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ABSTRACT
This paper introduces a novel method, called Reference-Based String
Alignment (RBSA), that speeds up retrieval of optimal subsequence
matches in large databases of sequences under the edit distance and
the Smith-Waterman similarity measure. RBSA operates using the
assumption that the optimal match deviates by a relatively small
amount from the query, an amount that does not exceed a prespec-
ified fraction of the query length. RBSA has an exact version that
guarantees no false dismissals and can handle large querieseffi-
ciently. An approximate version of RBSA is also described, that
achieves significant additional improvements over the exact ver-
sion, with negligible losses in retrieval accuracy. RBSA performs
filtering of candidate matches using precomputed alignmentscores
between the database sequence and a set of fixed-length reference
sequences. At query time, the query sequence is partitionedinto
segments of length equal to that of the reference sequences.For
each of those segments, the alignment scores between the segment
and the reference sequences are used to efficiently identifya rela-
tively small number of candidate subsequence matches. An alpha-
bet collapsing technique is employed to improve the pruningpower
of the filter step. In our experimental evaluation, RBSA signifi-
cantly outperforms state-of-the-art biological sequencealignment
methods, such as q-grams, BLAST, and BWT.

1. INTRODUCTION
There are many applications that require fast searching in se-

quence databases that consist of collections of strings. Given a
query string, the goal is to find the most similar substrings in the
database using a distance/similarity measure such as the edit dis-
tance (ED) or Smith-Waterman (SW). Applications in this area in-
clude 1) spell-checking: given some input text the spell-checker
consults its dictionary to find words of high similarity to the text, so
as to identify potential typos, 2) data cleaning: data obtained from
different sources might contain inconsistencies which canbe elim-
inated by looking for similar entities (strings) in the data, 3) near
homology search in biological sequences: given different genomes
we want to find regions of high similarity that were the resultof
a mutation, etc. Being able to efficiently answer such queries is
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crucial, especially for online string search applications.
In order to generate and interpret complete genomes of different

organisms, various searches need to be performed that 1) involve
queries of large length, and 2) only targetnear exactmatches [11,
14]. We focus on these two major requirements: we want to be able
to retrievenear-exact matchesof long query sequencesefficiently.
As a motivating example for large query lengths, consider large
EST (Expressed Sequence Tag) databases, that contain portions of
genes expressed as mature mRNA. In such databases, large scale
searches need to be performed against other genomic databases to
determine locations of genes [14]. In practice, genes can vary in
size from hundreds to millions of nucleotides. Searches canalso
target whole chromosomes, where the goal is to find chromosome
similarities across different organisms. Since chromosomes can be
relatively large (e.g. Human Chromosome1 is approximately272
million bases), such searches require algorithms that can handle
large queries efficiently.

In many applications, database matches are of interest onlyif
their deviation from the query does not exceed a certain, relatively
small, fraction of the query length [5, 11, 17]. We denote that frac-
tion asδ and focus on values ofδ up to15%, which is typical in ap-
plications, such as shotgun sequencing [30] and mutation analysis
[38]. Notice that our focus is on DNA sequences, where the alpha-
bet size is small (4) and the query size can be large (up to10, 000
bases). In this setting, only near homology search is biologically
significant, whereasremote homology searchis more meaningful
and mostly used not for DNA, but for protein sequences.

In this paper, we propose a novel method, called reference-based
string alignment (RBSA), for efficient subsequence matching in
large databases of strings under the edit distance or the Smith-
Waterman similarity measure. RBSA decomposes the subsequence
matching problem into two distinct problems:

• The fixed query length problem: achieve efficient retrieval
assuming that all queries have the same length.

• The variable query length problem: using a solution to
the fixed query length problem, achieve efficient retrieval for
queries of arbitrary length.

To solve the fixed query length problem, RBSA precomputes,
for each position of every database string, alignment scores corre-
sponding to different reference sequences. These alignment scores
are based on the edit distance. Given a query, alignment scores be-
tween the query and all reference sequences are computed online
and are used to prune away large portions of the database, so as to
leave a relatively small number of candidate matches. We canguar-
antee that theoptimal subsequence matchwill be included among
the candidates. Exact alignment scores are then computed toiden-
tify the optimal match among the remaining candidates. Notice that
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the termoptimal subsequence match, refers to the database position
that gives the best alignment score for an input query using the ex-
act and full dynamic programming algorithm. In the case of edit
distance, this refers to the database position with the lowest score
and for the case of Smith-Waterman this is the position with the
highest similarity score.

To solve the variable query length problem, RBSA first breaks
up that problem into multiple fixed query length problems, bypar-
titioning the query sequence into segments of fixed length. In the
exact version of RBSA, all query segments are considered, and
subsequence matches found for those segments are used to iden-
tify candidate subsequence matches for the entire query. Inthe
approximate version of RBSA, only a subset of query segmentsis
considered. Another contribution in our paper consists in showing
that the probability of failing to find the optimal match drops very
fast (exponentially) as we increase the number of query segments
that we consider, and thus we can achieve both significantly im-
proved efficiency and very high accuracy rates by considering only
a relatively small number of segments.

The main contributions of this paper are summarized below:

1. We present RSBA, the first reference-based method for sub-
sequent matching in string databases that both guarantees
correct results and performs well for large queries. RBSA
produces lower bounds of the edit distance and upper bounds
of the Smith-Waterman similarity between the query and
database subsequences using precomputed alignment scores
with reference sequences. In prior work, such bounds have
only been derived for full sequence matching [42].

2. We present an exact method for decomposing the variable-
length query problem into multiple fixed-length queries, so
that we can achieve state-of-the-art retrieval runtimes for long
queries, while still guaranteeing correct results.

3. We present an approximate method for decomposing the va-
riable-length query problem into multiple fixed-length queries.
The approximate variant achieves speedups of over an order
of magnitude, compared to exact RBSA and other competi-
tors, in experiments with queries of length 10,000. At the
same time, the probability of missing the correct result in
approximate RBSA drops exponentially with the number of
query segments that we consider, and thus can easily be re-
duced to a negligible quantity.

4. The experimental evaluation shows that, for query lengths
≥ 200, RBSM outperforms current state-of-the-art sequence
alignment methods: BLAST2[2], BWT-SW[22] andq-grams.
Speedups of one to two orders of magnitude over the current
state of the art are demonstrated for query sizes≥ 2, 000.

2. RELATED WORK
A preeminent group of methods for string subsequence match-

ing are based on dynamic programming [23]. In [33], a global
alignment method is described, where both query and database se-
quences are aligned along their entire lengths, usingmatch, mis-
matchandgap scores. A similar, but generalized algorithm [13]
for global alignment, handles sequences of intermittent similari-
ties. Smith and Waterman [39] developed a dynamic programming
approach for local alignment, where a subsequence of the query is
matched to a subsequence of the database. [40] exploits the fact
that in approximate string searching we are looking for patterns
that match with substrings of the text with at mostk errors. Thus, it

speeds up the dynamic programming (DP) computation by pruning
cells in the DP matrix with values larger thank.

Several q-gram-based methods [5, 6, 7, 18, 24, 25, 27, 31, 43]
have been developed to solve the problem of exact and approximate
string matching in large sequence databases. Their main character-
istic is that they build a dictionary of words on a given database of
sequences. At query time the query is broken into a set of overlap-
ping q-grams and the index is searched for exact matches of those
q-grams. These matches provide candidate hits that are later refined
to remove false positives.

QUASAR [5] is a subsequence matching method that performs
q-gram based filtering on a sequence database. QUASAR is limited
to relatively short queries (the maximum query length on which
the performance of QUASAR was evaluated was393 characters)
of high similarity to the database. A generalization of QUASAR,
which uses gapped instead of contiguous q-grams is described in
[6]. Similar q-gram based methods for approximate full string
matching are described in [24, 25, 43].

