allows a pogr
to use memory that is larger than the amount of physical mgmor

3.3 Optimizing for TLP

The number of cores and thread contexts will continue to gnow
future processors. To obtain performance from such aithite,
applications should be threaded to exploit thread-levedlfgism
(TLP). For best performance, data accessed by threads mpstrb
titioned to minimize concurrent updates to shared datasires.

3.4 Optimizing for DLP

Single-Instruction-Multiple-Data (SIMD) execution is affec-
tive way to increase compute density by performing the sgmee-o
ation on multiple data simultaneously. A 128-bit wide SIM&(.
SSE) is common in processors today. Future processorsavid h
256-bit or wider SIMD supports [21, 34]. SIMD execution rges
contiguous data in registers or in memory. If data accessesa
contiguous, gather and scatter overheads are incurredh@nis-
sue with SIMD execution is the requirement of fixed width data
structures. In today’s databases, tuples are often cosgmtesith
light compression schemes such as prefix compressiontinesinl
variable length tuples. Use of SIMD instructions causessibe of
the data to increase by a factor of 2x to 10x due to decomressi

4. HASH JOIN

As explained in Section 3.1, we focus on equi-join queries on
two tables with each tuple consisting of two fieldey, rid), each
being a 32-bit number.

Q: SELECT ... FROM R, S WHERE R.key = S.key

In addition, the tuples completely reside in main memoryr Fo
the remainder of the paper, we use the following notation:
A& : Number of tuples in outer relatioR),

A’s : Number of tuples in inner relatiors).
7 : Number of hardware threads (including SMT).
% : SIMD width.

in the system. However, every memory access must go through ¢ : Cache size (L2) in bytes.

a virtual-to-physical address translation that often ithi critical
path of memory access. To improve translation speed, datars
look aside buffer (TLB) is used to cache virtual-to-physitans-
lation of most frequently accessed pages. Ideally, the eurnb

2 : Size of 1st level TLB (in number of entries).

The basic idea behind a hash join implementation is to cr@ate
hash table with keys of the inner relatio®),(and reorder its tu-

TLB entries should match the number of pages touched by an ap-ples. This partitioning phase is followed by the actual johase,

plication. With memory size in the Gigabyte range, the nundfe
TLB entries would be in the thousands. However, to make {rans
lation fast, TLB is typically designed as either a fully asistive

or highly associative cache. A TLB size greater than a aesiie
(e.g., 64) is very complex and consumes a lot of power. Rgwent
cessors use multiple levels of TLBs with the lowest levelhiag
the most frequent use pages.

Prefetch: Another mechanism that has been employed to re-
duce the memory access latency is prefetches. Modern parses
often include hardware prefetchers that track memory acpat
terns and automatically prefetch data into caches [11]. évew
prefetchers only work well when there is a regular acces®ipat
to begin with. For the join operation, the memory accessepatt
is fairly random that reduces much of the benefit of the hardwa
prefetcher.

Processor-Memory Bandwidth: Besides memory access la-
tency, memory bandwidth is another critical component érttem-
ory subsystem. Over the years, improvements to increasg- ban
wdith include faster data transfer rate and wider integacBe-
spite these improvements, memory bandwidth still growsnatieh
lower rate than transistor count [33]. Chip-multiprocessexacer-

by iterating through the tuples ik, and for each key — searching
for matching keys in the hash table, and appending the nmagchi
tuples froms to the output table. The expected O(1) search cost of
hash tables makes this an attractive option for databadernnen-
tations. However, with increasing number of entries in Hidds,
this approach suffers from following performance limiterscur-
rent CPU architectures:

Size of hash table:In order to avoid wasteful comparisons dur-
ing join, it is imperative to avoid collisions during hastolkups.
Theoretically, this requires a hash table with size arawudtimes
larger than the number of input elements, or the cardinalfithe
input keys (if known a priori). We also need a hash function be
longing to the class of strongly 2-universal functions [30]

A fixed (small) number of TLB entries: With large table sizes,
it is possible to access regions of memory whose page emtries
not cached in the TLB — thereby incurring TLB misses, and gdar
increase in latency. Therefore, it is critical to performmuey ac-
cesses in an order that avoids significant TLB misses — even fo
large input sizes.

Duplicate key’s in S : Each duplicate key necessarily leads to a

bate the bandwidth problem as compute grows faster than-band collision in the hash table. Both direct chaining and opetiresis-

width.

ing methods [25] lead to poor cache behavior leading to aszd

Join

Sy

Partitions of S

Relation R Partitions of R Relation S

Figure 1: Partitioning relations R and S to speedup the hash
join operation

memory latency. Array Hashes [1] lead to increased memany co
sumption and do not scale with multiple cores.

Having described the potential performance bottleneckaow
describe our hash join implementation that addresses tbases,
along with a corresponding analytical performance modais 15
followed by the detailed algorithm description, and itseeion to
exploit the multiple cores and the 128-bit SIMD (SSE).

4.1 Algorithm Overview

To overcome the dependence on memory latency and memory
bandwidth, we need tpartition the input tablé into smaller dis-
joint tables (referred to as sub-tables), such that eactialb can
reside in cache. This is followed by the actual join betwesn t
corresponding sub-tables in the two relations. We now destie
two phases in detail:

4.1.1 Partitioning Phase

Our partitioning phase is based on the radix-cluster algori
proposed by Manegold et al. [28]. We partition the data based
the rightmosts bits of the two input tables to obtairf Zub-tables,
denoted byR1, ..,Rys andsy, .., Sy (Figure 1). Note that we now
need to perform2 independent join operations — betwegmands;

Vi 1..2%. The parametes is chosen in a way that the average size
of the resultant sub-tables in the inner relatiog(2%) fits in the

L2 cache. Furthermore, in order to avoid TLB misses, we do not
want to have more than open pages at any point of time, where

is the size of the 1st level TLB. In practicep pages seem to work
well when backed up by the next level TLB. However, having enor
than 2r pages seems to expose the TLB miss latency, affecting the
run-time performance on CPUs. Hence, theximum number of
sub-tables that can be generated at any one point of timeeis fix
ber’ (= 27).

Since we wish to partition the table intd Zub-tables, we per-
form ahierarchical partitioning, with each level subdividing a given
table into’ disjoint sub-tables. We start with the input table, and
subdivide it intor’ sub-tables. Each of these sub-tables is further
subdivided intor’ sub-tables to obtain a total af’? sub-tables.
This operation is carried out until the total number of sabks
equals Z. Atotal of [3 / log(#’)] levels are required.

Forlevel() < 1 ...[3 /log(?’)]:
Step P1:lterate over the tuples of the table and build a histogram

(Hist), with the 3" entry storing the number of input keys that
hash to index. Note that the hash function used simply considers

1The terms table and relation are used interchangeablyghouu
the paper.
2Unless otherwise stated, log refers to logarithm with bageg).

log(?') bits of the key, i.e., bit positiond4og(#’) .. I*log(®’) +
log(#’/2)] from the right to compute the hash index.

Step P2:Perform the prefix sum of the histograrigt) to com-
pute the starting addresses of the elements mapping tosheae
tive indices of the histogram. For example, after computimg
prefix sum,Hist[j] stores the address where the first tuple from
the table whose key maps to indgxeeds to be scattered to.

Step P3: Reorder the tuples of the table by iterating over them,
and scattering a tuple to the address stored at the cormisggon
hash location. The address at the corresponding locatimris-
mented by the size of the tuple to correctly reflect the scatle
dress for the next tuple that maps to that index.

