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ABSTRACT 

The accuracy of cardinality estimates is crucial for obtaining a 

good query execution plan. Today‟s optimizers make several 

simplifying assumptions during cardinality estimation that can 

lead to large errors and hence poor plans. In a scenario such as 

query optimizer testing it is very desirable to obtain the “best” 

plan, i.e., the plan produced when the cardinality of each relevant 

expression is exact. Such a plan serves as a baseline against which 

plans produced by using the existing cardinality estimation 

module in the query optimizer can be compared.  However, 

obtaining all exact cardinalities by executing appropriate sub-

expressions can be prohibitively expensive. In this paper, we 

present a set of techniques that makes exact cardinality query 

optimization a viable option for a significantly larger set of 

queries than previously possible. We have implemented this 

functionality in Microsoft SQL Server and we present results 

using the TPC-H benchmark queries that demonstrate their 

effectiveness. 

1. INTRODUCTION 
Query optimizers rely on a cost model to choose an appropriate 

query execution plan for a query. A key parameter of cost 

estimation is the cardinality of sub-expressions of the query 

considered during optimization. Obtaining accurate cardinality 

estimates for these sub-expressions can be crucial for finding a 

good query execution plan.  

In an effort to keep the optimization time low, today‟s query 

optimizers trade accuracy of cardinality estimation and hence 

quality of execution plan. The time needed for query optimization 

is kept low by using estimation techniques such as histograms to 

obtain cardinalities of expressions. However, these estimation 

techniques can lead to estimation errors. For example, it is well 

known [14] that cardinality estimation errors can grow 

exponentially in the number of joins in a query. This can cause the 

optimizer to pick a plan that is significantly worse than the plan 

that uses exact cardinalities for the sub-expressions. It is important 

to understand to what extent the plan quality is affected by errors 

in cardinality estimation. To do so, we need to obtain the “best” 

plan (i.e. plan obtained using exact cardinalities) even if query 

optimization time is considerably larger. Indeed, there are 

important scenarios in query optimizer testing where the presence 

of the best plan can be extremely valuable. 

First, such a plan serves as a benchmark against which plans 

produced by the current optimizer (using its built-in cardinality 

estimation module) can be compared. Second, it can also help 

narrow down the cause of a plan quality problem. For example, 

consider the case of a particular transformation rule in the 

optimizer [12]. Suppose that the rule was expected to improve the 

efficiency of a particular query but in reality did not. Today it is 

difficult to know if this was due to poor cardinality estimation or a 

different problem (e.g. issues in the search strategy or other cost 

parameters). Being able to obtain the plan without any cardinality 

estimation errors can help resolve the above question. Third, once 

exact cardinalities are available, we can analyze whether the plan 

obtained when using exact cardinalities for all expressions is 

identical to the plan obtained when using exact cardinalities for 

only a subset of sub-expressions e.g., for leaf (i.e. single-table) 

expressions. Such analysis could be useful in isolating classes of 

expressions for which estimation errors can have a significant 

impact on plan quality.  

In this paper, we study the exact cardinality query optimization 

problem, i.e. optimizing the query using the exact cardinality for 

each relevant expression. A relevant expression is one whose 

cardinality is required during optimization. Since the time for 

exact cardinality query optimization can be significant, improving 

its efficiency can be valuable. Specifically, the natural approach 

of executing one query per relevant expression to obtain its 

cardinality can be prohibitively expensive since: (a) there can be a 

large number of relevant expressions for a query, and (b) the total 

time taken to execute all these queries can be significant.  

Example 1. Consider the following query on the TPC-H database.  

SELECT … FROM Lineitem, Orders, Customer 

WHERE l_orderkey = o_orderkey      

AND   o_custkey = c_custkey        

AND   l_shipdate > „2008-01-01‟  

AND   l_receiptdate < „2008-02-01‟  

AND   l_discount < 0.05  

AND   o_orderpriority = „HIGH‟  

AND   c_mktsegment = „AUTOMOBILE‟ 

 

Suppose we have single column indexes on (l_shipdate) and 

(l_receipdate) in the database. The expressions whose 

cardinalities are considered by a typical query optimizer consist of 

the following 6 single-table expressions and 3 join expressions. 

For simplicity, we do not indicate the predicates in the join 

expressions:  

(1) (l_shipdate > „2008-01-01‟) 

(2) (l_receiptdate < „2008-02-01‟)  

(3) (l_shipdate > „2008-01-01‟ AND l_receiptdate < „2008-02-

01‟) 
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(4) (l_shipdate > „2008-01-01‟ AND l_receiptdate < „2008-02-

01‟ AND l_discount < 0.05) 

(5) (o_orderpriority = „HIGH‟)  

(6) (c_mktsegment = „AUTOMOBILE‟)  

(7) (Customer  Orders)  

(8) (Orders  Lineitem)  

(9) (Lineitem  Orders  Customer) 

 

Thus, the naïve approach for exact cardinality query optimization 

requires executing1 each of the above nine expressions to obtain 

the respective cardinalities and this can be expensive.   

In this paper, we propose the exact cardinality query optimization 

problem and present techniques that can significantly reduce the 

time taken for such optimization. We leverage the key observation 

that when an expression is executed, we can obtain cardinalities of 

other related expressions as a byproduct. This is because each 

physical operator in an execution plan can output its cardinality at 

the end of execution, and the sub-tree rooted at an operator in the 

plan also corresponds to a relevant sub-expression. Thus, in order 

to compute the accurate values of all the required cardinalities for 

the query, we only need to execute a subset of relevant 

expressions of the query such that their execution results in 

obtaining the complete set of all relevant cardinalities. We refer to 

this as the Covering Queries optimization.  

The exact cardinality query optimization functionality in general, 

can also be invoked with a workload (i.e. set of queries) as input. 

Indeed, in query optimizer testing, it is common to use a workload 

of benchmark queries and real world customer queries. In such 

cases, we need to obtain the exact cardinalities for the relevant 

expressions of all the queries in the workload. While the 

technique of materializing common sub-expressions to speed up 

execution has been studied in the context of multi-query 

optimization problem (MQO), e.g. [18][19], the fact that we are 

interested only in the cardinalities (and not the actual results) of 

expressions, offers unique opportunities that cannot be leveraged 

in a general MQO setting. Specifically, as we will show, we can 

take full advantage of common sub-expressions in the workload 

but without the need for materialization and thus gain advantage 

over known techniques in MQO. In particular, we leverage the 

CASE statement in SQL which allows multiple count expressions 

to be computed over a relation in a single pass without 

materialization. 

We have prototyped the exact cardinality query optimization 

functionality in Microsoft SQL Server. This includes the Covering 

Queries optimization as well as our technique for obtaining 

cardinalities of common sub-expressions using appropriate CASE 

queries. We have evaluated the effectiveness of our techniques on 

TPC-H benchmark queries [22]. Our experiments demonstrate 

significant speedups using our techniques relative to the baseline 

approach of executing each relevant expression. While not the 

main focus of the paper, we also show a few examples of 

analytics for query optimizer testing that are possible once exact 

cardinalities of relevant expressions are available.  