VGRAM [25] employs a q-gram dictionary where the words are
of variable length and more representative of the dataset. Again,
the limitations to small queries persist (the experimentalevaluation
reports queries of average size ranging from8 to 62 characters)
and the performance seriously deteriorates ask (the number of edit
operations applied to the queries) increases (> 4). An improved
vgram-based method is described in [43], but is again limited to
small query sizes (varying between4 and 249 characters). Sev-
eral methods [18, 7] employ a two level q-gram index to speed up
the database search. A q-gram based approximate string matching
method is described in [31], where disjoint text substringsof length
q are collected by the index at fixed intervals. Finally, [24]intro-
duces several strategies for improving the join cost of the gram lists
found during a query search in an inverted q-gram index and shows
how to incorporate these strategies into existing filteringmethods
to improve string matching.

A key property of q-gram based methods, such as the ones men-
tioned above, is the following: if the query size is|Q| and we are
searching for matches with edit distance withink, q can be at most
⌈|Q|/(k + 1)⌉ to guarantee no false dismissals. It can be seen that
ask increases,q decreases, and thus, the index size becomes larger.
Consequently, and also as shown in the experiments, q-gram based
approaches can only handle short queries of relatively highsimi-
larity to the database. However, the biologically interesting types
of queries (e.g. mutated genes) can be significantly long (upto
10, 000 nucleotides or more [22]) and thus, q-gram based methods
are not able to handle them efficiently.

Another group of methods has been proposed forexact string
matching, targeting exact occurrences of the query sequence in a
database [4, 9, 10, 16, 20, 27, 28, 37, 41]. However, exact string
matching is quite different from the main focus of this paperand
thus, these methods are not discussed any further.

Several methods have been developed for aligning biological
sequences. FASTA [26, 35] detects locally similar regions be-
tween two sequences using only identities and no gaps, and then
based on some measure of similarity it re-scores them accordingly.
Additional heuristics are proposed in BLAST [1]. Given a query
(DNA or protein), BLAST performs a linear scan on the sequence
database searching for a set of seeds belonging to the neighbor-
hood of some substrings of the query. Having identified a set of
candidate hits, it then extends them both ways, until the accumu-
lated similarity score begins to decrease. Finally, BLAST reports
as matches those regions with high statistical significance.

A new version of BLAST, known as BLAST2 [2], improves ac-
curacy by allowing a limited number of insertions and deletions
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during the alignment formation and improves search speed byim-
posing more stringent criteria when performing a local alignment.
Further improvements of BLAST include MegaBLAST [44], MP-
BLAST [21] and miBLAST [19]. MegaBLAST is a greedy al-
gorithm for detecting sequences that differ slightly as a result of
sequencing. MPBLAST and miBLAST are different versions of
BLAST used for parallel queries.

BLAT [1] builds an index of the database and then given a query,
it linearly scans the query searching for matches in the index. Apart
from using an inverse index, BLAT differs from BLAST and BLAST2
in that it triggers extensions on any number of perfect hits whereas
in BLAST extensions are triggered when one or two hits occur in
proximity to each other. Several hash-based approaches [15, 34]
have been developed for further speed up. A key limitation ofall
the above-mentioned variants of BLAST is that their accuracy and
retrieval cost deteriorates as the query size increases. Asthe vol-
ume of biological sequence databases increases, all the aforemen-
tioned exhaustive systems become prohibitively expensive.

Another key limitation of BLAST-like approaches is that there is
no guarantee that the optimal local alignment will be reported. Sev-
eral methods have been developed to handle this weakness. OA-
SIS [29] employs a best first search technique over a suffix tree for
string alignment. The algorithm outperforms BLAST by an order
of magnitude, but only for small query sizes (5 to 60); this is one
of its major limitations. Another indexing method that usessuf-
fix trees is discussed in [32], whereas [36] discusses an efficient
method for suffix tree construction in external memory. Finally,
BWT-SW[22] employs a suffix array to speedup local alignment
search in biological sequences. It outperforms BLAST for queries
of size up to1000; for larger queries its performance deteriorates.
Both OASIS and BWT-SW always find the best local alignment
according to Smith-Waterman.

Two reference-based indexing methods for full sequence match-
ing are proposed in [42] that use reference sequences to represent
the database. At query time, the edit distance of the query against
each reference sequence is computed. Lower and upper bounds
are applied to efficiently filter candidate matches. DSIM[8]uses a
set of selected reference words formed from high-frequencydata
sub- strings. SST [11] is used for subsequence matching in bio-
logical sequences and maps the biological sequence database to a
d-dimensional vector space; this mapping is used to filter a signif-
icant portion of the database from consideration during thequery
process. This method outperforms BLAST by an order of mag-
nitude but only for applications where there exists an extremely
high similarity (95% and over) between the query sequence and its
match in the database.

The RBSA method proposed in our paper is also related to EBSM
[3], which uses precomputed alignments between database sequences
and reference sequences for efficient subsequence matchingin time
series databases. The key differences between RBSA and EBSM
stem from the fact that RBSA addresses near-exact string matching
under the edit distance or Smith-Waterman, whereas EBSM ad-
dresses general time series matching under DTW. RBSA exploits
the metric properties of the edit distance, and the additional near-
exact matching constraint, to provide either guaranteed correct re-
sults (for exact RBSA) or guaranteed high probability of correct re-
sults (for approximate RBSA). No equivalent guarantees arepresent
in EBSM. Furthermore, RBSA can handle queries of arbitrary size
(query lengths range from 40 to 10,000 in our experiments) by
breaking up queries into fixed-size segments, whereas EBSM re-
quires that query lengths be within a relatively narrow range (query
lengths range from 152 to 426 in the experiments of [3]), and pro-
vides no mechanism for handling queries of arbitrary size.

3. BACKGROUND
In this section we define the edit distance and Smith-Waterman

measures used to evaluate similarity between strings (e.g.DNA).
We use the terms “string” and “sequence” interchangeably. Through-
out the paper, the following notation will be used:

• Q, X are sequences of length|Q| and |X| respectively.Q
denotes a query sequence andX denotes a database sequence.
Typically |X| ≫ |Q|. Without loss of generality we as-
sume that the database contains a single very long sequence,
since we can always concatenate all the strings stored in the
database into a single string.

• Subscripts denote elements of sequences. For example,Q =
(Q1, . . . , Q|Q|).

• For any sequenceX = (X1, . . . , X|X|), given start and end
positionss and t respectively, we can definesubsequence
Xs:t to be the sequence(Xs, . . . , Xt), i.e., the part ofX
that starts at positions and ends at positiont. Then,Xs:t

i is
thei-th element ofXs:t, and is equal toXs+i−1.

3.1 The Edit Distance
The edit distance∆(A, B) is a function measuring howdissim-

ilar two stringsA andB are. For a more general definition of the
edit distance we need to specify a cost for each editing operation,
i.e., for each insertion, deletion, and substitution. In this paper we
denote these costs as follows:

• Cins denotes the cost of the edit operation that inserts a letter
to stringA.

• Cdel denotes the cost of the edit operation that deletes a letter
from stringA.

• Csub(Aj, Bt) denotes the cost of the edit operation that re-
places letterAj with some letterBt 6= Aj .

In the general case,∆(A, B) is the smallest possible cost of con-
vertingA to B using insertions, deletions, and substitutions. In the
most common version of ED,Cins = Cdel = Csub = 1, and in that
case∆(A,B) is the smallest total number of insertions, deletions,
and substitutions that can convertA to B. For simplicity, in the
remainder of this paper we assume thatCins = Cdel = Csub = 1.

