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ABSTRACT

Moving object indexing and query processing is a well stdde
search topic, with applications in areas such as inteltigems-
port systems and location-based services. While muchirgist
work explicitly or implicitly assumes a deterministic objenove-
ment model, real-world objects often move in more compleat an
stochastic ways. This paper investigates the possibifily mar-
riage between moving-object indexing and probabilistieobmod-
eling. Given the distributions of the current locations amtbci-
ties of moving objects, we devise an efficient inference e flor
the prediction of future locations. We demonstrate thahsoure-
diction can be seamlessly integrated into existing indexcsires
designed for moving objects, thus improving the meaningfs$ of
range and nearest neighbor query results in highly dynandaa-
certain environments. The paper reports on extensive arpats
on the B’-tree that offer insights into the properties of the paper’s
proposal.

1. INTRODUCTION

With the proliferation of location tracking and wirelessnomu-
nication, the management of moving object database hasith
considerable attention in the database research comnuvg@tythe
last decade. The state-of-the-art in indexing and querggasing
for moving objects has reached a level where technologigs ha
enabled moving object data management capable of suppartin
wide spectrum of applications, e.g., in areas such as igeell
transport system and location-based services.

However, most existing work on moving object data manage-
ment explicitly or implicitly assumes deterministic movent pre-
diction models that require moving objects to always repadu-
rate locations and velocities to the system. The systemptesticts
the location of an object until its next update accordingdme
pre-defined class of functions. Assuming that an objectrispts
latest location(z(to), y(to)) and velocity(vz(t0), vy (to)) at time
to, Equation 1 illustrates a typical linear prediction of tHgext's
location for timet > ¢o.
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Index structures utilize simple predictions such as thifabili-
tate the efficient processing of timeslice queries as of tireeat
and near-future times. A key basic assumption underlying th
scheme is that the location and velocity of an object arerfite
istically reported to the server.

Unfortunately, the expectation of high accuracy on locatad
velocity measurement is unrealistic in many real-world leap
tions. Due to the limited accuracy of available positiongygtems,
objects may only be able to report approximate locationsisr d
tributions on their possible locations. Further, realddasbjects
such as taxis and private cars often move in complex andastich
ways. For example, Figure 1 plots sampled velocities of aaich
bus in the Athens metropolitan area during one hofrom the
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Figure 1: Velocity Distribution of a Bus During One Hour

figure, it can be concluded that the bus changes its velority f
quently. To maintain a valid prediction function in the mogiob-
ject database, the bus is then forced to report its up-te-iagition
and velocity frequently. These updates incur high commatida
and computation costs.

The root of the problem is the asymmetric information gap be-
tween the object’s real movement and the abstraction usedde!
its movement in the database. Specifically, current detestic
movement models are unable to capture the necessary irtforma
on the uncertainty of the moving objects. By introducing emc
tainty models into moving object database managementpibsgs
sible to improve the robustness of query results computed the
predictions of the locations of highly dynamic moving oliggt¢hus
rectifying this problem.

Despite extensive studies in probabilistic databases §},and
proposals for extensions to moving-object querying [11, RTe-
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mains unclear how these models can be successfully inéebjrsto
existing moving object database. In particular, existintsons
exhibit three drawbacks. First, a good uncertain movingcth
model should provide reasonable prediction capabilitié we-
spect to the future motion of objects; in contrast, exispngpos-
als offer limited capabilities in this regard, as only pasition is
indexed while taking uncertainty into account [21]. Secadun-
certain moving object model is expected to be general entugh
applicable to all objects. One approach utilizes frequehiaviors
of the moving object, yielding predictions that are not dadiver
objects with unusual movement patterns [11]. Third, to teetb
of our knowledge, no uncertain moving object models so far ca
be supported seamlessly by the existing infrastructureatdlthse
management system, rendering integration into real systary
costly.

We present a new framework for query processing over uricerta
moving objects. This framework offers general predictiomd-
tionality and ease of integration into current systems. \ileea a
generic movement inference model that infers the locatistrid
bution at a specified time according to the current locatiwah ze-
locity distributions. We show that state-of-art moving etijindex
structures, such as"Btree, can be adapted to index these distribu-
tions and answer probabilistic range drdearest neighbor queries
in an efficient manner.

The contributions of the paper are summarized as follows.

point. Range queries and probabilistic nearest neighberiegiare
issued at the current time point also.

The second category applies uncertain prediction modeiseto
accurate location and velocity reported by moving objeEts. ex-
ample, Jeung et al. [11] employ a prediction model that retur
possible locations of moving objects with varying probiieis.

The existing works are unable to simultaneously addresarhe
certainty of location and velocity of moving objects. THere,
their inference models rely on the accuracy of the measunine
and they suffer from costly communication and updates when t
motions of the objects are stochastic in nature.

Range and nearest neighbor queries are prominent for static
certain objects in probabilistic databases [1, 4,5, 14R moving-
object database, the uncertainty of an object changes with A
predominant approach is to model an uncertain moving olgjgct
a static object at each time point, thus reusing existingygpeo-
cessing algorithms. Cheng et al. [5] use pruning stratemigsob-
abilistic records when computing probabilistic range aednest
neighbor queries. Kriegel et al. [14] apply Monte-Carlo géing
on a probabilistic database to retrieve objects with higalihood
of being the nearest neighbors of query points. Cheng et#gl. [
propose verification methods for nearest neighbor proliasi| by
partitioning the distances into subregions and derivingeloand
upper bound probabilities for the subregions. This type eftrad
was subsequently improved by refining the partitions dejpenoh
estimates of the costs and benefits of sub-regions [1]. Hexvev

1. We present a new uncertain moving object model that takes by converting moving objects to static objects at each tivietp

into account the uncertainties on both location and vefocit

2. We re-formulate traditional queries to apply to uncertabv-
ing objects.

3. We devise a new movement inference model based on the

new uncertain moving object model.

a query must be re-evaluated at every time point, resultirtgigh
query costs.

2.2 Index Structures for Moving Objects

Given up-to-date locations and velocities of certain mg\ai-
jects, traditional moving object indexing structures tgly target

4. We show how the uncertain moving object model can be in- range and:-nearest neighbor queries at specified time points.

corporated into existing index structures.

Most existing solutions for moving object indexing assuntia-a
ear movement model. They can be further divided into objact p

5. We analyze the performance of the proposed methods with titioning and space partitioning solutions. The formelizii multi-

extensive experimental studies.