We perform the above three steps for each level of subdivisio
for each of the sub-tables. Note that the final size of eacttahlle
depends on the distribution of they’s in the relation. Further-
more, we read each tuple twice (once during Step P1 and later d
ing step P3). This helps in computing the starting addressdoh
sub-table within a pre-allocated memory chunk and avoilde ai-
ing separate buffers for each sub-table and maintaining.th&e
later show that the partitioning phase is compute bound orect
CPUs, and not affected by the two trips to main memory.

We now describe the analytical model — 1) the amount of data
that needs to be accessed from/to the main memory and 2)iive nu
ber of operations that need to be executed — for the paritiiipn
phase. We assume that the input table is too big to fit intoahbe
Also, since the histogram fits in the cache, the reads/wfrioes/to
the histogram are not dependent on the memory bandwidth. For
each tuple, Step P1 reads 8 bytes and Step P3 reads 8 bytes and
writes 8 bytes (scattered tuple). Note that the scatteré wr
Step P3 causes the cache subsystem to first bring in the daehe |
of the destination into the cache before the write is peréatnSo,
this scattered write indirectly reads 8 bytes into the caittthen
overwrite that location without using it. Hence, a total 6fldytes
are read, and 8 bytes are written in Step P3. In short, a tbd o
bytes are readand8 bytes are written per tuple during the parti-
tioning phase. Note that both the reads and writes are peefin
a sequential fashion, hence the bandwidth is effectivelized.

To compute the number of operations, let gggt denote the
cost of hash computation on the key as well as loading inpiat da
During Step P1, we compute the hash value and also increment
the histogram index (effectively loading, adding one, atutiisg
back). Let coser denote the cost of incrementing the histogram
index. Furthermore, the counter is incremented and cordpare
check for the end of the table. Let cgst denote the cost of this
epilogue operation. We denote gesas the number of operations
executedper tuple during the execution of P1. Hence,

COSb1 = COShash + COSincr + COSkpi (per tuple).

Step P2 operates on the histogram, and for each entry, reads i
modifies it and writes it back. The cost is the same aspsThis
step has the same epilogue operations to obtain a resultzogie,
operationger hash entry.

COShp = COS{ncr + COSEp; (per hash entry).

Step P3 again computes the hash index, increments it, atd sca
ters the input tuple to its permuted location. Let the costiiting
be cosirite per tuple. Hence,

COSh3 = COShagh + COSfncr + COSlyrite + COSEpil (Per tuple).

We denote the cost of partitioning for each tuple (for everel)

as CoStartition. Note that we partition botR ands tables into the
same number of sub-tables using the above algorithm befove m
ing to the join phase, described next.

4.1.2 Join Phase

The join phase performs®2independent joins — one for each
partition generated in the partitioning phase. Reands; denote
the two relations that are being joined in one such partigmaag,
anda(, be the number of tuples in the two relations respectively.
We againbuild a histogram using a hash fuction frand reorder
the tuples to obtaiis]. The histogram together wit${ comprises
the hash table. The size of the histogram is chosen diffigremd
we will derive it at the end of the subsection. In the meangyhile
refer to the size of the histogram ag;st. We perform the 3 steps
(P1, P2 and P3) described above, with a different hash fumcti
Note that after reordering the tuplessn all the tuples with keys
that map to the same hash index are stored contiguously in

The build phase is followed by thgrobe phase, where we iterate
over the tuples df;, and hash each key, and go over the correspond-
ing tuples ins{ to find matching keys and output the result. Note
that for each tuple iR;, all the potential matches & are stored in
consecutive locations. Hence to reduce the dependency on me
ory latency, we issue software prefetches by computingttrésg
address of the matching tuplesshfor keys at a certain distance
from the current tuple being consideredrin We now describe the
build andprobe phases in detail.

Step J1: Similar to Step P1, iterate over the tuplespénd build
a histogramHist. The hash function uses logffist) bits, i.e., bit
positions [(B+1) .. (B) + log(N\uist)] from the right to compute the
hash index.

Step J2: Similar to Step P2, compute the prefix sunHakt.

Step J3: Similar to Step P3, permute the tuplessjrusingHist
to obtains].

Having obtained;, we now perform th@robe phase — Step J4.

Step J4: In order to issue prefetches, we implement pinebe
phase as follows. We keep a buffeéuffer) of small number (say
b) of elements. We iterate over tuplesRnin batches ob tuples.
For each tuple (say with keBi[k].key), we store the tuple and its
computed hash index) in theBuffer. Furthermore, we also is-
sue a prefetch with the appropriate address of the first patign
matching tuple irs{. By construction, the offset of this element is
Hist[j,] within s].

After filling up Buffer with b elements, we iterate over the tu-
ples stored irBuffer, and now for each keBuffer[k'].key, and
the corresponding hash valyg compare all tuples i8] between
indicesHist[j'] andHist[j’+1]. Since we had already issued a
pre-fetch for the first element at addregisst[j’], we expect the
first few tuples to be in the L1 cache. Furthermore, as we seque
tially search for the matching keys, the hardware prefeteoald
fetch the subsequent cache lines into the L1 cache. Thisesdu
the latency requirements of oprobe phase. Note however, that
we still incur branch misprediction (while comparing they&en
s{), and our performance should improve with the support of si-
multaneous multi-threading (SMT) on one-core.

We now derive the value of(y;s¢. Since we have already con-
sidereds bits during the partitioning phase, the maximum number
of unique elements cannot exceed 2. In addition, as described
in Section 4, we need a hash table of size arotwltimes the

number of elements (or cardinality) for reducing collisoirlence,
Auist is chosen to be minf2%, 2a(s,).

Finally, we derive how to choose for a given cache size.
During the join phase, the original tabg, the permuted table|)
and the Histograriist need to be cache resident together. Hence
for a table withn(g; entries, (8+8+4)(s, bytes of cache are required.
Thus A, is around|(c/20)|. Thus, we need to create around
Ns/|(c/20)| partitions. Therefores equals[log(As/|(c/20)])].

We now derive a cost model for the amount of data that needs to
be read from the main memory and the number of operations that
need to be executed and for the Join phase. Although we set our
partition parameters such th&t S{ andHist can reside together
in the cache in the average case, itis indeed possible tonaiatene
partitions where this is not true. Therefore, to computettleenory
requirements, we distinguish between the cases where afn@e
entities fit together, and when they do not. For the formeecas
Step J1 reads 8 bytes and Step J4 reads 8 bytes. Hence a fial of
bytes are readper tuple.

If the three entities do not fit into the cache, 8 bytes are read
during J1 and 8 bytes are read and 8 bytes are written during J3
Note that our partitioning scheme ensures thiatt always fits in
the cache, and hence does not stress the memory bandwidth. Th
scattered write (during J3) also reads 8 bytes to fetch datarite,
and hence a total of 24 bytes are read and 8 bytes of written. Fo
Step J4, 8 bytes d; are read, and the probe phase now may need
to bring in a complete cache line (64 bytes)spin the worst case
to compare the first 8 bytes. Hence in therst case, a total of96
bytes are read and 8 bytes are written In the best case, each
cache line that is read is completely utilized by differampits,
thus requiring only 8 bytes being read in the probe phasea for
total of 40 bytes read and 8 bytes writtenduring the whole Join
phase. Of course, for each output tuple, 12 bytes are wi(ted
correspondingly 12 bytes read).

As far as the number of operations are concerned, we bor@w th
expressions for steps J1, J2 and J3 from Section 4.1.1.

COSYy1 = COShash *+ COSIner + COSkyl (per tuple).

COSh2 = COSfncr + COSkyij (per hash entry).

COSY3 = COShash *+ COSIncr + COSlirite + COSEpil (Per tuple).

Step J4 computes the hash index, and stores locally the tuple
and the computed hash index, followed by issuing the priefietc
struction. As far as the probe phase is concerned, it readsvitn
consecutive addresses stored in the Histogram, and cosnfiere
tuples in that range is{. We represent the cost of locally storing
and issuing the prefetch as cggt. Furthermore, leh denote the
average number of tuples used for comparison fegmer tuple in
R; and let coslomp denote the cost of one comparison.