Given a query sequenceQ and a database sequenceX, the best
(optimal) subsequence matchof Q in X is the subsequenceXs:t

that minimizes∆(Q,Xs:t). We define the subsequence matching
costD(Q, X) as:

D(Q, X) = min{∆(Q, Xs:t)|s ∈ {1, . . . , t}, t ∈ {1, . . . , |X|}} .
(1)

In describing how to computeD(Q, X) and the corresponding
subsequence matchXs:t, it is useful to define an auxiliary distance
Dj,t, as the smallest possible distance betweenQ1:j and asuffix
Xs:t of X1:t:

Dj,t(Q, X) = min{∆(Q1:j , Xs:t)|s ∈ {1, . . . , t}} . (2)

We also define an auxiliary functionC(Qj , Xt) that denotes the
cost of matching letterQj with letterXt:

C(Qj , Xt) =



Csub if Qj 6= Xt

0 if Qj = Xt
(3)

ComputingD(Q, X) and the corresponding best subsequence
match ofQ in X can be performed using dynamic programming,
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by computingDj,t(Q, X) for j = 1, . . . , |Q| andt = 1, . . . , |Q|,
as follows:

initialization:

D0,0 = 0, Dj,0 = ∞, D0,t = 0 . (4)

loop:

Dj,t(Q, X) = min

8

<

:

Dj,t−1(Q, X) + Cins

Dj−1,t(Q,X) + Cdel

Dj−1,t−1(Q, X) + C(Qj , Xt)
(5)

(j = 1, . . . , |Q|; t = 1, . . . , |X|) .

termination:

t∗ = argmint=1,...,|X|{D
|Q|,t(Q, X)} . (6)

D(Q, X) = D|Q|,t∗(Q, X) . (7)

It should be clear that evaluatingD(Q, X) takes timeO(|Q||X|).
We should also note that the optimal matching sequence can be
found by keeping track, in each application of Equation 5, ofthe
predecessor selected for each(j, t), and by backtracking, at termi-
nation, starting at position(|Q|, t∗).

3.2 The Smith-Waterman Measure
A similarity measureΛ(A, B), in contrast to a distance measure,

measures howsimilar two stringsA andB are. If Λ(A, B) = 0
thenA andB are maximally different from each other. The Smith-
Waterman measure [39] is a frequently used similarity measure for
strings. In order to specify the Smith-Waterman measure, weneed
to choose valuesPmatch, Psub andPgap, that stand for the follow-
ing terms:

• Pmatch is a positive number that denotes the reward for a
letter ofA being equal to the corresponding letter inB.

• Psub is a negative number that denotes the penalty for a letter
of A being substituted by another letter.

• Pgap is a negative number that denotes the penalty for delet-
ing a letter ofA, or inserting a letter toA.

In the remainder of the paper, and in our experiments, we use
Pmatch = 2, Psub = −1, andPgap = −1, which are commonly
used choices for these parameters.

Given a query stringQ and a database stringX, finding the best
(optimal) local alignmentbetweenQ andX is the task of finding
subsequencesQi:j andXs:t that maximizeΛ(Qi:j , Xs:t). We de-
fine the Smith-Waterman similarity scoreL(Q, X) as:

L(Q, X) = max{Λ(Qi,j , Xs:t)|i ∈ {1, . . . , j}, j ∈ {1, . . . , |Q|},

s ∈ {1, . . . , t}, t ∈ {1, . . . , |X|}} . (8)

In describing how to computeL(Q, X) and the corresponding
optimally matching subsequencesQi:j andXs:t, it is useful to de-
fine an auxiliary scoreSj,t, as the highest matching score between
a suffixQi:j of Q1:j and asuffixXs:t of X1:t:

Lj,t(Q,X) = max{Λ(Qi:j , Xs:t)|i ∈ {1, . . . , j}, s ∈ {1, . . . , t}} .
(9)

We also define an auxiliary functionP (Qj , Xt) that denotes the
reward or penalty of matching letterQj with letterXt:

P (Qj , Xt) =



Psub if Qj 6= Xt

Pmatch if Qj = Xt
(10)

GivenQ andX, the Smith-Waterman algorithm identifies opti-
mal subsequencesQi:j andXs:j and the corresponding similarity
scoreL(Q, X) = Λ(Qi:j , Xs:t). The Smith-Waterman algorithm
is very similar to the algorithm computing the edit distance, and
also proceeds using dynamic programming, by computingLj,t for
j = 1, . . . , |Q| andt = 1, . . . , |Q|, as follows:

initialization:

Lj,0 = 0, L0,t = 0 . (11)

Lj,t(Q, X) = max

8

>

>

<

>

>

:

Lj,t−1(Q,X) + Pgap

Lj−1,t(Q,X) + Pgap

Lj−1,t−1(Q, X) + P (Qj, Xt)
0

(12)

(j = 1, . . . , |Q|; t = 1, . . . , |X|) .

termination:

L(Q, X) = max
j=1,...,|Q|,t=1,...,|X|

{Lj,t(Q, X)} . (13)

Similar to the edit distance, Smith-Waterman takes timeO(|Q||X|),
and finding the subsequences ofQ andX that give the maximum
similarity score can be easily done using backtracking.

4. RBSA FOR FIXED QUERY LENGTH
In this section, we describe the proposed RBSA (Reference-Based

String Alignment) method for queries of fixed length. We denote
that fixed length asq. In Section 5, we will generalize RBSA to
queries of arbitrary length.

RBSA follows a filter-and-refine approach. A set of random
reference sequences is generated. For each database position, an
alignment score with each reference sequence is computed, and an
embedding-based index is constructed using those scores. The em-
bedding is used for fast filtering of database positions thatcan lead
to a potential match. Those positions are then passed to the refine
step where the computationally expensive distance measure(edit
distance or Smith-Waterman) is applied.

4.1 Embedding Queries and Database Posi-
tions

Let Q be a query sequence of fixed length|Q| = q, andX be
the database sequence. At the core of our method is an embedding
definition, that we use to produce one-dimensional(1D) mappings,
that map every query sequenceQ to a number, and that map every
database position(X, t) also to a number. We will use these1D
mappings to obtain bounds for the optimal subsequence matching
or local alignment scoreendingat each database position(X, t),
and then we will use those bounds to efficiently prune significant
portions of the database.

LetR be a sequence of the same fixed lengthq as the queries. Us-
ing R we can define a 1D embeddingF R, mapping each query se-
quence into a real numberF R(Q), and also mapping each database
position(X, t) into a real numberF R(X, t):

F R(Q) = D|R|,|Q|(R, Q) . (14)

F R(X, t) = D|R|,t(R,X) . (15)

The above equations can be interpreted intuitively as follows:
the embeddingF R(Q) of the query is the smallest edit distance
matchingR to a suffix ofQ. The embeddingF R(X, t) of database
position(X, t) is the smallest edit distance matchingR to a suffix
of X1:t. If a very close match toQ appears asXs:t in X, then we
expectF R(Q) to be very similar toF R(X, t). Any sequenceR
used to define an embeddingF R is called areference sequence.
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4.2 Reference-based Bounds for the Edit Dis-
tance and Smith-Waterman

Let Q be a query string,X be the database sequence, andt be
a position onX. As a reminder,∆(A,B) is the edit distance
between stringsA andB, andD|Q|,t(Q,X) is the smallest edit
distance betweenQ and any subsequence ofX ending at position
(X, t). To establish an exact reference-based filtering method for
the subsequence matching problem, our first step is to establish a
lower bound forD|Q|,t(Q, X) based onF Ri(Q) andF Ri(X, t),
whereRi is any reference sequence.

PROPOSITION 1. For any queryQ, database position(X, t),
and reference sequenceRi, definelbi,t

ED(Q) as follows.

lbi,t

ED(Q) = F Ri(X, t) − F Ri(Q). (16)

Then, it holds that:

lbi,t

ED(Q) ≤ D|Q|,t(Q,X), (17)

and thuslbi,t
ED(Q) is a lower bound for the smallest possible edit

distance betweenQ and a subsequence ofX ending at(X, t).

