A Recall-Based Cluster Formation Game
in Peer-to-Peer Systems

Georgia Koloniari and Evaggelia Pitoura

Computer Science Department, University of loannina, Greece
{kgeorgia,pitoura}@cs.uoi.gr

ABSTRACT

In many large-scale content sharing applications, partici-
pants or peers are grouped together forming clusters based
on their content or interests. In this paper, we deal with
the maintenance of such clusters in the presence of updates.
We model the evolution of the system as a strategic game,
where peers determine their cluster membership based on a
utility function of the query recall. Peers are guided either
by selfish or altruistic motives: selfish peers aim at improv-
ing the recall of their own queries, whereas altruistic peers
aim at improving the recall of the queries of other peers.
We study the evolution of such clusters both theoretically
and experimentally under a variety of conditions. We show
that, in general, local decisions made independently by each
peer enable the system to adapt to changes and maintain
the overall recall of the query workload.

1. INTRODUCTION

Large content sharing applications such as social networks
and peer-to-peer (p2p) file sharing systems have become
highly popular. Measurements from the deployment of such
large-scale systems have shown that the interactions among
their participants (peers) indicate the existence of implicit
groups (clusters) of peers having similar content or inter-
ests. For example, the formation of implicit groups centered
around topics described by common keywords has been ob-
served in the blogosphere [2]. In measurements of popular
on-line social networks [16], it was also observed that the
network structure is such that users form clusters based on
common interests, social affiliations or the wish to exploit
their shared content.

We particularly focus on clustering in p2p systems. In
such systems, peers form clusters by creating logical links to
other peers that share similar content or interests, thus, cre-
ating a clustered overlay network on top of the physical one.
The underlying reason behind the formation of such clusters
is that they enable the peers to find and exchange data rele-
vant to their interests with less effort. The clustered overlay

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

is exploited for routing the queries that the users pose for
locating content of interest. Once the appropriate cluster
for a query is identified, the peers in the cluster possess rel-
evant content that can be exploited to evaluate and refine
the query efficiently. In particular, traces of popular p2p
systems have indicated that peers exhibit the property of
interest-based locality, that is, if a peer holds content sat-
isfying some query of another peer, then it is most likely
that it also maintains additional content of interest to this
other peer [18, 10]. Thus, placing the two peers in the same
cluster would increase the recall of their queries.

While, there is a large body of research on the discovery
and construction of clustered overlays [3, 5, 15, 21, 11, 8, 4,
6], their maintenance, which is imperative for coping with
the dynamic nature of peers, has been mostly ignored.

In this paper, we study the dynamics of clustered over-
lay networks by adopting a game-theoretic perspective. We
model the problem of cluster formation as a strategic game
with peers as the players. Each peer plays by selecting which
clusters to join. This selection or strategy is determined in-
dividually by each player, so as to minimize a utility function
that depends on the membership cost entailed in belonging
to a cluster and the cost of evaluating its query workload at
remote clusters. Game-theoretic models have been proposed
for creating overlays based on the connection cost and ra-
dius of the network graph [7, 14, 17]. The originality of our
approach lies on the fact that we consider clustered overlays,
focus on queries and aim at increasing their recall.

We model both selfish and altruistic behavior of peers
as demonstrated in real content-sharing systems by propos-
ing appropriate utility functions. We also introduce global
system quality criteria to measure the performance of the
system as a whole.

To cope with dynamics, our game is a repeated one: peers
re-evaluate their strategy and potentially relocate to other
clusters. We define appropriate relocation policies for both
selfish and altruistic peers and propose an uncoordinated
cluster reformulation protocol based on local decisions made
independently by each peer. We study both theoretically
and experimentally the evolution of clusters under the in-
dividual actions of each peer. Our experimental results
show that the uncoordinated protocol efficiently copes with
the changes in the overlay, while maintaining approximately
the same quality with a coordinated protocol that relies on
global decisions.

The rest of this paper is organized as follows. In Section 2,
we present the cluster formation problem as a game and de-
fine the utility functions for selfish and altruistic peers along

Figure 1: Examples of cluster topologies

with corresponding global quality criteria. In Section 3, we
study stability and optimality. In Section 4, we describe our
reformulation protocol for cluster maintenance. Section 5
presents our experimental evaluation, and Section 6 refers
to related research. Section 7 concludes the paper.