The remainder of the paper is organized as follows. Secti@n 2
views related work and Section 3 captures the setting ariolgro

addressed in the paper. Section 4 covers methods for movemen

inference. Then Section 5 integrates support for uncertexing
objects into a moving-object index structure, and Secticoviers
query processing using the index structure. Section 7 ateduthe
performance of the paper’s proposals, and Section 8 offarslo-
sions.

2. RELATED WORK

We review in turn related studies on probabilistic modeld an
indexes for moving objects.

2.1 Models of Uncertain Moving Objects

Itis instructive to classify existing uncertain movingjett mod-
els according to two categories.

The first category contains models on uncertain trajecioofe
moving objects. The concept of uncertain trajectory wasméyg
studied in detail by Trajcevski et al. [21]. Considering theasure-
ment errors when capturing object movement, all objectttayies
are expanded by some predefined parameteQueries are thus
issued on the expanded trajectories, with the support ettde
indexing techniques. A different model was proposed by @retn
al. [6], in which the location uncertainties are updatedvargtime

dimensional index structures, typically the R-tree and/ésants.
The TPR-tree [17] is arguably the earliest attempt in thiection.
Objects are inserted into the index using a time-paranze ex-
tensions of the traditional R-tree insertion strategy. tedaariant,
the TPR-tree [20], is similar to the TPR-tree, but, notably, uses
a different insertion algorithm that puts additional effointo at-
tempting to insert objects at better locations in the index.

To index moving objects with space partitioning, the typaga:
proach is to partition the entire space into cells. By magyhe
2-dimensional cells into a 1-dimensional sequence by mefas
space filling curve, the B-tree can be employed to index the loca-
tions of the moving objects at reference time(s) [3, 8, 9, Gijen
a range query, this approach first transforms the query rartge
cell sequences using the space filling curve. These sequenee
then issued as queries to thé Bree structure, with query expan-
sion to account for the linear movement of the objects indeker
ak nearest neighbor query, the answer is retrieved by gradirall
creasing the radius of a range query uhtilesults are found. Sec-
tion 5.1 provides additional detail on a typical space garing
index, the B'-tree.

Recent benchmark studies [2, 10] compare the performance of
state-of-art moving objects indexes. Techniques thathwil the
B -tree are capable of very good performance, and they offe ea
of integration into real systems that do not support mutbiein-
sional structures such as the R-tree. Further, effectnkdihg strate-
gies are available for the Btree, which is important in concurrent



environments [18]. Although similar strategies exist floe R-tree
and its variants [12, 13] complex index operations lock rsofie
longer time, which adversely affects throughput [7, 8].

While all of the works above employ the linear movement mpdel

object's maximal distance tg is less than the minimal distances
betweeny and all other objects.

While the notions defined above do not rely on how we repre-
sent the distributions, the problem of distribution reprgation

more complex movement models have also been studied. Tao etbecomes important when we are to manage these distributions

al. [19] utilize high-order movement formulas to model thgufe
location of the moving objects. This model enables the syste
predict the motion more accurately, which can be fully sujgzb
by a modified TPR-tree. Jeung et al. [11] presented anotlegiigr
tion model that relies purely on frequent patterns discestérom
previous trajectories. Their approach finds frequent mamrpat-
terns in a collection of object movements and uses thesedoi@
tion.

3. UNCERTAIN MOVING OBJECT MODEL

We assume that we are given a populatiomd&D moving ob-
jects,D = {o1,02,...,0,}. Following previous studies on mov-
ing object indexing, the time dimension is modeled as a sdtsf
crete time points]” = {1,2,...,t,...}. Given an objecb;, we
useloct andvel! to denote the exact location and velocityspfat
timet.

We enhance existing certain moving object representations
capture uncertain information by recording distributias loca-
tion and velocity instead of exact values. Specifically, e Q¢
andV! to denote the distributions of location and velocity for ob-
jecto; at timet. Existing certain moving object representations are
special cases of this general representation where thibdisbns
degenerate to single values in the location and velocitgespa

With this extension, the moving object database thus sties
distribution information of each uncertain moving objdctpartic-
ular, each moving object, is associated with a tupleC;”, V;", t.),
wheret,, is the update time for the object afid~ andV;" are the
location and velocity distributions at,. An update of a moving
object replaces the location and velocity distribution &l a&s the
update time currently recorded for the object.

By using the distribution information at the update times tn-
certain moving object database aims to answer queries &trany
t. This requires a movement inference model for predictireglth
cation distribution of an object. Such a model has the falhgw
signature:

F(LH VP by, t) © Se xSy xT x T w— Se 2

In other words, given the location and velocity distribatoof o;
at update time,,, as well as the query time the function derives
a new location distribution for objeet; at non-past time.

Using the inference model, we can reformulate the tradition
range queries ankl nearest neighbor queries to apply to a database
of uncertain moving objects. The definitions next follow than-
cepts adopted in current probabilistic database reseéardh. [

DEeFINITION 3.1. Probabilistic Range Query

Given a spatial rangeR, a query timet, and a threshold, the
probabilistic range query returns all uncertain moving ebjs fal-
ling into R with probability no smaller thar at timet, i.e., {o; €
D | Pr(loct € R) > 6}.

DEFINITION 3.2. Top-k Probabilistic NN Query (k-PNN)

Given a query locatiog and a query time, the probabilistic near-
est neighbor query returng uncertain moving objects with the
highest probabilities of being the nearest neighbog.of

The number of uncertain moving objects returned byitHeNN
query can be less thdn if not enough objects have non-zero prob-
ability of being a nearest neighbor gf This happens when an

a real database management system. Unfortunately, notsall d
tributions are amenable to the resulting storage and caatiputl
requirements. To balance the cost of inaccuracy and theoéase-
resentation, we adopt a representation scheme that disesdhe
space and velocity domains by means of regular gridB. ltits are
specified in vector quantization, each dimension is partéd into
2B intervals of equal length. A grid cell can thus be represgnte
by a vector of2B bits. Probabilities are assigned to the cells, as-
suming a uniformly distribution in each cell. Thus, the dizition

of the location and velocity is approximated by a sequenazeié
with non-zero probabilities.

To further simplify the notation, we number the cells in atto
ing to a space filling curve, e.g., the Z-curve or the Hilbenve.
Without loss of generality, we employ the Hilbert curve i ttest
of the paper. Based on the numbering of the c@ﬁ,denotes the
cell with (Hilbert) number; in the space domain. Correspondingly,
CJV denotes the counterpart in the velocity domain. The prdipabi
of an object inC* (C}) is P;(Cf) (P:(CY)).