COSfi4 = COShash + COShref + NCOSEomp + COSkyl (per tuplein
R).

We denote the cost of join as cgsh, which is the sum of the
abovefour expressions.

4.2 Exploiting Thread-Level Parallelism

In order to exploit the multiple cores, and simultaneoustimul
threading within one core, we need to parallelize both thei-pa
tioning and the join phases.

4.2.1 Parallelized Partition Phase

During the first level of partitioning (fok or 8), all theT threads
need to simultaneously perform Steps P1, P2 and P3. In additi
there needs to be an explicit barrier at the end of each step.

After the first level of partitioning, there are enough paotis
and each thread can operate on a single partition withoueany
plicit communication with the remaining threads. This ipedally
true on current multi-core architectures, withbeing small €16).
We now describe in detail the algorithm for parallelizing tfirst
level of partitioning and the issues that impact scalabilit/e re-
fer to parallelized Steps P1, P2 and P3 as Steps P4, and P3
respectively. To reduce the impact of load imbalance, weause
scheme based on dynamic partitioning of the tuples. Spatltfic

a better load balancing between threads and address thabiligri
between individual task execution times. There is an eiar-
rier at the end of Phase-I, and now we describe Phase-Il,endiker
the threads work simultaneously to join a pair of sub-tablag
the sub-tables that were not joined during Phase-I now guutir
through Phase-ll.

Phase-II: LetR; ands; denote the two relations to be joined by
multiple threads. As in the partitioning phase, the firseéhsteps

we use the Task Queueing [29] model, and decompose the execu{J1, J2 and J3) are parallelized in a similar fashion to skdpd2

tion into paralleltasks, each executing a fraction of the total work
(described below). This allows the runtime system to scleethie
tasks on different hardware threads. For the discussiambele
assumer’ (> 7) tasks, and later explain the relation betweeh
and7 .

Step Ply: Equally divide the input tuples amongst ti1é tasks.
Each taskz;’ maintains its local histogranfi{st;) and updates it
by iterating over its share of tuples. The hash function usedme
as the one used in serial P1 step.

Step P%: Having computed their local histograms, the tasks
compute the prefix sum in a parallel fashion. ConsiderjfAén-
dex. At the end of Step RBleach task stores the number of tuples
whose keys map tg'" index, and hence the total number of tuples
mapping toj" index isyHist;[j]. For thei!" task, the starting ad-
dress of each indejk can be computed by adding up the histogram
values of all indices less thajn(for all the tasks), and'" index for
all tasks chronologically before thd" task. This is same as the
prefix sum operation, and we use the algorithm by Hillis efl#]
to parallelize it.

Step P3: Each task again iterates over its share of tuples and
uses its local histogram to scatter the tuple to its finaltioogsim-
ilar to P3).

In practice, we sef’ = 47 . As a result, the dynamic load bal-
ancing using task queue’s improved the scaling by 5% — 10% ove
a static partitioning of tasks. This may be attributed toriauc-
tion in the latency of the writes, since different tasks dmifferent
execution stages during the task and are not simultaneouiiisig
to the main memory.

4.2.2 Parallelized Join Phase

The partitioning phase create$ partitions. Statically dividing
the sub-tables amongst thethreads may lead to severe load im-
balance amongst the threads since the partitions are nrgead
to be equi-sized. In addition, for skewed distributionss possible
to have some partitions that have a large percentage of the in
elements, and hence only a few threads will be effectivélizatl.
We devised dhree phase parallelization scheme that accounts for
all kinds of data skewness and efficiently utilizes all thenpating
resources. As in the partitioning phase, we use the taskefuepu
model. Note that we maintain output tables, that are merged at
the end of the complete join algorithm.

Phase-I:We creater’ tasks, and evenly distribute the sub-tables
amongst the tasks. If the size of both the inner and outetatile-
is less than a pre-defined threshdidifesh;), it performs the join
operation (steps J1 .. J4) and appends the output to theanglev
output table. Note that there is no contention for writingween
threads. In case the size of any of the sub-tables is gresar t
Threshj, the task simply appends that sub-table’s pair id to a list
of pairs to be addressed in the next phase.

and P3 respectively. After thieuild phase, we now execute the
probe phase (J4) as described below.

Step J4,: Evenly divide the input tuples iRj amongst ther’
tasks. Each task maintains a separate Buffetfer;) and oper-
ates in batches af tuples. While searching for potential matches
for any key ing/, it is possible to find a lot¥ Thresh,, a pre-
defined threshold) of potential matches (for skewed distidins
like Zipf[15]). To avoid load imbalance in such cases, tlekt@oes
not perform the search and appends that key to the list obineor
keys, and also stores the starting and ending probing agldres

At the end of the above phase, we have a list of unprobed keys.
We now consider each of the unprobed keys, and perform thetsea
in a parallel fashion.

Phase-llI: All the threads work simultaneously for each of the
probes. We evenly divide the search range amongst the kelys an
each thread searches for matching keys and appends thantelev
tuples to their respective output tables.

The abovethree phase parallelization scheme incurs low over-
head (for large input size), and aims at efficiently utilizthe mem-
ory bandwidth, and computation cores. The thresholds usexdta
Thresh; andThresh, are set tar c; and7 2c; respectively, where
c1 is the number of tuples that fit in the L1 cache. These cutoffs
are chosen to reduce the overhead of parallelization.

Prior attempts have been made to solve the load imbalanbe pro
lem in parallelizing the join phase in the presence of dagavqRO,
36]. However, these were in the context of parallelizingasrclus-
ters of computers and not chip multiprocessors. Conselyuant-
work communication latency and synchronization overhédahot
allow for such fine-grained task-level parallelization.eT$theme
described in this section creates fine-grained tasks (pHasad
1) that can divide up work evenly across threads. Any rerimeyj
imbalance due to arbitration and latency effects is hantiezligh
a task queue mechanism that performs work stealing to baliec
load across threads. We shall see in Section 6 that our screeme
sults in scalable performance even for heavily skewed data.

4.3 Exploiting Data-Level Parallelism

There is inherently a lot of data-level parallelism in thefngoin
implementation. We describe below a data parallel algorits-
suming ax element wide SIMD, withx being equal to 4 for the
current SSE architecture.

During the partitioning phase, we operate on each tuple by co
puting the hash index, followed by updating the histogratofeed
by the scatter operation. The corresponding stepg,Rihd P3p
are as follows:

Step Plyp: Iterate over the input tuples by operating®rtuples
simultaneously. We need to extract thkekeys and compute the
hash function. Since the same hash function is applied atnell
keys, this maps to SIMD in a straightforward way. This wouéd b

In addition, the use of task queues ensures that we can achiev followed by updating thex histogram bins simultaneously.

Step P2yp: As described in Section 4.1.1, Step P2 involves a pre-
fix sum over a histogram table. Data parallel prefix-sum éligars
have been proposed in the literature [4]. However, suclrigihgos
do not seem to give much benefitat= 4.

Step P3jp: Operating onx tuples simultaneously, and comput-
ing the hash index, followed by gathering the scatter addiresn
the histogram bins, and scattering tkietuples at their respective
permuted locations.

For the join phase, stepsghlthrough J3, can exploit data level
parallelism in a similar fashion to steps hrough P3, respec-
tively. Step J¢, is modified as follows:

Step J4yp: Operating onx tuples simultaneously, and perform-
ing the search by comparing one element for each of the tuples

In order to achieve SIMD scaling, we need efficient hardware
implementation of the following features:

e Data Gather: In Step J4,, we need to pack together the
elements from distinct search locations in a SIMD regisier t
perform comparisons with the respective keys.