2. RECALL-BASED CLUSTERING

We consider a distributed system consisting of highly dy-
namic nodes (peers) that share content. Usually, such dis-
tributed systems need to scale up to a large number of peers
(Internet-scale). Thus, a peer is unable to know and directly
communicate with all other peers in the system. Instead, it
establishes logical links with only a few other peers, creating
logical overlay networks on top of the physical one. Queries
are routed through this overlay to locate peers that hold
content of interest.

The efficiency of query evaluation depends heavily on the
topology of the overlay network. In this paper, we con-
sider clustered overlays in which peers with similar content
or interests form groups, called clusters. In such overlays,
the peers inside each cluster usually follow a topology that
ensures high connectivity, thus, making the evaluation of
queries within a cluster very efficient. For example, Fig. 1
shows 8 peers forming a cluster following a fully connected
topology (Fig. 1(a)), where each peer can reach any other
peer in the cluster with 1 hop, while (Fig. 1(b)) a structured
Chord-like ([19]) topology in which finding any peer takes
at most log(8) hops.

We use P to denote the current set of peers. We do not
assume any specific model for the data items shared by the
peers. We denote the number of results for a query g against
the documents of peer p; as result(q,p;).

Let @ be the list of all queries in the system. Note that
a query ¢ may appear more than once in Q. Let num(Q)
be the number of all queries in @ and num(q, @) be the
number of appearances of query ¢ in Q. We characterize
the importance of a peer p; in the evaluation of a query ¢
in @ based on the results that p; offers for ¢ with regards to
the total number of available results (i.e. the recall achieved

when ¢ is evaluated solely on p;). Specifically:

N result(q, p;)
rg, pi) = Y ppep result(q, pr)’

We also define as local workload of peer p;, Q(p;), the list of
queries issued by peer p;. Again, num(Q(p;)) stands for the
number of all queries in Q(p;) and num(q, Q(p;)) for the
number of appearances of query ¢ in Q(p;).

CLUSTERING AS A GAME: We model the problem of cluster
formulation as a strategic game. Each peer p; represents
a player in the game and its strategy s; is defined by the
set of clusters it joins. In particular, each peer p; chooses
which clusters to join from the set of Cp,qz clusters in the
system, C' = {c1,¢2,...,CCrmax }, thus, defining its strategy

s; € C. For example, consider P = {p1,p2,ps,pa} and C' =
{c1,¢2,c3}, and let us assume that p; belongs to clusters ¢
and cz, p2 belongs to c1, p3 to c3 and pa to c2 and c3. Then,
the corresponding strategies are s1 = {c1,c2}, s2 = {c1},
s3 = {cs} and s4 = {c2,c3}.

We can describe any cluster configuration by the set of
strategies S = {s1,s2,...,sp|} that the peers in P deploy,
since from this set, we can derive the set of peers belonging
to each cluster in C. In this paper, we constrain Chqz to
be equal to |P|, i.e. it cannot exceed the number of peers,
and assume that some clusters may be empty if needed. To
cope with peer dynamics, each peer plays more than once,
thus, the cluster configuration is not static.

The goal of the game is for each player (peer) to mini-
mize or maximize a wutility function. We discern between
two types of peers, selfish and altruistic ones, and define a
corresponding utility function for each type.

2.1 Individual Peer Measures

A selfish peer is interested in increasing the recall of its
local query workload by joining those clusters whose peers
would increase the recall of its local workload the most.
Specifically, let P(s;) be the set of all peers belonging to any
cluster ¢ € s;. The gain for a peer p; for choosing strategy
si is the recall of its local workload achieved by evaluating
its queries in the peers P(s;). Stated differently, the cost for
p; associated with s; is the cost (recall) for obtaining query
results from peers located in clusters that do not belong to
s;, that is, for peers not in P(s;).

