
Sort vs. Hash Revisited: Fast Join Implementation on
Modern Multi-Core CPUs

Changkyu Kim† Eric Sedlar⋆ Jatin Chhugani†

Tim Kaldewey⋆ Anthony D. Nguyen† Andrea Di Blas⋆

Victor W. Lee† Nadathur Satish† Pradeep Dubey†

Contact: changkyu.kim@intel.com
†Throughput Computing Lab, Intel Corporation

⋆Special Projects Group, Oracle Corporation

ABSTRACT
Join is an important database operation. As computer architectures
evolve, the best join algorithm may change hand. This paper re-
examines two popular join algorithms – hash join and sort-merge
join – to determine if the latest computer architecture trends shift
the tide that has favored hash join for many years. For a fair com-
parison, we implemented the most optimized parallel version of
both algorithms on the latest Intel Core i7 platform. Both imple-
mentations scale well with the number of cores in the system and
take advantages of latest processor features for performance. Our
hash-based implementation achieves more than 100M tuples per
second which is 17X faster than the best reported performance on
CPUs and 8X faster than that reported for GPUs. Moreover, the
performance of our hash join implementation is consistent over
a wide range of input data sizes from 64K to 128M tuples and
is not affected by data skew. We compare this implementation
to our highly optimized sort-based implementation that achieves
47M to 80M tuples per second. We developed analytical modelsto
study how both algorithms would scale with upcoming processor
architecture trends. Our analysis projects that current architectural
trends of wider SIMD, more cores, and smaller memory bandwidth
per core imply better scalability potential for sort-mergejoin. Con-
sequently, sort-merge join is likely to outperform hash join on up-
coming chip multiprocessors. In summary, we offer multicore im-
plementations of hash join and sort-merge join which consistently
outperform all previously reported results. We further conclude that
the tide that favors the hash join algorithm has not changed yet, but
the change is just around the corner.

1. INTRODUCTION
Join is a key operation in relational databases that facilitates the

combination of two relations based on a common key. Join is an
expensive operation and an efficient implementation will improve
the performance of many database queries. There are two common
join algorithms: sort-merge join and hash join. The debate over

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

which is the best join algorithm has been going on for decades.
Currently, for in-memory database operations, the hash-join algo-
rithm has been shown to outperform sort-merge join in many cases.

Today’s commodity hardware already provides large degreesof
parallelism, with multiple cores on a single chip, multiplehardware
threads on each core (SMT) and vector instructions (SIMD) oper-
ating on 128-bit vectors whose capability will increase in the near
future. Coupled with growing compute density of chip multipro-
cessors (CMP) and memory bandwidth challenges, it is not clear if
hash join will continue to ourperform sort-merge join. In this pa-
per, we re-examine both algorithms under the context of CMP that
offers thread-level parallelism (TLP), data-level parallelism (DLP),
large on-die caches, and high memory bandwidth.

For a fair comparison, we optimize the implementations of both
algorithms for the latest multi-core platform. Our hash-based im-
plemenation can join 100 million tuples per second on a 3.2GHz
quad-core Intel Core i7 965 platform which is faster than anyre-
ported CPU implemenation thus far. We implemented sort-merge
join algorithm by exploiting all salient features of CMP such as
TLP, DLP, blocking for on-die caches, and utilizing high memory
bandwidth judiciously. Moreover, our implementations aretolerant
of data skew without sacrificing performance.

In our study, we observe a number of interesting features of join
implementations. First, both join algorithms benefit greatly from
multi-threading. Second, sort-merge join benefits greatlyby ex-
ploiting SIMD architecture offered by today’s processor. Its perfor-
mance will continue to improve with the trend of wider SIMD [21,
34]. Based on our analytical model, we project that sort-merge join
will surpass hash join with 512-bit SIMD. For hash join to make use
of SIMD execution, we believe that hardware support for efficient
scatter and atomic vector operations are necessary (Section 7). Fi-
nally, by efficiently managing memory bandwidth usage, we show
that both hash join and sort-merge join are compute bounded on
today’s CMP system. However, our analytical model shows that
hash join demands at a minimum 1.5X more memory bandwidth
than sort merge join. If the gap between compute and bandwidth
continues to grow for the future computer systems, the sort-merge
join will be more efficient than hash join.

Our contributions include: first, we implement the most efficient
hash join and sort-merge join on the latest computer platform. The
performance of hash join is 17X faster than the best published CPU
numbers and 8X faster than that reported for GPUs [18]. Second,
our join performance is constant for a wide range of input sizes
and data skews. Third, we compare the performance of sort-merge
and hash join for current architectures, and conclude that hash-join

1



is superior in performance. Fourth, by constructing an analytical
model for both hash join and sort-merge join, we conclude that fu-
ture architectural trends towards increasing SIMD width and lim-
ited per-core memory bandwidth will favor sort-merge join versus
hash join.

The rest of the paper is organized as follows: Section 2 discusses
related work. Section 3 examines modern computer architectures
and their implications on the join performance. Section 4 presents
our hash join algorithm and the considerations for parallelization.
Section 5 describes our sort-merge join implementation andthe
considerations for parallelization. Section 6 presents the results on
the two join implementations. Section 7 discusses architecture im-
provements that are beneficial to both join algorithms and discusses
future architecture trends that would influence the performance of
hash join and sort-merge join. Section 8 concludes.

2. RELATED WORK
Over the past few decades, significant efforts have been made

to develop efficient join algorithms. Among the algorithms de-
veloped, sort-merge join and hash join algorithms are two most
popular algorithms for computing the equi-join of two relations.
The sort-merge join algorithm [3] was dominantly used in early re-
lational database systems. Later, the hash join algorithm became
popular and was shown to outperform sort merge join in many sit-
uations. The Grace hash join [23] and the hybrid hash join [38]
algorithms were first proposed to overcome the disk I/O overhead
of general hash-based join algorithms. As the capacity of main
memories increased over the years, researchers have focused on
main-memory join operations [35, 5, 27]. Shatdal et al. [35]pro-
pose a cache partitioning algorithm, where they partition the hash
table to fit in cache memory so as to reduce the latency of ac-
cess to the hash table. Manegold et al. [27, 28] observe that the
partitioning stage itself incurs a lot of TLB and cache misses and
becomes the performance bottleneck when the size of relations is
too large and there are too many partitions required for eachto fit
in cache. They propose a radix-clustering algorithm that fixes the
number of partitions based on the number of TLB entries and per-
forms a partial radix sorting. When the total number of partitions
is greater than some fixed number, they perform multi-pass par-
titioning. Our implementation also relies on a similar multi-pass
partitioning scheme. In contrast to algorithms based on cache par-
titioning, Chen et al. [6] argue that the trend towards concurrent
databases will create more cache conflicts, thus reducing the effec-
tiveness of caches. Instead of exploiting caches, they propose to
use software prefetch schemes to hide the long latency of access-
ing hash tables. However, as memory bandwidth becomes an im-
portant consideration for performance, partitioning-based schemes
that attempt to maintain the working set in cache will still retain
an advantage. In this work, we use a partitioning-based scheme to
reduce memory bandwidth use.

While the above join implementations are based on sequential
algorithms, there has been considerable research on parallel parti-
tioning [9] and join algorithms [10, 26]. One key issue in parallel
joins is to achieve good load-balancing, especially when data are
skewed. Different schemes to handle data skew in parallel joins
have been proposed for both sort-merge join and hash join algo-
rithms [20, 37, 36]. Unlike prior algorithms, our implementation
does not require an extra tuning and scheduling phase to address
the problem of data skew.

Recently, researchers have explored new architectures to improve
join performance. He at al. [18] present GPU-based implementa-
tions of both sort-merge join and hash-join. Gedik et al. [12] opti-
mize join code for the Cell processors. Both papers try to exploit

the parallel nature of these devices with associated high compute
density and bandwidth and show significant performance benefits
(from 2-7X on the GPU and 8X on Cell) over optimized CPU-based
counterparts.

Current trends in general purpose CPUs have also been in the
direction of increasing parallelism, both in terms of the number of
cores on a chip and with respect to the SIMD width on each core.
Chip multiprocessors are different from conventional multiproces-
sor systems in that inter-thread communication is much faster with
shared on-chip caches [17] and the cost for thread synchronization
and atomic operations is much lower. Cieslewicz et al. [8] examine
aggregation operations on 8-core chip multiprocessors andexploit
thread-level parallelism (TLP) and the shared on-chip caches for
high performance aggregation. Zhou et al. [39] implement various
database operations to exploit data-level parallelism (DLP) with
SIMD instructions. In this work, we show that by efficiently ex-
ploiting the capabilities of modern CPUs, we can obtain significant
performance advantages over previous join implementations.

Sort-merge join is highly dependent on a good sort implemen-
tation. Quicksort is one of the fastest algorithms in practice, but
it is unclear whether it can be mapped efficiently to the SIMD ar-
chitecture. In contrast, bitonic sort [2] uses a sorting network that
predefines all comparisons without unpredictable branchesand per-
mits multiple comparisons in the same cycle. These characteristics
make it well suited for SIMD processors. Bitonic sort has also been
implemented on GPUs [16, 13, 32] since it mapped well to the high
compute density and bandwidth of GPUs. Chhugani et al. [7] show
an efficient implementation of a merge sort algorithm by exploit-
ing both TLP and DLP on recent multi-core processors. Our pa-
per adopts the fastest CPU sorting implementation by Chhugani et
al. [7] and extends it to sort tuples of (key, rid).