The rest of the paper is structured as follows. In Section 2, we 

describe the exact cardinality query optimization problem and 

outline the architecture of our solution. Sections 3 and 4 

                                                                 
1 Note that we only need to execute a COUNT(*) query 

corresponding to each expression 

respectively present the key technical ideas of Covering Queries 

optimization and generation of CASE queries for a workload to 

speed up exact cardinality query optimization. Section 5 presents 

results of our experimental evaluation and we discuss related 

work in Section 6. 

2. PROBLEM STATEMENT 

2.1 Preliminaries 
 Query optimizer: A key input to the cost model of a query 

optimizer is the cardinality of relevant logical sub-expressions2 of 

the query. The query optimizer considers a set of sub-expressions 

of the given query during optimization. In this paper, we use 

Microsoft SQL Server, whose optimizer is based on the Cascades 

framework [12] which maintains a memo data structure. Each 

node in the memo is a group, which represents a logical 

expression. Expressions in the memo are related to one another by 

parent-child relationships, which indicate that the child is an input 

to the parent expression. We present our techniques in the context 

of an optimizer based on the Cascades framework [12], but the 

techniques are potentially applicable to other optimizer 

architectures as well. 

Relevant Expressions for a Query: For any input query, the 

optimizer considers a set of plans S. For any plan P S, there is a 

set of logical expressions LE(P) whose cardinalities are necessary 

for deriving the cost of plan P. The set of relevant expressions of a 

query is defined to be the union of LE(P) over all plans in S. Note 

that the set of relevant expressions for the same query could 

potentially be different for different optimizers. For the Cascades 

framework [12], the relevant expressions would be the set of 

groups in the memo that correspond to relational expressions. For 

the query in Example 1, the relevant expressions and their 

relationships to other expressions are shown in Figure 1. 

Lineitem 

p1 and p2 and p3

Orders Join 

Customer

Lineitem Join 

Orders

Customer
p5

Orders
p4

Lineitem Join 

Orders Join 

Customer

p1 and p2

p1 p2

 

 

 

In the figure, p1 = (l_shipdate > ‘2008-01-01’), p2 = 

(l_receiptdate < ‘2008-02-01’), p3 = (l_discount < 0.05), p4 =  

(o_orderpriority = ‘HIGH’) and p5 = (c_mktsegment = 

‘AUTOMOBILE’). Each node is a logical sub-expression of the 

original query. The cardinality of a parent expression depends on 

the cardinality of its children (i.e., inputs). Observe also that the 

expressions are a function of the physical design, e.g., the 

expressions (l_shipdate > ‘2008-01-01’) and (l_receiptdate < 

‘2008-02-01’) are present due to the possibility of Index Seek 

plans and the expression (l_shipdate > ‘2008-01-01’ AND 

                                                                 
2 For simplicity, we use the terms sub-expression and expression 

interchangeably. 

Figure 1. For a query on TPC-H database, expressions 

whose cardinalities are used by the query optimizer. 



l_receiptdate < ‘2008-02-01’) is present due to the possibility of 

an Index Intersection plan. 

Observe that the above notion of relevant sub-expressions that 

correspond to groups in the memo applies for any query, 

including complex queries (e.g. with nested sub-queries).  

Cardinality Estimation: Today‟s query optimizers rely on 

summary statistics such as a histogram of the column values and 

the number of distinct values in a column. Since DBMSs do not 

typically maintain multi-column statistics or statistics on views, 

when an expression has multiple predicates, optimizers resort to 

simplifying assumptions such as independence between predicates 

and containment (for joins) to estimate expression cardinality. As 

a consequence, the errors in cardinality estimation can become 

significant [14] leading to poor choice of execution plan.  

Cardinality-optimal Plan: For a given query optimizer, one 

important reason for suboptimal plan choices is inaccurate 

cardinality estimates. We refer to the execution plan obtained 

when the exact cardinality is used for each relevant expression as 

the cardinality-optimal plan for the query.  

Workload: For a given query Q, we denote the set of all relevant 

expressions for the query by RQ. We define a workload W to be a 

set of SQL queries. The set of relevant expressions for a workload 

is the union of relevant expressions of all queries in the workload, 

i.e. RW = Q W RQ. 

Exact Cardinality Query Optimization Problem: The goal of 

the exact cardinality query optimization problem is to find the 

cardinality-optimal plan as quickly as possible. Note that the 

output is required to be the cardinality-optimal plan. The problem 

can be extended to take as input a workload of queries W and 

return the cardinality-optimal plan for all the queries in the 

workloads. 

2.2 Architecture for Exact Cardinality Query 

Optimization 
The architecture we use for exact cardinality query optimization is 

shown in Figure 2. The input to exact cardinality query 

optimization is a workload, and the output is exact cardinalities 

for all the relevant expressions in the workload. These 

cardinalities can be used to obtain the cardinality optimal plan as 

well as to perform other analytics for query optimizer testing. As 

explained in Section 2.1, we use the memo data structure (already 

maintained by the optimizer) to identify all relevant expressions 

for the input query (or workload). We now discuss each of the 

important modules in this architecture and the interfaces that they 

require from the query optimizer and the database server. 

Covering Queries Optimization: We observe that the naïve 

approach of executing each relevant expression to obtain its 

cardinality is not the most efficient approach. First, when an 

expression e  RQ is executed, by counting the actual number of 

rows for all operators in its execution plan, the exact cardinalities 

of other relevant expressions for Q may also become available at 

the end of execution. Thus, one way of improving the efficiency 

of exact cardinality query optimization is to select a subset of 

expressions in RQ to execute such that by executing that subset, 

the cardinalities of all relevant expressions become available. We 

refer to this as the Covering Queries optimization, which we 

present in Section 3. This module uses the execution feedback 

interfaces of the DBMS. We note that such interfaces for 

obtaining expression cardinality via query execution feedback 

(e.g., [7][20]) already exist in today‟s commercial DBMSs.  
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Candidate Generation: The Covering Queries optimization picks 

a subset of the original expressions to execute such that all 

relevant cardinalities are obtained. However, in many cases 

(especially when the input is a workload of queries), by 

introducing additional candidate queries, it is possible to 

significantly improve the efficiency of exact cardinality query 

optimization. We study approaches for candidate generation that 

analyze the workload of queries and augment the set of candidates 

that can be used to obtain cardinalities in Section 4. This module 

uses an optimizer interface to obtain all relevant expressions for a 

query. 

Analytics for Query Optimizer Testing: Once the exact 

cardinalities for all the relevant expressions in the workload have 

been obtained, they can be leveraged for analytics that are useful 

for optimizer testing. We show a few examples below. 

1) Analyze errors: Compare the optimizer estimated and actual 

cardinalities. This can help benchmark the cardinality 

estimation module. 