Clearly, this recall-based cost is minimized, if a peer joins
all Cipas clusters in the system. However, participation in a
cluster imposes communication and processing costs. Such
costs depend on the size and the topology of the cluster.
The larger the size of the cluster, the higher the cost of join-
ing, leaving and maintaining the cluster. Furthermore, a
highly connected topology, where each peer maintains links
to a large number of other peers, increases the cluster mem-
bership cost. To capture this, the cluster membership cost
is defined as a monotonically increasing function 6 of the
number of peers belonging to the cluster, i.e. as a function
of the cluster size |c¢|. This function depends on the cluster
topology, for instance, when all peers are connected to each
other (Fig. 1(a)), 6 may be linear, whereas in the case of
structured overlays (Fig. 1(b)), 6 may be logarithmic.

DEFINITION 1 (INDIVIDUAL PEER COST). In a cluster
configuration S, the individual cost for a selfish peer p; for
choosing strategy s; is:

cost(ps =« 8(lcx])
peost(pi, S) ; 1P|

num(q, Q(pi)) o
+ Y i (Q () > r(a:ps)

q in Q(p;i) p;EP(s4)

The first term expresses the cost for cluster membership and
the second one the cost (in terms of recall) for obtaining
results from peers outside the selected clusters, that is, the
average result loss from not participating in all clusters. The
recall loss of each query is weighted by its frequency in the
local workload of p;. Parameter o (o > 0) determines the
extent of influence of the cluster membership cost in cluster
formation. From a system perspective, parameter « charac-
terizes the ratio between updates and queries in the system.
For a given 6, a large value of a means that updates in the

system are rather frequent and therefore the cost for cluster
maintenance is high, while a small value indicates that query
evaluation efficiency is more important for determining the
overall system performance. Finally, factor 1/|P| is used for
normalizing the cluster membership cost.

Observe that the two terms of the cost function tend to
guide the peer towards selecting opposing strategies. For
example, assume that a peer can join only one cluster and
that « > 1. In a cluster configuration in which all peers form
a single cluster, the membership cost, that is 0, is maximized
(6(]P|)), while the recall loss is minimized (0) since for any
peer all results for its queries are located within its cluster.
In contrast, the recall loss is maximized when p; forms a
cluster by its own, while the membership cost is in this case
minimized.

In addition to modeling the behavior of selfish peers, we
also want to model the behavior of altruistic peers that are
not concerned about their own queries, but instead, about
offering to other peers. Therefore, we define the corre-
sponding utility function, called individual peer contribution
(pcontr) that an altruistic peer p; aims at maximizing based
on how much p; improves the recall of the other peers that
belong to the clusters of its strategy. Thus, analogously to
Def. 1, the individual contribution is defined as follows:

DEFINITION 2 (INDIVIDUAL PEER CONTRIBUTION). In
a cluster configuration S, the individual contribution of an
altruistic peer p; by choosing strategy s; is

Z Z num q ij))r(%pi)—

pJeP(s) a€Q(p;) p))

|P\2 > lel6(lexl)

CcRLES;

peontr(pi, S

While pcost measures the cost p; pays for its query workload
and membership to clusters in s;, pcontr is a positive mea-
sure showing what other peers gain when p; chooses strategy
s;. The first term of the sum measures the contribution of
peer p; to the peers in the clusters of its strategy, while the
second term measures the membership cost these peers pay
if p; joins their clusters. Similarly to the individual cost, the
membership cost also takes its lowest value when the peer
forms a cluster by its own and its largest when all peers
form a single cluster (if we consider that each peer joins
only a single cluster), whereas the recall it contributes to
other peers takes its largest value in the single cluster and
its lowest when it forms a cluster by its own. Individual con-
tribution is defined from the perspective of each beneficiary
peer, that is, the queries weights are defined based on their
relative frequencies per such peer.

Besides the pure selfish and the pure altruistic behavior,
hybrid behavior can be captured by trying to minimize the
following cost function:

hpcost(p;, S) = d pcost(pi, S) — (1 — d) pcontr(p;, S),
where d € [0, 1] captures the degree of selfishness of peer p;.
A hybrid peer considers both its own cost (with degree d)
and its contribution to the others (with degree 1 — d).

Finally, note that our game is a non-cooperative asym-
metric game. A game is asymmetric, if the value of the
utility function or payoff differ if different players select the
same strategy.