Figure 2, exemplifies an uncertain moving objecat timet. Its
location and velocity distributions are summarized in Fagu2(a)
and 2(b). Aso; has positive probabilities in 4 cells in the space do-
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Figure 2: Example of an Uncertain Moving Object

main, the location distribution can be written@s = {(C%,0.2),
(C£,0.5), (CF,0.1), (C£,0.2)}, indicating the probabilities of the
objects in the cells. Similarly, the velocity distributiegcaptured
asCy = {(C¥,0.7), (C15,0.3)}.

Using the location and velocity cell sets as the underlyiistyid
bution knowledge, we can apply this knowledge to sets ofaibje
Given a set of moving objectS = {0s,,0s5,...,0s.} C D,
the location cell se€5 contains all cells in the space domain with
positive probability for at least one objeot, € S, i.e.,C5 =
{CF | i (P, (CF) > 0)}. Similarly, the possible velocity cells
are represented kg .

Table 1 explains the above use®f, and summarizes the nota-
tion used in the remainder of the paper.

Conventional data management techniques fall short inmacco
modating this model of uncertain moving objects. In thedeihg
three sections, we introduce core components of our quegess-
ing framework. First, movement inference provides a mettwod
derive the location distribution of an object at any nedufe time
from the location and velocity distributions known curdgntSec-
ond, to enable efficient query processing and updates ofitmca
and velocity distributions, we re-use thé #ee, which was intro-
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Figure 3: Recursive Movement Inference

duced for indexing certain moving objects. The insertiod dele-
tion algorithms of the B-tree are amended for supporting moving
objects with uncertainty. Third, based on the revised instewc-
ture, the algorithms for processing possibility range @ggeand
k-PNN queries are presented.

[ Notation | Explanation |

D uncertain moving object set
n the cardinality of object seb
0; one uncertain moving object i
tu update time of some moving object
tr reference time of the index structure
EZT location distribution ob; at timet,
pir velocity distribution ofo; at timet,
Sr location distribution space
Sy velocity distribution space
R query range in the spatial space
0 probability threshold of range query
q query point fork-PNN query
k number of objects returned ByPNN query
Pi(Cf) the probability ofo; in location ceIICf
Pi(CJV) the probability ofo; in velocity ceIIC]V
S a subset of objects i
0s; ith object inS
ckt spatial cells with positive probability af;
cY velocity cells with positive probability ob;
Cé spatial cells with positive probability of any object fh
C;.’ velocity cells with positive probability of any object i

Table 1: Notation

4. MOVEMENT INFERENCE

A key component of the paper’s proposals is a method for-infer

ring the location distribution of an uncertain moving oltjeased
on the most recently reported location and velocity distitms.

In this section, we derive two methods, callRdctangle Inference
andMonte-Carlo Simulationthat combine to provide an appropri-
ate inference method. Given a range query, the former esgna
an upper bound on the probability of an object being in thevans
while the latter is an approximate solution used for the firel-
fication in our implementation. The extension of these m#sho
supportingk-PNN queries is covered in later sections.

4.1 Rectangle Inference
The rectangle inference method is motivated by the follgwin

observations. Consider the cell covering the rectangwdgion
C§ = [0.25,0.5] x [0.25,0.5] in Figure 2(a), in which the ob-

ject o; appears with probability 0.5 at update tirhe The infer-
ence model estimates the distribution of this location riméation

for the object given that the object’s velocity follows thistdbu-
tion in Figure 2(b). Assuming the query tinteis later than the
update timet,,, we present a simple example on the inference of
the location distribution in Figure 3.

Between timeg, andt, + 1, the movement of objeci; fol-
lows the velocity distribution by assumption. With proHii0.7,
the velocity is in the velocity cel’y. If this the case, the move-
ment of o; along both the x-axis and the y-axis is in the interval
[0,0.1]. This implies that the location of; is in the rectangle
with diagonal corners at0.25,0.25) and (0.6, 0.6), with proba-
bility 0.5 x 0.7 = 0.35. Similarly, if the velocity ofo; falls in the
cell Cf, = [0.1,0.2] x [0,0.1], the location ofo; at the next time
point is in the rectangl¢0.35, 0.7] x [0.25, 0.6] with probability
0.5 x 0.3 = 0.15.

Figure 3 shows the two rectangles at titpe- 1, marked/R ; and
IR2. Note that the inferred rectangles overlap in the space doma
To extend the analysis to subsequent time points, it is Saces
to derive new inferred rectangles frofiR; and IR, separately,
taking into account the velocity distribution. This leadsfour
inferred rectangles at time, + 2, namely{IRs, IR, IR5, IR},
as is shown to the right in the figure.

We formalize rectangle inference as follows. If knowingttbl-
jecto; belongs to arinferred rectangle/R = [IR.I[1], IR.u[1]] x
[IR.1]2], IR.u[2]] in the space domain with probabilifik.p at time
t, the following lemma gives a recursive derivation of thesiméd
rectangles attime+ 1.

LEMMA 4.1. Given an inferred rangdR at time ¢ of objecto;
and a velocity cellC} € €} with positive probability,o; be-
longs to another inferred rectangular regiaik’ with probability
pi(CY) - IR.p at timet + 1, with diagonal corners at/R.I[1] +
CY.[1], IR.1[2] + C} .1[2]) and (IR.u[1] + CY .[l], IR.u[2] +
CY uf2)).

While the distribution at update time is supposed to be umifo
in the original spatial cells, uniformity is no longer guareed in
the inferred cells. To understand why, consider the exaingtg-
ure 4 for an object moving in 1D. Assume some object is uniform
in the space intervgD, 0.5] and the velocity interval0, 0.1]. The
spatial distribution of the object at the next time pointiduals the
grey density function plotted in the figure, which is unifoonly
between 0.1 and 0.5. This phenomenon is due to the boundary ef
fect of the uniform distributions at the previous time poihus,
the inference on the basis of the lemma does not yield a prézis
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Figure 4: Spatial Distribution After Inference

cation distribution, but only provides an upper bound ongiaba-
bility of the moving object falling into a regiof. In other words,
if the inferred rectangle overlaps with the query regior finoba-
bility of the object appearing in the query region is no siathan
the probability on the inferred rectangle.

While the inference method thus introduces distributioforin

mation loss, the good news is that Lemma 4.1 does not rely on {.

the condition of uniform distributions in the space or vétpcells.

This allows us to recursively apply the lemma to construfetrired

rectangles from a reference (update) titpeo any timet > ¢,,.
Algorithm 1 present the details on how inferred rectangles a

query timet. Again, we first assume that the query timis after
timet,,.