2) Analyze impact on execution time: Compare the execution 

times of the cardinality optimal plan and the original plan. 

For instance, if the cardinality optimal plan is slower than the 

original plan, this potentially indicates a bug in one of the 

other modules of the optimizer (e.g. cost model). 

3) Analyze plan sensitivity: Analyze how plan changes when 

exact cardinalities are used for a subset of the expressions. 

For instance, if we use the exact cardinalities for only single 

table expressions, how often does the plan identical to the 

cardinality optimal plan? 

This module uses an optimizer interface we built that enables it to 

inject cardinalities for a subset of relevant expressions of the 

query, and optimize the query. The optimizer uses the injected 

cardinalities for the specified expressions, and uses its default 

cardinality estimation procedure for the rest of the relevant 

expressions.  

3. TECHNIQUES FOR A SINGLE QUERY 
In this section, we first look at the problem of exact cardinality 

query optimization where the input is a single query. We extend 

Figure 2. Architecture of Exact Cardinality Query 

Optimization 



our techniques to work for a workload of queries in Section 4. As 

discussed earlier, the goal of the exact cardinality query 

optimization problem is to obtain the cardinalities of all relevant 

expressions as quickly as possible. The naïve approach is to 

execute each expression in RQ and thus obtain its cardinality. 

However, we observe that as a by-product of executing an 

expression e in RQ, we can in fact obtain the cardinalities of other 

expressions in RQ as well. Thus, we potentially do not need to 

execute all expressions in RQ in order to obtain cardinalities of all 

expressions in RQ.  

Consider the query from Example 1. Assume we are executing the 

expression e1 = (Customer  Orders), which is a relevant 

expression for Q. Note the single table expressions e2 = 

(o_orderpriority = „HIGH‟) and e3 = (c_mktsegment = 

„AUTOMOBILE‟) are also relevant expressions for Q. Suppose 

we execute e1 and the execution plan for e1 chosen by the 

optimizer is the one shown in Figure 3. Observe that at the end of 

the execution of this plan, we can obtain cardinalities of the 

expressions e1, e2, and e3 using query execution feedback (e.g. 

[7][20]). As a result, there is no need to execute expressions e2 

and e3 separately.  
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Of course, the set of cardinalities that are available using query 

execution feedback is a function of the execution plan.  For 

example, if instead of the plan shown in Figure 3, the optimizer 

had picked the plan shown in Figure 4 (an Index Nested Loops 

Join plan instead of Hash Join); we can obtain cardinalities of e1 

and e3 but not e2. This is because the filter (o_orderpriority = 

„HIGH‟) is applied after the join. In general, query execution 

feedback can be exploited to obtain the cardinality of every 

operator in the plan and not just the cardinality of the root 

operator (the entire expression). Using the above idea, we can 

potentially reduce the time taken for exact cardinality query 

optimization. We formalize this intuition below which we refer to 

as the Covering Queries optimization. 

3.1 Covering Queries Optimization 
Let e be a relevant expression for Q. Note that each expression 

itself a query. For a given database and optimizer, we can obtain 

the plan for expression e by optimizing the query corresponding to 

e.  Let Exprs(e) be the subset of RQ (the relevant expressions of 

Q) that can be obtained by executing the plan for expression e. Let 

Cost(e) denote the optimizer estimated cost of executing the plan 

for expression e. Observe that both Exprs(e) and Cost(e) can be 

computed by analyzing the execution plan for the expression as 

discussed previously.  

The Covering Queries Optimization problem takes as input a set 

of expressions RQ and a set of queries (i.e. expressions) qi each of 

which covers (via Exprs(qi)) a subset of expressions in RQ. Each 

query qi has a cost ci associated with it, which is the cost of 

executing qi. The goal is to find a subset of the queries with 

minimal total cost that covers all expressions in RQ.  

Claim: The Covering Queries Optimization problem is NP-Hard.  

We outline the proof in APPENDIX A. Given the hardness result, 

we look for an approximation algorithm for the Covering Queries 

optimization problem.  

We use the weighted version of Set Cover problem for the 

purposes of leveraging an approximation algorithm. The 

Weighted Set Cover problem, takes as input a universe U of n 

elements, and another set S containing subsets of U. Each s S 

has a weight w(s) associated with it. We are required to find the 

subset S‟  S with minimum ∑s S‟ w(s) such that U = s S‟s. The 

universe U in the Weighted Set Cover problem corresponds to RQ 

= {e1, e2, …en}, which is the set of all relevant expressions of Q. 

The set S in the Weighted Set Cover problem corresponds to the 

set of expressions {Exprs(e1), Exprs(e2), … Exprs(en)}. The 

weight of each element in S is the optimizer estimated cost of 

executing expression ei = Cost(ei). Thus, since the greedy 

algorithm for Weighted Set Cover is a ln(n) approximation [21], 

the same approximation guarantees apply to our problem as well 

(n is the size of the universe U, which in our problem is |RQ|).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Cardinalities available from feedback varies 

with the execution plan. 

Figure 5. Algorithm for Covering Queries Optimization. 

CoveringQueriesOptimization 

Input: Set of relevant expressions RQ for a query Q 

Output: R   RQ such that executing all expressions in R 

gives exact cardinalities for all expression in RQ  

1. R = {}, S = {} 

2. While (S != RQ) Do 

3.   Pick e (RQ – R) with the largest value of         

|Exprs(e) - S|/Cost(e) 

4.   R = R  {e}; S = S  Exprs(e) 

5. End While 

6. Return R 

Figure 3. Obtaining cardinalities of multiple expressions 

by executing one expression. 



In Figure 5, we outline our algorithm for the Covering Queries 

Optimization problem for the case of a single query, which uses 

the greedy heuristic for Weighted Set Cover. Note that for the 

single query case, the set of queries is initialized to the set of 

relevant expressions RQ. We discuss how we can augment this set 

for the workload case by generating additional candidates in 

Section 4. In Step 4 we pick the expression with the largest ratio 

of |Exprs(e) – S| / Cost(e); thus the numerator only counts 

expressions that can be obtained by executing e that are not 

already in S. The above algorithm outputs a set of expressions R 

such that by executing those expressions we can obtain exact 

cardinalities for all relevant expressions of Q. Our experiments 

(Section 5) show that the Covering Queries Optimization can 

significantly reduce the time needed for exact cardinality query 

optimization. 

4. TECHNIQUES FOR A WORKLOAD OF 

QUERIES 
Commercial query optimizers are typically tested using a wide 

variety of workloads that include well known benchmarks (such 

as TPC-H) as well as real world workloads obtained from 

customers. Recall from Section 2 that we define a workload W as 

a set of SQL queries; and the set of relevant expressions for a 

workload is the union of relevant expressions of all queries in the 

workload, i.e. RW = Q W RQ. The Covering Queries algorithm, 

presented in Section 3 for the case of a single query, can be 

generalized in a straightforward manner for a workload. The 

algorithm in Figure 5 can be used with RW as input and would 

find a subset to execute such that we obtain cardinalities of all 

expressions in RW. Note that this extension of the algorithm can 

be quite effective for cases where multiple queries share identical 

relevant expressions. However, this approach has limitations as 

illustrated by the following example. 