2.2 Global Cost Measures

We measure the overall quality of a cluster configuration
by the achieved social cost (SCost) defined as:

DEFINITION 3 (SOCIAL CosST). The social cost of a clus-
ter configuration S is defined as the sum of the individual

costs of all peers in P:
SCost(S) = Z peost(ps, S
pi€P
We can also evaluate the overall quality of the configura-
tion from a query workload perspective, by considering the
average cost for attaining results for all queries in Q.

DEFINITION 4 (WORKLOAD CoOsST). The workload cost
of a cluster configuration S is:

WCost(S) = a Z %Jr E %%Q?)
cpeC qn @
v e Q) g

num(,Q) |

The first term expresses the cost for maintaining the clus-
ters. The second term expresses the cost for all queries, i.e.,
the cost for evaluating them outside the clusters of their
initiator.

The main difference between the social and the workload
cost lies on how they assign weights to the queries. In the
social cost, each peer assigns weights to its queries based on
their frequency in its local workload, whereas in the work-
load cost, the weight assigned to each query is based on the
frequency of the query in the overall query workload. Intu-
itively, while the social cost regards all peers as equals, the
workload cost considers more demanding peers, i.e. peers
that pose more queries, as more important than low de-
manding ones.

The two cost measures are not equal in the general case,
but for equally demanding peers the following proposition
holds.

PROPOSITION 1. If for all peers p;, p; € P, num(Q(p;)) =
num(Q(p;)) = "“;,(‘Q), the social and the workload cost
measures are proportional to each other.

Proof. Using the definition of individual cost (Def. 1), the

social cost can be written as:

pi s.t.q in Q(p;)

SCost(S Z Z |]ch
p;EP cpEs; | |
num(q, Q(p:))
+3 Y (@) > rla,p))
Pi€P q in Q(p;) p;EP(s;)

The membership cost of SCost is equal to the first term of
WCost. Just consider that each cluster ¢, appears in the
sum of SCost as many times as the peers that belong to it,
i.e., its size |ck|. The second term differs from the second
term of SCost only on how much the workload of each peer
is taken into account. It is easy to see, that if peers get
an equal part of the query workload, i.e., num(Q(p;)) =
num(Q(p;)), for all peers p;, p; € P, the recall parts of the
two costs are proportional.O
Proposition 1 implies that improving the social cost im-
proves the workload cost and vice versa.

In accordance to the social and workload cost, we define
the corresponding social and workload contribution as:

DEFINITION 5 (SocCIAL CONTRIBUTION). The social con-
tribution of a cluster configuration S is defined as the sum
of the individual contributions of all peers in P:

SContr(S) = Z peontr(p;, S)

p;EP

DEFINITION 6
load contribution for a cluster configuration S is:

WContr(S) = Z num(g, Q) Z

num
q in Q (Q) pi s.t.q in Q(p;)

3 r(q,p.n—ﬁ SN Jelb(lexl)

PjEP(s;) P EP ckE€s;

Similarly to SCost and W Cost, the SContr and W Contr
are also proportional for specific workload distributions, in
particular, when the query workload is uniformly distributed
among the peers.

PROPOSITION 2. If for all p;, pj € P and all q in Q,

num(g, Q(pi))/num(Q(pi)) = num(q, Q(p;))/num(Q(p;)) =
num(q, Q)/num(Q), the social and the workload contribu-

tion measures are proportional to each other.

num(g, Q(p:))
num(q, Q)

Intuitively, social contribution favors queries that are pop-
ular to specific peers, whereas its workload counterpart fa-
vors overall popular queries.

Let us now examine the relationship between the workload
cost and the workload contribution.

PROPOSITION 3. For a = 0, that is, if ignore the cluster
membership cost, it holds: WCost(S) = 1 — WConir(S),
which means that the two measures are complementary.
Proof. It holds that:

> rlep)+ D, rlap)=1Ygin Qs € 8. (1)

;¢ P(s;) P EP(s;)

For a = 0, we have: WCost(S) =1— WConitr(S).0

Let us consider now, the social cost and the social contri-
bution.

COROLLARY 1. For uniform query workload among peers
the social cost and social contribution are complementary:
SContr(S) =1— SCost(S).