The Monte Carlo simulation procedure is summarized in Algo-
rithm 2. Given an error rate and a system-specified confiderice

Algorithm 2 Monte Carlo Query Verification
€ ={(C] . p(CH)}.Cl ={(C),pi(C))} tu, R 1,6, €, 0)

1: Clear Success CountsiC = 0
2: CalculateN = 21n(1/6)/e26
3: for sample a numbeérfrom 1 to N do
Randomly pick a locatiotoc depending on the location distribution
of o; at update time,,
for time pointz from¢,, + 1 to¢ do
Randomly pick a velocityel depending on the velocity distribu-
tion of o;
loc = loc + vel
if loc € Rthen
SC=85C+1
if SC > 6N then
11: Return TRUE
12: Return FALSE

e oua A

the algorithm first calculates a simulation numBéthat indicates

used to evaluate the upper bound of an object with respect to ahow many simulation steps are necessary. In each step,dbe al

range query. The algorithm generates inferred rectangitstie
elapse of time. For each rectandl®’ generated, line 8 determines
whether it is able to infer any rectangle that overlaps whihdquery
rangeR at timet, by expanding the region dfR’ with the maxi-
mum and minimum speeds of the uncertain moving object in both
dimensions. After all inferred rectangles are generatetiha ¢,

Algorithm 1 IR-based Query Verification
€F ={(C7,P(C)}, € = {(CY, Pi(C)}, tu, R, 1, 6)

1. Calculate the maximum and minimum speeds on the x-axis ag-th
axis, i.e.,{mazX, mazY , minX, minY }.

2: Construct the inferred region séRS¢, = C¥.

3: for j fromt, + 1tot do

4. Construct an empty inferred region g81S; = 0
5: for each/R € IRS;_; do
6: for each(CY, P;(CY) € CY do
7 Construct a new inferred regiahR’ according to Lemma 4.1
8: if IR'.I[1] + minX - (t — j) < R.u[l]
IR w[l] + mazX - (t — j) > R.I[1]
IR .1[2] + minY - (t — j) < R.u[2]
IR w[2] + mazY - (t — j) > R.l[2] then
9: InsertIR’ into IRS ;
10: Sum =0

11: for eachIR € St do

12.  Sum = Sum+ IR.p
13: if Sum > 6 then

14: Return TRUE

15: Return FALSE

their probabilities are summed up and compared with thestioiel
6. If itis no smaller thar#), the moving object may possibly belong
to the range query result; otherwise, it is discarded.

A query timet that is smaller than the update timg may be
allowed. To support verification with such times, a schemaeis
ployed where the velocity domain is reversed. For exampie-a
locity cell CY = [0,0.1] x [0,0.1] is reversed to the symmetric
cell CY [-0.1,0] x [—0.1,0]. Having reversed the domain,
the previous algorithm can be used with query titmeplaced by
2t, —t.

4.2 Monte Carlo Simulation

Monte Carlo simulation is a randomized method that simslate
the motion of an uncertain moving object between titpeand a

rithm picks one location based on the location distributidrihe
object at update timg,. The movement of the object is then simu-
lated from timet,, + 1 to the query time. At each time point, the
algorithm selects the velocity of the object following thelacity
distribution. The object moves to its next location accegdio the
selected velocity. After finishing the motion simulationtlween
timest — 1 andt, the algorithm determines whether the object is
within the query regionR. If so, the success count8iC' is incre-
mented by 1. The object is included in the result if the tataks
of success during the simulation is no less than

By the following lemma from sampling theory, the algorithash
high probability of determining whether an object is in theult of
a probabilistic range query with high confidence if the santpl
numberN is sufficiently large [16].

LEMMA 4.2. WhenN > 21n(1/6)/€*6, Algorithm 2 discovers
objects with probability no less thafl — €)6 in query ranger at
timet, with confidence no less thdn- 6.

When the query time is earlier thant,,, a similar technique to
that of reversing the velocity domain is adopted, whichlfedte
the inference of probabilities of the objects in the quernga

5. MOVING OBJECT INDEXING

With movement inference in place, we proceed to cover the in-
dex structure for uncertain moving objects that enablesyijug
and update. The basic structure for uncertain moving abjfedt
lows the B’-tree, developed for certain moving objects [3,8,9]. We
first cover the principles underlying the’Bree, then integrate our
uncertain moving object model with the’Bree.

5.1 The Standard B-Tree

The B*-tree [8] is the first proposal for using the'Btree to index
moving objects. It applies a procedure that maps a 2D moving
point object represented as a linear function to a pointtionan
1D space. This point is then indexed by a-ee.

The B’-tree assumes that object locations are updated at least
everyT time units, and it partitions the time dimension into inter-
vals of lengthT'. Each interval has a so-called reference time that
belongs to the interval. A logical sub-tree, with a consireukey



range, is maintained for each interval. An object is inskitgo
the sub-tree with the interval that overlaps with the obgagpdate
time. This is done as follows: First, the position of the aligelin-
ear function as of its interval’s reference time is detemdinSec-

ond, this 2D point location is mapped to a 1D location by means

of a Hilbert curve. To enable the Hilbert curve, the space lictv
the objects move is discretized by means of a regular gridedTh
the 1D location is prefixed by an identifier of the object’sitad
sub-tree.

An update of an object first deletes the old entry and thentisise
the new entry into the sub-tree with the interval that ovesléhe

update time. Observe that due to the assumption about pdate

only two sub-trees contain objects at any point in time. Wblen
jects are updated, they disappear from old sub-trees arisaneed
into the most recent sub-tree.

To process a range query, the query is applied to each seb-tre

in turn. For a sub-tree, the query range is expanded so tredtas
into account the reference time used in the sub-tree and &xe m
imum velocity of all the objects. This way, the enlarged guisr
guaranteed to retrieve all objects that may qualify for therg, in
addition to some false positives. The enlarged query regon-
tersected with the Hilbert curve, which results in a seqeesfclD
range queries. These are then issued against the indexeJiiésr
for all sub-trees are combined, and filtering is applied tmilate
false positives.

5.2 Structure for Uncertain Moving Objects

Following the standard Btree, we partition the time domain
into equal-length intervald” and assume that each object is up-
dated at least once during any such interval. At each poititrie,
the index maintains a logical sub-tree for two consecutiveri
vals. Figure 5 illustrates the logical sub-trees and the fetime
partitioning. Sub-tree®3T, and BT, are responsible for moving
objects with updates during odd and even time intervalpees
tively. Specifically, BT, (BT:) stores all objects updated during
intervals[257T, (25 + 1)T) ([(24 + 1)T, (25 + 2)T)) for 5 > 0.