Example 2. Consider the following two similar (but not identical) 

relevant expressions e1 and e2: 

 

e1 = SELECT … FROM Lineitem  

     WHERE l_discount < 0.05 and  

           l_shipdate < ‘1998-01-01’ 

 

e2 = SELECT … FROM Lineitem  

     WHERE l_discount < 0.15 and  

    l_shipdate < ‘1997-01-01’ 

 

Since these expressions are not identical, the Covering Queries 

algorithm would need to execute both expressions e1 and e2. This 

example points to an opportunity to improve the performance of 

exact cardinality query optimization by exploiting commonality 

across relevant expressions for the workload.  Many benchmark 

and real world workloads consist of “templatized” queries that are 

identical except for constants in the selection conditions. For such 

workloads, leveraging commonality of relevant expressions across 

queries in the workload can be very important. 

4.1 Motivating use of CASE statement for 

obtaining multiple expression cardinalities 
One way to exploit commonality across relevant expressions for a 

workload is to use materialized views. Physical database design 

tools in most commercial DBMSs (e.g. [2][3][24]) can 

recommend appropriate materialized views for a workload. 

However, such tools were designed to optimize performance of 

workloads without accounting for the cost of materializing these 

structures or the time taken to tune the workload as part of their 

optimization. While these assumptions are reasonable for the 

physical design problem, applying such tools directly can be 

inappropriate for our problem.  

We observe that the exact cardinality query optimization problem 

for a workload is related to the multi-query optimization problem 

(e.g. [18][19]) for the set RW. In multi-query optimization, a set of 

common sub-expressions is first materialized, and the queries are 

then executed using the materialized sub-expressions. Speedup in 

execution can occur since the common sub-expression needs to be 

executed (and materialized) only once; but can be reused for 

executing multiple queries in RW. In the context of Example 2, 

using the above approach, we could potentially materialize a sub-

expression such as: 

SELECT l_shipdate, l_discount 

FROM Lineitem 

WHERE l_discount < 0.15 and l_shipdate < 

‘1998-01-01’  

The two relevant expressions e1 and e2 of Example 2 could then 

be rewritten to use the materialized result. 

However, we observe that in our problem, the expressions in RW 

have a specific property. Since we require the cardinality of 

relevant expressions, we only need the count of the number of 

rows in the result of the expression (and do not need the actual 

result of the expression).  For this class of expressions, we 

observe that it is possible to obtain cardinalities of multiple 

expressions without need for materialization. In particular, we 

leverage the fact that the CASE construct in SQL allows 

computing multiple expressions on a relation in a single pass. For 

example, the cardinalities of e1 and e2 in Example 2 can be 

obtained using the following query that uses the CASE construct. 

 

SELECT SUM(a) as card1, SUM(b) as card2 

FROM  

( 

  SELECT a = CASE when (l_discount < 0.05  

         and l_shipdate< ‘1998-01-01’) then 

         1 else 0 end, 

         b = CASE when (l_discount < 0.15  

         and l_shipdate < ‘1997-01-01’) then  

         1 else 0 end 

  FROM Lineitem  

  WHERE l_discount < 0.15 and  

        l_shipdate < ‘1998-01-01’ 

) 

 

In certain cases (e.g. if executing each of the relevant expressions 

requires a Scan of the Lineitem table), the new query may 

execute faster than the combined execution times of e1 and e2. The 

above example shows why CASE queries can be an effective 

mechanism for obtaining cardinalities of relevant expressions.  

We note that there has also been work on multi-query 

optimization where materialization is not required [8]. However, 

this assumes the availability of an execution engine that can 

support DAG plans (to facilitate reuse of sub-expressions). Such 

support is typically not available in most commercial DBMS 



systems today, including Microsoft SQL Server. Furthermore, 

these techniques have not been extended to queries with Group-

By as we do in this paper. In the context of optimizer testing, an 

important aspect of using CASE queries is that they can be 

executed using the traditional demand-driven iterator model that 

are already supported by all major DBMSs. For the above reasons, 

in this paper we focus on using CASE queries for exploiting 

commonality across relevant expressions for a workload. It is an 

interesting area of future work to study how to combine the use of 

CASE queries with selective materialization for our problem.  

Moreover observe that the techniques in Section 4, though 

presented for COUNT queries, can be generalized to other 

aggregate functions such as SUM. It is therefore interesting to 

examine how these techniques can be effectively exploited by 

existing approaches for MQO for the above class of queries. 

Recall that we want to augment the set of relevant expressions RW 

with candidate CASE queries. Our overall approach then runs the 

original Covering Queries algorithm using the augmented set. In 

Section 4.2, we first discuss the mechanism for generating a 

candidate CASE query that can obtain cardinalities of a set of 

relevant expressions belonging to the class of Select-Project-Join-

Group-By (SPJG) expressions. In Section 4.3, we present our 

method for deciding which candidates to select in addition to RW. 

Finally, in Section 4.4 we present our overall algorithm for exact 

cardinality query optimization for a workload. 

4.2 Algorithm for generating a candidate 

CASE query 
We now describe the algorithm for generating a CASE query that 

can obtain cardinalities of a set of relevant expressions R. We 

assume that each relevant expression in R belongs to the class of 

Select-Project-Join-Group By (SPJG) queries. A pre-requisite for 

applying our algorithm to a set of expressions is that the 

expressions have the same signature. We define the signature of 

an expression to be the set of tables, join predicates and Group-By 

columns in the expression.  

Example 4. Consider the following two relevant (join) 

expressions. 

e3: SELECT … FROM Lineitem, Orders 

    WHERE l_orderkey = o_orderkey AND 

       l_discount < 0.05 AND 

       o_orderdate < ‘1997-01-01’ 

e4: SELECT … FROM Lineitem, Orders 

    WHERE l_orderkey = o_orderkey AND 

       l_discount < 0.15 AND 

       o_orderdate < ‘1998-01-01’ 

The signature of expressions e3 and e4 is: Set of tables: 

{Lineitem, Orders}, Join predicate:{( l_orderkey 
= o_orderkey)}.  

 

First, we present our method for generating a CASE query for a 

pair of relevant SPJ expressions in Figure 6 consisting of 

conjunctions of simple predicates (we describe extensions for 

expressions with Group-By later). Note that the method 

generalizes in a straightforward manner to a set of relevant 

expressions R sharing the same signature. The algorithm can be 

generalized to also handle complex selection conditions, but we 

omit these details here.  