Data Scatter: In Step P3,, we need to write consecutive
elements in the SIMD register to non-contiguous locations.

SIMD update collision: In Plgp, and J}p, the simultaneous
update of the histogram bins needs to be handled correctly
in SIMD. In case thex bins are all distinct, it reduces to a
gather operation, followed by an increment, followed by a
scatter back. However, if two or more bins are the same, the
update for all the distinct bins needs to be done in the first
pass, followed by the next set of distinct bins. Implement-
ing it in software is prohibitively expensive, and we need
hardware support for such atomic vector updates. The ben-
efit of such hardware support can be more significant espe-
cially when there are few conflicts expected within SIMD
lanes (e.g., Step 4).

However, the current CPU SSE architecture lacks suppogffor
ficient implementation of all the above features. Hence, weat
see any appreciable speedup in the data-level paralletimgita-
tion of the hash join algorithm.

5. SORT-MERGE JOIN

Sort-merge join sorts rows in both input tables by the joiy ke
and then merges these tables. The most expensive>p@def) of
sort-merge join is the sorting of those two tables. Theeefdris
essential to use the most efficient sorting implementati@chieve
the best sort-merge join performance.

5.1 Scalar Implementation

For a scalar sort implementation, we adopt an efficient imple
mentation of merge sort by Chhugani et al. [7]. Merge sor¢ess
tially merges two lists of length to produce a list of lengthl2
In the next step, it merges two lists of length ® produce one of
length 4., and so on until there is a single sorted list. Chhugani
et al. optimized their implementation by (1) replacing lotaes
with conditional moves that do not suffer branch mispreditct(2)
blocking for cache to make efficient use of memory bandwialtia
(3) using multi-way merging to merge cache-size blocks w pr
duce a single sorted list. However, their implementatiamssonly
keys. For this work, we extend their implementation to soptes
of (key, rid).

There are two ways to sort the tuples. One way is to treag,(
rid) as a single entity. For example, if both key and rid are b@th 3
bit values, they can be treated as a single 64-bit entity. bEmefit

of this approach is that no extra instructions are needeébit6
architecture. A comparison can be performed only on theiB2-b
keys but the actual sort moves the entire 64-bit entity theltides
bothkey andrid.

The snippet of x86 assembly instructions below depicts ithe i
nermost loop that merges two lists, A and B. It loads pointers
and B (lines 1-2), assumes that B is less than A and loads B's co
tent into registetrdx (line 3), and speculatively advances both A
and B pointers (lines 4-5). A comparison of A's and B'’s keysdl
6) sets a conditional flag. Conditional move instructionsidc)
use this conditional flag to fixdx (line 7) and roll back B'’s pointer
(line 8) if A is less than B. If A is greater than B, A's pointes i
rolled back to the old value (line 9). Finally, the contentrafx
(whether containing A or B) is stored into a destination€litD).
Although this code executes more instructions than a sirfple
then-else block, it eliminates the branch based on the cosgma
of A and B, and improves the runtime performance.

Note that the number of instructions below is the same as the
number of instructions for sorting 32-key only, except tifnet
quadword keyword is used to actually move 8 bytes to and from
memory.

1. mov rsi, rax ; save old ptr_A

2. mov rdi, rbx ; save old ptr_B

3. mov rdx, qword ptr [rbx] ; load B’s key&rid

4. add rax, 8 ; ptr_A+=2

5. add rbx, 8 ; ptr_B+=2

6. cmp dword ptr [rsi], edx ; compare keys only

7. cmovc rdx, [rsi] ; A<B, load A’s key&rid
8. cmovc rbx, rdi ; A<B, roll back ptr_B

9. cmovnc rax, rsi ; A>=B, roll back ptr_A
10. mov qword ptr [rcx], rdx ; store both key&rid

The second way is to treat them separately, therefore iimgurr
extra instructions to move the associated as well. This results
in slowdown but is more general, as it does not assume thatthe
andrid are kept together.

When the size of a key or rid is greater than 32 bitkey(rid)
tuple cannot co-locate in a single 64-bit scalar registethis case,
extra instructions are needed to sort them. The code ab@asne
three new instructions to explicitly move rid with the keyload
(load B’s rid), a conditional move (load A's rid), and a stdséore
rid).

5.2 Exploiting Data-Level Parallelism

We use a bitonic merge network [7] to exploit data-level para
lelism. Figure 2 shows a 4x4 bitonic merge network that merge
two sorted sequences of length 4 and produces a single s@ted
quence of length 8. A 4x4 merge network has three levels, efach
which comprises of comparisons of four pairs of elementsoom f
lanes (e.g., four boxes at each level). Within a lanét assigns
to L; the smaller element artd; the larger element. Between each
level is a shuffle network that routes the L's and H’s to thereels
lanes for the next level.

Initially, sequences A and B are sorted in the same asceloding
der. Bitonic merge needs one sequence to be sorted in asgeardi
der (A), and the other in descending order (B). In the fighg A1,

A, Az are four contiguous elements of A that are already loaded
in a SIMD register. B is shown after loaded into a SIMD registe
and permuted into descending ordBg,(B,, B1, Bp), called B. At
level 1, a SIMD comparison on A and Bssigns the smaller values
of the pairs Ag, B3), (A1, B2), (A2, B1), (As, Bp) to one SIMD reg-
ister containing L's gL1L,L3) and larger values to another SIMD
register containing H'sHoH1HoH3). For level 2, these L's and H's
need to be routed the desired lanes for another comparitme |

B; Ao B A By A; Bo A;
Level 1 ‘ LoHo ‘ LH, ‘ LH, ‘ LsH;
Level 2 LoHg LH, LH, LsH;
Level 3 ‘ LoHo ‘ LsH, ‘ LH, LsH;
01 2 3 4 5 6 7

Figure 2: A bitonic merge network that merges two sequences
of 4 elements each (A and B) to produce a single sorted se-
guence of 8 elements.

L's (or H’s) within a SIMD register need to be routed in diféeit
directions, then shuffles are need. In practice, one shsffieéded
for each direction. As the bitonic merge network becomegelar
the top levels do not need shuffles because all L's or H’s withi
SIMD register move in the same direction. The same operagion
repeated for level 3. At the end of level 3, two resulting SIkQ-
isters containind-gL1L,L3 and HpH,H,H3 are interleaved (via a
pair of shuffle instructions) to get a sorted sequenceyoHo, L1,
H1, Lo, Ho, L3, anng.

Mapping this bitonic merge network to SSE4 [22] produces the
sequence of instructions below. The instructions in blagk fines
1-2, 5-12) are for sorting keys only, as four keys can fit insingle
SIMD register and can be processed by a SSE instruction concu
rently. Ignore the instructions in blue text for now (lined 313-20)
as they are forKey, rid) tuples (describe below).