Proof: First, we need to make the following auxiliary definitions:

M(A, B, t) = argminBs:t|s=1,...,t{∆(A, Bs:t)}, (18)

Q′ = M(Ri, Q, |Q|). (19)

In words,M(A, B, t) is the subsequence ofB ending at position
(B, t) that has the smallest edit distance fromA, andQ′ is the
suffix of Q that has the smallest edit distance fromRi. Then, we
can prove Proposition 1 as follows:

lbi,t

ED(Q) = F Ri(X, t) − F Ri(Q) (20)

= ∆(Ri, M(Ri, X, t)) − ∆(Ri, Q
′) (21)

≤ ∆(Ri, M(Q′, X, t)) − ∆(Ri, Q
′)) (22)

≤ ∆(M(Q′, X, t), Q′) (23)

≤ ∆(M(Q,X, t),Q). (24)

To justify the above derivation, we note the following:

• ∆(Ri, M(Ri, X, t)) ≤ ∆(Ri, M(Q′, X, t)) since both
M(Ri, X, t) andM(Q′, X, t) are subsequences ofX end-
ing at(X, t), andM(Ri, X, t) is defined as the subsequence
of X ending at(X, t) that has the smallest distance withRi.

• The edit distance is metric, so the triangle inequality holds,
and∆(Ri, M(Q′, X, t))−∆(Ri, Q

′) ≤ ∆(M(Q′, X, t), Q′).

• We can prove∆(M(Q′, X, t), Q′) ≤ ∆(M(Q, X, t),Q)
by considering that when we perform the minimal set of edit
operations that convertQ to M(Q,X, t), those same opera-
tions suffice to convertQ′ (which is a suffix ofQ) to a suffix
of M(Q, X, t). Therefore, the smallest possible edit distance
betweenQ′ and a subsequence ofX ending at(X, t) cannot
be greater than∆(M(Q,X, t),Q).

2

If we are actually interested in retrieving optimal matchesunder
the Smith-Waterman similarity measure, as opposed to the edit dis-
tance, we can easily convert the lower bound of the edit distance to
an upper bound for Smith-Waterman. We can prove the following:

PROPOSITION 2. For any queryQ and database position(X, t),
defineubi,t

SW (Q) as follows:

ubi,t
SW (Q) = 2|Q| − lbi,t

ED(Q). (25)

Suppose that we define a Smith-Waterman similarity measure using
Pmatch = 2, Pgap = −1, andPsub = −1. Then, it holds that:

ubi,t
SW (Q) ≥ L|Q|,t(Q, X), (26)

whereL|Q|,t(Q, X) is the highest Smith-Waterman score between
Q and a subsequence ofX ending at(X, t). Thusubi,t

SW (Q) is
an upper bound for the Smith-Waterman score betweenQ and any
subsequence ofX ending at(X, t).

Proof: First, we need to make the following auxiliary definition:

MSW (Q,X, t) = argmaxXs:t|s=1,...,t{Λ(Q, Xs:t)}. (27)

In words,MSW (Q,X, t) is the subsequence ofX ending at po-
sition (X, t) that has the highest Smith-Waterman score withQ.
Then, we can prove Proposition 2 as follows:

ubi,t
SW (Q) = 2|Q| − lbi,t

ED(Q) (28)

≥ 2|Q| − ∆(Q, M(Q, X, t)) (29)

≥ 2|Q| − ∆(Q, MSW (Q, X, t)) (30)

≥ L|Q|,t(Q, X) (31)

In justifying the above derivation, the most important stepis
showing that2|Q| − ∆(Q, MSW (Q, X, t)) ≥ L|Q|,t(Q, X). The
argument for that is as follows: Consider the optimal alignment
(according to Smith-Waterman) betweenQ andMSW (Q, X, t). If
Q perfectly matchesMSW (Q,X, t), then the alignment score is
2|Q|, since we get a reward ofPmatch = 2 for every letter ofQ.
Any mismatch and gap in the optimal alignment causes the align-
ment score to decrement by at least 1. Therefore, we know thatthe
number of mismatches and gaps in the optimal alignment cannot be
greater than2|Q| − L|Q|,t(Q,X). At the same time, the optimal
alignment betweenQ and MSW (Q, X, t) defines a sequence of
edit operations (substitutions for mismatches and insertions or dele-
tions for gaps) that convertsQ to MSW (Q,X, t). Consequently,
the edit distance betweenQ and MSW (Q, X, t)) cannot exceed
2|Q| − L|Q|,t(Q,X).

2

Notice that since Smith-Waterman is a similarity score (andnot a
distance measure) upper bounds established efficiently during a fil-
tering step can be used to prune away candidate database matches,
while guaranteeing that the correct answer will not be pruned. This
is quite analogous to the use of lower bounds for efficient filtering
when looking for the best matches under a distance measure.

4.3 Offline Selection of Reference Sequences
We have shown how to use reference-based alignment scores

computed for database positions and for the query in order toobtain
lower bounds of the edit distance or upper bounds for the Smith-
Waterman similarity score between the query and subsequences
ending at each database position. We say that, for a queryQ,
database position(X, j) is pruned usingRi, if lbi,j

ED(Q) > δq,
where lbi,j

ED(Q) is as defined in Eq. 16, andδ is the maximum
amount (expressed as fraction of the query length) of difference
between the query and its subsequence match that we are willing to
tolerate. We note that, if the best match has an edit distanceof more
thanδq from Q, we are not interested in retrieving that match.

The filter step of RBSA, which is described in Section 4.4, prunes
database positions using information from reference sequences. How-
ever, given a queryQ, it would take too much time to check for each
database position if it can be pruned using every single reference
sequence. Therefore, we perform an off-line preprocessingstep, at
which we identify, for every database position, the best reference

5



sequences (out of thousands of available sequences) to use for that
position. Intuitively, reference sequencesR for whichF R(X, j) is
high (meaning thatR is far from any subsequence ofX ending at
positionj) tend to provide tighter lower bounds according to Eq.
16. Our reference selection method is inspired by that of [42], al-
though that approach was proposed in the context of full sequence
matching.

For the reference selection process, we use two sets: 1) a set
Qsample = {Q1, . . . , Q|Qsample|} of randomly generated queries
with |Qi| = q, and 2) a set of randomly generated reference objects
R = {R1, . . . , R|R|} with |Ri| = q. For each database position
(X, j), the set of reference objects to use for that position are se-
lected using a greedy approach. More specifically, for each posi-
tion (X, j), we first choose reference objectR1

j to be the reference
sequenceR that prunes position(X, j) for the largest number of
queries inQsample. Then, the queries for which(X, j) is pruned by
R1

j are removed fromQsample. Similarly, we choose reference ob-
ject Ri

j to be the reference sequenceR that prunes position(X, j)
for the largest number of queries inQsample, whereQsample has
been modified to exclude queries for which(X, j) is pruned using
the previously chosen reference objectsR1

j , . . . , R
i−1
j .

The final outcome is the setRK = {RK
1 , . . . ,RK

|X|}, where

RK
j contains the topK reference objects for position(X, j). For

each position(X, j) we also store all valuesF Ri
j (X, j), for i =

1, . . . , K. The pseudocode for selecting reference objects for each
database position is given in Algorithm 1. We should note that the
selection of reference objects is an offline process and is executed
only once.

4.4 Filter Step
Next we describe the online behavior of RBSA at query time,

for queries of fixed sizeq. The retrieval process, givenQ, consists
of a filter step and a refine step. Given a queryQ, its embeddings
F Ri(Q) under all reference objects inR are computed. Then, for
each database position(X, j), eachRi

j ∈ RK
j is considered, until

either anRi
j is found that prunes(X, j), or all Ri

j ∈ RK
j have

been considered. In the latter case, position(X, j) is a candidate
endpoint of a subsequence match, that will be considered by the
refine step. The filter step is described in Algorithm 2.