With regards to the choice of the join algorithm, Graefe et al. [14]
compare sort-merge join and hash-join and recommend that both
algorithms be included in a DBMS and be chosen by a query opti-
mizer based on the input data. The hash join algorithm is a natural
choice when the size of two relations differ markedly. They also
show that data skew hurts the performance of hash join; they thus
recommend sort-merge join in the presence of significant skew in
the input data. Our paper revisits this comparison of both algo-
rithms focusing on in-memory join operations. Our hash joinim-
plementation is not affected by data skew and is optimized for the
modern multi-core CPUs.

3. JOIN FOR MODERN PROCESSORS
The performance of computer systems has improved steadily

over the years, mainly from advances in semiconductor manufac-
turing and processor architecture. In this section, we willexam-
ine how the architectural improvements have impacted the perfor-
mance of the join operation.

3.1 Main Memory Databases
With the increase in capacity of main memory, a large num-

ber of database tables reside completely in main memory. Typi-
cal databases consist of tables with numerous columns, witheach
column having different width (in bytes). User queries performing
join on more than two such tables are decomposed into pairwise ta-
ble join operations. Performing join on the original tablesis not an
efficient utilization of the memory bandwidth and computation, and
therefore the tables are stored using 2 columns,key andrid, with
key being the join key, andrid storing the address of the tuple [5].

For main-memory databases, the number of entries in a table is
typically less than the range of 32-bit numbers (232), and hence
rid can be represented using 32 bits. Although thekey can be of

2



any variable width, since the number of records is less than 232,
the number ofdistinct keys cannot be more than 232, and should
also be represented using 32 bits. Of course, representing avari-
able lengthkey using 32 bits and without changing the information
content is computationally hard; schemes like key-prefix [31] and
32-bit XOR and shift hash function [6] have been used to represent
keys using 32 bits.

Therefore, we focus, analyze and provide results for tablescon-
sisting of32-bit key and 32-bit rid. We propose our join compu-
tation pipeline to include a prologue phase that converts the inputs
to the aforementioned representation, and an epilogue thatoper-
ates on the generated output, and removes the false positiveresults
while gathering the actual keys.

3.2 Optimizing for Memory Subsystem
Join is a memory intensive operation and consequently is directly

affected by the performance of memory subsystem. As compute
performance improves at a much faster rate than memory subsys-
tem performance, memory access latency continues to worsen. To
address this performance gap, a number of architectural features
have been devised to improve average memory access latency.

Cache: A cache is a module of small but fast SRAM cells
that provides low latency accesses to recently used data. Itis used
to bridge the performance gap between the processor and the main
memory. Not only caches can reduce memory access latency, they
serve as memory bandwidth amplifiers by filtering out external mem-
ory requests. Bandwidth between processor cores and cachesis or-
ders of magnitude higher than external memory bandwidth. Thus,
blocking data into caches is critical for data intensive operations
such as join.

TLB: Virtual memory is developed to alleviate programmers
from having to deal with memory management. It allows a program
to use memory that is larger than the amount of physical memory
in the system. However, every memory access must go through
a virtual-to-physical address translation that often is inthe critical
path of memory access. To improve translation speed, a translation
look aside buffer (TLB) is used to cache virtual-to-physical trans-
lation of most frequently accessed pages. Ideally, the number of
TLB entries should match the number of pages touched by an ap-
plication. With memory size in the Gigabyte range, the number of
TLB entries would be in the thousands. However, to make trans-
lation fast, TLB is typically designed as either a fully associative
or highly associative cache. A TLB size greater than a certain size
(e.g., 64) is very complex and consumes a lot of power. Recentpro-
cessors use multiple levels of TLBs with the lowest level caching
the most frequent use pages.

Prefetch: Another mechanism that has been employed to re-
duce the memory access latency is prefetches. Modern processors
often include hardware prefetchers that track memory access pat-
terns and automatically prefetch data into caches [11]. However,
prefetchers only work well when there is a regular access pattern
to begin with. For the join operation, the memory access pattern
is fairly random that reduces much of the benefit of the hardware
prefetcher.

Processor-Memory Bandwidth: Besides memory access la-
tency, memory bandwidth is another critical component in the mem-
ory subsystem. Over the years, improvements to increase band-
wdith include faster data transfer rate and wider interfaces. De-
spite these improvements, memory bandwidth still grows at amuch
lower rate than transistor count [33]. Chip-multiprocessors exacer-
bate the bandwidth problem as compute grows faster than band-
width.

3.3 Optimizing for TLP
The number of cores and thread contexts will continue to growin

future processors. To obtain performance from such architecture,
applications should be threaded to exploit thread-level parallelism
(TLP). For best performance, data accessed by threads must be par-
titioned to minimize concurrent updates to shared data structures.

3.4 Optimizing for DLP
Single-Instruction-Multiple-Data (SIMD) execution is aneffec-

tive way to increase compute density by performing the same oper-
ation on multiple data simultaneously. A 128-bit wide SIMD (e.g.
SSE) is common in processors today. Future processors will have
256-bit or wider SIMD supports [21, 34]. SIMD execution requires
contiguous data in registers or in memory. If data accesses are not
contiguous, gather and scatter overheads are incurred. Another is-
sue with SIMD execution is the requirement of fixed width data
structures. In today’s databases, tuples are often compressed with
light compression schemes such as prefix compression, resulting in
variable length tuples. Use of SIMD instructions causes thesize of
the data to increase by a factor of 2x to 10x due to decompression.

4. HASH JOIN
As explained in Section 3.1, we focus on equi-join queries on

two tables with each tuple consisting of two fields (key, rid), each
being a 32-bit number.

Q: SELECT ... FROM R, S WHERE R.key = S.key

In addition, the tuples completely reside in main memory. For
the remainder of the paper, we use the following notation:
N R : Number of tuples in outer relation (R).
N S : Number of tuples in inner relation (S).
T : Number of hardware threads (including SMT).
K : SIMD width.
C : Cache size (L2) in bytes.
P : Size of 1st level TLB (in number of entries).

The basic idea behind a hash join implementation is to createa
hash table with keys of the inner relation (S), and reorder its tu-
ples. This partitioning phase is followed by the actual joinphase,
by iterating through the tuples inR, and for each key – searching
for matching keys in the hash table, and appending the matching
tuples fromS to the output table. The expected O(1) search cost of
hash tables makes this an attractive option for database implemen-
tations. However, with increasing number of entries in the tables,
this approach suffers from following performance limiterson cur-
rent CPU architectures:

Size of hash table:In order to avoid wasteful comparisons dur-
ing join, it is imperative to avoid collisions during hash lookups.
Theoretically, this requires a hash table with size aroundtwo times
larger than the number of input elements, or the cardinalityof the
input keys (if known a priori). We also need a hash function be-
longing to the class of strongly 2-universal functions [30].

A fixed (small) number of TLB entries: With large table sizes,
it is possible to access regions of memory whose page entriesare
not cached in the TLB – thereby incurring TLB misses, and a large
increase in latency. Therefore, it is critical to perform memory ac-
cesses in an order that avoids significant TLB misses – even for
large input sizes.

Duplicate key’s in S : Each duplicate key necessarily leads to a
collision in the hash table. Both direct chaining and open address-
ing methods [25] lead to poor cache behavior leading to increased

3



�����

�

�1

�2

�3 �3

�1

�2

��	
������ �

������������ �

������������ ��	
������

2
�2

Figure 1: Partitioning relations R and S to speedup the hash
join operation

memory latency. Array Hashes [1] lead to increased memory con-
sumption and do not scale with multiple cores.

Having described the potential performance bottlenecks, we now
describe our hash join implementation that addresses theseissues,
along with a corresponding analytical performance model. This is
followed by the detailed algorithm description, and its extension to
exploit the multiple cores and the 128-bit SIMD (SSE).

4.1 Algorithm Overview
To overcome the dependence on memory latency and memory

bandwidth, we need topartition the input table1 into smaller dis-
joint tables (referred to as sub-tables), such that each sub-table can
reside in cache. This is followed by the actual join between the
corresponding sub-tables in the two relations. We now describe the
two phases in detail:

4.1.1 Partitioning Phase
Our partitioning phase is based on the radix-cluster algorithm

proposed by Manegold et al. [28]. We partition the data basedon
the rightmostB bits of the two input tables to obtain 2B sub-tables,
denoted byR1, ..,R2B andS1, ..,S2B (Figure 1). Note that we now
need to perform 2B independent join operations – betweenRi andSi
∀ i 1..2B . The parameterB is chosen in a way that the average size
of the resultant sub-tables in the inner relation (N S/2B ) fits in the
L2 cache. Furthermore, in order to avoid TLB misses, we do not
want to have more thanP open pages at any point of time, whereP
is the size of the 1st level TLB. In practice, 2P pages seem to work
well when backed up by the next level TLB. However, having more
than 2P pages seems to expose the TLB miss latency, affecting the
run-time performance on CPUs. Hence, themaximum number of
sub-tables that can be generated at any one point of time is fixed to
beP ′ (= 2P ).