Steps 2-3 generate the selection conditions of the resulting 

candidate query Q. For a column on which predicates (p1i, p2j) 

exist in both expressions, we add a new predicate to Q that is the 

disjunction of both predicates. This new predicate is “minimal” in 

the sense that it does not introduce tuples that do not belong to at 

least one of the predicates. We observe that in some cases such as 

overlapping range predicates or IN clauses it is possible to 

represent the disjunction more compactly. For instance the 

disjunction of two predicates (l_discount < 0.05) and 

(l_discount < 0.15) can be equivalently represented as 

(l_discount < 0.15). Note that for a column on which a 

predicate exists in exactly one of the expressions in the candidate 

query, we cannot include the predicate in Q since it would 

incorrectly eliminate tuples required for answering the other 

expression. Steps 4-5 add the CASE statement to evaluate the 

original predicates in each expression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the two join expressions in Example 4, the above algorithm 

produces the following query Q as output.  

Q: SELECT SUM(a) as card1, SUM(b) as card2 

FROM ( 

 SELECT  

 a = CASE WHEN l_discount < 0.05 AND 

     o_orderdate < ‘1997-01-01’ 

     then 1 else 0 end, 

 b = CASE WHEN l_discount < 0.15 AND 

     o_orderdate < ‘1998-01-01’  

     then 1 else 0 end 

 FROM Lineitem, Orders 

 WHERE l_orderkey = o_orderkey  

 AND l_discount < 0.15 

 AND o_orderdate < ‘1998-01-01’ 

) 

4.2.1 Expressions with Group-By  

Interestingly, the above approach of using a CASE statement can 

also be used to obtain cardinalities of multiple Group-By 

GenerateCandidateQuery 

Input: e1,e2: conjunctive SPJ expressions with the same 

signature.  

Output: Conjunctive query Q that obtains cardinality of e1 and 

e2. 

1. Let e be an expression, initialized to the tables, join 

predicates in the signature.  

2. Let p11  … p1n be the selection predicates of e1 and p21  

… p2m be the selection predicates of e2.  

3. For each predicate pair (p1i, p2j) that is defined on the 

same column, let p = (p1i  p2j) // disjunction of 

predicates. Add p as conjunct to e.  

4. In the SELECT clause of e, add a CASE statement with 

one clause for each input expression. The predicate in the 

WHEN clause are (p11  … p1n ) and (p21  … p2m ) 

respectively. The value of the THEN clause is 1 and 

ELSE clause is 0.  

5. Let Q be a scalar aggregate query on expression e, with 

one SUM aggregate for each column of e.  

6. Return Q 

Figure 6. Algorithm for generating a candidate CASE query 

for obtaining cardinalities of SPJ expressions 



expressions. We first give an example to illustrate this, and then 

describe the necessary extensions to the algorithm of Figure 6.  

 

Example 5. Consider the following two relevant SPJG  

expressions. Observe that both expressions have the same 

signature, i.e. set of tables, join predicates and Group-By columns. 

e1: SELECT o_orderpriority FROM Orders  

    WHERE o_orderdate between  

         ‘1998-09-01’ and ‘1999-01-01’ 

    GROUP BY o_orderpriority 

      

e2: SELECT o_orderpriority FROM Orders 

    WHERE o_orderdate between  

          ‘1996-01-01’ and ‘1998-01-01’ 

    GROUP BY o_orderpriority 

We can obtain cardinalities of both e1 and e2 using the query Q 

below. 

 

Q: SELECT SUM(a1) as card1, SUM(b1)as card2 

FROM (  

  SELECT 

  a1 = CASE when (q1 > 0)then 1 else 0 end, 

  b1 = CASE when (q2 > 0)then 1 else 0 end 

  FROM ( 

    SELECT o_orderpriority,  

           SUM(a) as q1,SUM(b) as q2 

    FROM (  

      SELECT  o_orderpriority, 

      a = CASE when (o_orderdate between      

'1998-09-01' and ‘1999-01-01’) then 1 

else 0 end, 

      b = CASE when (o_orderdate between  

'1996-01-01' and '1998-01-01') then 1 

else 0 end 

      FROM ( 

       SELECT o_orderpriority, o_orderdate 

       FROM   Orders 

       WHERE o_orderdate between  

    '1996-01-01' and '1999-01-01' 

       GROUP BY o_orderpriority, o_orderdate 

       ))  

    GROUP BY o_orderpriority 

       ) 

      )  

From the structure of query Q, we note a couple of points. First, 

the innermost SELECT statement needs to generate a more 

“finer” grouping (by including the selection columns in the 

GROUP BY clause) than either e1 or e2. This is because the 

selection column(s) are required in the CASE clause. Second, 

unlike the algorithm for SPJ expressions, for SPJG expressions we 

require two nested CASE queries. The inner CASE query 

computes a row for each group that is in the result of either e1 or 

e2 (or both). However, recollect that we need to find the number of 

groups in e1 and e2 respectively. Thus, the outer CASE query is 

necessary to ensure that we do not incorrectly count a group that 

occurs exclusively in e1 as part of e2 (or vice versa). Despite the 

fact that Q is more complex than either e1 or e2, it can potentially 

be more efficient than the combined cost of executing both e1 and 

e2. For example, if both e1 and e2 scan the (large) Orders table, 

the Q could be more efficient since it would need to scan 

Orders only once.  

4.2.2 Leveraging Outer Joins for Expressions with 

Non-Identical Signatures 

Thus far (in Section 4.2) we have presented techniques for 

generating candidates that are applicable only when the signatures 

of the relevant expressions are identical. In this section we present 

a technique that can be useful when the signature of relevant 

expressions (say e1 and e2) are not identical, but satisfy the 

following properties: (1) e1 and e2 are both join expressions that 

involve Key Foreign-Key joins only. (2) e1 and e2 share the same 

“source” table in the schema graph for the expression, i.e. a table 

with no incoming edges. For example, consider the (partial) TPC-

H schema graph shown in Figure 7. Suppose e1 is a relevant 

expression involving a Key Foreign-Key join of (Lineitem, 

Orders), and e2 is a relevant expression involving a Key 

Foreign-Key join between (Lineitem, PartSupp). Observe 

that e1 and e2 share the same “source” table (Lineitem). In this 

example, it is possible to generate a single candidate query (that 

leverages Outer Joins) that can obtain cardinalities of both e1 and 

e2 without requiring materialization. Note that we need to use 

outer joins to preserve all the rows from Linetem table so that 

we can obtain cardinalities of both e1 and e2 using the CASE 

statement. An example illustrating the above method is shown in 

APPENDIX B. We omit the complete details of this algorithm. 

Lineitem
Part

Partsupp

Orders

Supplier

 
 

 

 

4.3 Candidate Generation 
In Section 4.2 we presented algorithms for creating a new CASE 

query that can obtain multiple relevant expression cardinalities 

without requiring materialization. In this section we describe our 

algorithm for deciding which candidates to select for a given 

signature. In this paper, we focus on generating a single candidate 

CASE query for each distinct signature in the workload. In 

general, selecting multiple candidates for each signature could be 

more beneficial, but we have found in our experimental evaluation 

(see Section 5) that selecting a single candidate per signature 

already can provide a significant improvement in the performance 

of exact cardinality query optimization. Therefore, we now 

discuss how to select a single candidate CASE query for a given 

signature. Our algorithm can be extended to account for the Outer 

Join based candidate generation (Section 4.2.2) as well, but we 

omit these details due to lack of space. 