Proof. Again, for o = 0, we can rewrite SCost(S) using (1)

and if we assume that % is the same for all peers

pi, then we have that: SContr(S) =1 — SCost(S).0

3. STABILITY AND OPTIMALITY

The goal of each player (peer) is to minimize/maximize
its individual cost/contribution. We will refer in the follow-
ing to selfish peers, but the same results are applicable for
altruistic behavior.

3.1 Stability

The question that arises is: if we leave the players free

to play the game to achieve their goal, will the system ever
reach a stable state in which no players desire to change
their strategy (the set of clusters they belong to)? That is,
will the system reach a Nash equilibrium?
NasH EQUILIBRIUM: Formally, a (pure) Nash equilibrium is
a set of strategies S such that, for each peer p; with strategy
s; € S, and for all alternative set of strategies S’ which differ
only in the i-th component (different cluster sets s} for p;):

pcost(pi, S) < pcost(p;, S") (2)

This means that in a Nash equilibrium, no peer has an in-
centive to change the set of clusters it currently belongs to,
that is, Nash equilibria are stable.

We shall first prove an interesting property of the cluster
formation game. Due to the form of our cost function, the

(WORKLOAD CONTRIBUTION). The work-

stable states in our system have the following property that
constraints the number of possible configurations:

LEMMA 1. In any stable state, there are no clusters c;, c;
such that ¢; C cj, i # j.
Proof. Let S be a cluster configuration, ¢;, ¢; be two clusters
in C such that ¢; C ¢;. Consider a peer pg, pi € ¢;. Clearly,
pr € c¢;. Let the individual cost of pix be: pcost(pk,S) =
ay+3, where v is the membership cost for py when following
strategy si € S and ¢ the respective recall it loses from the
peers that do not belong to P(sg). Assume for the purposes
of contradiction that S describes a stable configuration, then
pr can not select a strategy that would reduce its cost. Let
us examine the strategy s, = si — {c;}. Let S’ be the
configuration resulting by replacing s; with s) in S. Then,
peost(pr, S') = aly — % +0) < pcost(pk,S). The recall
part of the cost function remains the same, because P(sg) =
P(s},). Thus, p, can reduce its cost by selecting the strategy
s}, and therefore S is not a stable state, which contradicts
our assumption.O

Because of Lemma 1, it holds:

COROLLARY 2. When a peer forms a cluster by itself, it
cannot belong to any other cluster.

It is rather simple to show that for the cluster formation
game, a pure Nash equilibrium does not always exist.

PROPOSITION 4. A pure Nash equilibrium does not al-
ways exist for the cluster formation game.
Proof. Let us consider a simple scenario of two peers pi
and pz. Consider also that Q(p1) consists of a single query
q1 satisfied by p2 (i.e. 7(q1,p2) = 1) and Q(p2) consists
of g2 also satisfied by p2. Let C' = {c1, c2} be the clus-
ters in the system. Using Lemma 1, the following cluster
configurations are possible: p1 € ¢1 and p2 € c2, described
by S1 = {{e1},{c2}}, p1 € c2 and p2 € ci1, described by
So = {{c2},{c1}} and both pi,p2 € c1 or ca2 described
by S35 = {{c1},{c1}} and Ss = {{c2},{c2}}, respectively.
Let us assume a linear 6 function, 6(n) = n. Then, for
any value of @ > 0, we can show that none of the pos-
sible configurations is a Nash equilibrium. In particular,
since the first two configurations are symmetric, let us ex-
amine the first one. The individual costs of the two peers
are: pcost(p1,S1) = a% + 1 and pcost(p2,S1) = a%. If py
moves to cluster cz, then the system configuration becomes
{{c2},{c2}}, that is, configuration Sy, and the cost for p;
becomes pcost(pi, S1) = a < pcost(p1,S1). Thus, configu-
ration S; is not a Nash equilibrium, since p; can reduce its
cost by moving to c2. Let us consider now the configuration
S3 (S4 is symmetric) in which both peers belong to the same
cluster. Their individual costs are now: pcost(p1,S3) = «
and pcost(p2, S3) = a. Peer ps can reduce its cost by moving
to the (empty) cluster ¢y (resulting in configuration S1) and
therefore S3 is not a Nash equilibrium. Table 1 summarizes
the payoff (cost) table for this two-player game.O

3.2 Social Optimum

Even if the system does eventually reach a stable state
(Nash equilibrium), it is not always the case that this sta-
ble state has a satisfying cost. A measure widely used for
evaluating how far from the best possible outcome a stable
state is, is the price of anarchy defined as the ratio between
the social cost of the worst Nash equilibrium and the “social
optimum”. The social optimum is obtained by minimizing

the social cost measure over all possible configurations, even
for those configurations that do not correspond to a stable
state.