4.5 Refine Step
The filter step produces setcandidates that contains endpoints

of possible database matches for the query. At the refine step, each
of those candidates is evaluated. Naturally, depending on whether
we want to retrieve the best matches according to the edit distance
or Smith-Waterman, we use respectively the edit distance orSmith-
Waterman to evaluate each candidate endpoint.

For the case of the edit distance, the refine step is shown in Algo-
rithm 3. It is fairly straightforward to adapt that algorithm to work
for the Smith-Waterman similarity measure.

4.6 Alphabet Collapsing
The filtering power of RBSA is improved by employing an al-

phabet collapsing technique. In particular, for the case ofDNA
sequences the alphabet isΣ = {A, C, G, T}. We can reduce the
alphabet size to 2 by applying four possible collapsing schemes:

• Scheme0: No collapsing (letters remain unchanged).

• Scheme1: A andC map toX, G andT map toY .

• Scheme2: A andG map toX, C andT map toY .

• Scheme3: A andT map toX, C andG map toY .

input : Qsample: a set of randomly generated queries.
R: a set of reference objects.
{F Ri(X, j)}: the embeddings of all positions(X, j)
under allRi ∈ Rj .
X: database sequence.
δ: target dissimilarity percentage.
K: number of reference objects to be returned for each
database position.

output : {RK
j }: for each database position(X, j), the setRK

j of
K reference objects to use for that position.

for j = 1 to |X| do
// initialize RK

j to the empty set.

RK
j = {};

// insert all queries into a listQ.
Q = list(Qsample);
for r = 1 to K do

// initialize pruned to zero.
pruned = uchar[|R|] = 0;
for eachRi ∈ R do

for k = 1 to |Q| do
// compute lower bound for thekth query.
if (lbi,j

ED
(Q) > qδ) then pruned[i]++;

end
end
BestRef = null; BestPrune = −1;
for i = 1 to |R| do

if pruned[i] > BestPrune then
BestPrune = pruned[i];
BestRef = Ri;

end
end
RK

j = RK
j ∪ {BestRef};

// remove pruned queries fromQ usingQPrune
Q = EliminatePruned(Q, j,BestRef);

end
end

Algorithm 1. Selecting reference sequences per database posi-
tion.

A combination of the four schemes is used to improve the fil-
tering power of RBSA. LetTi be a transformation function that
converts an input string defined in alphabetΣ to its correspond-
ing string defined in schemei. In the offline selection of reference
sequences for each database position (Section 4.3), each reference
sequenceR ∈ R eventually generates four different reference se-
quences:T0(R), T1(R), T2(R) andT3(R). The same transfor-
mations are also applied to the database thus producingT0(X),
T1(X), T2(X) andT3(X).

Reference objectTi(R) can be used to obtain bounds and prune
database positions(X, j) by comparingF Ti(R)(Ti(Q)) with
F Ti(R)(Ti(X), j)). Bounds obtained using any of the transforma-
tions Ti are still true for the untransformed sequences, since we
can easily show that, for any of the fourTi’s, the edit distance
∆(A, B) ≥ ∆(Ti(A), Ti(B)). The offline process for reference
selection considers each of theTi(R)’s as a separate candidate ref-
erence sequence and typically chooses, for each database position,
reference sequences obtained from all letter collapsing schemes.

At query time, the queryQ is also converted into each of the
four representations,T0(Q), T1(Q), T2(Q) andT3(Q). Filtering
is modified to include these transformations. For each database
position(X, j), lower bounds are computed for eachTi.
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input : Q: query.
X: database sequence.
δ: target dissimilarity percentage.
FR(Q) = {F Ri(Q): embeddings of queryQ.
{RK

j }: the set of reference sequences selected for position
(X, j).

{F Ri
j (X, j)}: embedding of each database position(X, j)

under each reference objectRi
j ∈ RK

j .

output : candidates: database positions to be passed to the refine
step.

// insert all database positions into listcandidates.
candidates = {1, . . . , |X|};
// define lower bound cut-off threshold.
threshold = qδ;
for i = 1 to K do

for j = 1 to |X| do

x = F
Ri

j (X, j) − F
Ri

j (Q);
if x > threshold then

candidates = candidates − {j};

end
end

end

Algorithm 2. Filtering with maximum pruning.

We have found empirically that we get more pruning power by
combining bounds from the untransformed sequences and bounds
from the transformed sequences obtained using letter collapsing.
Reference objects obtained via letter collapsing have a larger vari-
ance in their distances to database subsequences, thus leading to
better pruning. We should underline that in [42] it is also noted
(in the context of full sequence matching) that pruning power im-
proves when using reference objects whose distances to database
sequences have higher variance, but that approach did not use letter
collapsing.

5. RBSA FOR VARIABLE QUERY LENGTH
The discussion in Section 4 addressed the problem of efficient re-

trieval of subsequence matches for query sequences of fixed length
q. In this section we describe how to build upon the solutions pro-
posed for the fixed query length problem to obtain solutions for
the variable query length problem. We assume that we have al-
ready prepared an index, as described in Section 4.3, for processing
queries of fixed sizeq. In our experiments,q = 40.

Let Q be a query. In principle,Q can have arbitrary size, but
for simplicity we assume that|Q| = αq, for someα ∈ N. No
constraints are placed onα, andα can be different for each query.
At query time, the query is broken into non-overlapping segments
Q1, . . . , Qα of size q. We now proceed to describe two differ-
ent methods, one exact, and one approximate, for using results ob-
tained for the different segmentsQi in order to identify the subse-
quence match for the entire query.

5.1 Exact RBSA
The exact version of RBSA is based on a simple observation:

if Q has a subsequence match with edit distance≤ δ|Q|, then at
least one of the query segmentsQi has a subsequence match with
edit distance≤ δq. This can be seen by observing that each of
the edit operations that transformsQ into its subsequence match
is applied to one of the individual query segments. After alledit

input : Q: query.
X: database sequence.
δ: target dissimilarity percentage.
sorted: an array of candidate endpointsj, sorted in
decreasing order ofj.

output : (X, jstart), (X, jend): start and end point of estimated best
alignment.
distance: distance betweenQ and estimated best align-
ment.
columns: number of database positions evaluated by the
edit distance dynamic programming.

for i = 1 to |X| do
unchecked[i] = 0;

end
for i = 1 to |sorted| do

unchecked[sorted[i]] = 1;

end
distance = δ × |Q| + 1;
columns = 0;
n = |sorted|;
// main loop, check all candidates sorted[1], ..., sorted[n].
for k = 1 to n do

candidate = sorted[k];
if (unchecked[candidate] == 0) then continue;
j = candidate + 1;
for i = |Q| + 1 to 1 do

cost[i][j] = ∞;

end
while (true) do

j = j − 1;
if (candidate − j ≥ |Q|δ + 1) then break;
if (unchecked[j] == 1) then

unchecked[j] = 0;
candidate = j; // found another candidate endpoint.
cost[|Q| + 1][j] = 0;
endpoint[j + 1] = j;

else
cost[|Q| + 1][j] = ∞; // j is not a candidate endpoint.

end
for i = |Q| to 1 do

previous = {(i + 1, j), (i, j + 1), (i + 1, j + 1)};
(pi, pj) = argmin(a,b)∈previouscost[a][b];
cost[i][j] = D(Qi, Xj) + cost[pi][pj ];
endpoint[i][j] = endpoint[pi][pj];

end
columns = columns + 1;

end
end

Algorithm 3. The refine step for the edit distance.

operations have been applied, each query segmentQi has been
transformed to a database subsequence. If each query segment Qi

needed more thanδq edit operations to be converted to its opti-
mal database match, then the entire query would need more than
αδq = δ|Q| operations to be converted to its optimal database
match.