// xmm2 and xmm3 in descending order

// level 1

1. xmm4 = sse_min(xmmO,xmm3);
2. xmm5 = sse_max(xmmO,xmm3) ;
3. xmm6 = sse_min(xmml,xmm2);
4. xmm7 = sse_max(xmml,xmm2);

// two shuffles for keys only

// no shuffle for (key, rid)

// 1st 2x2 network begins

// level 2

5. xmm8 = sse_min(xmm4,xmm6) ;

6. xmm9 = sse_max(xmm4,xmm6) ;

// shuffle

7. xmml2 = sse_shuffle(xmm8, xmm9, dirl);
8. =xmml13 = sse_shuffle(xmm8, xmm9, dir2);

// level 3

9. xmml6 = sse_min(xmmi12,xmmi3);

10. xmml17 = sse_max(xmmi12,xmmi3);

// interleave result

11. xmmO = sse_shuffle(xmm16, xmmi17, dir3);
12. xmml = sse_shuffle(xmm16, xmmi17, dir4);
// 2nd 2x2 network begins

// level 2

13. xmml10 = sse_min(xmm5,xmm7) ;

14. xmmll = sse_max(xmm5,xmm7) ;

// shuffle

15. xmm14 = sse_shuffle(xmm10, xmmi1l, dirl);
16. xmml5 = sse_shuffle(xmm10, xmmil, dir2);
// level 3

17. xmml18 = sse_min(xmmi14,xmmi5);

18. xmm19 = sse_max(xmmi14,xmml5);

// interleave four results

19. xmm2 = sse_shuffle(xmm18, xmmi19, dir3);

20. xmm3 = sse_shuffle(xmm18, xmm19, dir4);

Each level contains a SIMD min and a SIMD max instruction.
We use generic hames such as_sse and ssemax to simplify
discussion as SSE has a variety of min and max for differetat da
types and sizes. Moreover, SSE uses different SIMD instmst
to shuffle elements, depending on the shuffle patterns. Herse
a generic ssshuffle(A,B,direction) to represent all these instruc-
tions, wheredirection tells the shuffle instructions how to route
the elements of A and B.

Note that for sorting keys only, after min/max instructioats
lines 3-4, a pair of shuffle instructions is needed becadiseH,
need to go to the lanes 3 and 4 whilg L3 need to go to lanes 0
and 1, respectively. Due to the way the shuffle is implemeirted
SSE, the pair of shuffles at lines 7-8 actually require thi8E 8-
structions to route 2 4-wide SIMD registers. This pecutjadisap-
pears when routing 2-wide SIMD registers. Thus, the totatlner
of SIMD instructions for sorting keys only is 13.

The same 4x4 network can be applied to tuples of a 32-bit key
and a 32-bit rid, treating &£y, rid) tuple as a single 64-bit entity.
Since SSE4 operates on two 64-bit values at a time, the nuafiber
comparisons at each level doubles (i.e., 2 SIMD min and 2 SIMD
max instructions). In the code above, all lines (1-20) bglmthe
merge network. The number of shuffle instructions at leveh@ a
level 3 doubles. However, no shuffle is needed at level 1 tsecau
the entire SIMD registers (xmm4, xmm5, xmm6, xmm7) remain
intact going to the next level. The number of instruction2@s
and increase of 1.54X over 32-bit keys only (13 instructjofi$ie
performance is expected to kess than 2X slowerthan keys only.

5.3 Exploiting Thread-Level Parallelism

Intel Core i7 provides two aspects of TLP: two hardware con-
texts on each core (SMT) and four cores on the same CPU pack-
age. Merge sort can take advantage of SMT by running two merg-
ing threads on the same core to hide instruction and memery la
tency. Without SMT, a wider network should be used to inaeas
parallelism and overlap SIMD instruction latency with cartg
tion. Consider the merge network in Figure 2, a 4x4 network is
composed of two independent 2x2 networks at level 2 and Rvel
However, a 4x4 network has one extra level (level 1 in Figyre 2
that includes extra min/max (two for keys only, four for keg}
and two shuffles (keys only). Going to a 8x8 network gives two
independent 4x4 networks but requires yet another leval @gtra
min/max). In short, as the network becomes wider, more $ewedl
thus instructions are required. Note that when the netwovkider
than SIMD lanes, no shuffles are needed at the upper levels.

SMT obviates the need to go to wider networks by overlapping
instruction and memory latency with instructions from thbes
thread. Using smaller network results in fewer instructiand as
long as all pipeline stalls are overlapped with useful watrkyill
result in shorter execution time.

The second aspect of TLP is parallel merge. Tuples are first pa
titioned amongr threads, which sort their own partitions. Then
they cooperate in merging sorted list into a single sorted list.
When intermediate lists are larger than caches, merging bmay
come bandwidth bound, as these lists streams from/to memalry
tiple times. We address the bandwidth issue in the nextaecti

5.4 Bandwidth-Oblivious Sort

Multiway merging [7] is used to address the bandwidth bettle
neck by forming a tree of threads that incrementally merge th
heads of partially sorted lists simultaneously. As tuptesaerged,
they are pushed to a “parent” thread up the tree. The pareddh

1-Pass 2-Pass 3-Pass

o 80 A

o

3

2

g 60 -

$ 2 B Join

S I I I | [| nmn Partition
20 - 1, e
0+

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

log2 (Number of Partitions)
Figure 3: Time spentin partitioning and join phases with vary-
ing number of partitions for 128M tuples with uniformly dis-
tributed keys.

merges these tuples with tuples from other child threadpasdes
the merged tuples up to its own parent. This goes on untietupl
reach the root thread, which merges and stores them to meBwry
merging all lists in parallel in this fashion and limitingetmumber
of “in-flight” tuples within the last level cache, multiway erg-

ing reads each tuple once from main memory and writes it once

to main memory. In short, multiway merging turns a bandwidth
bound merge sort into a compute-bound merge sort by judsigiou
managing its usage of memory bandwidth.

6. PERFORMANCE EVALUATION

w
[l

35 —
v 30 ===t 30
5 25 174 K]
5] L4 g 25
g 20 & 20
g 15 o 15
g 10 3
© s 50
0 +H+—T—+—++—++++— 5
“xx¥xxxssssssss 0 :
< 0 W N
eaRETYYYaRITY 0 20 40 60 8 100
Size of Input Percentage of Tuples with Matches (%)
(@) (b)
35 35
— b
30 J@,e-—"'_' 30
o
2 25 S 25
3
£ 20 T 20
3 a
& 15 o 15
3 8
S
210 2w
5
0 —_— 0 :
0 20 40 60 80 100 120 0 02 04 06 08 1

Cardinalities (Million) O Value in Zipf Distribution

© (©))

Figure 4: Computation time measured in cycles per tuple with
various inputs: (a) varying the number of tuples from 64K to

128M (b) varying the join selectivity (c) varying the input car-

dinalities (d) varying the 6 value of Zipf distributions.

Experimentally, we found the optimal number of partitioss i
16K when each partition just fits in the on-die caches. Mpitss
partitioning is necessary when the number of partitionspass is

In this section, we show the performance of both hash-based greater than 128, which s twice the size of L1 TLB.

join implementation and sort-based join implementatione N
our experiments on a single socket Intel Core i7 965 systetm wi

6GB of DDR3-1333 memory. The processor runs at 3.2GHz and

has four out-of-order superscalar processor cores thgosupi-
multaneous multi-threading (SMT) with two hardware thiepdr

6.1.2 Uniform Distribution

Next, we study how the hash join algorithm handles input-vari
ations. In this study, we do not include the time to generage t
output, which is less than 3 cycles per output tuple. Evemwthe

core. Each core has a 32KB L1 instruction cache, a 32KB L1 data Output size is similar to the input size, this adds less tfG# 1o

cache and a 256KB combined L2 instruction and data cache. The

four cores share a 6MB L3 cache. For fast virtual-to-physach
dress translations, each core maintains a 64-entry felip@ative
L1 TLB and a 512-entry four-way set associative L2 TLB.

6.1 Hash Join Performance

the actual runtime.

Figure 4(a) shows the effect of changing the input data sora f
64K to 128M tuples. The time per tuple varies from 25 cycles
to 32 cycles as the input data size increases. However, tiege va
tion is small and very stable. This corresponds to 100M tdV128
tuples per second. This result is better than any publiskeefbp

We evaluate the performance of the hash join in three aspects Mance in the literature. For example, He et al. [18] repourdime

1) the benefit of partitioning; 2) the handling of input véicas
such as the table size, the join selectivity and the numbelissf
tinct keys; 3) the handling of heavily skewed data such aZibe
distribution [15].