Since we wish to partition the table into 2B sub-tables, we per-
form ahierarchical partitioning, with each level subdividing a given
table intoP ′ disjoint sub-tables. We start with the input table, and
subdivide it intoP ′ sub-tables. Each of these sub-tables is further
subdivided intoP ′ sub-tables to obtain a total ofP ′2 sub-tables.
This operation is carried out until the total number of sub-tables
equals 2B . A total of ⌈ B / log(P ′) ⌉ levels are required.2

For level(l)← 1 ... ⌈ B / log(P ′) ⌉:

Step P1:Iterate over the tuples of the table and build a histogram
(Hist), with the jth entry storing the number of input keys that
hash to indexj. Note that the hash function used simply considers

1The terms table and relation are used interchangeably throughout
the paper.
2Unless otherwise stated, log refers to logarithm with base 2(log2).

log(P ′) bits of the key, i.e., bit positions [l*log(P ′) .. l*log(P ′) +
log(P ′/2)] from the right to compute the hash index.

Step P2:Perform the prefix sum of the histogram (Hist) to com-
pute the starting addresses of the elements mapping to the respec-
tive indices of the histogram. For example, after computingthe
prefix sum,Hist[j] stores the address where the first tuple from
the table whose key maps to indexj needs to be scattered to.

Step P3:Reorder the tuples of the table by iterating over them,
and scattering a tuple to the address stored at the corresponding
hash location. The address at the corresponding location isincre-
mented by the size of the tuple to correctly reflect the scatter ad-
dress for the next tuple that maps to that index.

We perform the above three steps for each level of subdivision
for each of the sub-tables. Note that the final size of each sub-table
depends on the distribution of thekey’s in the relation. Further-
more, we read each tuple twice (once during Step P1 and later dur-
ing step P3). This helps in computing the starting address for each
sub-table within a pre-allocated memory chunk and avoids allocat-
ing separate buffers for each sub-table and maintaining them. We
later show that the partitioning phase is compute bound on current
CPUs, and not affected by the two trips to main memory.

We now describe the analytical model — 1) the amount of data
that needs to be accessed from/to the main memory and 2) the num-
ber of operations that need to be executed — for the partitioning
phase. We assume that the input table is too big to fit into the cache.
Also, since the histogram fits in the cache, the reads/writesfrom/to
the histogram are not dependent on the memory bandwidth. For
each tuple, Step P1 reads 8 bytes and Step P3 reads 8 bytes and
writes 8 bytes (scattered tuple). Note that the scattered write in
Step P3 causes the cache subsystem to first bring in the cache line
of the destination into the cache before the write is performed. So,
this scattered write indirectly reads 8 bytes into the cacheand then
overwrite that location without using it. Hence, a total of 16 bytes
are read, and 8 bytes are written in Step P3. In short, a total of 24
bytes are readand8 bytes are written per tuple during the parti-
tioning phase. Note that both the reads and writes are performed in
a sequential fashion, hence the bandwidth is effectively utilized.

To compute the number of operations, let costhash denote the
cost of hash computation on the key as well as loading input data.
During Step P1, we compute the hash value and also increment
the histogram index (effectively loading, adding one, and storing
back). Let costincr denote the cost of incrementing the histogram
index. Furthermore, the counter is incremented and compared to
check for the end of the table. Let costepil denote the cost of this
epilogue operation. We denote costP1 as the number of operations
executedper tuple during the execution of P1. Hence,

costP1 = costhash + costincr + costepil (per tuple).

Step P2 operates on the histogram, and for each entry, reads it,
modifies it and writes it back. The cost is the same as costincr. This
step has the same epilogue operations to obtain a resultant of costP2
operationsper hash entry.

costP2 = costincr + costepil (per hash entry).

Step P3 again computes the hash index, increments it, and scat-
ters the input tuple to its permuted location. Let the cost ofwriting
be costwrite per tuple. Hence,

costP3 = costhash + costincr + costwrite + costepil (per tuple).

We denote the cost of partitioning for each tuple (for every level)

4



as costPartition. Note that we partition bothR andS tables into the
same number of sub-tables using the above algorithm before mov-
ing to the join phase, described next.

4.1.2 Join Phase
The join phase performs 2B independent joins – one for each

partition generated in the partitioning phase. LetRi andSi denote
the two relations that are being joined in one such partition, andN Ri

andN Si be the number of tuples in the two relations respectively.
We againbuild a histogram using a hash fuction forSi and reorder
the tuples to obtainS′i. The histogram together withS′i comprises
the hash table. The size of the histogram is chosen differently, and
we will derive it at the end of the subsection. In the meanwhile, we
refer to the size of the histogram asN Hist. We perform the 3 steps
(P1, P2 and P3) described above, with a different hash function.
Note that after reordering the tuples inSi, all the tuples with keys
that map to the same hash index are stored contiguously inS′i.

The build phase is followed by theprobe phase, where we iterate
over the tuples ofRi, and hash each key, and go over the correspond-
ing tuples inS′i to find matching keys and output the result. Note
that for each tuple inRi, all the potential matches inS′i are stored in
consecutive locations. Hence to reduce the dependency on mem-
ory latency, we issue software prefetches by computing the starting
address of the matching tuples inS′i for keys at a certain distance
from the current tuple being considered inRi. We now describe the
build andprobe phases in detail.

Step J1:Similar to Step P1, iterate over the tuples ofSi and build
a histogram,Hist. The hash function uses log(N Hist) bits, i.e., bit
positions [(B +1) .. (B ) + log(N Hist)] from the right to compute the
hash index.

Step J2: Similar to Step P2, compute the prefix sum ofHist.
Step J3: Similar to Step P3, permute the tuples inSi usingHist

to obtainS′i.

Having obtainedS′i, we now perform theprobe phase – Step J4.

Step J4: In order to issue prefetches, we implement theprobe
phase as follows. We keep a buffer (Buffer) of small number (say
b) of elements. We iterate over tuples inRi in batches ofb tuples.
For each tuple (say with keyRi[k].key), we store the tuple and its
computed hash index (jk) in theBuffer. Furthermore, we also is-
sue a prefetch with the appropriate address of the first potentially
matching tuple inS′i. By construction, the offset of this element is
Hist[jk] within S′i.

After filling up Buffer with b elements, we iterate over the tu-
ples stored inBuffer, and now for each keyBuffer[k′].key, and
the corresponding hash valuej′, compare all tuples inS′i between
indicesHist[j′] and Hist[j′+1]. Since we had already issued a
pre-fetch for the first element at addressHist[j′], we expect the
first few tuples to be in the L1 cache. Furthermore, as we sequen-
tially search for the matching keys, the hardware prefetcher would
fetch the subsequent cache lines into the L1 cache. This reduces
the latency requirements of ourprobe phase. Note however, that
we still incur branch misprediction (while comparing the keys in
S′i), and our performance should improve with the support of si-
multaneous multi-threading (SMT) on one-core.

We now derive the value ofN Hist. Since we have already con-
sideredB bits during the partitioning phase, the maximum number
of unique elements cannot exceed 232−B . In addition, as described
in Section 4, we need a hash table of size aroundtwo times the

number of elements (or cardinality) for reducing collisions. Hence,
N Hist is chosen to be min(232−B , 2N Si ).

Finally, we derive how to chooseB for a given cache sizeC .
During the join phase, the original table (Si), the permuted table (S′i)
and the HistogramHist need to be cache resident together. Hence
for a table withN Si entries, (8+8+4)N Si bytes of cache are required.
Thus N Si is around⌊(C /20)⌋. Thus, we need to create around
N S/⌊(C /20)⌋ partitions. Therefore,B equals⌈log(N S/⌊(C /20)⌋)⌉.

We now derive a cost model for the amount of data that needs to
be read from the main memory and the number of operations that
need to be executed and for the Join phase. Although we set our
partition parameters such thatSi, S′i andHist can reside together
in the cache in the average case, it is indeed possible to obtain some
partitions where this is not true. Therefore, to compute thememory
requirements, we distinguish between the cases where abovethree
entities fit together, and when they do not. For the former case,
Step J1 reads 8 bytes and Step J4 reads 8 bytes. Hence a total of16
bytes are readper tuple.

If the three entities do not fit into the cache, 8 bytes are read
during J1 and 8 bytes are read and 8 bytes are written during J3.
Note that our partitioning scheme ensures thatHist always fits in
the cache, and hence does not stress the memory bandwidth. The
scattered write (during J3) also reads 8 bytes to fetch data for write,
and hence a total of 24 bytes are read and 8 bytes of written. For
Step J4, 8 bytes ofRi are read, and the probe phase now may need
to bring in a complete cache line (64 bytes) ofS′i in the worst case
to compare the first 8 bytes. Hence in theworst case, a total of96
bytes are read and 8 bytes are written. In the best case, each
cache line that is read is completely utilized by different inputs,
thus requiring only 8 bytes being read in the probe phase, fora
total of 40 bytes read and 8 bytes writtenduring the whole Join
phase. Of course, for each output tuple, 12 bytes are written(and
correspondingly 12 bytes read).

As far as the number of operations are concerned, we borrow the
expressions for steps J1, J2 and J3 from Section 4.1.1.

costJ1 = costhash + costincr + costepil (per tuple).
costJ2 = costincr + costepil (per hash entry).
costJ3 = costhash + costincr + costwrite + costepil (per tuple).

