Reference-Based Alignment in Large Sequence Databases

Panagiotis Papapetrou !, Vassilis Athitsos 2, George Kollios !, and Dimitrios Gunopulos *+

! Computer Science Department, Boston University
2 Computer Science and Engineering Department, University of Texas at Arlington
3 Department of Informatics and Telecommunications, University of Athens
* Computer Science and Engineering Department, UC Riverside

ABSTRACT

This paper introduces a novel method, called Referencedasing
Alignment (RBSA), that speeds up retrieval of optimal sujossnce
matches in large databases of sequences under the ediicdistad
the Smith-Waterman similarity measure. RBSA operatesguitia
assumption that the optimal match deviates by a relativedglis
amount from the query, an amount that does not exceed a jgrespe
ified fraction of the query length. RBSA has an exact vershat t
guarantees no false dismissals and can handle large qedfiies
ciently. An approximate version of RBSA is also describdtitt
achieves significant additional improvements over the exac
sion, with negligible losses in retrieval accuracy. RBSAf@ens
filtering of candidate matches using precomputed alignreenites
between the database sequence and a set of fixed-lengthneder
sequences. At query time, the query sequence is partitioried
segments of length equal to that of the reference sequerkams.
each of those segments, the alignment scores between thersieg
and the reference sequences are used to efficiently identéja-
tively small number of candidate subsequence matches. ghraal
bet collapsing technique is employed to improve the prupimger
of the filter step. In our experimental evaluation, RBSA ffign
cantly outperforms state-of-the-art biological sequealignment
methods, such as g-grams, BLAST, and BWT.

1. INTRODUCTION

There are many applications that require fast searchingin s
quence databases that consist of collections of stringsenGa
query string, the goal is to find the most similar substringshie
database using a distance/similarity measure such as thdigd
tance (ED) or Smith-Waterman (SW). Applications in thiszaire
clude 1) spell-checking: given some input text the spedeiler
consults its dictionary to find words of high similarity tcetkext, so
as to identify potential typos, 2) data cleaning: data olgdifrom
different sources might contain inconsistencies whichlmaelim-
inated by looking for similar entities (strings) in the da®) near
homology search in biological sequences: given differemognes
we want to find regions of high similarity that were the resafit
a mutation, etc. Being able to efficiently answer such gseise

Permission to copy without fee all or part of this materiajianted provided
that the copies are not made or distributed for direct consrakadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciaipgsion from the
publisher, ACM.

VLDB ‘09, August 24-28, 2009, Lyon, France

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0@/

crucial, especially for online string search applications

In order to generate and interpret complete genomes ofreliffe
organisms, various searches need to be performed that dlyév
queries of large length, and 2) only targetar exactmatches [11,
14]. We focus on these two major requirements: we want to ke ab
to retrievenear-exact matchesf long query sequenceficiently.
As a motivating example for large query lengths, considegda
EST (Expressed Sequence Tag) databases, that contaiongaufi
genes expressed as mature mRNA. In such databases, lalge sca
searches need to be performed against other genomic desatioas
determine locations of genes [14]. In practice, genes cayniva
size from hundreds to millions of nucleotides. Searchesaisn
target whole chromosomes, where the goal is to find chromesom
similarities across different organisms. Since chromas®oan be
relatively large (e.g. Human Chromosorhés approximately272
million bases), such searches require algorithms that eauallh
large queries efficiently.

In many applications, database matches are of interestibnly
their deviation from the query does not exceed a certaiatively
small, fraction of the query length [5, 11, 17]. We denote frec-
tion asé and focus on values @fup to15%, which is typical in ap-
plications, such as shotgun sequencing [30] and mutatialysis
[38]. Notice that our focus is on DNA sequences, where thhaalp
bet size is small4) and the query size can be large (upl@ 000
bases). In this setting, only near homology search is biciiy
significant, whereasemote homology seards more meaningful
and mostly used not for DNA, but for protein sequences.

In this paper, we propose a novel method, called referensed
string alignment (RBSA), for efficient subsequence maighim
large databases of strings under the edit distance or théhSmi
Waterman similarity measure. RBSA decomposes the subsegue
matching problem into two distinct problems:

e The fixed query length problem: achieve efficient retrieval
assuming that all queries have the same length.

e The variable query length problem: using a solution to
the fixed query length problem, achieve efficient retrieeal f
queries of arbitrary length.