Figure 5: Index Rollover Operation

All objects in a sub-treeBT; (I € {0,1}) are indexed as of a
reference time,. in the time interval of the sub-tree. If an object’s
update time is different from the reference time of the sele;tthe
inference method is run to transform the object’s distiitms to
the reference time.

A roll-over is invoked at time25T ((25 + 1)T'), to reconstruct
the sub-treeBT: (B7Ty) to switch to a new time intervdl(2; +
1T, (25 +2)T) ([(25 + 2)T, (25 + 3)T")) from the previous in-
terval [(25 — 1)T,25T) ([25T, (24 + 1)T)). Since each object by
assumption is updated once in any interval of leriftithe sub-tree

becomes empty before being replaced. This assumption cest be
moved by forcing updates of all objects that remain in thetseb
at destruction time.

When an object with location distributiofi;* and velocity dis-
tribution Vf“ is updated at time,,, each location cell with non-zero
probability for £+ is indexed separately. The example shown in
Figure 2 has 4 such cells. Specifically, the non-zero cellthén
space domain are indexed along with the probability and ¢ine-c
plete information on the velocity distribution.

To avoid redundant data records, the exact information on an
object, including its location distributiofi’*, velocity distribution
Vf“, and update time,,, are stored in a data file. Leaf entries in
the B"-tree reference the corresponding object records in tet fil

Similar to the B'-tree, the velocity information on the objects
in the index is kept together with each logical subtree inntueli-
fied index. In particular, for each subtree, a main-memoryhz&
togram of the maximum and minimum velocities of all objeds i
maintained and updated at every insertion. Note that thetidal
operation does not alter the velocity bounds maintainefiérhis-
tograms, due to the excessive cost on updating them by firlkdeng
objects with the maximum or minimum velocities. The details
the velocity histogram can be found elsewhere [8].

5.3 Index Update

When an uncertain moving object is to be updated at timell
leaf entries referencing the object are removed first, amdneéer-
ences are inserted based on the updated information of jbetob
using Algorithm 3.

To insert an uncertain moving object, the system first idiexsti
the sub-tree in which to insert the object. The system themates
the location probability distribution for the object at theb-tree’s
reference time,., by running the IR-based inference method from
Section 4. While Algorithm 1 tests the probability that a rimgy
object qualifies for a range query, it can also be extendeityeas
discover the spatial cells with non-zero probabilities fed bbject
at the reference time..

Specifically, as summerized in Algorithm 3, for an insertitire
system firstinfers the distribution of the object at the refiee time
t,- based on the location distributiaﬂf, velocity distributionC?,
and the update timg, (Lines 1-2). Then all spatial cells with non-
zero probabilities are extracted in a cell &% (Line 3). Finally,
for each such cell, a leaf entry is inserted that refererfoesecord
of the object in the data file (Lines 4-5). The insertion opera
follows the standard strategy used in th&-ee, enabling reuse of
the B"-trees in commercial databases.

Algorithm 3 Insertion (Location CellsC#, Velocity CellsCY, up-
date timet,,, sub-treeBT;)

1: Get the reference timg. of the sub-treeBT;

2: Generate inferred rectangles at timeby Algorithm 1 with Cf, CZ.V
andt,,

3: Find all spatial cells that overlap with the inferred regias and store
them in cell seC'S

4: for each cellCf € CS do

5. Inserto;’s reference into the cet]:’f indexed inBT;

The deletion procedure for the index is similar to the insartn
Algorithm 3. Specifically, the system first locates the relcof the
object in the data file and gets the location and velocityithistion
of the object at the update timig. Then the deletion performs by
executing the same steps (Line 1-4) as in Algorithm 3, extiext
the cell is deleted from the index (Line 5). Due to space cairgs,
we omit the details on the implementation of deletion.



5.4 Velocity-Based Partitioning

this query, we employ a two-step method that comprises aiggow

The efficiency of the query processing depends on the minimum Step and a verification step.

and maximum speeds of the objects, which are maintainedeat th
roots of the sub-trees. In our uncertainty model, the véjoof
each moving object covers a range in the velocity domaimitea
to larger query expansions and worse pruning effectiveness
Motivated by the location partitioning technique in the’8T
tree [3], we propose a velocity-based partitioning methodie-
crease query expansion. As in the’Bftree, a sub-tre&7T} is par-
titioned into K logical sub-treeBT1, ..., BTk, each of which
is used to index the moving objects in a specified velocitgean
The STB-tree applies density-based clustering to partition the
space domain intd< parts. We are unable to follow the same
strategy for our velocity partitioning, for two reasons.rdgj the
ST?B-tree indexes velocities that are exact points in the vgloc
space. With uncertain moving objects, each velocity isaspnted
by a distribution, rendering any direct clustering of thempbs-
sible. Second, the purpose of the space domain partitiasinhg
find regions with similar moving-object densities. In ouseawe
partition the velocity space to decrease the query expariidng
query processing, which is decided by the tightness on tloeie
bounds. If we usé&/elocity Minimal Bounding Rectangl€¥M-
BRs) to denote the minimal rectangles in the velocity spaserc
ing the distributions of all uncertain moving objects, itrigportant
to reduce the volume of the VMBRSs recorded on each logical sub
tI'GEBle.
When constructing a sub-tré#T’;, the system needs to initialize
the VMBRs of itsK sub-tree partitions. A new moving objegtto
be inserted intd37); is assigned to the sub-tree partiti®T; that
minimizes the enlargement of the VMBRs among all sub-tr&es.
achieve tight bounds on the VMBRs, we borrow the idea underly
ing the R-tree’s split strategy. We use the velocity randescactly
K moving objects sampled from the previous sub-tree as thialini
VMBRs of the new sub-tree’s partitions. Specifically, theagy
selection method in Algorithm 4 is adopted to pick these se¥d
thek partitions. An objecb; is randomly selected from the sample.

Algorithm 4 Select Seed§Moving object set sampl®’, number
of sub-tree paritiong)

: Empty seed sef

. Randomly pick an objeat; from D’

. Inserto; into S

. for j from 2to K do

Pick the objecto; € D’ — S, with maximal VMBR enlargement
w.r.t. any seed irt

. Initialize the VMBRs of the sub-tree with the velocity rasgef the
objects inS

o ubhwNR

In the following K — 1 iterations, the new object with the largest
VMBR expansion with respect to the currently selected osebo-
sen as a seed. The algorithm stops with exa&tlynoving objects,
whose velocity ranges are recorded at the roots of the sghpar-
titions.