Step J4 computes the hash index, and stores locally the tuple
and the computed hash index, followed by issuing the prefetch in-
struction. As far as the probe phase is concerned, it reads the two
consecutive addresses stored in the Histogram, and compares the
tuples in that range inS′i. We represent the cost of locally storing
and issuing the prefetch as costpre f . Furthermore, leth denote the
average number of tuples used for comparison fromS′i per tuple in
Ri and let costcomp denote the cost of one comparison.

costJ4 = costhash + costpre f + hcostcomp + costepil (per tuple in
Ri).

We denote the cost of join as costJoin, which is the sum of the
abovefour expressions.

4.2 Exploiting Thread-Level Parallelism
In order to exploit the multiple cores, and simultaneous multi-

threading within one core, we need to parallelize both the parti-
tioning and the join phases.

4.2.1 Parallelized Partition Phase
During the first level of partitioning (forR or S), all theT threads

need to simultaneously perform Steps P1, P2 and P3. In addition,
there needs to be an explicit barrier at the end of each step.

5



After the first level of partitioning, there are enough partitions
and each thread can operate on a single partition without anyex-
plicit communication with the remaining threads. This is especially
true on current multi-core architectures, withT being small (≤16).
We now describe in detail the algorithm for parallelizing the first
level of partitioning and the issues that impact scalability. We re-
fer to parallelized Steps P1, P2 and P3 as Steps P1p, P2p and P3p
respectively. To reduce the impact of load imbalance, we usea
scheme based on dynamic partitioning of the tuples. Specifically,
we use the Task Queueing [29] model, and decompose the execu-
tion into paralleltasks, each executing a fraction of the total work
(described below). This allows the runtime system to schedule the
tasks on different hardware threads. For the discussion below, we
assumeT ′ (≥ T ) tasks, and later explain the relation betweenT ′

andT .

Step P1p: Equally divide the input tuples amongst theT ′ tasks.
Each taskT ′i maintains its local histogram (Histi) and updates it
by iterating over its share of tuples. The hash function usedis same
as the one used in serial P1 step.

Step P2p: Having computed their local histograms, the tasks
compute the prefix sum in a parallel fashion. Consider thejth in-
dex. At the end of Step P1p, each task stores the number of tuples
whose keys map tojth index, and hence the total number of tuples
mapping tojth index is∑Histi[j]. For theith task, the starting ad-
dress of each indexj can be computed by adding up the histogram
values of all indices less thanj (for all the tasks), andjth index for
all tasks chronologically before theith task. This is same as the
prefix sum operation, and we use the algorithm by Hillis et al.[19]
to parallelize it.

Step P3p: Each task again iterates over its share of tuples and
uses its local histogram to scatter the tuple to its final location (sim-
ilar to P3).

In practice, we setT ′ = 4T . As a result, the dynamic load bal-
ancing using task queue’s improved the scaling by 5% – 10% over
a static partitioning of tasks. This may be attributed to thereduc-
tion in the latency of the writes, since different tasks are at different
execution stages during the task and are not simultaneouslywriting
to the main memory.

4.2.2 Parallelized Join Phase
The partitioning phase creates 2B partitions. Statically dividing

the sub-tables amongst theT threads may lead to severe load im-
balance amongst the threads since the partitions are not guaranteed
to be equi-sized. In addition, for skewed distributions, itis possible
to have some partitions that have a large percentage of the input
elements, and hence only a few threads will be effectively utilized.
We devised athree phase parallelization scheme that accounts for
all kinds of data skewness and efficiently utilizes all the computing
resources. As in the partitioning phase, we use the task queueing
model. Note that we maintainT output tables, that are merged at
the end of the complete join algorithm.

Phase-I:We createT ′ tasks, and evenly distribute the sub-tables
amongst the tasks. If the size of both the inner and outer sub-table
is less than a pre-defined threshold (Thresh1), it performs the join
operation (steps J1 .. J4) and appends the output to the relevant
output table. Note that there is no contention for writing between
threads. In case the size of any of the sub-tables is greater than
Thresh1, the task simply appends that sub-table’s pair id to a list
of pairs to be addressed in the next phase.

In addition, the use of task queues ensures that we can achieve

a better load balancing between threads and address the variability
between individual task execution times. There is an explicit bar-
rier at the end of Phase-I, and now we describe Phase-II, where all
the threads work simultaneously to join a pair of sub-tables. All
the sub-tables that were not joined during Phase-I now go through
through Phase-II.

Phase-II: Let Ri andSi denote the two relations to be joined by
multiple threads. As in the partitioning phase, the first three steps
(J1, J2 and J3) are parallelized in a similar fashion to stepsP1, P2
and P3 respectively. After thebuild phase, we now execute the
probe phase (J4p) as described below.

Step J4p: Evenly divide the input tuples inRi amongst theT ′

tasks. Each task maintains a separate Buffer (Bufferi) and oper-
ates in batches ofb tuples. While searching for potential matches
for any key inS′i, it is possible to find a lot (≥ Thresh2, a pre-
defined threshold) of potential matches (for skewed distributions
like Zipf [15]). To avoid load imbalance in such cases, the task does
not perform the search and appends that key to the list of unprobed
keys, and also stores the starting and ending probing address.

At the end of the above phase, we have a list of unprobed keys.
We now consider each of the unprobed keys, and perform the search
in a parallel fashion.

Phase-III: All the threads work simultaneously for each of the
probes. We evenly divide the search range amongst the keys and
each thread searches for matching keys and appends the relevant
tuples to their respective output tables.

The abovethree phase parallelization scheme incurs low over-
head (for large input size), and aims at efficiently utilizing the mem-
ory bandwidth, and computation cores. The thresholds used above,
Thresh1 andThresh2 are set toT C1 andT 2C1 respectively, where
C1 is the number of tuples that fit in the L1 cache. These cutoffs
are chosen to reduce the overhead of parallelization.

Prior attempts have been made to solve the load imbalance prob-
lem in parallelizing the join phase in the presence of data skew [20,
36]. However, these were in the context of parallelizing across clus-
ters of computers and not chip multiprocessors. Consequently, net-
work communication latency and synchronization overhead did not
allow for such fine-grained task-level parallelization. The scheme
described in this section creates fine-grained tasks (phases-II and
III) that can divide up work evenly across threads. Any remaining
imbalance due to arbitration and latency effects is handledthrough
a task queue mechanism that performs work stealing to balance the
load across threads. We shall see in Section 6 that our schemere-
sults in scalable performance even for heavily skewed data.

4.3 Exploiting Data-Level Parallelism
There is inherently a lot of data-level parallelism in the hash join

implementation. We describe below a data parallel algorithm as-
suming aK element wide SIMD, withK being equal to 4 for the
current SSE architecture.

During the partitioning phase, we operate on each tuple by com-
puting the hash index, followed by updating the histogram followed
by the scatter operation. The corresponding steps P1dp, and P3dp
are as follows:

Step P1dp: Iterate over the input tuples by operating onK tuples
simultaneously. We need to extract theK keys and compute the
hash function. Since the same hash function is applied on allthe
keys, this maps to SIMD in a straightforward way. This would be
followed by updating theK histogram bins simultaneously.

6



Step P2dp: As described in Section 4.1.1, Step P2 involves a pre-
fix sum over a histogram table. Data parallel prefix-sum algorithms
have been proposed in the literature [4]. However, such algorithms
do not seem to give much benefit atK = 4.

Step P3dp: Operating onK tuples simultaneously, and comput-
ing the hash index, followed by gathering the scatter address from
the histogram bins, and scattering theK tuples at their respective
permuted locations.

For the join phase, steps J1dp through J3dp can exploit data level
parallelism in a similar fashion to steps P1dp through P3dp respec-
tively. Step J4dp is modified as follows:

Step J4dp: Operating onK tuples simultaneously, and perform-
ing the search by comparing one element for each of the tuples.

In order to achieve SIMD scaling, we need efficient hardware
implementation of the following features:

• Data Gather: In Step J4dp, we need to pack together the
elements from distinct search locations in a SIMD register to
perform comparisons with the respective keys.

• Data Scatter: In Step P3dp, we need to write consecutive
elements in the SIMD register to non-contiguous locations.

• SIMD update collision: In P1dp and J1dp, the simultaneous
update of the histogram bins needs to be handled correctly
in SIMD. In case theK bins are all distinct, it reduces to a
gather operation, followed by an increment, followed by a
scatter back. However, if two or more bins are the same, the
update for all the distinct bins needs to be done in the first
pass, followed by the next set of distinct bins. Implement-
ing it in software is prohibitively expensive, and we need
hardware support for such atomic vector updates. The ben-
efit of such hardware support can be more significant espe-
cially when there are few conflicts expected within SIMD
lanes (e.g., Step J1dp).

However, the current CPU SSE architecture lacks support foref-
ficient implementation of all the above features. Hence, we do not
see any appreciable speedup in the data-level parallel implementa-
tion of the hash join algorithm.

5. SORT-MERGE JOIN
Sort-merge join sorts rows in both input tables by the join key

and then merges these tables. The most expensive part (≥98%) of
sort-merge join is the sorting of those two tables. Therefore, it is
essential to use the most efficient sorting implementation to achieve
the best sort-merge join performance.