To solve the fixed query length problem, RBSA precomputes,
for each position of every database string, alignment scooere-
sponding to different reference sequences. These alignsaeres
are based on the edit distance. Given a query, alignmentsbea-
tween the query and all reference sequences are computieg onl
and are used to prune away large portions of the databass,teo a
leave a relatively small number of candidate matches. Weoan
antee that theptimal subsequence matulill be included among
the candidates. Exact alignment scores are then computddro
tify the optimal match among the remaining candidates. dédtiat

the termoptimal subsequence matckfers to the database position
that gives the best alignment score for an input query usiagek-
act and full dynamic programming algorithm. In the case df ed
distance, this refers to the database position with the doweore
and for the case of Smith-Waterman this is the position with t
highest similarity score.

To solve the variable query length problem, RBSA first breaks
up that problem into multiple fixed query length problems play-
titioning the query sequence into segments of fixed lengththé
exact version of RBSA, all query segments are considered, an

subsequence matches found for those segments are usechto ide

tify candidate subsequence matches for the entire quenthdn
approximate version of RBSA, only a subset of query segments
considered. Another contribution in our paper consistshionsng
that the probability of failing to find the optimal match deopery
fast (exponentially) as we increase the number of query satgn
that we consider, and thus we can achieve both significantly i
proved efficiency and very high accuracy rates by considewinly
a relatively small number of segments.

The main contributions of this paper are summarized below:

speeds up the dynamic programming (DP) computation by pguni
cells in the DP matrix with values larger than

Several g-gram-based methods [5, 6, 7, 18, 24, 25, 27, 31, 43]
have been developed to solve the problem of exact and ajppatei
string matching in large sequence databases. Their maiacties
istic is that they build a dictionary of words on a given datsd of
sequences. At query time the query is broken into a set ofawer
ping g-grams and the index is searched for exact matche®séth
g-grams. These matches provide candidate hits that areéfiteed
to remove false positives.

QUASAR [5] is a subsequence matching method that performs
g-gram based filtering on a sequence database. QUASAR tetimi
to relatively short queries (the maximum query length onchhi
the performance of QUASAR was evaluated v888 characters)
of high similarity to the database. A generalization of QU¥&S
which uses gapped instead of contiguous g-grams is deddirbe
[6]. Similar g-gram based methods for approximate full rejri
matching are described in [24, 25, 43].

VGRAM [25] employs a g-gram dictionary where the words are
of variable length and more representative of the dataseggim
the limitations to small queries persist (the experimeetaluation

1. We present RSBA, the first reference-based method for sub- reports queries of average size ranging fr8mo 62 characters)
sequent matching in string databases that both guaranteesand the performance seriously deteriorates étie number of edit
correct results and performs well for large queries. RBSA operations applied to the queries) increases4). An improved
produces lower bounds of the edit distance and upper boundsvgram-based method is described in [43], but is again lidhite
of the Smith-Waterman similarity between the query and small query sizes (varying betwednand 249 characters). Sev-
database subsequences using precomputed alignment scoregral methods [18, 7] employ a two level g-gram index to spged u
with reference sequences. In prior work, such bounds have the database search. A g-gram based approximate strindpimgtc
only been derived for full sequence matching [42]. method is described in [31], where disjoint text substriofiength

g are collected by the index at fixed intervals. Finally, [2#}o-

2. We present an exact method for decomposing the variable- duces several strategies for improving the join cost of taedists
length query problem into multiple fixed-length queries, so found during a query search in an inverted g-gram index and/sh
that we can achieve state-of-the-art retrieval runtimeofog how to incorporate these strategies into existing filterimgthods
queries, while still guaranteeing correct results. to improve string matching.

A key property of g-gram based methods, such as the ones men-

3. We present an approximate method for decomposing the va- tioned above, is the following: if the query size|{g| and we are
riable-length query problem into multiple fixed-length ges. searching for matches with edit distance witkiny can be at most
The approximate variant achieves speedups of over an order[|Q|/(k + 1)] to guarantee no false dismissals. It can be seen that
of magnitude, compared to exact RBSA and other competi- asf increasesy decreases, and thus, the index size becomes larger.
tors, in experiments with queries of length 10,000. At the Consequently, and also as shown in the experiments, g-geaedb
same time, the probability of missing the correct result in approaches can only handle short queries of relatively bigt-
approximate RBSA drops exponentially with the number of |arity to the database. However, the biologically interestypes
query segments that we consider, and thus can easily be re-of queries (e.g. mutated genes) can be significantly longtgup
duced to a negligible quantity. 10, 000 nucleotides or more [22]) and thus, g-gram based methods

)) are not able to handle them efficiently.