For a particular signature, let R be the set of all expressions that 

have that signature. We note that for any subset of expressions S 

 R, we can generate a candidate by invoking the algorithm from 

Section 4.2.1 Thus, for a given signature, the space of candidates 

can be visualized using a lattice as shown in Figure 8. The nodes 

at the first (lowest) level of the lattice are the relevant expressions 

({e1, e2, e3} in the example). The upper level nodes in the lattice 

Figure 7. Partial schema graph for TPC-H showing 

foreign-key relationships. 



represent the space of candidate expressions. We associate with 

each node two values: (1) The number of relevant expressions that 

can be obtained by executing that expression. (2) The cost of 

executing that expression. We use the optimizer estimated cost of 

the expression, which we denote by Cost(e). For example, the 

node e12 in the figure represents a CASE query (derived using the 

algorithm in Section 4.2) using which we can obtain two 

cardinalities (of both e1 and e2). The optimizer estimated cost of 

executing e12 is Cost(e12) = 115.  

 

e123

e12 e13
e23

e1 e2 e3

Relevant set of 

expressions 

{e1, e2, e3}

(1, 100) (1, 110) (1, 10)

(2,115) (2, 105)
(2, 120)

(3, 130)

 

 

 

Recall (from Section 3) that we define the “goodness” of an 

expression as Benefit(e) = |Exprs(e)| / Cost(e), where Exprs(e) is 

the set of expressions that can be obtained by executing 

expression e. Intuitively, this is reasonable since our overall 

algorithm (Section 4.4) for exact cardinality query optimization 

uses the greedy heuristic for the Set Cover problem [11], which 

picks expressions by decreasing Benefit value. Thus, we focus on 

the problem of efficiently identifying for each signature the 

candidate with the highest Benefit value.  

We note that space of candidates is exponential in the number of 

expressions (for a given signature). Furthermore, given a node e 

and its child e’, we know that |Exprs(e)| = |Exprs(e’)| + 1, and that 

Cost(e) > Cost(e’). Despite these properties, the Benefit value can 

change arbitrarily between e and e’. Thus, to find the candidate 

with the highest Benefit value, in the worst case, we would need to 

enumerate every node in the subset lattice. To ensure scalability 

when there are many relevant expressions with the same 

signature, we use a greedy algorithm (shown in Figure 9) that can 

avoid enumerating all nodes in the lattice. Our algorithm starts 

with the topmost node in the lattice (i.e. the CASE query that can 

obtain all relevant expression cardinalities with this signature) and 

greedily picks the child node with the highest benefit. The 

algorithm terminates if for the current best node u, no child node 

with higher benefit exists.  For example, consider the lattice 

shown in Figure 8. The node e123 has a benefit of 3/130 whereas 

its children have benefits 2/115, 2/105 and 2/120 respectively. 

Thus in this example, the algorithm will return e123 as the best 

candidate.  

Analysis of running time: Let n = |R| (i.e. the number of relevant 

expressions). Observe that the lattice has n levels. In each iteration 

of the loop (Steps 4-9) the number of children explored in Step 4 

is upper bounded by n (since no node in the lattice can have more 

than n children). In each iteration we are also guaranteed to either 

find a child node (at the next lower level) with higher benefit or 

terminate.  Since the lattice has n levels, the running time of this 

algorithm is O(n2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Overall Algorithm for Exact Cardinality 

Query Optimization 
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We now summarize our overall algorithm for exact cardinality 

query optimization for a workload W in Figure 10.  Steps 2-6 

identify a set M of additional candidates (one per signature) for 

the workload as described in Section 4.3. In Steps 7-11 we run the 

Covering Queries optimization (similar to Section 3) but while 

using expressions in M RW for obtaining relevant expression 

cardinalities. In Step 12 we execute the selected expressions to 

obtain all relevant expression cardinalities in RW. Finally, (in 

Figure 10. Overall algorithm for exact cardinality query 

optimization problem.  

ExactCardinalityQueryOptimization 

Input: Workload of Queries, W 

Output: Cardinality-optimal plan for each query in the workload 

1. Let RW be the set of relevant expressions for the workload 

2. M = {} // set of candidates selected, one per signature 

3. For each signature in RW 

4.   Let C = Set of expressions in RW belonging to that signature 

5.   c = SelectCASEQueryForSignature (C) 

6.   M = M  {c} 

7. Let S = {}, R = {}; U = M  RW 

8. While (S != RW) 

9.   Pick e (U – R) with the largest value of  |Exprs(e) - 

S|/Cost(e) 

10.   R = R  {e}; S = S  Exprs(e) 

11. End While 

12. Execute each expression in S to obtain all relevant expression 

cardinalities in RW 

13. For each query Q in the workload W 

14.    PQ = Plan obtained by injecting exact cardinalities for RQ  

            and optimizing Q 

15.    Output plan PQ 

Figure 9. Algorithm for selecting the a candidate 

expression for a given signature 

Figure 8. Space of candidate expressions for the relevant 

set of expressions {e1, e2, e3}. 

SelectCASEQueryForSignature 

Input: Set of expressions R belonging to a particular signature 

Output: Candidate expression for signature 

1. Let u = candidate obtained by invoking 

GenerateCandidateQuery(R) // (least upper bound of the 

lattice) 

2. Do 

3.   BetterNodeExists = false 

4.   For each child expression e of u in the lattice 

5.      GenerateCandidateQuery(e) 

6.      If Benefit(e) > BestBenefit 

7.          BestBenefit = Benefit(e); u = e;  

8.          BetterNodeExists =true; 

9. While(BetterNodeExists) 

10. Return u 



Steps 13-15) for each query in the workload, we inject the exact 

cardinalities for all relevant expressions for that query and obtain 

the cardinality-optimal plan for that query. As we demonstrate in 

our experiments (Section 5) candidate generation can significantly 

improve the effectiveness of the Covering Queries optimization. 

 

5. IMPLEMENTATION AND 

EXPERIMENTS 
Implementation: We have implemented a prototype of Exact 

Cardinality Query Optimization on Microsoft SQL Server. The 

extensions were as described in the architecture outlined in Figure 

2. We implemented the Covering Queries Optimization (Section 

3) as well as the Candidate Generation techniques presented in 

Section 4. Our experiments were run on a machine with an AMD 

Opteron processor (2.40 GHz, 8 GB RAM). 

Databases and Queries: We use the TPC-H benchmark [22] 

(both the 1GB version and the 10GB version). The original data 

generator [22] does not introduce any skew in the data. Thus, in 

addition to the original benchmark database, we also use a data 

generator that introduces a skewed distribution (a Zipfian 

distribution with a skew factor of Z = 1) for each column 

independently in a relation [6]. We use a workload consisting of 

all queries having two or more joins. 