5.1 Scalar Implementation
For a scalar sort implementation, we adopt an efficient imple-

mentation of merge sort by Chhugani et al. [7]. Merge sort essen-
tially merges two lists of lengthL to produce a list of length 2L.
In the next step, it merges two lists of length 2L to produce one of
length 4L, and so on until there is a single sorted list. Chhugani
et al. optimized their implementation by (1) replacing branches
with conditional moves that do not suffer branch misprediction, (2)
blocking for cache to make efficient use of memory bandwidth,and
(3) using multi-way merging to merge cache-size blocks to pro-
duce a single sorted list. However, their implementation sorts only
keys. For this work, we extend their implementation to sort tuples
of (key, rid).

There are two ways to sort the tuples. One way is to treat (key,
rid) as a single entity. For example, if both key and rid are both 32-
bit values, they can be treated as a single 64-bit entity. Thebenefit

of this approach is that no extra instructions are needed on 64-bit
architecture. A comparison can be performed only on the 32-bit
keys but the actual sort moves the entire 64-bit entity that includes
bothkey andrid.

The snippet of x86 assembly instructions below depicts the in-
nermost loop that merges two lists, A and B. It loads pointersto A
and B (lines 1-2), assumes that B is less than A and loads B’s con-
tent into registerrdx (line 3), and speculatively advances both A
and B pointers (lines 4-5). A comparison of A’s and B’s keys (line
6) sets a conditional flag. Conditional move instructions (cmov)
use this conditional flag to fixrdx (line 7) and roll back B’s pointer
(line 8) if A is less than B. If A is greater than B, A’s pointer is
rolled back to the old value (line 9). Finally, the content ofrdx

(whether containing A or B) is stored into a destination (line 10).
Although this code executes more instructions than a simpleif-
then-else block, it eliminates the branch based on the comparison
of A and B, and improves the runtime performance.

Note that the number of instructions below is the same as the
number of instructions for sorting 32-key only, except thatthe
quadword keyword is used to actually move 8 bytes to and from
memory.

1. mov rsi, rax ; save old ptr_A
2. mov rdi, rbx ; save old ptr_B
3. mov rdx, qword ptr [rbx] ; load B’s key&rid
4. add rax, 8 ; ptr_A+=2
5. add rbx, 8 ; ptr_B+=2
6. cmp dword ptr [rsi], edx ; compare keys only
7. cmovc rdx, [rsi] ; A<B, load A’s key&rid
8. cmovc rbx, rdi ; A<B, roll back ptr_B
9. cmovnc rax, rsi ; A>=B, roll back ptr_A
10. mov qword ptr [rcx], rdx ; store both key&rid

The second way is to treat them separately, therefore incurring
extra instructions to move the associatedrid as well. This results
in slowdown but is more general, as it does not assume that thekey

andrid are kept together.
When the size of a key or rid is greater than 32 bits, a (key, rid)

tuple cannot co-locate in a single 64-bit scalar register. In this case,
extra instructions are needed to sort them. The code above needs
three new instructions to explicitly move rid with the key: aload
(load B’s rid), a conditional move (load A’s rid), and a store(store
rid).

5.2 Exploiting Data-Level Parallelism
We use a bitonic merge network [7] to exploit data-level paral-

lelism. Figure 2 shows a 4x4 bitonic merge network that merges
two sorted sequences of length 4 and produces a single sortedse-
quence of length 8. A 4x4 merge network has three levels, eachof
which comprises of comparisons of four pairs of elements on four
lanes (e.g., four boxes at each level). Within a lanei, it assigns
to Li the smaller element andHi the larger element. Between each
level is a shuffle network that routes the L’s and H’s to the desired
lanes for the next level.

Initially, sequences A and B are sorted in the same ascendingor-
der. Bitonic merge needs one sequence to be sorted in ascending or-
der (A), and the other in descending order (B). In the figure,A0, A1,
A2, A3 are four contiguous elements of A that are already loaded
in a SIMD register. B is shown after loaded into a SIMD register
and permuted into descending order (B3, B2, B1, B0), called B′. At
level 1, a SIMD comparison on A and B′ assigns the smaller values
of the pairs (A0, B3), (A1, B2), (A2, B1), (A3, B0) to one SIMD reg-
ister containing L’s (L0L1L2L3) and larger values to another SIMD
register containing H’s (H0H1H2H3). For level 2, these L’s and H’s
need to be routed the desired lanes for another comparison. If the

7



�� �� �� �� �� �� �� ��

��������������	
����

������� ��
� ��
� ��
� ��
�

��
� ��
� ��
� ��
�

��
� ��
� ��
� ��
�

�������

�������

Figure 2: A bitonic merge network that merges two sequences
of 4 elements each (A and B) to produce a single sorted se-
quence of 8 elements.

L’s (or H’s) within a SIMD register need to be routed in different
directions, then shuffles are need. In practice, one shuffle is needed
for each direction. As the bitonic merge network becomes larger,
the top levels do not need shuffles because all L’s or H’s within a
SIMD register move in the same direction. The same operationis
repeated for level 3. At the end of level 3, two resulting SIMDreg-
isters containingL0L1L2L3 andH0H1H2H3 are interleaved (via a
pair of shuffle instructions) to get a sorted sequence ofL0, H0, L1,
H1, L2, H2, L3, andH3.

Mapping this bitonic merge network to SSE4 [22] produces the
sequence of instructions below. The instructions in black text (lines
1-2, 5-12) are for sorting keys only, as four keys can fit into asingle
SIMD register and can be processed by a SSE instruction concur-
rently. Ignore the instructions in blue text for now (lines 3-4, 13-20)
as they are for (key, rid) tuples (describe below).
// xmm2 and xmm3 in descending order

// level 1

1. xmm4 = sse min(xmm0,xmm3);

2. xmm5 = sse max(xmm0,xmm3);

3. xmm6 = sse min(xmm1,xmm2);

4. xmm7 = sse max(xmm1,xmm2);

// two shuffles for keys only

// no shuffle for (key, rid)

// 1st 2x2 network begins

// level 2

5. xmm8 = sse min(xmm4,xmm6);

6. xmm9 = sse max(xmm4,xmm6);

// shuffle

7. xmm12 = sse shuffle(xmm8, xmm9, dir1);

8. xmm13 = sse shuffle(xmm8, xmm9, dir2);

// level 3

9. xmm16 = sse min(xmm12,xmm13);

10. xmm17 = sse max(xmm12,xmm13);

// interleave result

11. xmm0 = sse shuffle(xmm16, xmm17, dir3);

12. xmm1 = sse shuffle(xmm16, xmm17, dir4);

// 2nd 2x2 network begins

// level 2

13. xmm10 = sse min(xmm5,xmm7);

14. xmm11 = sse max(xmm5,xmm7);

// shuffle

15. xmm14 = sse shuffle(xmm10, xmm11, dir1);

16. xmm15 = sse shuffle(xmm10, xmm11, dir2);

// level 3

17. xmm18 = sse min(xmm14,xmm15);

18. xmm19 = sse max(xmm14,xmm15);

// interleave four results

19. xmm2 = sse shuffle(xmm18, xmm19, dir3);

20. xmm3 = sse shuffle(xmm18, xmm19, dir4);

Each level contains a SIMD min and a SIMD max instruction.
We use generic names such as ssemin and ssemax to simplify
discussion as SSE has a variety of min and max for different data
types and sizes. Moreover, SSE uses different SIMD instructions
to shuffle elements, depending on the shuffle patterns. Here we use
a generic sseshuffle(A,B,direction) to represent all these instruc-
tions, wheredirection tells the shuffle instructions how to route
the elements of A and B.

Note that for sorting keys only, after min/max instructionsat
lines 3-4, a pair of shuffle instructions is needed becauseH0, H1
need to go to the lanes 3 and 4 whileL2, L3 need to go to lanes 0
and 1, respectively. Due to the way the shuffle is implementedin
SSE, the pair of shuffles at lines 7-8 actually require three SSE in-
structions to route 2 4-wide SIMD registers. This peculiarity disap-
pears when routing 2-wide SIMD registers. Thus, the total number
of SIMD instructions for sorting keys only is 13.

The same 4x4 network can be applied to tuples of a 32-bit key
and a 32-bit rid, treating a (key, rid) tuple as a single 64-bit entity.
Since SSE4 operates on two 64-bit values at a time, the numberof
comparisons at each level doubles (i.e., 2 SIMD min and 2 SIMD
max instructions). In the code above, all lines (1-20) belong to the
merge network. The number of shuffle instructions at level 2 and
level 3 doubles. However, no shuffle is needed at level 1 because
the entire SIMD registers (xmm4, xmm5, xmm6, xmm7) remain
intact going to the next level. The number of instructions is20,
and increase of 1.54X over 32-bit keys only (13 instructions). The
performance is expected to beless than 2X slowerthan keys only.

5.3 Exploiting Thread-Level Parallelism
Intel Core i7 provides two aspects of TLP: two hardware con-

texts on each core (SMT) and four cores on the same CPU pack-
age. Merge sort can take advantage of SMT by running two merg-
ing threads on the same core to hide instruction and memory la-
tency. Without SMT, a wider network should be used to increase
parallelism and overlap SIMD instruction latency with computa-
tion. Consider the merge network in Figure 2, a 4x4 network is
composed of two independent 2x2 networks at level 2 and level3.
However, a 4x4 network has one extra level (level 1 in Figure 2)
that includes extra min/max (two for keys only, four for key-rid)
and two shuffles (keys only). Going to a 8x8 network gives two
independent 4x4 networks but requires yet another level (four extra
min/max). In short, as the network becomes wider, more levels and
thus instructions are required. Note that when the network is wider
than SIMD lanes, no shuffles are needed at the upper levels.