4. The experimental evaluation shows that, for query lemgth Another group of methods has been proposedefact string
> 200, RBSM outperforms current state-of-the-art sequence matching targeting exact occurrences of the query sequence in a
alignment methods: BLAST2[2], BWT-SW[22] amegrams. gatabase [4, 9, 10, 16, 20, 27, 28, 37, 41]. However, exdagstr
Speedups of one to two orders of magnitude over the current matching is quite different from the main focus of this papad
state of the art are demonstrated for query size 000. thus, these methods are not discussed any further.

Several methods have been developed for aligning biolbgica
sequences. FASTA [26, 35] detects locally similar regioes b
tween two sequences using only identities and no gaps, @&md th
based on some measure of similarity it re-scores them aicybyd
Additional heuristics are proposed in BLAST [1]. Given a gue
(DNA or protein), BLAST performs a linear scan on the seq@enc
database searching for a set of seeds belonging to the eighb
hood of some substrings of the query. Having identified a et o
candidate hits, it then extends them both ways, until therace
lated similarity score begins to decrease. Finally, BLASparts
as matches those regions with high statistical significance

A new version of BLAST, known as BLASX[2], improves ac-
curacy by allowing a limited nhumber of insertions and delesi

2. RELATED WORK

A preeminent group of methods for string subsequence match-
ing are based on dynamic programming [23]. In [33], a global
alignment method is described, where both query and dagadeas
quences are aligned along their entire lengths, usiagch mis-
matchandgap scores. A similar, but generalized algorithm [13]
for global alignment, handles sequences of intermittemilari-
ties. Smith and Waterman [39] developed a dynamic programgmi
approach for local alignment, where a subsequence of the igie
matched to a subsequence of the database. [40] exploitat¢he f
that in approximate string searching we are looking for grat
that match with substrings of the text with at mésgrrors. Thus, it

during the alignment formation and improves search spedchby 3. BACKGROUND

posing more stringent criteria when performing a local rifgent. In this section we define the edit distance and Smith-Waterma
Further improvements of BLAST include MegaBLAST [44], MP- measures used to evaluate similarity between strings @NA).
BLAST [21] and miBLAST [19]. MegaBLAST is a greedy al- \ve use the terms “string” and “sequence” interchangealiyoiigh-

gorithm for detecting sequences that differ slightly as sulteof out the paper, the following notation will be used:

sequencing. MPBLAST and miBLAST are different versions of

BLAST used for parallel queries. e (O, X are sequences of lengt®| and | X | respectively.Q
BLAT [1] builds an index of the database and then given a query denotes a query sequence a@ndenotes a database sequence.

it linearly scans the query searching for matches in thexndeart Typically | X| > |Q|. Without loss of generality we as-

from using an inverse index, BLAT differs from BLAST and BLAS sume that the database contains a single very long sequence,

in that it triggers extensions on any number of perfect hitergas since we can always concatenate all the strings stored in the

in BLAST extensions are triggered when one or two hits ocour i database into a single string.

proximity to each other. Several hash-based approaches3fi]5)

have been developed for further speed up. A key limitatioalbf * Subscripts denote elements of sequences. For exa@pte,

the above-mentioned variants of BLAST is that their accyit Q1.+, Qiq))-

retrieval cost deteriorates as the query size increaseghé\gol-

ume of biological sequence databases increases, all thenado-

tioned exhaustive systems become prohibitively expensive
Another key limitation of BLAST-like approaches is that tbés

no guarantee that the optimal local alignment will be repdriSev-

eral methods have been developed to handle this weakness. OA

SIS [29] employs a best first search technique over a suffixftre

string alignment. The algorithm outperforms BLAST by anerd 3.1 The Edit Distance

of magnitude, but only for small query siz€stp 60); this is one

of its major limitations. Another indexing method that uses-

fix trees is discussed in [32], whereas [36] discusses aneeftic

method for suffix tree construction in external memory. Hina

BWT-SW[22] employs a suffix array to speedup local alignment

search in biological sequences. It outperforms BLAST foerips

e For any sequenc& = (Xi,...,X|x|), given start and end
positionss and ¢ respectively, we can defineubsequence
X** to be the sequencgXs, ..., X:), i.e., the part ofX
that starts at positios and ends at position Then, X' is
thei-th element ofX***, and is equal to¥, ;1.