The goals of our experiments are:  

 Evaluate the effectiveness of the Covering Queries algorithm 

(Section 3) for the case of a single query compared to the 

baseline strategy of executing each relevant expression. 

 For the case of a workload, evaluate the importance of the 

Candidate Generation techniques (Section 4) for reducing the 

execution time compared to the approach of using Covering 

Queries for one query at a time. 

 Show some examples of analytics for optimizer testing that 

are enabled once exact cardinalities are available.  

5.1 Effectiveness of Techniques for Single 

Query 
As mentioned above we use a workload of queries from the TPC-

H benchmark [22]. The number of relevant expressions (|RQ|) for 

queries varied from 6 (for a few of the simpler queries) to 30. For 

the 1GB version of the benchmark, for most queries, the time 

taken to obtain all cardinalities (by executing their corresponding 

expressions) is in the order of a few minutes. The corresponding 

number for the 10GB version varies from 10s of minutes to over 

an hour for some queries.  

We refer to the baseline approach of executing each relevant 

expression for the query as ALL. We refer to the Covering queries 

optimization (Section 3) as COV. Figure 11 shows that compared 

to ALL, COV results noticeable savings for most queries, and 

significant savings (around 40% or more) for several queries. The 

overall reduction in execution time for the workload compared to 

ALL is 42%. As discussed in Section 3, this is because ALL needs 

to execute a total of 136 relevant expressions, where COV only 

needs to execute 91 expressions (the cardinalities of the remaining 

expressions are obtained using the execution feedback 

mechanism).  

Similarly for TPC-H 1GB (skew factor Z=1) we observed around 

33% overall reduction, and around 37% reduction for TPC-H 

10GB (Z=1) by using COV as compared to ALL.  

 

 

 

5.2 Effectiveness for a Workload 

5.2.1 Results on TPC-H workload 

In this experiment we compare COV with our techniques that 

introduce additional candidates by exploiting commonality across 

relevant expressions in the workload (Section 4.4). We refer to the 

latter technique as COV+CAND.  

Figure 12 shows the results of running COV and COV+CAND on 

TPC-H 1GB workload (for both Z=0 and Z=1 skew factors). We 

report the reduction in execution time of both these methods when 

compared to ALL. We see from the figure that COV+CAND 

results in significant reduction in execution time (over 72% and 

63% respectively for Z=0 and 1) compared to ALL. We observed 

that for Z=0, COV+CAND executes only 46 expressions 

(compared to 136 by ALL and 91 by COV). Of these 46 

expressions, 35 were candidate expression generated using 

techniques from Section 4. This opportunity arises because there 

are several signatures (defined Section 4.2) that occur in multiple 

queries in the workload. These include signatures involving large 

tables such as Lineitem and Orders, thereby resulting in 

significantly fewer executions involving these large tables.  

 

 

 

Note that we do not comment on the trends in execution time as a 

function of the data skew. This is because the execution plan 

characteristics (for e.g., index nested loops join vs. hash join) does 

vary considerably with skew. This can certainly influence the set 
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Figure 11. Impact on Covering Queries optimization 

for TPC-H queries. 

Figure 12. Performance of Covering Queries and Candidate 

Generation techniques for TPC-H workload. 



of expressions covered by each execution plan (as Figures 3 and 4 

illustrate).  

The results on TPC-H 10 GB database (Z=1) (shown in Figure 13) 

were similar with overall reduction in execution time of 66% 

compared to ALL. Once again, only 51 expressions (including 34 

generated candidates) were executed by COV+CAND as 

compared to 130 for ALL and 93 for COV.  

 

 

 

5.2.2 Results on workloads with templatized queries 

Next, we evaluate the effectiveness of COV+CAND as the 

commonality across queries in the workload increases. First, we 

generated a variant of the TPC-H workload above, where we used 

two instances of each query. These two instances were identical 

except for constants in the selection conditions. The results for 

Z=0 and Z=1 are shown in Figure 14. We observe that the 

reduction in execution time further improves (to around 75% for 

Z=0) for COV+CAND (whereas it remains unchanged for COV). 

Out of a total of 273 relevant expressions, COV+CAND executes 

only 65 expressions (58 candidate expressions and 7 original 

relevant expressions).  

 

 

 

Finally, we generated a workload of 10 instance of TPC-H query 

8, which is a query involving tables Lineitem, Orders, Customer, 

Part, Supplier, Nation, Region. For Z=0, we observe that 

COV+CAND reduces the execution time compared to ALL by 

89% (almost an order of magnitude) – see Figure 15. For this 

workload, there were a total of 284 relevant expressions, whereas 

COV+CAND only needed to execute 29 expressions compared to 

176 by COV.  

Overall, the above experiments clearly demonstrate the 

importance of the Covering Queries optimization that obtains 

multiple cardinalities from a single query execution as well the 

techniques for exploiting the commonality across queries in the 

workload.  

 

 

 

5.3 Analytics for Query Optimizer Testing 

using Exact Cardinalities 
As discussed in Section 2, obtaining exact cardinalities for 

relevant expressions of a query (or workload) can be important for 

query optimizer testing. For example, it can be used to benchmark 

the plan quality by eliminating errors that arise from the 

cardinality estimation module of the optimizer. This can be useful 

for identifying potential problems in other modules of the 

optimizer (such as search strategy or cost model) as well as in 

designing improvements in the cardinality estimation module 

itself. Below we show a few examples of such analysis based on 

experiments with TPC-H queries.  

5.3.1 Analyzing Errors by Number of Tables in 

Expression 

Consider the issue of benchmarking the cardinality estimation 

module in the optimizer. One interesting question is how large are 

the cardinality errors as the number of tables in the expression is 

varied. Answering such a question requires obtaining exact 

cardinalities of expressions and comparing it with the estimated 

cardinalities. We define the relative error in the cardinality 

estimate for a given expression as: 

 

In Figure 16 we show a scatter plot of Relative Error in an 

expression vs. Number of tables in the expression for each 

relevant expression for the TPC-H workload (the y-axis is a 

logarithmic scale). While we observe larger errors as the number 

of tables in the expression increases, interestingly some large 

relative errors can happen even for single table expressions. For 

example, we found that Group-By expressions with selections on 

a single table can sometimes incur large error (since the statistics 

available in the DBMS are not adequate to capture this 

correlation). Such analysis can be useful in discovering examples 
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Figure 13. Results on TPC-H 10GB database. 



with large errors, so that it can help focus areas where 

improvement in cardinality estimation would be most effective.  