SMT obviates the need to go to wider networks by overlapping
instruction and memory latency with instructions from the other
thread. Using smaller network results in fewer instructions and as
long as all pipeline stalls are overlapped with useful work,it will
result in shorter execution time.

The second aspect of TLP is parallel merge. Tuples are first par-
titioned amongT threads, which sort their own partitions. Then
they cooperate in mergingT sorted list into a single sorted list.
When intermediate lists are larger than caches, merging maybe-
come bandwidth bound, as these lists streams from/to memorymul-
tiple times. We address the bandwidth issue in the next section.

5.4 Bandwidth-Oblivious Sort
Multiway merging [7] is used to address the bandwidth bottle-

neck by forming a tree of threads that incrementally merge the
heads of partially sorted lists simultaneously. As tuples are merged,
they are pushed to a “parent” thread up the tree. The parent thread

8



�

��

��

��

��

���

� � � � �� �� �� �	 �� �
 �� �� �� �� ��

���������	�
����
��������	
����
������������

����

���������

������ ������ ������

Figure 3: Time spent in partitioning and join phases with vary-
ing number of partitions for 128M tuples with uniformly dis-
tributed keys.

merges these tuples with tuples from other child threads andpushes
the merged tuples up to its own parent. This goes on until tuples
reach the root thread, which merges and stores them to memory. By
merging all lists in parallel in this fashion and limiting the number
of “in-flight” tuples within the last level cache, multiway merg-
ing reads each tuple once from main memory and writes it once
to main memory. In short, multiway merging turns a bandwidth-
bound merge sort into a compute-bound merge sort by juduciously
managing its usage of memory bandwidth.

6. PERFORMANCE EVALUATION
In this section, we show the performance of both hash-based

join implementation and sort-based join implementation. We run
our experiments on a single socket Intel Core i7 965 system with
6GB of DDR3-1333 memory. The processor runs at 3.2GHz and
has four out-of-order superscalar processor cores that support si-
multaneous multi-threading (SMT) with two hardware threads per
core. Each core has a 32KB L1 instruction cache, a 32KB L1 data
cache and a 256KB combined L2 instruction and data cache. The
four cores share a 6MB L3 cache. For fast virtual-to-physical ad-
dress translations, each core maintains a 64-entry fully-associative
L1 TLB and a 512-entry four-way set associative L2 TLB.

6.1 Hash Join Performance
We evaluate the performance of the hash join in three aspects:

1) the benefit of partitioning; 2) the handling of input variations
such as the table size, the join selectivity and the number ofdis-
tinct keys; 3) the handling of heavily skewed data such as theZipf
distribution [15].

6.1.1 Partitioned Hash Join
To study the benefit of partitioning for hash join algorithm,we

join two tables of 128 million tuples with uniformly distributed
keys [9, 18, 28]. Figure 3 shows the time (in cycles) spent to pro-
cess each tuple on the quad-core processor when the number of
partitions varies from 64 to 1M3.

To study the performance trade offs, we separate the time spent
in the partitioning phase and the join phase. When the numberof
partitions is small (64, 128 and 256 partitions), the partition size
is too big to fit in the caches. The join phase is memory bounded
and it becomes the performance bottleneck. As the number of par-
titions increases, the partition size reduces and it eventually fits into
the caches. When the number of partitions is greater than 4K,the
time required for the join phase stabilizes. Further increase in the
number of partitions would not improve performance any morebe-
cause the time spent in the partitioning phase is dominating.

31M refers to 1 million.

�

�

��

��

��

��

��

��

� ��� ��� ��� ��	 �

���������	�
����
�����������	�
����
���������

�
�

��
��
��
��
��
��

��� ���� ���� ���� �� �� �� �� ��� 	�� ��� ��������������	�
����
����������
��

�

�

��

��

��

��

��

��

� �� �� �� 	� ���

���������	�
����
����������������
��
������������
����

(b)

�

�

��

��

��

��

��

��

� �� �� �� 	� ��� ���

���������	�
����
��� ��������
����������

(a)

(d)(c)

Figure 4: Computation time measured in cycles per tuple with
various inputs: (a) varying the number of tuples from 64K to
128M (b) varying the join selectivity (c) varying the input car-
dinalities (d) varying the θ value of Zipf distributions.

Experimentally, we found the optimal number of partitions is
16K when each partition just fits in the on-die caches. Multi-pass
partitioning is necessary when the number of partitions perpass is
greater than 128, which is twice the size of L1 TLB.

6.1.2 Uniform Distribution
Next, we study how the hash join algorithm handles input vari-

ations. In this study, we do not include the time to generate the
output, which is less than 3 cycles per output tuple. Even when the
output size is similar to the input size, this adds less than 10% to
the actual runtime.

Figure 4(a) shows the effect of changing the input data size from
64K to 128M tuples. The time per tuple varies from 25 cycles
to 32 cycles as the input data size increases. However, the varia-
tion is small and very stable. This corresponds to 100M to 128M
tuples per second. This result is better than any published perfor-
mance in the literature. For example, He et al. [18] report a runtime
of 2.5 seconds on a 2.4GHz Intel Core2 quad-core processor with
tables of 16M tuples that have uniformly distributed 32-bitkeys.
In comparison, our Core i7 performance is around 0.15 seconds
(30cpe∗16M/3.2G) which is16.6X faster. We also measured our
performance on the same 2.4GHz Core2 quad-core processor used
by He et al. and found our implementation to be6.5X faster. This
illustrates the efficiency of our implementation. Furthermore, con-
trary to their claim that the hash join implementation on a Core2
quad-core CPU is 1.9X slower than a GPU (Nvidia 8800GTX), our
Core2 implementation is in fact 3.4X faster than the same GPU
platform.

Figure 4(b) shows the effect of the join selectivity by changing
the percentage of matching tuples for the table size of 128M tuples.
0% means that there is no matching tuples, which results in no
output data. We notice that the overall join time improves slightly
as there are less tuples with matches4. This is because the branch
prediction in the probing phase improves as the prediction accuracy
increases by always predicting a non-match.

Figure 4(c) shows the effect of varying the number of distinct
keys from 1M to 128M for the table size of 128M tuples. In gen-
eral, data with low cardinality shows less branch mispredictions in

4the graph does not include the time for writing the output.

9



the probe phase, thus achieving better performance by around 5%-
10% as compared to the higher cardinality data. Note that we do
not exploit the cardinality information during execution of our al-
gorithm. In case the cardinality is low and known a priori, wecan
reduce the number of partitioning phases or completely eliminate
it, thereby further speeding up the runtime.

TLP Scaling: The performance results reported earlier in this
section correspond to the parallel implementation of the hash join
algorithm as described in Section 4.2. The partitioning step is par-
allelized by dividing the input tables evenly among the threads. In
the join phase, each thread is responsible for joining one ormore
independent partitions.

For the uniform distribution, both the partitioning and thejoin
phases scale very well with respect to the number of cores. There
is no load imbalance among the different threads executing in par-
allel. Load imbalance usually arises in the join phase due tothe
variation of the partition sizes when input keys are skewed.For
uniform distributed keys, partition sizes do not vary a lot and this
is not an issue. Consequently, our parallelization of the join step
only needs to go through Phase-I of Section 4.2. We see a scaling
of 4.4X over scalar code using four cores. The scaling is over 4X
because SMT threads hide memory latency and improves the core
efficiency.

6.1.3 Handling Skewed Data
While the uniform distribution offers the best case for parallel

scalability, skewed input distribution such as the Zipf [15] distribu-
tions would test the ability of the parallel hash join implementation
to handle load imbalance. Under this circumstance, our3-phase
parallelization algorithm of Section 4.2 will be exercisedand we
will discuss the results in this section. The serial performance of
our hash-join algorithm for skewed data is comparable to theserial
performance for uniform data. This is in accordance with there-
sults of our analysis of Section 4.1.

TLP Scaling: When all partitions are not uniformly sized, the
amount of time to join each partition varies. In the extreme case
when all the tuples fall into a single partition, we will see no parallel
scalability with a naive implementation. The Zipf distribution is
one such skewed distribution [15]. Consequently, we only see a
2.8X scaling on the 4-core processor when only the phase-I ofour
parallel join scheme is employed.

We address the load imbalance problem through our3-phase
join parallelization algorithm. In Phase-II, threads cooperatively
work on joining large partitions by dividing up the tuples among
themselves. For the Zipf distribution withθ = 100 (which is heavily
skewed), 30-40% of the inputs are greater than 32K tuples, which
was selected as the threshold. However, there may still be load im-
balance in theprobe phase when certain tuples have a large set of
potential matches. To handle this, we separate out such probes in
phase-III and cooperatively probe each such tuple using allthreads.
For the Zipf distribution withθ = 100, less than 0.1% of the tuples
went through this phase. Using these optimizations, weimproved
our parallel scalability of the join phase from 2.8X to 3.9X.