The edit distancé\ (A, B) is a function measuring hogissim-
ilar two stringsA and B are. For a more general definition of the
edit distance we need to specify a cost for each editing tipara
i.e., for each insertion, deletion, and substitution. lis aper we
denote these costs as follows:

of size up to1000; for larger queries its performance deteriorates. e Cins denotes the cost of the edit operation that inserts a letter
Both OASIS and BWT-SW always find the best local alignment to string A.
according to Smith-Waterman.

Two reference-based indexing methods for full sequencetmat e Cqe denotes the cost of the edit operation that deletes a letter
ing are proposed in [42] that use reference sequences tesemr from string A.

the database. At query time, the edit distance of the queminag . .

each reference sequence is computed. Lower and upper bounds ® Csub(A;, Br) denotes the cost of the edit operation that re-
are applied to efficiently filter candidate matches. DSIM|8gs a places letterd; with some letted3; # A;.

set of selected reference words formed from high-frequeatata
sub- strings. SST [11] is used for subsequence matchingoin bi
logical sequences and maps the biological sequence databas
d-dimensional vector space; this mapping is used to filtegaifi
icant portion of the database from consideration duringdghery
process. This method outperforms BLAST by an order of mag- remainder of this paper we assume that, = Cael = Coup, = 1.

n!tude. b!“ gnly for applications where there exists an ewtly . Given a query sequend@ and a database sequenkethe best
high similarity ©5% and over) between the query sequence and its (optimal) subsequence mataf Q in X is the subsequenck™*

match in the database. . . that minimizesA(Q, X**). We define the subsequence matching
The RBSA method proposed in our paper is also related to EBSM costD(Q, X) as:

[3], which uses precomputed alignments between databgsersees
and reference sequences for efficient subsequence matohing D(Q, X) = min{A(Q, X*")|s € {1,...,t},t € {1,...,|X[}}.
series databases. The key differences between RBSA and EBSM @)
stem from the fact that RBSA addresses near-exact stringhimat In describing how to comput®(Q, X) and the corresponding
under the edit distance or Smith-Waterman, whereas EBSM ad- subsequence matcti®*, it is useful to define an auxiliary distance
dresses general time series matching under DTW. RBSA ésgploi D’', as the smallest possible distance betw€eil and asuffix
the metric properties of the edit distance, and the additioear- Xt of X1

exact matching constraint, to provide either guaranteececore- - . 155 orsit

sults (for exact RBSA) or guaranteed high probability ofrect re- D"(Q, X) = min{A(Q, X™)s € {1,....t}}. (2
sults (for approximate RBSA). No equivalent guaranteepeesent We also define an auxiliary functiafi(Q;, X;) that denotes the
in EBSM. Furthermore, RBSA can handle queries of arbitrizg s cost of matching lette®; with letter X

(query lengths range from 40 to 10,000 in our experiments) by)

breaking up queries into fixed-size segments, whereas EBSM r C(Q;, X)) = Csub !f Qj # Xi 3)
quires that query lengths be within a relatively narrow efguery A 0 ifQ; =X

lengths range from 152 to 426 in the experiments of [3]), amd p
vides no mechanism for handling queries of arbitrary size.

In the general casé\ (A, B) is the smallest possible cost of con-
verting A to B using insertions, deletions, and substitutions. In the
most common version of Elins = Caer = Csup = 1, and in that
caseA(A, B) is the smallest total number of insertions, deletions,
and substitutions that can convettto B. For simplicity, in the

Computing D(Q, X) and the corresponding best subsequence
match of@ in X can be performed using dynamic programming,

by computingD?*(Q, X) forj = 1,...,|Q|andt = 1,...,|Q|,

as follows:
initialization:
DoO — 0, Do — OO’Do,t —0. @)
loop:
. D]j’til(Q7X) +Cins
D™(Q,X) =min{ D'"M(Q, X) + Caa ®)
DI7HHQ, X) 4+ C(Qy, Xt)

termination:
¢ =argmin,_, ¢ {D'9"(@Q, X)}. 6)
D(Q,X) =D'?"(Q,X). @

It should be clear that evaluatidg(Q, X) takes timeD (|Q|| X).