Let Xs:t be a subsequence match for the entire queryQ, with
distance≤ δ|Q|. Then, we can show that there exists at least one
Qi that has, withinXs:t, a subsequence matchXs′:t′ with distance
≤ δq, and such thatt′ ∈ {t − q(α − i) − δ|Q|, . . . , t − q(α −
i) + δ|Q|}. Conversely, if for some segmentQi we have found a
matchXs′:t′ with distance≤ δq, this generates a set of candidate
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endpoints for a subsequence match of the entire query. This set of
candidate endpoints is equal to{t′+q(α−i)−δ|Q|, . . . , t+q(α−
i) + δ|Q|}.

Let sorted be the union of the sets of candidate endpoints gen-
erated from all matches of all segmentsQi, and let’s assume that
sorted is sorted in descending order. Then, evaluating those candi-
date endpoints can be done by invoking Algorithm 3, i.e., theexact
same algorithm that was used for the refine step of the fixed-query-
length version. It should be clear from the preceding paragraphs
that this algorithm is guaranteed to identify the correct subsequence
match, as long as that match is within edit distanceδ|Q| from Q.
As in the fixed-length case, Algorithm 3 can easily be adaptedto
use Smith-Waterman instead of the edit distance, so as to identify
the optimal Smith-Waterman match for the query (but still assum-
ing an edit distance≤ δ|Q| from Q).

5.2 Approximate RBSA
In the exact version of RBSA we try to find subsequence matches

within δq edit distance of each of theα query segmentsQi. An
important question, whose answer forms the foundation of the ap-
proximate version of RBSA, is the following: what if, instead of
using all segmentsQi, we used a single randomQi? What would
be the probability of the endpoint of the subsequence match for
the entire query being included in the set of candidate endpoints
generated by that singleQi? It turns out, as we prove next, that un-
der some fairly reasonable assumptions, this probability is at least
50%.

In order to prove the above claim, we need to make some as-
sumptions about the distribution of edit operations neededto con-
vert Q into its optimal subsequence match. We denote the best
subsequence match ofQ in X asM(Q, X). Since we assume that
∆(Q, M(Q, X)) ≤ δ|Q|, at mostδ|Q| edit operations are needed
to convertQ to M(Q, X). Each of these edit operations is applied
to one and only one of theα segmentsQi that the query has been
partitioned to. We denote byQcm the query segment where the
m-th edit operation is applied, and byP (cm = i) the probability
that them-th edit operation is applied to segmentQi.

PROPOSITION 3. LetQ be a query, andM(Q, X) be the opti-
mal subsequence match ofQ in X. We assume that∆(Q,M(Q, X))
= n ≤ δ|Q|, α ≥ 4, P (cm = i) is uniform over alli, and the
distributionsP (cm = i) corresponding to allm are mutually in-
dependent. In other words, we assume that the distribution of cm

does not depend on anycn, for n 6= m. Consider the optimal se-
quence of edit operations that convertQ to M(Q, X). Given any
Qi, there is a probability of at least50% that, out of those edit
operations, at mostδq edit operations are applied toQi.

Proof: The probability that exactlyk out of then edit operations
are applied toQi follows a binomial distribution, where we haven
trials, “success” is the case where an edit operation is applied toQi,
and the probability of success for an individual trial (i.e., a specific
edit operation) is1

α
. The expected number of successes overn

trials is n
α

(as a reminder,α is defined as|Q|/q). If α ≥ 4, as we
assume, the probability of success is≤ 0.25, and for that case it
has been shown [12] that there is at least a50% probability that the
number of successes will not exceed the expected valuen/α. Since
n ≤ δ|Q|, it follows that n

α
≤ δ |Q|

α
= δq, and the probability that

at mostδq edit operations are applied toQi is at least50%.
2

Based on Proposition 3, by choosing a singleQi, and generat-
ing candidate endpoints for the subsequence match of the entire

query based on subsequence matches retrieved forQi, we have a
probability of at least50% to include the correct endpoint (i.e., the
endpoint of the optimal subsequence match for the entire query) in
those candidates. If the correct point is not included in those candi-
dates, it follows that more thanδq edit operations were applied to
Qi. In that case, for anyj 6= i, the probability that at mostδq edit
operations are applied toQj is still at least50%, and it is actually
higher now that we know that more thanδq edit operations were
applied toQi.

By extending that reasoning, if we generate candidate endpoints
for the match of the entireQ usingp segmentsQi1 , . . . , Qip , the
probability of not including the correct endpoint in those candidates
is at most 1

2p , and thus drops exponentially with respect top. If the
correct endpoint is indeed included in those candidates, then the
optimal subsequence match is guaranteed to be identified using the
same refine step as in exact RBSA, and as in Algorithm 3. In our
experiments, we usep = 10, so that the probability of retrieving
the correct result is at least99.9%.

6. EXPERIMENTS
The performance of RBSA is evaluated on biological data ob-

tained from the NCBI repository. RBSA is compared with state-
of-the-art methods for string matching under the edit distance and
the Smith-Waterman similarity measure. With respect to theedit
distance, we have compared with Q-grams. With respect to Smith-
Waterman, we have compared with:

• BLAST2[2]: the expect valueE has been adjusted to achieve
retrieval accuracies of95%, 98% and100%. In the tables
and figures that follow, this adjustment is denoted as
BLASTX, which means that theE values have been ad-
justed to guaranteeX% retrieval accuracy compared to Smith-
Waterman.

• BWT-SW[22]: a local alignment method that guarantees100%
retrieval accuracy.

For the purposes of the experimental evaluation, we denote the
exact version of RBSA as E-RBSA, and the approximate versionas
A-RBSA. For notation purposes, the distance/similarity measure
(edit distance (ED) or Smith-Waterman (SW)) used in the refine
step of RBSA is added as a suffix at the end of each notation. For
example, E-RBSA-ED is the exact version of RBSA using the edit
distance at the refine step, whereas A-RBSA-SW denotes the ap-
proximate version of RBSA using Smith-Waterman at the refine
step. In the following sections we use the termRBSA to refer to
our method in general. The other notation is only used to distin-
guish within different versions of RBSA when needed.

6.1 Datasets
RBSA has been tested on Human Chromosome22. The size

of this chromosome is35,059,634 bases. For the experiments de-
scribed in section 6.2.1, the database sequence consisted of the first
184,309 bases of the chromosome. For the rest of the experiments,
the database sequence consisted of the whole chromosome, and
thus had a length of35,059,634 letters. Queries have been ex-
tracted from random chromosomes of the mouse genome. Their
size varied from40 to10K nucleotides (i.e.,40 to10K letters) and
their similarity to the database varied within5%, 10% and15% edit
operations, which as also discussed earlier is a reasonablerange of
δ values needed for the applications targeted by this paper. Several
sets of queries have been created, one for each combination of the
above parameters. Each set contains200 queries.
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6.1.1 Performance Measures
The two key measures of performance in this context are accu-

racy and efficiency. E-RBSA isexact meaning that it is always
guaranteed to find the optimal match for each query. Hence its
accuracy is always100%. On the other hand, A-RBSA isapprox-
imate, therefore we use the termRetrieval Accuracy (RA) to ex-
press the percentage of the correct nearest neighbors foundover
the total number of queries. Efficiency is measured based on the
Retrieval Runtime Percentage (RRP)for each query. RRP is de-
fined as follows:

RRP =
RBSA in sec

brute force in sec
100%. (32)

For our experiments the brute-force case is the full dynamicpro-
gramming algorithm. Efficiency is also measured based on thecell
cost for each query, which is the percentage of database positions
visited during the refine step.

Specifically, two sets of experiments have been performed: for
the first set, the edit distance has been used at the refine step, whereas
for the second we used the Smith-Waterman similarity measure.
The system was implemented in C++, and run on an AMD Opteron
8220 SE processor running at 2.8GHz. For all the experiments, pa-
rameterK of Algorithm 1 was set to50.