Figure 4 (d) shows the stability of our algorithm with skewed
data. We control data skew by changingθ value from 0 to 100.
With our load-balancing optimization, the figure shows thatour
hash join implementation isstable across different degrees of
skewed data.

6.1.4 Analytical Model
Table 1 shows the breakdown of the time spent in each step as

Time Partitioning Join
P1 P3 Total Build Probe Total

SMT OFF 1.2 4.4 5.6 4.7 5.7 10.4
SMT ON 1.2 6.0 7.2 4.7 4.7 9.4

Table 1: Computation time (in cycles per tuple in the inner
relation) for each step in a hash join implementation and the
effect of SMT support. For the partitioning phase, we report
the time taken for every pass.

described in Section 4. The numbers are reported for joiningtwo
128M relations with uniformly distributed keys. Since the cache
size (L2) is 256 KB, the number of partition bits (B ) should equal
⌈log(128M/12.8K)⌉ (= 14). This is validated by Figure 3, where the
join time is minimized with 14 bits of partitioning. We now com-
pare the runtimes with our derived analytical model for the current
platform. The cost symbols below are defined in Sections 4.1.1
and 4.1.2. The primitive costs were determined by counting in-
structions in the binary. All cycle and bandwidth numbers, unless
stated otherwise, are given per tuple of data operated on.

Step P1 (Section 4.1.1) reads 8 bytes of data. The peak band-
width for our platform is around 7.2 bytes per cycle5, and hence
step P1 is bandwidth bound and should take around 1.1 cycles,
which is close to the actual performance (1.2 cycles). Since the
performance is limited by memory bandwidth, SMT does not im-
prove the runtime any further. Step P2 has negligible runtime (less
than 0.01) and is not reported. On our current system, costhash = 4
ops6 , costincr = 3 ops, costwrite = 5 ops and costepil = 3 ops. Hence
step P3 should take around 15 ops of computation on a single core.
The total memory bandwidth requirement is around 24 bytes. As-
suming a throughput of 1 op per cycle, step P3 should be com-
pute bound, and take around 3.75 cycles on our system (with linear
scalability). This is within 20% of the actual measured time(4.4
cycles). Note that SMT threads degrades the performance since we
incur TLB misses (2 threads sharing the same TLB) which incur
the additional latency.

For the build phase during join (Section 4.1.2), the total cost =
costJ1 + costJ2 + costJ3 = 27 ops. With a throughput of 1 op/cycle
and linear scaling, this amounts to 6.75 cycles. Since our current
system can issue multiple instructions in one cycle, it increases the
throughput for steps J1 and J2 and we measure a runtime of 4.7 cy-
cles per tuple. Note that this does not benefit the partitioning phase,
since step P1 has an explicit barrier at the end of its execution, and
it is bandwidth bound. However, during the building phase, there
is no barrier after individual steps, and the entire phase iscompute
bound. As expected, SMT does not provide any further benefits.

For the probing phase during join (Section 4.1.2), costpre f = 7
ops and costcomp = 10 ops (accounting for average case of branch
misprediction). Thus, the total time evaluates to 24 cycleson one
core, and around 6 cycles on 4 cores, which is within 6% of the ac-
tual measured data. SMT further improves the performance since
the stalls during branch misprediction can be overlapped with po-
tentially other computation being performed by the other executing
thread on the core. Hence the effective value of costcomp should
further reduce to around 3 ops (assuming complete overlap),to ob-
tain the required speedup. Thus, SMT substantially benefitsthe
join phase of the hash join algorithm. To summarize, our analytical

5measured using an in-house bandwidth calibrator.
61 op implies 1 operation or 1 executed instruction.

10



�
��
��
��
��
���
���
���

��
�

��
��
��
��
��
�� �	 �	 �	 �	 ��
	

�
	
��
	

��
�	

��
���
���
�	�

�
���

��
��	����
�������������������

��
��������������� ��
������ ���������

Figure 5: Comparison between sort-merge join and hash join
performance with varying number of tuples in the inner and
outer relations.

model predicts runtimes within 6% - 20% of the observed timesfor
most of the cases. However, the model cannot evaluate the effect
of multiple instruction issues, and hence is an upper bound for such
phases (like building phase in the join operation).

6.2 Sort-merge Join Performance
For the sort-merge join implementation, most of execution time

is spent in sorting two tables. For the scalar version, sorting 32-bit
or 64-bit keys takes 11 clock cycles per element per iteration (cepi)
on our system. The execution time is cepi*N*logN cycles. Sorting
two 128M-key tables takes 79 billion cycles (24.9 seconds).Sort-
ing two tables, each with 128M 64-bit tuples of (key, rid) takes
11.4 cycles per element per iteration (25.8 seconds), a negligible
increase in cycles over sorting only keys. The small increase in
clock cycles for sorting (key, rid) is likely due to moving more data
(both key and rid) from memory. Another factor that impacts sort-
ing performance is the size of keys and rids. When a (key, rid)
tuple cannot fit in a single 64-bit scalar register, extra instructions
are needed to sort them. On our test system, it takes 14.2 cycles per
tuple per iteration to sort 128-bit (key, rid) tuples. That translates
to 32 seconds for two 128M-tuple tables.

For the SIMD implementation, sorting keys only takes 3 cepi
(6.8 seconds for two 128M-key tables) while sorting 64-bit (key,
rid) tuples takes 4.5 cepi (10.2 seconds). These numbers matches
the analytical model proposed by Chhugani et al. [7]. The slow-
down of sorting (key, rid) tuples over keys only is 1.5X, which
matches the increase in the number of instructions over keysonly
(1.53X). Parallel scaling of the SIMD implementation is nearly lin-
ear, 3.6X on four cores. The cepi for keys only is 0.83 (1.8 seconds
for 2 tables of 128M keys) and for (key, rid) tuples is 1.25 (2.8
seconds for two tables of 128M tuples).

6.3 Comparison between Hash Join and Sort-
merge Join

Figure 5 shows computation time of hash join and sort-merge
join with varying number of tuples in both relations. For sort-merge
join, we show both non-SSE and SSE implementation numbers.
The SSE implementation of sort-merge join improves performance
by 1.9X over non-SSE implementation. The theoretical maximum
improvement with 128-bit SSE is 2X because each tuple consists
of a 32-bit (key, rid) pair, and therefore we can accommodate
two tuples in one 128-bit word. With 128 million tuples, our hash
join implementation is 2X faster than even this optimized SSE sort-
merge join implementation. Sort-merge join becomes fasterwith
smaller tuples because the number of sort levels decreases propor-
tional to logN (N: number of tuples). The gap between hash join
and sort-merge join decreases to 1.6X with 64K elements.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

64
K

12
8K

25
6K

51
2K 1M 2M 4M 8M 16
M

32
M

64
M

12
8M

C
yc

le
s 

pe
r 

Tu
pl

e

Number of Tuples in a Relation

Sort Join (128b-wide) Sort Join (256b-wide)

Sort Join (512b-wide) Hash Join

Figure 6: Comparison between sort-merge join and hash join.
For sort-merge join, we add projecting performance with 256
bit-wide and 512 bit-wide SIMD.

7. FUTURE ARCHITECTURE TRENDS
In this section, we discuss future architectural trends from both

the near term and longer term perspective, and how these trends af-
fect the join algorithm choices.

Wider SIMD Execution: In Section 5.2, we show that sort-
merge join can fully exploit DLP using SIMD execution. In sort-
merge join, the efficiency of SIMD execution is affected onlyby
the size of the (key, rid) tuple. For example, with a 32-bit (key,
rid) pair, each tuple is already 64 bits and a 128-bit wide SIMD
implementation (such as SSE) can only operate on two tuples si-
multaneously. In the near term, future processors will adopt wider
SIMD execution (such as 256-bit for AVX [21] and 512-bit for
Larrabee [34]). These wider SIMD support would strongly ben-
efit sort-merge join.

Figure 6 shows the effect of wider SIMD execution on sort-
merge join and hash join. We project the performance of sort-
merge join with 256-bit and 512-bit SIMD based on the work by
Chhugani et al. [7]. With 256-bit SIMD, sort-merge join starts per-
forming better than hash join for small number tuples, and 512-bit
SIMD execution ofsort-merge join is projected to be 1.35X –
1.65X faster than hash join.

For hash join, the scatter update to the partitions (Step P1)or the
hashed bucket (Step J1) is the primary limiter in exploitingDLP.
In order to exploit DLP in this step, efficient hardware scatter sup-
port is necessary. An efficient scatter operation will writemultiple
elements to different memory locations in the most bandwidth effi-
cient manner with the minimal latency.

More importantly, further performance benefit can be achieved
with atomic vector support. In Steps P1 and J1, multiple tuples can
potentially hash into the same partition. These steps require the
targeted hash entry to be updated accordingly. When performing
SIMD execution, multiple elements will update the same memory
location. Current SIMD architectures cannot handle this collision
case and would require reverting back to the scalar implementa-
tion. As a result, the SIMD execution of step P1 and J1 is slower
than serial execution due to instruction overhead of conflict detec-
tion. Efficient support for atomic vector operations such asthat
proposed by Kumar et al. [24] would be beneficial.