Given (@ and X, the Smith-Waterman algorithm identifies opti-
mal subsequenceg®’/ and X *7 and the corresponding similarity
scoreL(Q, X) = A(Q™, X*). The Smith-Waterman algorithm
is very similar to the algorithm computing the edit distanaad
also proceeds using dynamic programming, by compufifg for

j=1,...,|Qlandt =1,...,|Q|, as follows:
initialization:
L7 =0,L% =0. (12)
L7 HQ, X) + Paap
X j—1,t
L"H(Q, X) = max L (@, X) + Pgap (12)

L757HQ, X) + P(Qy, Xt)

0
termination:
L(Q,X) = {L7(Q, X)} . (13)

max
F=1e QI =1, X

We should also note that the optimal matching sequence can be Similarto the edit distance, Smith-Waterman takes i) || X|),

found by keeping track, in each application of Equation 5thef
predecessor selected for edght), and by backtracking, at termi-
nation, starting at positioQ|, t*).

3.2 The Smith-Waterman Measure

A similarity measure\ (A, B), in contrast to a distance measure,
measures howimilar two stringsA and B are. If A(A,B) = 0
thenA and B are maximally different from each other. The Smith-
Waterman measure [39] is a frequently used similarity mesafar
strings. In order to specify the Smith-Waterman measurenees
to choose value®,atcn , Psub and Pyap, that stand for the follow-
ing terms:

e P..tch IS @ positive number that denotes the reward for a
letter of A being equal to the corresponding letterfn

and finding the subsequences@fand X that give the maximum
similarity score can be easily done using backtracking.

4. RBSA FOR FIXED QUERY LENGTH

In this section, we describe the proposed RBSA (Refererase®
String Alignment) method for queries of fixed length. We deno
that fixed length ag. In Section 5, we will generalize RBSA to
queries of arbitrary length.

RBSA follows a filter-and-refine approach. A set of random
reference sequences is generated. For each databaserpasiti
alignment score with each reference sequence is computddra
embedding-based index is constructed using those scdneser-
bedding is used for fast filtering of database positions¢hatlead
to a potential match. Those positions are then passed tefine r
step where the computationally expensive distance mededie

e P..1 is a negative number that denotes the penalty for a letter distance or Smith-Waterman) is applied.

of A being substituted by another letter.

e P,., is a negative number that denotes the penalty for delet-

ing a letter ofA, or inserting a letter tol.

4.1 Embedding Queries and Database Posi-
tions
Let @ be a query sequence of fixed lend)| = ¢, and X be
the database sequence. At the core of our method is an emigeddi

In the remainder of the paper, and in our experiments, we Use gefinition, that we use to produce one-dimensidnd) mappings,

Prateh = 2, Psup = —1, and Pgap = —1, which are commonly
used choices for these parameters.

Given a query string@ and a database string, finding the best
(optimal) local alignmentbetween and X is the task of finding
subsequence@“’ and X ** that maximizeA (Q*7, X**). We de-
fine the Smith-Waterman similarity scofg @, X) as:

L(Q, X) = max{A(Q™, X* i e {1,...,5},5 € {1,...,|Q|},
se{l,...thte{l,...,|X[}}. (8)

In describing how to comput&(Q, X') and the corresponding
optimally matching subsequencgs™ and X **, it is useful to de-
fine an auxiliary sc_oréﬂ’t, as the highest matching score between
a suffixQ™’ of Q' and asuffix X ** of X1¢:
LY@, X) = max{A(Q™, X*)i e {1,....5}, s € {1,...,t}}.

C)

We also define an auxiliary functiaR(Q;, X:) that denotes the

reward or penalty of matching lett€}; with letter X,:

if Qj # Xt
if Qj =X

Psub

10
Pmatch ()

P(Qs X0 = {

that map every query sequen@eto a number, and that map every
database positio(lX, ¢) also to a number. We will use the$®
mappings to obtain bounds for the optimal subsequence imgtch
or local alignment scorendingat each database positidX, ¢),
and then we will use those bounds to efficiently prune sigaific
portions of the database.