6.2 Experimental Results
First we show the experimental performance of RBSA when the

edit distance is used at the refine step. In this case, the maincom-
petitors are the q-gram based methods. Then, we compare the per-
formance of RBSA on Smith-Waterman against BLAST and BWT-
SW. To provide a thorough experimental analysis we show the per-
formance of RBSA considering the following factors: 1) the effect
of letter collapsing, 2) the effect of query size andδ, and 3) the
effect of the number of reference objects used for the filter step.

6.2.1 Edit Distance: Comparison with Q-grams
The major competitors in the case of edit distance are the q-

gram based approaches. Their inefficiency for long queries with
a relatively large deviation from the database has already been dis-
cussed earlier in this paper. In Table 1 we show that their prun-
ing power deteriorates for queries of size larger than100 and for
values ofδ that exceed5%. For this experiment only, we used a
small dataset that included the first184,309 bases of Human Chro-
mosome22. The queries had a match withinδ = 5%, 10% and
15%. The experiment was organized as follows: for each query
size|Q| we used a set of sliding windowsW with size varying in
[|Q|(1 − δ), |Q|(1 + δ)]. The database was scanned usingW and
all possible sequences were enumerated. For each query sizeand
δ value we show the cell cost for the optimalq value. Clearly, for
query sizes larger than100 or δ values greater than10%, the prun-
ing power of q-grams deteriorates significantly, renderingthem in-
appropriate for such string searches in large string databases. Due
to this observation, we did not perform any further experiments
with q-gram based state-of-the-art methods for subsequence match-
ing. Also, an application of a full sequence matching q-grambased
algorithm like [24, 25] would not work either as these algorithms
are designed for full sequence matching (as pointed out by one of
the authors of [24, 25]).

For the experiments described in the remainder of this section
the database sequence is the whole Human Chromosome22. Next,
we show the performance of E-RBSA-ED in terms of retrieval run-
time percentage and cell cost for various query sizes and various
δ values on Human Chromosome22. E-RBSA-ED is not signif-
icantly affected by the query size as regards its retrieval runtime

Cell cost of E-RBSA-ED vs. Q-grams
Method |Q| δ=5% δ=10% δ=15%
Q-grams 20 2.1% (q=9) 8.2% (q=6) 28.4% (q=4)
RBSA 40 0.55% 1.02% 1.47%
Q-grams 40 3.2% (q=10) 9.3% (q=7) 31.9% (q=5)
Q-grams 100 15.3% (q=15) 27.4% (q=8) 58.8% (q=6)
RBSA 200 0.32% 0.89% 1.22%
Q-grams 200 32.9% (q=17) 45.5% (q=9) 73.7% (q=6)

Table 1: Cell cost of Q-grams vs. E-RBSA-ED (exact RBSA using
edit distance at the refine step) for different query sizes and different
values ofδ. For E-RBSA-ED, alphabet collapsing has not been applied.
For q-grams, the bestq value for each case is shown. Notice that the
database used in this experiment contains the first184,309 nucleotides
of Human Chromosome22, i.e. |X| = 184,309.

RRP of E-RBSA-ED
δ |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
15% 3.49% 3.50% 3.52% 3.56%
10% 0.89% 0.91% 0.91% 0.94%
5% 0.27% 0.28% 0.28% 0.29%

Cell cost of E-RBSA-ED
δ |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
15% 1.12% 1.01% 0.87% 0.76%
10% 0.11% 0.10% 0.088% 0.077%
5% 0.01% 0.011% 0.009% 0.008%

Table 2: RRP and cell cost of E-RBSA-ED (exact RBSA using edit
distance at the refine step) for various query sizes and various δ values
without applying letter collapsing. The number of reference objects
used at the filter step is50.

percentage. We also note that larger query sizes lead to smaller cell
cost. This behavior is expected since the longer the query size the
more segments will be used for pruning; thus the pruning power
increases. With respect toδ, it is clear that as the similarity of
the query to the database increases, E-RBSA-ED improves both in
terms of retrieval runtime percentage and cell cost. Table 2sum-
marizes the results.

6.2.2 Effect of Alphabet Collapsing
Table 3 shows how alphabest collapsing affects the performance

of E-RBSA-ED and E-RBSA-SW. From the experiments we can
see that applying alphabet collapsing can improve the performance
of E-RBSA in most cases by factors of1.3 and1.55 or more, in
terms of retrieval runtime percentage and cell cost respectively.

6.2.3 RBSA-SW: Comparison with BLAST and BWT-
SW

For the remaining part of our experimental analysis we focuson
the performance of RBSA on local alignment, i.e. when the Smith-
Waterman similarity measure is used at the refine step. The perfor-
mance of RBSA-SW is compared against two state-of-the-art local
alignment methods, BLAST and BWT-SW, for various query sizes
andδ values. We also show the significant improvement on both
retrieval runtime percentage and cell cost for the approximate ver-
sion of RBSA (i.e. A-RBSA-SW). For the following experiments,
alphabet collapsing has been applied. Notice that A-RBSA-SW
has not been studied for query sizes40 and200 since the number
of possible chunks in both cases is extremely small to guarantee
a high retrieval accuracy. Our findings are summarized in Table
4. For clarity purposes, the same results are also shown in Figure
1. It can be seen that A-RBSA outperforms BLAST by more than
an order of magnitude for large queries (2, 000 and10, 000). The
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RRP of E-RBSA-ED with Alphabet Collapsing
RBSA |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
Coll. 2.342% 2.386% 2.400% 2.473%
Uncoll. 3.49% 3.50% 3.52% 3.56%

Cell cost of E-RBSA-ED with Alphabet Collapsing
RBSA |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
Coll. 0.735% 0.663% 0.571% 0.499%
Uncoll. 1.12% 1.01% 0.87% 0.76%

RRP of E-RBSA-SW with Alphabet Collapsing
RBSA |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
Coll. 2.630% 2.679% 2.695% 2.777%
Uncoll. 3.579% 3.638% 3.660% 3.754%

Cell cost of E-RBSA-SW with Alphabet Collapsing
RBSA |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
Coll. 0.826% 0.745% 0.641% 0.560%
Uncoll. 1.358% 1.224% 1.055% 0.921%

Table 3: RRP and cell cost of E-RBSA-ED (exact RBSA using edit
distance at the refine step) and E-RBSA-SW (exact RBSA using Smith-
Waterman at the refine step) for various query sizes andδ = 15%.
The first column describes whether alphabet collapsing has been used
(Coll.) or not (Uncoll.). The number of reference objects used at the
filter step is 50.

retrieval accuracy of A-RBSA is≥ 99.5% for all the experiments
described in this section. Forδ = 15% and10%, A-RBSA has a
retrieval accuracy of99.5% when |Q| = 2, 000, and100% when
|Q| = 10, 000. For δ = 5%, A-RBSA achieves100% accuracy
for both query sizes. As regards BWT-SW, in terms of retrieval
runtime percentage it outperforms BLAST and E-RBSA by over
an order of magnitude for|Q| = 40 and is up to almost3 times
faster than BLAST for|Q| = 200. Its performance deteriorates,
however, as|Q| becomes larger.

6.2.4 RBSA-SW: Effect of the Number of Reference
Objects used for Filtering

Experiments so far, assumed that50 reference objects are as-
signed to each database position. In this section, we show the effect
of the number of reference objects assigned per database point on
the performance of RBSA-SW. We experiment on two query sizes,
200 and2, 000 with δ = 10%. Also for these experiments alphabet
collapsing has been applied. Table 5 summarizes our findingswith
respect to retrieval runtime percentage and cell cost. Clearly as
the number of reference objects decreases, both retrieval runtime
percentage and cell cost deteriorate. In particular, if less that30
reference objects are used, RBSA-SW outperforms the brute-force
Smith-Waterman by a factor smaller than3.5, and for10 reference
objects this factor is less than2.