Limited Per-Core Bandwidth: As described in Section 3.2,
external memory bandwidth is becoming a scarce resource with
the advent of many-core processors. Once the memory bandwidth
requirement reaches the peak external bandwidth, integrating addi-
tional processor cores would not provide any performance benefit
and would increase the power consumption. Therefore, any paral-
lel algorithms need to reuse the data in the cache as many times as

11



possible before data are written back to main memory.
As far as sort-merge join is concerned, we only need to

access data from/to the main memorytwo times (Section 5). On
the other hand, for a hash-join, we need to partition the datafol-
lowed by the actual (cache-friendly) join phase. As we arguein
Section 4, the restricted size of TLB forces multiple levelsof parti-
tioning for efficient runtime – at least two levels for large database
sizes. In addition, the actual join requires one more main memory
read/write for a total ofthree trips to the main memory. Therefore,
as compared to sort-merge join, hash join would require1.5X more
bandwidth. Therefore, for future scenarios with limited per-core
bandwidth, the join runtime would be proportional to the number
of memory external reads/writes of the data andhash join is pro-
jected to be 1.5X slower than sort-merge joinfor large datasets
with high or unknown cardinality.

8. CONCLUSIONS
In this paper, we re-examined the two popular join algorithms –

hash join and sort-merge join – and provided efficient implemen-
tations along with a detailed analysis and analytical modelof the
runtime performance. Our join implementations efficientlyutilize
the modern processor features by cache blocking to minimizeac-
cess latency, vectorizing for SIMD to increase compute density,
and balancing the load amongst cores, even for heavily skewed in-
put datasets. Our hash-based implementation achieves morethan
100M tuples per second on the latest quad-core processor which is
17X faster than the best reported numbers on quad-core processors
and 8X faster than the best reported GPUs. Furthermore, our sort-
merge join algorithm achieves more than 50M tuples per second –
an order of magnitude faster than the best reported numbers.

We developed analytical models to project the performance of
the two algorithms with future architectural trends towards increas-
ing SIMD width andlimited per-core memory bandwidth. The lack
of appropriate hardware features to exploit SIMD limit the scalabil-
ity of hash join algorithms, while sort-based join algorithms scale
near-linearly with SIMD and are projected to be faster with aSIMD
width of 512-bits or higher. In addition, the higher inherent mem-
ory bandwidth requirements of the hash join algorithm as compared
to sort merge further point towards sort-merge join executing faster
than hash join.

9. REFERENCES
[1] N. Askitis and J. Zobel. Cache-conscious collision resolution in string hash

tables. Inin Proc. String Processing and Information Retrieval Symposium
(SPIRE, pages 92–104, 2005.

[2] K. E. Batcher. Sorting networks and their applications.In Spring Joint
Computer Conference, pages 307–314, 1968.

[3] M. W. Blasgen and K. P. Eswaran. Storage and access in relational data bases.
IBM Systems Journal, 16(4):362–377, 1977.

[4] G. E. Blelloch.Synthesis of Parallel Algorithms, chapter Prefix sums and their
applications, pages 35–60. Morgan Kaufmann, 1993.

[5] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized
for the new bottleneck: Memory access. InVLDB, pages 54–65, 1999.

[6] S. Chen, A. Ailamaki, P. B. Gibbons, and T. C. Mowry. Improving hash join
performance through prefetching. InICDE, pages 116–127, 2004.

[7] J. Chhugani, A. D. Nguyen, V. W. Lee, W. Macy, M. Hagog, Y.-K. Chen,
A. Baransi, S. Kumar, and P. Dubey. Efficient implementationof sorting on
multi-core SIMD CPU architecture.VLDB, pages 1313–1324, 2008.

[8] J. Cieslewicz and K. A. Ross. Adaptive aggregation on chip multiprocessors. In
VLDB, pages 339–350, 2007.

[9] J. Cieslewicz and K. A. Ross. Data partitioning on chip multiprocessors. In
DaMoN, pages 25–34, 2008.

[10] D. J. DeWitt and R. H. Gerber. Multiprocessor hash-based join algorithms. In
VLDB, pages 151–164, 1985.

[11] J. Doweck. Inside Intel core microarchitecture and smart memory access.White
Paper, Intel Corporation Jul 2006.

[12] B. Gedik, P. S. Yu, and R. Bordawekar. Executing stream joins on the cell
processor. InVLDB, pages 363–374, 2007.

[13] N. Govindaraju, J. Gray, R. Kumar, and D. Manocha. GPUTeraSort: High
Performance Graphics Co-processor Sorting for Large Database Management.
In Proceedings of the ACM SIGMOD Conference, pages 325–336, 2006.

[14] G. Graefe, A. Linville, and L. D. Shapiro. Sort versus hash revisited.IEEE
Trans. Knowl. Data Eng., 6(6):934–944, 1994.

[15] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P.J. Weinberger. Quickly
generating billion-record synthetic databases. InSIGMOD Conference, pages
243–252, 1994.

[16] A. Greß and G. Zachmann. GPU-ABiSort: Optimal ParallelSorting on Stream
Architectures. InProceedings of the 20th IEEE International Parallel and
Distributed Processing Symposium, page 45, Apr. 2006.

[17] N. Hardavellas, I. Pandis, R. Johnson, N. Mancheril, A.Ailamaki, and
B. Falsafi. Database servers on chip multiprocessors: Limitations and
opportunities. InCIDR, pages 79–87, 2007.

[18] B. He, K. Yang, R. Fang, M. Lu, N. K. Govindaraju, Q. Luo, and P. V. Sander.
Relational joins on graphics processors. InSIGMOD Conference, pages
511–524, 2008.

[19] W. D. Hillis and G. L. Steele, Jr. Data parallel algorithms.Commun. ACM,
29(12):1170–1183, 1986.

[20] K. A. Hua and C. Lee. Handling data skew in multiprocessor database
computers using partition tuning. InVLDB, pages 525–535, 1991.

[21] Intel Advanced Vector Extensions Programming Reference. 2008,
http://softwarecommunity.intel.com/isn/downloads/intelavx/Intel-AVX-
Programming-Reference-31943302.pdf.

[22] Intel SSE4 programming reference. 2007,
http://www.intel.com/design/processor/manuals/253667.pdf.

[23] M. Kitsuregawa, H. Tanaka, and T. Moto-Oka. Application of hash to data base
machine and its architecture.New Generation Comput., 1(1), 1983.

[24] S. Kumar, D. Kim, M. Smelyanskiy, Y.-K. Chen, J. Chhugani, C. Hughes,
C. Kim, V. Lee, and A. Nguyen. Atomic vector operations on chip
multiprocessors.In 35th International Symposium on Computer Architecture,
pages 441–452, June 2008.

[25] T. J. Lehman and M. J. Carey. A study of index structures for main memory
database management systems. InVLDB ’86: Proceedings of the 12th
International Conference on Very Large Data Bases, pages 294–303, 1986.

[26] H. Lu, K.-L. Tan, and M.-C. Shan. Hash-based join algorithms for
multiprocessor computers. In D. McLeod, R. Sacks-Davis, and H.-J. Schek,
editors,VLDB, pages 198–209, 1990.

[27] S. Manegold, P. A. Boncz, and M. L. Kersten. What happensduring a join?
dissecting cpu and memory optimization effects. InVLDB, pages 339–350,
2000.

[28] S. Manegold, P. A. Boncz, and M. L. Kersten. Optimizing main-memory join
on modern hardware.IEEE Trans. Knowl. Data Eng., 14(4):709–730, 2002.

[29] E. Mohr, D. A. Kranz, and R. H. Halstead. Lazy task creation: a technique for
increasing the granularity of parallel programs.IEEE Transactions on Parallel
and Distributed Systems, 2:185–197, 1991.

[30] R. Motwani and P. Raghvan.Randomized Algorithms. Cambridge University
Press, 1995.

[31] C. Nyberg, T. Barclay, Z. Cvetanovic, J. Gray, and D. Lomet. Alphasort: a risc
machine sort.SIGMOD Rec., 23(2):233–242, 1994.

[32] T. J. Purcell, C. Donner, M. Cammarano, H. W. Jensen, andP. Hanrahan.
Photon Mapping on Programmable Graphics Hardware. InGraphics Hardware
2003, pages 41–50, July 2003.

[33] M. Reilly. When multicore isn’t enough: Trends and the future for
multi-multicore systems. InHPEC, 2008.

[34] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan,
and P. Hanrahan. Larrabee: A Many-Core x86 Architecture forVisual
Computing.Proceedings of SIGGRAPH, 27(3), 2008.

[35] A. Shatdal, C. Kant, and J. F. Naughton. Cache consciousalgorithms for
relational query processing. InVLDB, pages 510–521, 1994.

[36] J. L. Wolf, D. M. Dias, and P. S. Yu. A parallel sort merge join algorithm for
managing data skew.IEEE Trans. Parallel Distrib. Syst., 4(1):70–86, 1993.

[37] J. L. Wolf, P. S. Yu, J. Turek, and D. M. Dias. A parallel hash join algorithm for
managing data skew.IEEE Trans. Parallel Distrib. Syst., 4(12):1355–1371,
1993.

[38] H. Zeller and J. Gray. An adaptive hash join algorithm for multiuser
environments. InVLDB, pages 186–197, 1990.

[39] J. Zhou and K. A. Ross. Implementing database operations using simd
instructions. InSIGMOD Conference, pages 145–156, 2002.

12