6.1.1 Partitioned Hash Join

To study the benefit of partitioning for hash join algorithwe
join two tables of 128 million tuples with uniformly disttiibed
keys [9, 18, 28]. Figure 3 shows the time (in cycles) spentrte p

of 2.5 seconds on a 2.4GHz Intel Core2 quad-core processior wi
tables of 16M tuples that have uniformly distributed 324mYs.

In comparison, our Core i7 performance is around 0.15 sexond
(30cpex 16M/3.2G) which is16.6X faster. We also measured our
performance on the same 2.4GHz Core2 quad-core processbr us
by He et al. and found our implementation to®&X faster. This
illustrates the efficiency of our implementation. Furthere con-
trary to their claim that the hash join implementation on ae2o
quad-core CPU is 1.9X slower than a GPU (Nvidia 8800GTX), our

cess each tuple on the quad-core processor when the number ofore2 implementation is in fact 3.4X faster than the same GPU

partitions varies from 64 to 1f#1

To study the performance trade offs, we separate the tim#& spe

in the partitioning phase and the join phase. When the numiber
partitions is small (64, 128 and 256 partitions), the partitsize

platform.

Figure 4(b) shows the effect of the join selectivity by chagg
the percentage of matching tuples for the table size of 128Nes.
0% means that there is no matching tuples, which results in no

is t00 big to fit in the caches. The join phase is memory bounded OUtPut data. We notice that the overall join time improveghsly

and it becomes the performance bottleneck. As the numbearef p
titions increases, the partition size reduces and it eadgtfits into
the caches. When the number of partitions is greater tharnh&k,
time required for the join phase stabilizes. Further insecia the
number of partitions would not improve performance any ni@e
cause the time spent in the partitioning phase is dominating

31M refers to 1 million.

as there are less tuples with matchehis is because the branch
prediction in the probing phase improves as the predicticniacy
increases by always predicting a non-match.

Figure 4(c) shows the effect of varying the number of digtinc
keys from 1M to 128M for the table size of 128M tuples. In gen-
eral, data with low cardinality shows less branch misprgafis in

4the graph does not include the time for writing the output.

the probe phase, thus achieving better performance by aisin
10% as compared to the higher cardinality data. Note thatave d
not exploit the cardinality information during executiohaur al-
gorithm. In case the cardinality is low and known a priori, o2&
reduce the number of partitioning phases or completelyieéite

it, thereby further speeding up the runtime.

TLP Scaling: The performance results reported earlier in this
section correspond to the parallel implementation of trehhain
algorithm as described in Section 4.2. The partitioning &epar-
allelized by dividing the input tables evenly among the #laie In
the join phase, each thread is responsible for joining ormaare
independent partitions.

For the uniform distribution, both the partitioning and g
phases scale very well with respect to the number of coresreTh
is no load imbalance among the different threads execurini-
allel. Load imbalance usually arises in the join phase dutn¢o
variation of the partition sizes when input keys are skewEdr
uniform distributed keys, partition sizes do not vary a lotl ahis
is not an issue. Consequently, our parallelization of tte $tep
only needs to go through Phase-| of Section 4.2. We see agcali
of 4.4X over scalar code using four cores. The scaling is over 4X
because SMT threads hide memory latency and improves tlee cor
efficiency.

6.1.3 Handling Skewed Data

While the uniform distribution offers the best case for flata
scalability, skewed input distribution such as the Zipf][@itribu-
tions would test the ability of the parallel hash join implemtation
to handle load imbalance. Under this circumstance, 3phase
parallelization algorithm of Section 4.2 will be exercisadd we
will discuss the results in this section. The serial perfange of
our hash-join algorithm for skewed data is comparable teénel
performance for uniform data. This is in accordance withréte
sults of our analysis of Section 4.1.

TLP Scaling: When all partitions are not uniformly sized, the
amount of time to join each partition varies. In the extrerasec
when all the tuples fall into a single partition, we will seeparallel
scalability with a naive implementation. The Zipf distritmn is
one such skewed distribution [15]. Consequently, we onb &e
2.8X scaling on the 4-core processor when only the phaseiof
parallel join scheme is employed.

We address the load imbalance problem through 3phase
join parallelization algorithm. In Phase-Il, threads cexgively
work on joining large partitions by dividing up the tuples amy
themselves. For the Zipf distribution wiéh= 100 (which is heavily
skewed), 30-40% of the inputs are greater than 32K tupleghwh
was selected as the threshold. However, there may stilldzkifo-
balance in thegrobe phase when certain tuples have a large set of
potential matches. To handle this, we separate out suclepriob
phase-lll and cooperatively probe each such tuple usirtgraiads.
For the Zipf distribution with® = 100, less than 0.1% of the tuples
went through this phase. Using these optimizationsimgoved
our parallel scalability of the join phase from 2.8X to 3.9X

Figure 4 (d) shows the stability of our algorithm with skewed
data. We control data skew by changi@gsalue from 0 to 100.
With our load-balancing optimization, the figure shows tbat
hash join implementation istable across different degrees of
skewed data

6.1.4 Analytical Model

Time Partitioning Join

P1] P3] Total || Build | Probe]| Total
SMTOFF | 1.2 | 44| 5.6 4.7 5.7 10.4
SMT ON 1.2 60| 7.2 4.7 4.7 9.4

Table 1: Computation time (in cycles per tuple in the inner
relation) for each step in a hash join implementation and the
effect of SMT support. For the partitioning phase, we report
the time taken for every pass.

described in Section 4. The numbers are reported for joihirg
128M relations with uniformly distributed keys. Since thache
size (L2) is 256 KB, the number of partition bitg) should equal
[log(128M/12.8K) (= 14). This is validated by Figure 3, where the
join time is minimized with 14 bits of partitioning. We now ite
pare the runtimes with our derived analytical model for therent
platform. The cost symbols below are defined in Sectionsl4.1.
and 4.1.2. The primitive costs were determined by countmg i
structions in the binary. All cycle and bandwidth numberdeas
stated otherwise, are given per tuple of data operated on.

Step P1 (Section 4.1.1) reads 8 bytes of data. The peak band-
width for our platform is around 7.2 bytes per cytlend hence
step P1 is bandwidth bound and should take around 1.1 cycles,
which is close to the actual performance (1.2 cycles). Since the
performance is limited by memory bandwidth, SMT does not im-
prove the runtime any further. Step P2 has negligible ruatiiass
than 0.01) and is not reported. On our current systemy£qst 4
op$, costner = 3 0ps, COoStrite = 5 0ps and cogtii = 3 ops. Hence
step P3 should take around 15 ops of computation on a singge co
The total memory bandwidth requirement is around 24 bytes. A
suming a throughput of 1 op per cycle, step P3 should be com-
pute bound, and take around 3.75 cycles on our system (witadi
scalability). This is within 20% of the actual measured ti(et
cycles). Note that SMT threads degrades the performance gia
incur TLB misses (2 threads sharing the same TLB) which incur
the additional latency.

For the build phase during join (Section 4.1.2), the totatco
costyp + costp + cosyz = 27 ops. With a throughput of 1 op/cycle
and linear scaling, this amounts to 6.75 cycles. Since ouent
system can issue multiple instructions in one cycle, itéases the
throughput for steps J1 and J2 and we measure a runtime of4.7 ¢
cles per tuple. Note that this does not benefit the partitgpphase,
since step P1 has an explicit barrier at the end of its exatusind
it is bandwidth bound. However, during the building phaberé
is no barrier after individual steps, and the entire phaserspute
bound. As expected, SMT does not provide any further benefits

For the probing phase during join (Section 4.1.2), gest= 7
ops and coggmp = 10 ops (accounting for average case of branch
misprediction). Thus, the total time evaluates to 24 cyole®ne
core, and around 6 cycles on 4 cores, which is within 6% of the a
tual measured data. SMT further improves the performamuesi
the stalls during branch misprediction can be overlappet po-
tentially other computation being performed by the otherceking
thread on the core. Hence the effective value of gpgtshould
further reduce to around 3 ops (assuming complete ovetiap)h-
tain the required speedup. Thus, SMT substantially bengsfis
join phase of the hash join algorithm. To summarize, oungitail

5measured using an in-house bandwidth calibrator.