6.2.5 RBSA-SW: Experiment on Queries with Vari-
ousδ Values

Finally we created a set of queries whereδ varies from1% to
15% in increments of2%. Two query sizes have been studied,200
and2, 000. We have created one query set per query size using
different δ values. The total number of queries in each set is400.
Also, 50 reference objects have been used at the filter step. Re-
sults on retrieval runtime percentage and cell cost are summarized
in Table 6. For the set of queries with size2, 000 we show the ap-
proximate version of RBSA. At the refine step we have used the
Smith-Waterman similarity measure. For both query sizes, RBSA
is at least one order of magnitude faster than BLAST and BWT-SW.
The retrieval accuracy of A-RBSA is99.75%.

RRP of RBSA-SW vs. BWT-SW and BLAST forδ = 15%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.476% 0.086%
E-RBSA 2.630% 2.679% 2.695% 2.777%
BWT-SW 0.34% 3.30% 8.63% 12.72%
BLAST95 11.17% 7.57% 7.46% 7.84%
BLAST98 16.34% 7.88% 7.60% 8.11%
BLAST100 19.35% 9.29% 8.20% 9.66%

RRP of RBSA-SW vs. BWT-SW and BLAST forδ = 10%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.087% 0.018%
E-RBSA 0.481% 0.490% 0.493% 0.508%
BWT-SW 0.204% 2.600% 6.889% 8.900%
BLAST95 4.623% 3.133% 3.086% 3.243%
BLAST98 6.783% 3.271% 3.155% 3.362%
BLAST100 8.251% 3.965% 3.498% 4.118%

RRP of RBSA-SW vs. BWT-SW and BLAST forδ = 5%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.019% 0.0053%
E-RBSA 0.106% 0.108% 0.109% 0.112%
BWT-SW 0.083% 0.688% 2.170% 5.460%
BLAST95 4.293% 2.910% 2.866% 3.011%
BLAST98 6.231% 3.005% 2.898% 3.089%
BLAST100 7.437% 3.573% 3.153% 3.711%

Cell cost of RBSA-SW vs. BWT-SW and BLAST forδ = 15%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.126% 0.024%
E-RBSA 0.826% 0.745% 0.641% 0.560%
BWT-SW 0.017% 1.298% 6.107% 7.347%
BLAST95 6.032% 3.972% 3.751% 4.641%
BLAST98 8.98% 4.73% 4.55% 5.56%
BLAST100 9.35% 5.87% 5.44% 6.6%

Cell cost of RBSA-SW vs. BWT-SW and BLAST forδ = 10%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.016 0.003%
E-RBSA 0.103% 0.093% 0.080% 0.070%
BWT-SW 0.015% 1.166% 5.483% 6.596%
BLAST95 4.974% 3.175% 2.793% 3.127%
BLAST98 7.917% 4.170% 4.011% 4.902%
BLAST100 9.862% 4.936% 4.574% 5.550%

Cell cost of RBSA-SW vs. BWT-SW and BLAST forδ = 5%
Method |Q|=40 |Q|=200 |Q|=2,000 |Q|=10,000
A-RBSA 0.001% 0.0002%
E-RBSA 0.010% 0.009% 0.008% 0.007%
BWT-SW 0.012% 0.911% 4.285% 5.155%
BLAST95 4.428% 2.397% 1.800% 2.512%
BLAST98 5.998% 3.216% 2.242% 3.123%
BLAST100 6.150% 4.583% 3.278% 3.479%

Table 4: RRP and cell cost of BLAST and BWT-SW vs. A-RBSA-
SW (approximate RBSA using Smith-Waterman at the refine step) and
E-RBSA-SW (exact RBSA using Smith-Waterman at the refine step).
The number of reference objects used at the filter step is50. Results
are shown for δ = 15%, 10%, and 5%.

To summarize our findings, A-RBSA can support relatively large
queries without significant loss in retrieval accuracy and outper-
forms current state-of-the-art local alignment methods (BLAST and
BWT-SW) by over an order of magnitude in terms of retrieval run-
time percentage. For completeness we should mention that the av-
erage retrieval runtime for the brute-force local alignment compu-
tation for queries of size40, 200, 2, 000 and10, 000 is28.5, 132.4,
1317.8 and6620.1 seconds respectively.
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Figure 1: RRP (on left column) and cell cost (on right column) of
BLAST and BWT-SW vs. A-RBSA-SW (approximate RBSA using
Smith-Waterman at the refine step) and E-RBSA-SW (exact RBSAus-
ing Smith-Waterman at the refine step). The number of reference ob-
jects used at the filter step is50. Also,δ = 15% on top row, δ = 10% on
middle row, and δ = 5% on bottom row. Notice that A-RBSA has only
been applied for query sizes of2, 000 and 10, 000 and for the latter it
can be barely seen due to its low cost.

RRP and cell cost of RBSA-SW varying # of references
RRP Cell Cost

# of references |Q|=200 |Q|=2,000 |Q|=200 |Q|=2,000
50 0.490% 0.493% 0.093% 0.080%
40 1.143% 1.149% 0.217% 0.187%
30 7.873% 7.920% 1.498% 1.290%
20 28.440% 28.609% 5.411% 4.661%
10 64.743% 65.126% 9.012% 8.931%

Table 5: RRP and cell cost of E-RBSA-SW (exact RBSA using Smith-
Waterman at the refine step) varying the number of reference objects
assigned to each database point.

7. DISCUSSION AND CONCLUSIONS
RBSA uses precomputed alignment scores between reference se-

quences and database positions to efficiently identify, given a query
Q, a relatively small number of candidate subsequence matches in
the database. RBSA has an exact version that is guaranteed tofind
the correct subsequence match, as long as that subsequence match
has edit distance of at mostδ|Q| to Q. In our experiments, for
|Q| ≥ 200, the exact version of RBSA outperforms state-of-the-art
competitors such as BLAST, BWT, and q-grams.

Furthermore, we present an approximate version of RBSA that,

RRP and cell cost of RBSA-SW vs. BWT-SW and BLAST
RRP Cell Cost

Method |Q|=200 |Q|=2,000 |Q|=200 |Q|=2,000
RBSA 0.530% 0.098% 0.088% 0.018%
BWT-SW 1.370% 2.958% 0.873% 4.233%
BLAST95 2.727% 2.406% 2.651% 2.640%
BLAST98 2.575% 2.483% 3.823% 3.815%
BLAST100 3.927% 3.304% 4.431% 4.454%

Table 6: RRP and cell cost of RBSA vs. competitors for variableδ
values. For query size2, 000 we have used A-RBSA (the approximate
version of RBSA using Smith-Waterman at the refine step). Thenum-
ber of reference objects used at the filter step is50.

for large queries, can efficiently identify candidate matches by con-
sidering only a relatively small number of fixed-size segments of
Q. We show that, under some realistic assumptions, the probabil-
ity of failing to retrieve the correct match, for approximate RBSA,
drops exponentially with the number of query segments considered.
It is important to note that the number of query segments needed
to guarantee a certain probability of success is independent of the
|Q|, making approximate RBSA scale very well with large query
lengths. This version also achieves significant speedups over the
exact version and produces speedups of one to two orders of mag-
nitude compared to existing competitors, for|Q| ≥ 2, 000.

An open question is whether we can extend RBSA, so that it
does not require matches to be within edit distanceδ|Q| from Q.
It will also be interesting to study more extensively the effects of
letter collapsing, and analyze theoretically the reasons that letter
collapsing improves performance. Finally, we believe thatit may
turn out to lead to more significant improvements in domains with
larger alphabet sizes, such as proteins. We aim to explore these
issues in future work.
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