6. QUERY PROCESSING

We proceed to cover in turn the processing of probabilistige
queries and-PNN query.

6.1 Probabilistic Range Query

Recall from Section 3 that a probabilistic range query dpeca
probability threshold, a spatial rang&, and a timeg and retrieves
all objects that belong t& at timet with probabilityd. To process

In the growing step, the system constructs a candidate difec
consisting of objects that may have at least probabflinf being
in range R at time query range a time This is accomplished
by issuing the range query on the index, retrieving all cett®se
movement may satisfy the range query. Since the object id and
pointer to the physical storage are kept in the leaf nodeist afl
candidate ids can be produced. An object may be includedein th
result due to several cells. This redundancy is removed bgldhg
whether an identical id has already been added to the caedisa
when retrieving a moving object from a leaf node.

In the verification step, two algorithms are employed in arde
The IR-based verification (Algorithm 1) is run first as a filtee-
cause of its high efficiency. Objects that pass the filter abbgested
to Monte-Carlo simulation verification (Algorithm 2). Théjects
that also pass this filter are added to the result set. Theeguwe
for range queries is summarized in Algorithm 5.

Algorithm 5 Range Query Search(Query rangeR, query timet,
probability threshold), index treeTr)

1: Clear result sel2S and construct a candidate id li6tL by retrieving
the ids of all objects with all spatial cells ifir that satisfy the range
query

2: for each objecb; € CL do
if o; passes the IR-based verificatithren

if 0; passes the Monte-Carlo verificatitimen
Add o; to the results sekRS
Return all objects imRS as the result

3:
4.
5:
6:

6.2 k-PNN Query

In index structures for certain moving objects;-mearest neigh-
bor query retrieveg objects with minimal distance to a query point
g at query timet. The query can be processed by issuing a se-
ries of range queries centered @tvith a radiusr that is gradu-
ally increased) towardsco until exactlyk objects are found. This
method falls short for thé&-PNN query on uncertain moving ob-
jects because the locations of the moving objects are n@t®sig-
gle points.

Compared with existing-PNN query processing on static prob-
abilistic databases [1, 4], it is more difficult to answer th&NN
query on uncertain moving objects because the optimiza¢ion-
niques proposed in previous works rely on an oracle that dain a
trarily retrieve the probability of objects in any distaringerval. In
uncertain moving object databases, unfortunately, thepcbation
of the exact distribution of an object at query time is verpex-
sive.

We proceed to propose an algorithm that depends only on the
results of a series of range queries, each of which is a @rcagion
centered at query point. Since queries with smaller regions are
expected to have the lower computation costs, the querdssred
in order of increasing radius, thus reducing the 1/0 and CB&isc
A pair of a lower and an upper bound probability is maintaifed
each object. The algorithm terminates when itie highest lower
bound probability is larger than the upper bound probabditany
other object.

Before delving into the details of the algorithm, the exazdmrest
neighbor probability of an uncertain moving objegtis defined
based on its spatial distribution at query timeGiven a query,
we usePC/(o;,q,r) to denote the probability oé; belonging to
the circle centered at with radiusr, and we usePR(o0;, q, 71, 72)
to denote the probability of; belonging to the ring centered at
with radius betweem; andrs (r1 < r2).



Figure 6 depicts the distributions of three moving objegtsos,
andos at query timef. The notationPR (o1, ¢, 2¢, 3¢) is the proba-
bility that objecto; is located in the ring betweeéx and3e of query
g. In the figure, the probability i8.6. The circlePC'(o1, g, 3¢) can

be expressed &R (01, ¢, 0, €)+ PR(01, ¢, €, 2¢)+ PR(01, q, 2¢, 3¢) =

0+0.24+0.6 =0.8.

PR(01,9,2¢,3¢)<0.6
PR(01,g53¢,4¢)=0.2

PR(03,q,2¢,}e)=0.1

PR ,38,48):0.3% 03

PR(02,9,3¢,4¢)=0.7

PC(01,4,2¢)=0.2  PC(01,4,3¢)=0.8  PC(0},q,4¢)=1
PC(03,q,26)=0 PC(02,9,3¢)=0.6  PC(0,,4,4¢)=0.9
PC(03,q9,2¢)=0

PC(03,q,3¢)=0.1 PC(03,4,4¢)=0.8

Figure 6: Example k-PNN Query

Thus, the exact nearest neighbor probability can be cdkulila
as [1,4]:

wp; = [~ LD T (- po(oy.q.r) dr
r=0 or i

This equation is hard to compute precisely, but can be approx

imated by replacing the integral with a summation that syilite
space into rings.

ANNP; =" PR(0i,q,¢(l — 1),el) [ [ (1 = PC(0;,q,€l))
=1 j#i
Algorithm 6 processes th&-PNN query. For each uncertain
moving objecto;, the algorithm maintains a lower boumekw;, an
upper bound:p;, as well as an accumulated probabiliye; on the

probability of o; being the nearest neighbor. With the increase of

the query radius froma(m — 1) to em for some positive finished
iteration numbern, the algorithm updates the lower bound, the
upper bound, and the accumulated probabilities accoradiriipet
following lemma.

LEMMA 6.1. For any positive integem, we have the lower bound
and upper bound o NNP; as follows:

ANNP; > > PR(os,q,e(l —1),el) [ [ (1 = PC(0;, 4, €l))
=1 e
ANNP; < > PR(0s,q,e(l = 1),el) [ (1 = PC(oj,q,€l)) +

=1

H (1 - PO(OJ7 q, Em))

J

i

Algorithm 6 k-PNN Query (Query locationy and result sizé)
1: Constructup;, low;, andacc; for each objecb;
2: Setradius' = 0 and clear result seRS
3: while stopping condition is not reacheld
4:  Increment radius by e
5.  Issue a probabilistic range query centereq waith radiusr
and probability threshol@d

6. Updateacc; for anyo; in the range query result
7. Updateup; andlow; according to Lemma 6.1
8.  Putk objects with highest lower bound probabilities iR
9: if the smallestow; in RS is higher than the:p; of all ob-
jectso; ¢ RS then
10: Set stopping condition to TRUE
11:  if ace; = 1 for anyo; then
12: Set stopping condition to TRUE

13: Return all objects iR.S as the result

ProOF Based on the definition o NNP;, we can derive:

ANNP; = > PR(0i,q,¢(l—1),el) [[ (1 = PC(0j,q,€l)) +

=1 j#i
> PR(os,q,e(l —1),el) [[ (1 = PC(0;,q,€l))
l=m+1 JFi

Since both parts are positive, we reach the lower bound toy-eli
inating the second part from the equation. In addition, eine-
PC(04,q,€l) <1—PC(o0s,q,em) foranyl > m, the second part
can be upper bounded as:

> PR(oi,q,e(l —1),el) [ [ (1 = PC(0;,q,€l))
l=m+1 j#i
< z PR(O’i7Q7E(l_ 1)7EZ)H(1—PC(O]7q76m))
I=m+1 j#i
= (1-PC(0i,q,em)) H (1 - PC(04,q,em))
J#i

= TIa- P, q.em)

J
This completes the proof of the lemmal]

Sinceacc; = PC(o0s, g, €l), the probability in the ring°R(os, q,
e(l — 1), €l) is the difference between the new accumulated proba-
bility and the previous one. Thus, the new lower and uppentou
probabilities can be updated as implied by the formulas ebdte
algorithm stops if the lowest lower bound probability of tiop-«
objects is larger than the upper bound probabilities of tdeoob-
jects or if the accumulated probability of some objecteaches 1.

Recall the example of the uncertain moving objects in Figure
Table 2 lists the statuses of the objects after iteratiods Bince
no object has positive probability in the circle around gugrthe
first iteration is not interesting. In the second iteratiobjecto;
has probability0.2 in the ring; the probability ob, being nearest
neighbor is thus at leaét2 by the lower bound rule in Lemma 6.1.
The upper bound probabilities of other two objects are bog 0
because the algorithm has no idea of their distributionsasolh
the third iteration, the algorithm further tightens the hds after
observing the probabilities of the objects in the new ringqnother
iteration is still necessary, since the upper boundsas larger than



Iteration | Object [ acc; | up; low; [ Parameter | Setting |
_ o1 02 | 0.2 1 Max Update Time (sec.) 120
lteration 2| o2 0 0 0.8 Number of objectsk) 100, 200, 300, 400, 500
3 0 0 0.8 0 in range query 0.1,0.150.2 0.25,0.3
. o1 0.8 | 0.524 0.596 Range query length (km) 1,152,25,3
Iteration 3 02 0.6 0.108 | 0.18 Query fime (sec) 10, 20,30, 40, 50
03 01-1 8%?283 8-;22 % in &-PNN Query 10, 2040, 80, 160
. o1 : : K in velocity partition 2,3,456,7,8
Iteration 4 02 82 00{)088 00'10088 number of bits on spatial dimensioh 5,6,7,8,9
%3 : : : number of bits on velocity dimen 2,3,4,5
sion

Table 2: Algorithm Running on Figure 6
Table 3: Experimental Parameters and Settings

the lower bound ob-. This is resolved after the fourth iteration in

which o, is found to be outside the circle with zero probability. size is fixed at 4KB, and a 50-page LRU buffer is used. All exper
ments are conducted on a PC with a 2.33GHz Core2 Duo CPU and

7. EMPIRICAL STUDY 3.25GB of memory, running Windows XP.

In Section 7.1, we discuss the settings of the experiments. | 7.2 Certalnty Versus Uncertainty
Section 7.2, we compare the motion prediction effectiverséshe In the next experiments, we validate the robustness of motio
certain and uncertain moving object models. In Section W&,  prediction results for the uncertain moving object modetwhom-
study the performance of the range query &rINN query. pared to a traditional certain model. Only range queriesansid-

. . ered, since th&-PNN query is not comparable to a conventional

7.1 Experimental Settings k-NN query on a certain model. A simple linear motion functisn

We generate synthetic data sets to test the effectivenessfin adopted as the certain model. It uses the average velodtioaa-
ciency of the paper’s proposal. Objects move ina 100 km x B80 k  tion from the distribution of uncertain moving objects aeéerence
work square. The objects are initially distributed uniféyrim this time.

space. The directions and speeds of the objects are sulbgigque Assume that at querying timg the correct answer to a range
generated randomly at each each time point. To simulatela rea query R is a subset of moving objects, C D, while the uncer-

environment, the objects are divided into 5 classes witfewdint tain model (or certain model) returns an answer 4etWe report

maximum speed;™**: 30, 60, 90, 120, 150 km/hour. _ the recall and precision of these answers, & S,‘A‘ and ‘S‘Z‘A‘, re-
_Assuming that the velocities of the objects rely onthe wafin- - gpectively. The impact of three parameters are testedjdim the

ditions at their locations, the generated velocities fella func- probability threshold, hte querying time from the reference time,

tion that depends on the population of the objects’ currenghn and the length of the range query.

borhoods. Specifically, given an objegt, we count the number

count; of objects appearing in a range (_)f 6 kmaf A refc_erence 1 e 1 e

speedV; = max{0, V;***—0.2 x count; } is calculated. Given the R e fg| U Model -

reference speed, a Gaussian distributo(y, o) (itis re-sampled | 77

if meeting a negative sample value) is adopted to model therun 3 °¢ g o8 e e

tainty on the speed, with = V; ando = V; /9. € o4 § g

If an object is about to leave the work square, a reversetitirec
is taken to keep it from exiting the square. After the velpaot the
moving object is decided, 10 other velocity samples arertdake %1 o5 o0z  om 03 %1 o5 oz om o3
approximate the velocity distribution. The velocity cedisthe ob- {hreshold® hreshold®
ject are determined by counting the sample velocitiesfglin the
cells. The location distribution at the next time point isaben-
erated with the velocity samples, by simulating the logatigth

0.2 0.2

(a) Recall (b) Precision

Figure 7: Threshold 6 vs. Prediction Error

these velocities. By default, the spatial dimensions ardcity In Figure 7, we evaluate the influence of the probability shre
dimension is represented by 7 and 3 bits, respectively. old 6. Since it does not affect prediction with exact location and
In the study, we vary the data generation parameters as well a velocity, recall and precision remain constant in the é¢entaodel.
the index structure settings. In particular, we list thegdparam- The uncertain model, on the other hand, obtains a lowerlrandl
eters and settings in Table 3, where the default values argrsin a higher precision as the threshold is increased. This idaltiee
bold. shrinkage on the query result in the uncertain model. Frafith
In the experiments, we consider the algorithms introduaed i ure, we can conclude that the uncertain model provides nodmest
Section 6 for answering probabilistic range queries &REINN results than the certain model, showing an advantage falirdte
queries. We emphasize that although query processingitpem precision of the uncertain model is also competitive witlt thf the
for probabilistic databases have been proposed, thesetdaoatoh certain model. Whe# reaches 0.3, the uncertain model is better
well our setting. Most of them utilize operators that reteégrob- than the certain model on both measurements.
abilities for arbitrary distance intervals to a query poifib make In Figure 8, we present the results of varying the range query
this possible in our setting, the complete spatial distidns of all size. Again, the uncertain model provides results with thst lbe-

moving objects at the query time must be generated befori@-beg call, which is almost 0.8 when the query size is larger th&rkin.