Table 1 shows the breakdown of the time spent in each step as®1 op implies 1 operation or 1 executed instruction.

10

—e—Sort Join (no SSE) -m-Sort Join Hash Join —=—Sort Join (128b-wide) — - Sort Join (256b-wide)

140 Sort Join (512b-wide) Hash Join
. 120 — 70.0 —
S 100 o o 60.0 e
c g / g 500
o 60 M 840'0 ._Q._‘__‘_....-o-—o
3 @ 300 S S
S 40 x] P Xnd
S 0200 T e
20 © 100
0 T T T T T T T T T T T | 0.0 : : :
¥ ¥ X ==S3=3S3=3 33 ¥ ¥ ¥ ¥ S S = S S = s =
3 a 5 E S NS5 9EF g 3 § ﬁ g ERE - §
Number of Tuples in a Relation Number of Tuples in a Relation
Figure 5: Comparison between sort-merge join and hash join ~ Figure 6: Comparison between sort-merge join and hash join.
performance with varying number of tuples in the inner and For sort-merge join, we add projecting performance with 256
outer relations. bit-wide and 512 bit-wide SIMD.

model predicts runtimes within 6% - 20% of the observed tifoes 7 FUTURE ARCHITECTURE TRENDS

most of the cases. However, the model cannot evaluate teet eff

of mu|t|p|e instruction issues’ and hence is an upper boundlfch In thIS SeCtiOn, we diSCUSS future a.rC-hiteCtUral trendmftﬂ)th
phases (like building phase in the join operation). the near term and longer term perspective, and how thesgsteén

fect the join algorithm choices.

6.2 Sort-merge Join Performance

For the sort-merge join implementation, most of executioret
is spent in sorting two tables. For the scalar version, sgi32-bit
or 64-bit keys takes 11 clock cycles per element per itemgtepi)
on our system. The execution time is cepi*N*logN cycles.tBgr

Wider SIMD Execution: In Section 5.2, we show that sort-
merge join can fully exploit DLP using SIMD execution. In sor
merge join, the efficiency of SIMD execution is affected ohly
the size of theXey, rid) tuple. For example, with a 32-bikéy,

- rid) pair, each tuple is already 64 bits and a 128-bit wide SIMD
two 128M-key tables takes 79 billion cycles (24.9 secon&yt- implementation (such as SSE) can only operate on two tuples s

ing two tables, each with 128M 64-bit tuples &fefy, rid) takes : .
. . o multaneously. In the near term, future processors will asager
11.4 cycles per element per iteration (25.8 seconds), agiteigl SIMD execution (such as 256-bit for AVX [21] and 512-bit for

increase in cycles over sorting only keys. The small in@das -
clock cycles for sorting (key, rid) is likely due to moving necdata Iéﬁ: rsaobr(te-?ngg]g' i O'il'nhese wider SIMD support would strongly ben

.(bOth key and rid)_ from memory. Another f_actor that impaeits Figure 6 shows the effect of wider SIMD execution on sort-
'ng performan.cg IS the size of !<eys and r|qs. Whek@.’(r.ld) merge join and hash join. We project the performance of sort-
tuple cannot fit in a single 64-bit scalar reglst_er, extrarirgions merge join with 256-bit and 512-bit SIMD based on the work by
are needgd to sort them. On ourtest system, it takes 14 exyel Chhugani et al. [7]. With 256-bit SIMD, sort-merge join $taper-
tuple per iteration to sort 128-bikéy, rid) tuples. That translates forming better than hash join for small number tuples, ar2H5it

to 32 seconds for two 128M-tuple tables. . S .
. . ; . SIMD execution ofsort-merge join is projected to be 1.35X —
For the SIMD implementation, sorting keys only takes 3 cepi 1.65X faster than hash join

(6.8 seconds for two 128M-key tables) while sorting 64-kiy, F L -

B ; or hash join, the scatter update to the partitions (StemPth

rid) tuple§ takes 4.5 cepi (10.2 seconds). T.hese numbers rsatche hashed bucjket (Step J1) is tFI?]e primary Ii?niter in eiplo?&ﬁigf

:jhe anaflytlcril_l model prc:lpc;se? by Chhlfganl elt a_l. [17]5'XThwh.S|ﬁ In order to exploit DLP in this step, efficient hardware seatup-
ov;/nho ‘:‘.ﬁr ing key, ri ihUp es gver fgyst onty IS L. d:ve ICN bort is necessary. An efficient scatter operation will writeltiple

rriaSZXesP € |Ir|1(:|reaslg n fehnuSTMeDrlo Ilns ructions QV?: i Ys elements to different memory locations in the most bandwifi-

(1.53X). Parallel scaling of the implementation Is rigan- cient manner with the minimal latency.

ear, 3.6X on four cores. The cepi for keys only is 0'83 (1.88ds More importantly, further performance benefit can be addev
for 2 tables of 128M keys) and fokéy, rid) tuples is 1.25 (2.8 i, atomic vector support. In Steps P1 and J1, multiplegsigan
seconds for wo tables of 128M tuples). potentially hash into the same partition. These steps redbe
. . targeted hash entry to be updated accordingly. When peirigrm
6.3 Comparls_on between Hash Join and Sort- SIMD execution, multiple elements will update the same mgmo
merge Join location. Current SIMD architectures cannot handle thision

Figure 5 shows computation time of hash join and sort-merge case and would require reverting back to the scalar impléaen
join with varying number of tuples in both relations. Fortsorerge tion. As a result, the SIMD execution of step P1 and J1 is slowe
join, we show both non-SSE and SSE implementation numbers. than serial execution due to instruction overhead of cdrditec-
The SSE implementation of sort-merge join improves peréoroe tion. Efficient support for atomic vector operations suchtheet
by 1.9X over non-SSE implementation. The theoretical maxm proposed by Kumar et al. [24] would be beneficial.
improvement with 128-bit SSE is 2X because each tuple cnsis
of a 32-hit key, rid) pair, and therefore we can accommodate Limited Per-Core Bandwidth: As described in Section 3.2,

two tuples in one 128-bit word. With 128 million tuples, owasi external memory bandwidth is becoming a scarce resourde wit
join implementation is 2X faster than even this optimizeES8rt- the advent of many-core processors. Once the memory batrdwid
merge join implementation. Sort-merge join becomes fasttr requirement reaches the peak external bandwidth, intagratldi-

smaller tuples because the number of sort levels decreesgsrp tional processor cores would not provide any performancefite
tional to logN (N: number of tuples). The gap between hash join and would increase the power consumption. Therefore, araj-pa
and sort-merge join decreases to 1.6X with 64K elements. lel algorithms need to reuse the data in the cache as manyg ime

11

possible before data are written back to main memory.

As far as sort-merge join is concerned, we only need to
access data from/to the main memawo times (Section 5). On
the other hand, for a hash-join, we need to partition the fidta
lowed by the actual (cache-friendly) join phase. As we argue
Section 4, the restricted size of TLB forces multiple lewaparti-
tioning for efficient runtime — at least two levels for largatabase
sizes. In addition, the actual join requires one more maimarg
read/write for a total ofhree trips to the main memory. Therefore,
as compared to sort-merge join, hash join would requiBX more
bandwidth. Therefore, for future scenarios with limited per-core
bandwidth, the join runtime would be proportional to the fem
of memory external reads/writes of the data &agh join is pro-
jected to be 1.5X slower than sort-merge joirfor large datasets
with high or unknown cardinality.