We can acquire a rough bound of the social optimum by
considering each peer separately and evaluating its individ-
ual cost over all possible configurations. Then, by selecting
for each peer the configuration that yields the minimum in-
dividual cost and adding these values, we obtain a bound for
the minimum value of the social cost in the system, i.e., for
the social optimum. Note that we are adding together indi-
vidual costs that may correspond to different configurations,
thus, the estimated social cost may refer to a configuration
that cannot exist and may be very far from the actual value
of the social optimum that we can achieve.

3.3 Case Studies

Although, in the general case, a Nash equilibrium does not
always exist, there are cases in which, for specific configu-
rations and data and query workload distributions, stable
clusters may be formed. Next, we present two scenarios:
Case I: No Underlying Clustering: In this case, all
peers in P are considered similar in the following sense:

num(Q(p)) = num(Q(p;)) = num(Q)/| P, ¥pi, p; € P

(¢, pi) = (¢, p;) = 1/|P|,Yq in Q, Vpi,p; € P

This corresponds to a data and query distribution for which
no physical grouping among the peers exist. Note that our
game becomes a symmetric one, since all players yield the
same payoffs when applying the same strategy.

Case II: Symmetric Clusters: In this case, the data
and query distribution are such that a perfect underlying
clustering/grouping exists among the peers. In particular,
the peers in P belong to m (m > 1) different groups of the
same size |c¢| = |P|/m. The members in each group offer
and demand data only within their group. Formally, for all
pairs of peers p;, p; in the same group, it holds num(Q(p;))
= num(Q(p;)) and Vq in Q(p;), 7(¢,p:) = 1/|c|, whereas
for all pairs of peers p;, p; not in the same group, the lists
Q(p:) and Q(p;) have no queries in common and Vg in Q(p;),
(g, pi) = 0.

For each of these two scenarios, we consider a number of
cluster configurations and study each of them in terms of
stability and optimality.

Stability

To determine whether a cluster configuration constitutes a
Nash equilibrium, we need to ensure that the individual cost
of any peer is not smaller in any possible configuration that
can result from the current one by changing only the strategy
of this peer, by evaluating Inequality (2).

For the first scenario (Case I), we study the following clus-
ter configurations:
Casg(I.A): A SINGLE CLUSTER. In this case, all peers form
a single cluster. From Corollary 2, the only way a peer p;
can change its strategy is by forming a cluster by its own.
Case(I.B): EACH PEER FORMS A CLUSTER BY ITS OWN. In
this case, each peer forms a cluster by its own. The only
way for a peer p; to change its strategy is to leave its own
cluster and join k other clusters, where 1 < k < |P| — 1.
Casg(l.c): m NON-OVERLAPPING CLUSTERS. The peers
form m non-overlapping clusters of the same size |c|. Con-
sider a peer p; € c¢;. The available options for p; for changing
its strategy are to: (1) form a cluster by its own; (2) addi-
tionally to ¢j, join k other clusters, where 1 < k < m; or (3)

leave c; and join k other clusters.

Table 2(line 1) presents the results of our evaluation for
selfish peers that aim at minimizing their individual cost,
while Table 2(line 2) for altruistic peers that aim at maxi-
mizing their contribution.

This shows that, even if there is no underlying clustering
according to the data and query workload distribution, a
system can still reach a stable state. This state depends on
the cluster maintenance costs and the portions of data and
query workload each peer offers or demands.

To make this more concrete, let us assume a 6 function
corresponding to a linear function of the form: 6(n) = An,
0 < A <1, and rewrite the conditions regarding «. Then,
a configuration in which all peers belong to a single cluster
is stable for @ < 1/A. Recall that large values of o mean
that maintenance costs are more important than query re-
call. Thus, for the same 6, for values of a larger than this
threshold, the maintenance cost would surpass those gained
by recall and would lead to splitting the cluster. Note also,
that whether a single cluster is stable or not depends also on
the topology as captured through function 6. For instance,
when A is small (less connected topology), a single cluster
remains stable for larger values of a.