ning the query processing, which incurs very high CPU and I1/0 Both models exhibit an increasing precision with the exjgansf

costs. the range queries. The precision loss incurred by the aolot
All code used in our experiments is written in C++. The page the uncertain model is always less than 10%.
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Figure 8: Query Size vs. Prediction Error

We also consider the query processing costs of the two models

for varying range query sizes. The figure shows that the taicer
model incurs higher I/O cost than the certain model, i.e% %0
90% higher. This is because data pages have a higher fanrahef
certain model than for the uncertain model; these are atkuahd
25, respectively. In addition, a query retrieves more disj@dgth
the uncertain model than with the certain model. Thus theyque
processing 1/0 with the uncertain model is expected to behmuc
higher than for the certain model. However, since objeatmdsare
saved in data pages in random order, each object retriexfarpe

a random access. This leverages the negative effect of desmal
fan-out and explains why the difference of 1/0 costs betwmen
models is less than expected.

The query processing time for the uncertain model is abofit 5—
times longer than for the certain model due to the additiocnaipu-
tation (i.e., rectangle inference and Monte Carlo simalgti With
the uncertainty model, throughput is 20-40 sequentialigaqrer
second.
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Figure 9: Query Time vs. Prediction Error

Figure 9 tests the query time parameter, which is measurdmbas
number of seconds since the last update of the objects. iSingly,
recall and precision are affected only by the query time.rBvken
predicting locations 50 seconds after the update time,aballrof
the uncertain model is still at 0.75, meaning that 75% of threact
answers are captured with the uncertain model.

Again, we examine the query processing costs for the two mod-
els. The findings in Figure 9(c)-9(d) mirror those shown ig-Fi
ure 8.

7.3 Efficiency Tests

We proceed to study the performance of the index without ve-
locity partitions (NP-tree) and with velocity partitiony/R-tree).
First, Figures 10 and 11 cover the effects of the number afoisi
partitions in the VP-tree on range ahePNN query performance.
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Figure 10: Velocity Partitions vs. Range Query Efficiency
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Figure 11: Velocity Partitions vs. k-PNN Query Efficiency
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Figure 12: Range Query Size vs. Efficiency

The figures report average 1/0 and CPU costs while varying the
number of velocity partition from 2 to 10. The best overalt-pe
formance for range queries is obtained when using more than 7
velocity partitions. With velocity partitions, we maintavelocity
ranges at the roots of the logical sub-trees. This yieldsiced
query enlargements.

A query needs to search all velocity sub-tree partitions.ewh
increasing the number of partitions beyond 7, the querygssing
costs starts increasing slightly. This is because the aiste in-
creased number of sub-tree traversals start to offset thefivef
the reduced query enlargement.
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Next, we compare the VP-tree and the NP-tree. Figures 12-15
report on the performance of range andPNN queries when vary-
ing the range query size, the paraméteand the query time. The
velocity-based partitioning in the VP-tree yields the bestfor-
mance of both types of queries and under all the parametargset
considered.

execution times

7000

VP-Tree
NP-Tree x--€

7
300
250y

60004

?/V/V/V/7
5000
4000

3000

avg CPU cost (ms)

2000

1000

0

10 20 40

k-PNN query size k

(a) I/O cost

80 20 40

k-PNN query size k

(b) CPU cost

80 160

Figure 13: k-PNN Query Sizek vs. Efficiency
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Figure 14: Query Time vs. Range Query Efficiency

Figure 12 shows the average range query cost when using the tw
tress and varying the query size from 1 km to 3 km. As expected,
the cost increases with the query size.
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Figure 15: Query Time vs. k-PNN Query Efficiency

Figure 13 concerns thie PNN query performance when varying
the numbel of requested nearest neighbors candidates from 10 to
160. As expected, the I/O and CPU costs increase when usihg bo
indexing methods. However, the VP-tree incurs the lowestco

Next, we consider the query processing performance when var
ing the query time from 10 to 50 seconds after the last update o
the objects. The costs for the range query aeNN query are
shown in Figure 14 and Figure 15, respectively. We find thabas
query time increases, both the 1/0 and CPU costs increass.isTh
natural, as a larger query time yields a larger query expanshs
before, the VP-tree outperforms the NP-tree.

Figure 16 shows the average numbers of times IR-based werific
tion and Monte-Carlo verification are invoked during the qass-
ing of a query. Monte-Carlo verification is computationaktig
while IR-based verification incurs significantly lower cosfig-
ure 16 shows that IR-based verification is executed abou{(fo®0
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Figure 16: IR-Based vs. Monte-Carlo Verification

range queries, varying) and 4000 (fork-PNN queries, varying
k) times. Due to the resulting filtering of candidates, thetlgos
Monte-Carlo verification is executed less than 100 timesdage
queries and about 1,000 times foiPNN queries.
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Figure 17: Number of Bits in the Spatial Dimension vs. Update
Efficiency
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Figure 18: Number of Bits in the Spatial Dimension vs. Range
Query Efficiency

7.4 Partition Granularity

Our indexing approach relies on a grid partitioning of the lo
cation and velocity spaces of the moving objects. The geanul
ity of this partitioning is expected to affect the index merhance.
In all the previous experiments, the location and velocjigces
were partitioned using a fixed granularity, namefygnhd 2, re-
spectively. We proceed to investigate the performanceigatbns
of different partitioning granularities.

We first consider the location space. The partitioning glaity
is represented by the number of bits used to generate thégart
ing and the space filling curve. For example, if the numberitsf b
is 5, the space is partitioned in#3 x 2° cells. Figures 17 and 18
show that when the number of bits is 7, both trees exhibit #st b
update costs. With fewer bits, the update cost is higherussca
each cell contains a large number of objects. With more thits,
uncertainty region of an object is partitioned into mords;elhich
incurs additional key insertions and deletions. Thereftne 1/0
and CPU costs per update increase when more bits are added. As
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