8. CONCLUSIONS

In this paper, we re-examined the two popular join algorghm
hash join and sort-merge join — and provided efficient imgem
tations along with a detailed analysis and analytical madehe
runtime performance. Our join implementations efficienttijize
the modern processor features by cache blocking to miniaxdze
cess latency, vectorizing for SIMD to increase compute ithens
and balancing the load amongst cores, even for heavily skawe
put datasets. Our hash-based implementation achievesthare
100M tuples per second on the latest quad-core processohighi
17X faster than the best reported numbers on quad-coregzace
and 8X faster than the best reported GPUs. Furthermoreootir s
merge join algorithm achieves more than 50M tuples per skeon
an order of magnitude faster than the best reported numbers.

We developed analytical models to project the performarice o
the two algorithms with future architectural trends tov&irdreas-
ing SMD width andlimited per-core memory bandwidth. The lack
of appropriate hardware features to exploit SIMD limit ticalabil-
ity of hash join algorithms, while sort-based join algonith scale
near-linearly with SIMD and are projected to be faster wigilsiD
width of 512-bits or higher. In addition, the higher inheremem-
ory bandwidth requirements of the hash join algorithm asmamed
to sort merge further point towards sort-merge join executaster
than hash join.

9. REFERENCES
[1] N. Askitis and J. Zobel. Cache-conscious collision fagon in string hash

tables. Inin Proc. String Processing and Information Retrieval Symposium

(SPIRE, pages 92—104, 2005.

K. E. Batcher. Sorting networks and their applicatioimsSpring Joint

Computer Conference, pages 307-314, 1968.

M. W. Blasgen and K. P. Eswaran. Storage and access itioredé data bases.
IBM Systems Journal, 16(4):362—377, 1977.

G. E. Blelloch.Synthesis of Parallel Algorithms, chapter Prefix sums and their

applications, pages 35-60. Morgan Kaufmann, 1993.

P. A. Boncz, S. Manegold, and M. L. Kersten. Databaseitcture optimized

for the new bottleneck: Memory accessMhDB, pages 54—-65, 1999.

S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Impirig hash join

performance through prefetching. I@DE, pages 116-127, 2004.

J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog,K.Chen,

A. Baransi, S. Kumar, and P. Dubey. Efficient implementatibsorting on

multi-core SIMD CPU architectur&/LDB, pages 1313-1324, 2008.

J. Cieslewicz and K. A. Ross. Adaptive aggregation opchultiprocessors. In

VLDB, pages 339-350, 2007.

J. Cieslewicz and K. A. Ross. Data partitioning on chipltipuocessors. In

DaMoN, pages 25-34, 2008.

D. J. DeWitt and R. H. Gerber. Multiprocessor hash-bigee algorithms. In

VLDB, pages 151-164, 1985.

J. Doweck. Inside Intel core microarchitecture and gnremory accesd\hite

Paper, Intel Corporation Jul 2006.

(2]
(3]

[4

(5]
(6]
(7]

8]
9]
[10]

[11

12

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

[22

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

B. Gedik, P. S. Yu, and R. Bordawekar. Executing streaimsjon the cell
processor. I'VLDB, pages 363—374, 2007.

N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GR@%ert: High
Performance Graphics Co-processor Sorting for Large Ba@blanagement.
In Proceedings of the ACM SSGMOD Conference, pages 325-336, 2006.

G. Graefe, A. Linville, and L. D. Shapiro. Sort versushaevisited| EEE
Trans. Knowl. Data Eng., 6(6):934-944, 1994.

J. Gray, P. Sundaresan, S. Englert, K. Baclawski, add\®einberger. Quickly
generating billion-record synthetic databasesSIBMOD Conference, pages
243-252, 1994.

A. GreB and G. Zachmann. GPU-ABISort: Optimal Pareleiting on Stream
Architectures. IrProceedings of the 20th | EEE International Parallel and
Distributed Processing Symposium, page 45, Apr. 2006.

N. Hardavellas, I. Pandis, R. Johnson, N. MancherilAdamaki, and

B. Falsafi. Database servers on chip multiprocessors: &fioits and
opportunities. INCIDR, pages 79-87, 2007.

B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. LumdP. V. Sander.
Relational joins on graphics processorsSIGMOD Conference, pages
511-524, 2008.

W. D. Hillis and G. L. Steele, Jr. Data parallel algornits. Commun. ACM,
29(12):1170-1183, 1986.

K. A. Hua and C. Lee. Handling data skew in multiprocestatabase
computers using partition tuning. VLDB, pages 525-535, 1991.

Intel Advanced Vector Extensions Programming Refeeei2008,
http://softwarecommunity.intel.com/isn/download#&lavx/Intel-AVX-
Programming-Reference-31943302.pdf.

Intel SSE4 programming reference. 2007,
http://www.intel.com/design/processor/manuals/253p6f.

M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Applicatiof hash to data base
machine and its architecturdew Generation Comput., 1(1), 1983.

S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhuga® Hughes,

C. Kim, V. Lee, and A. Nguyen. Atomic vector operations orpchi
multiprocessordn 35th International Symposium on Computer Architecture,
pages 441-452, June 2008.

T.J. Lehman and M. J. Carey. A study of index structucesifain memory
database management system&/LLDB '86: Proceedings of the 12th
International Conference on Very Large Data Bases, pages 294-303, 1986.
H. Lu, K.-L. Tan, and M.-C. Shan. Hash-based join algoris for
multiprocessor computers. In D. McLeod, R. Sacks-David,tnJ. Schek,
editors,VLDB, pages 198-209, 1990.

S. Manegold, P. A. Boncz, and M. L. Kersten. What happgiming a join?
dissecting cpu and memory optimization effectsVlDB, pages 339-350,
2000.

S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizingimmemory join
on modern hardwaréEEE Trans. Knowl. Data Eng., 14(4):709-730, 2002.
E. Mohr, D. A. Kranz, and R. H. Halstead. Lazy task crestia technique for
increasing the granularity of parallel progrartSEE Transactions on Parallel
and Distributed Systems, 2:185-197, 1991.

R. Motwani and P. RaghvaRandomized Algorithms. Cambridge University
Press, 1995.

C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. letnAlphasort: a risc
machine sortSGMOD Rec., 23(2):233-242, 1994.

T.J. Purcell, C. Donner, M. Cammarano, H. W. Jensen Raftanrahan.
Photon Mapping on Programmable Graphics Hardwar&raphics Hardware
2003, pages 41-50, July 2003.

M. Reilly. When multicore isn’t enough: Trends and thsuire for
multi-multicore systems. IHPEC, 2008.

L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrda Dubey,

S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, EhGwski, T. Juan,
and P. Hanrahan. Larrabee: A Many-Core x86 Architectur&/fsual
Computing.Proceedings of SGGRAPH, 27(3), 2008.

A. Shatdal, C. Kant, and J. F. Naughton. Cache consaitgithms for
relational query processing. WLDB, pages 510-521, 1994.

J. L. Wolf, D. M. Dias, and P. S. Yu. A parallel sort mergénj algorithm for
managing data skeWEEE Trans. Parallel Distrib. Syst., 4(1):70-86, 1993.

J. L. Wolf, P. S. Yu, J. Turek, and D. M. Dias. A parallelshgoin algorithm for
managing data skeWEEE Trans. Parallel Distrib. Syst., 4(12):1355-1371,
1993.

H. Zeller and J. Gray. An adaptive hash join algorithmrwltiuser
environments. IVLDB, pages 186-197, 1990.

J. Zhou and K. A. Ross. Implementing database opersitising simd
instructions. INSSGMOD Conference, pages 145-156, 2002.