For the symmetric clusters scenario, we limit our analysis
to the case in which each peer can belong only to one cluster
and study the same configurations as in Case I.
CASE(IL.A): A SINGLE CLUSTER. Same as Case (I1.A).
Casg(I1.B): EACH PEER FORMS A CLUSTER BY ITS OWN.
The only option for p; is to join another peer p;, which
either is in the same group with p;, or belongs to a different
group. This configuration is the same, whatever group out
of the m — 1 we consider, since all such peers are symmetric
to pi, i.e., they do not satisfy any of its local query workload.
Casg(I1.c): m NON-OVERLAPPING CLUSTERS. In this case,
we consider that each of the m clusters contains peers of a
single group. Then, the individual peer cost for each peer
p; € P is equal to its cluster membership cost, since the cost
for computing queries outside its cluster is zero (there are
no results for Q(p;) in peers not in P(s;)). If p; wants to
change its strategy s;, then it can move either to a cluster
on its own or to a different existing cluster.

The results of the same analysis as in the first case are
presented in Table 2(lines 3) for selfish peers. The results
for altruistic ones can be easily computed and are omitted.

By comparing Case I (no underlying clustering) with k =
1 and Case II (perfect underlying clustering), we see that
in Case II, configuration (B) in which each peer forms its
own cluster (no clustering) is stable for larger values of «,
whereas the other two configurations (A) and (¢) (with some
form of clustering) are stable for smaller values of a.

Social Optimum

We examine whether any of the Nash equilibria that we have
previously computed achieve a social cost equal to the social
optimum. To this end, we need to compare their social cost
against that of any other possible configuration. We assume
selfish peers and a linear 6 function. Our results can be
easily adapted for altruistic peers.

In Case I, where all peers are symmetric, minimizing the
individual cost of any peer suffices to minimize the social
cost.

CASE(I.A): A SINGLE CLUSTER. We already know that a
configuration in which each peer forms its own cluster has a

Table 1: Payoff Table

p2 joins c1 | p2 joins ca
p1 joins ¢1 a,a S+1L,5
p1 joins ca 5+L,5 a,a

larger cost than Case (I.A), since we assume that o < 1/
and Case (I.A) is an equilibrium. The only other possible
configuration is when a peer p; joins k clusters with different
sizes. The best case (the case with the lowest cost) is the one
where the k clusters have no overlapping members. It also
holds that |P(s;)| < |P|, otherwise we would have a single
cluster. By comparing the social cost of this configuration
to the cost of Case (I.A), we see that for a < 1/A, Case (I.A)
has the lowest cost. Thus, the value of the cost of Case (1.A)
corresponds to the social optimum.

By applying a similar analysis, we conclude that: Case
(I.B) has a cost equal to the social optimum for a > 1/A,
while Case (I.c) does not reach the social optimum for any
m > 1.

For Case II, the corresponding conclusions are: Case (I1.A)
does not reach the social optimum for any value of a > 0,
since separating the m groups always results in a configu-
ration with a lower social cost. Case (II.B) and Case (II.C)
correspond to states with cost equal to the social optimum
for a > m/A and o < 1/, respectively.

A detailed analysis of the above can be found in [13].

4. CLUSTER EVOLUTION

Assume some initial cluster configuration. As the system
evolves, the recall achieved by this cluster configuration may
deteriorate. Changes that affect the quality of clustering in-
clude topology updates as peers enter and leave the system,
as well as changes of peer content and query workload. We
propose a suite of protocols to keep the clustered overlay
up-to-date with respect to these changes. Our protocols are
based on local relocation policies that each peer follows so
as to move to the most appropriate cluster under the given
system conditions. Such protocols can also be used to boot-
strap the system, for example, by applying them on an initial
configuration in which all peers belong to a single cluster or
each peer forms a cluster by its own. We describe first the
relocation policies followed by each peer, and then how they
are applied to form a new cluster configuration.

4.1 Relocation Policies

Unlike most network creation gam