 

 

 

5.3.2 Impact of using Exact Cardinalities on 

Execution Plan Quality 

In this experiment, we study the impact of exact cardinalities on 

quality of the plan. First, for each TPC-H query in the workload, 

we injected the exact cardinality for each relevant expression and 

optimized the query (see Figure 2). We then compared the 

resulting cardinality-optimal (PCOPT ) plan with the optimizer‟s 

original plan (PORIG) for that query. We measured the percentage 

of queries for which PCOPT and PORIG were identical. On TPC-H 

1GB (Z=0) we found that PCOPT and PORIG were identical in 

around 70% of the queries, whereas for TPC-H 10GB (Z=1), we 

found that PCOPT and PORIG were identical in about 50% of the 

queries.  

We also computed a plan PLEAF which was obtained by injecting 

exact cardinalities only for single table relevant expressions.  For 

other expressions, the optimizer‟s estimates were used. Once 

again, we compared how often PCOPT and PLEAF were identical.  

Interestingly, for TPC-H 1GB (Z=1), we found that these two 

plans were identical in over 90% of the queries. For TPC-H 

10GB, the corresponding number is 78%. This analysis shows that 

improving cardinality estimation for leaf nodes (including single 

table Group-By expressions) can have significant benefit for TPC-

H queries.  

Finally, in cases where PCOPT and PORIG were not identical, we 

found that the execution time improved significantly in several 

cases. We however also found a few cases where the execution 

time of PCOPT was worse when compared to PORIG. Such cases 

point to potential issues in modules of the query optimizer besides 

the cardinality estimation module, e.g. the cost model.  The 

examples presented above are meant to be illustrative of the kinds 

of analytics possible by leveraging exact cardinality query 

optimization for optimizer testing.   

6. RELATED WORK 
DBMSs use different approximation techniques (such as 

histograms) to estimate the cardinalities of the relevant sub-

expressions of a query. While these approximation techniques 

ensure that the query optimization time is small, it comes at a cost 

of estimation errors. For example, it was observed in [14] that 

cardinality estimation errors can grow exponentially in the 

number of joins in a query. As a result, the plan chosen by the 

optimizer could be much worse than the cardinality-optimal plan. 

There has a lot of work centred on exploiting execution feedback 

[7][15][17][20] (for an overview see [9]). In this paper, we 

leverage execution feedback for the Covering Queries 

optimization (Section 3). There has been work related to 

collecting statistics (e.g., [1][10]) for improving the performance 

of ad-hoc queries. The focus of this work is not on ad-hoc queries 

but to address scenarios such as query optimizer testing where it is 

necessary to obtain the cardinality-optimal plan. Finally, while 

sampling techniques has been used to obtain selectivity estimates 

during query optimization (e.g., [16]), it is not applicable for our 

problem since we are interested in obtaining exact cardinalities.  

We have discussed the relationship of our problem to multi-query 

optimization (e.g. [8][18][19]) and materialized view selection 

(e.g. [2][3][24]) problems in Section 4.1.  We refer the reader to 

this section for related work in these areas.  

The idea of sharing scans across multiple concurrently executing 

queries (e.g. [23]) has been studied. However, unlike this body of 

work, in our problem we have additional information a priori in 

the form of the given workload. Furthermore, our techniques 

(Section 4) are also able to share other work (such as executing 

the join) that is common across queries. Thus, for our problem, 

the techniques presented in this paper can be more effective than 

shared scans alone.   

7.  CONCLUSIONS 
While the importance of exact cardinality query optimization is 

obvious in scenarios such as query optimizer testing, there has 

been practically no work on it thus far because it has essentially 

been considered infeasible. In this paper we introduce techniques 

to reduce the overheads of exact cardinality query optimization. 

The experiments on TPC-H queries demonstrate that the covering 

queries optimization along with candidate generation techniques 

can help achieve significant reduction in the time required to 

compute the cardinality-optimal plan. The techniques presented in 

this paper make exact cardinality query optimization a viable 

option for a significantly larger set of queries than previously 

possible. An interesting area of future work is to study how to 

combine our techniques for exploiting commonality across 

relevant expressions for a workload with techniques that rely on 

materialization.   

APPENDIX A 
In Section 3.1, we described the Covering Queries Optimization 

problem; we outline the proof of the hardness result below. 

Claim: The Covering Queries Optimization problem is NP-Hard.  

Proof Sketch: – We show a reduction from the Set Cover 

problem [10]. The Set Cover problem takes as input a set U and a 

set of subsets of U, S = {Si}. The goal is to find the smallest 

subset of S whose union is U. We reduce an instance of set cover 

to an instance of Covering Queries as follows.  

Reduction: In the Set Cover problem, let U be a set of m elements 

{1,2,..,m}. Consider a table T with m attributes (ai) and one 

predicate pi each per attribute ai. The set of expressions RQ is the 

set of selections obtained from the individual predicates pi. Note 

that they correspond to the following query 

Q = SELECT * from T WHERE p1  AND  p2  AND .. pm. 
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Figure 16. Cardinality estimation errors grouped by number 

of tables in the expression. 



The class of queries is obtained as follows. For each subset Si of 

U, we create a query qi on table T that uses a CASE statement to 

obtain the individual predicate cardinalities that correspond to the 

subset Si. We choose the predicate selectivities such that the 

execution plan consists of a scan of T followed by an evaluation 

of each of the predicates using a CASE statement. Therefore, the 

cost of every plan is the same and equals 1. Note that this 

corresponds to the optimizer cost model if we only count I/O 

costs. Solving this instance of covering queries clearly solves the 

above Set Cover problem.  

APPENDIX B 
In Section 4.2.2 we outlined a method for generating a candidate 

query that can obtain cardinalities of relevant expressions when 

the signatures are not identical, but satisfy certain properties (see 

Section 4.2.2). Below we show an example of two expressions e1 

and e2 on TPC-H, and how their cardinalities can be obtained 

using a query Q that uses outer joins with a CASE statement.  
 

 

e1: SELECT … FROM Lineitem, Orders  

    WHERE l_orderkey = o_orderkey and 

          l_shipdate < '1997-08-08'and  

          o_orderdate < '1996-08-08'  

 

 

 

e2: SELECT … FROM Lineitem, Partsupp  

    WHERE l_suppkey = ps_suppkey and  

          l_partkey = ps_partkey and  

          l_shipdate < '1998-08-08' and  

          ps_acctbal < 5000 

 

 

Q: SELECT SUM(a) as card1, SUM(b)as card2 

   FROM (  

    SELECT   

    a = CASE WHEN (l_shipdate < '1998-08-08' 

     and ps_acctbal < 5000) THEN 1 ELSE 0  

     END, 

    b = CASE WHEN(o_orderdate < '1996-08-08' 

    and l_shipdate < '1997-08-08') THEN 1 

    ELSE 0 END  

FROM (  

 SELECT o_orderdate, l_shipdate,  

       ps_acctbal  

 FROM Lineitem LEFT OUTER JOIN   

  Partsupp on l_suppkey = ps_suppkey  

  and l_partkey = ps_partkey 

  LEFT OUTER JOIN Orders on  

  o_orderkey = l_orderkey  

 WHERE l_shipdate < '1998-08-08' 

      ) 

  )  
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