Let R be a sequence of the same fixed lengtis the queries. Us-
ing R we can define a 1D embeddidg, mapping each query se-
guence into a real numbét*(Q), and also mapping each database
position(X,) into a real numbeF ? (X, t):

FHQ) = D'™9(R,Q). (14)
FR(X,1) DFI (R X)) . (15)

The above equations can be interpreted intuitively as vialo
the embedding"?(Q) of the query is the smallest edit distance
matchingR to a suffix of Q. The embedding™? (X, t) of database
position (X, t) is the smallest edit distance matchiRgo a suffix
of X, If a very close match t6) appears a&*** in X, then we
expect F2(Q) to be very similar toF (X, t). Any sequenceR
used to define an embeddiiitf* is called areference sequence

4.2 Reference-based Bounds for the Edit Dis-
tance and Smith-Waterman

Let @ be a query stringX be the database sequence, at
a position onX. As a reminder,A(A, B) is the edit distance
between stringsA and B, and D'?!*(Q, X) is the smallest edit
distance betwee® and any subsequence &f ending at position
(X,t). To establish an exact reference-based filtering method for
the subsequence matching problem, our first step is to ésadl
lower bound forD!@*(Q, X) based on"f (Q) and F ¥ (X, t),
whereR; is any reference sequence.

PROPOSITION 1. For any queryQ, database positior{X, t),
and reference sequendg, definelb’y’, (Q) as follows.

Ib55(Q) = FH (X, 1) — F™(Q).
Then, it holds that:
b5 (Q) < D'?M(Q, X),

and thuslb’, (Q) is a lower bound for the smallest possible edit
distance betwee@ and a subsequence a&f ending at(X, t).

(16)

an

Proof: First, we need to make the following auxiliary definitions:
M(A7B7t) argminBS:t\s:l,A..,t{A(A7Bszt)}7 (18)
Q' M(Ri, Q,|Ql). (19)

In words, M (A, B, t) is the subsequence @& ending at position
(B, t) that has the smallest edit distance frotp andQ’ is the
suffix of @ that has the smallest edit distance frétn Then, we
can prove Proposition 1 as follows:

155(Q) FR(X,t) - F7(Q) (20)
= A(Ri, M(R;,X,t)) — A(R:,Q") (21)
< AR, M(Q', X, 1) — A(R:, Q")) (22)
< AM(Q,X1),Q") (23)
< AM(Q, X, t),Q). (24)

To justify the above derivation, we note the following:

o A(R;, M(R;, X,t)) < A(R;, M(Q', X,t)) since both
M(R;, X,t) and M (Q', X, t) are subsequences &f end-
ing at(X,t), andM (R;, X, t) is defined as the subsequence
of X ending at(X, ¢) that has the smallest distance with.

The edit distance is metric, so the triangle inequality bpld
andA(R;, M(Q', X,t))—A(R;, Q") < A(M(Q', X,t),Q’).

We can proveA(M(Q', X, 1),Q') < A(M(Q,X,1),Q)

by considering that when we perform the minimal set of edit
operations that conve® to M (Q, X, t), those same opera-
tions suffice to conver®)’ (which is a suffix ofQ) to a suffix

of M(Q, X, t). Therefore, the smallest possible edit distance
betweeny’ and a subsequence &f ending at X, ¢) cannot

be greater thal\ (M (Q, X, t), Q).

O

If we are actually interested in retrieving optimal matchesler
the Smith-Waterman similarity measure, as opposed to tielise
tance, we can easily convert the lower bound of the edit mitgtd0
an upper bound for Smith-Waterman. We can prove the follgwin

PROPOSITION 2. For any query® and database positiofiX, ¢),
defineubyy,, (Q) as follows:

ubiy (Q) = 2|Q| — b5 (Q). (25)

Suppose that we define a Smith-Waterman similarity measing u
Prateh = 2, Pgap = —1, and Psu, = —1. Then, it holds that:

ubsh, (Q) > LI9M(Q, X), (26)

whereL!?"*(Q, X) is the highest Smith-Waterman score between
Q and a subsequence of ending at(X,t). Thusubki, (Q) is

an upper bound for the Smith-Waterman score betwigamd any
subsequence of ending at(X,).

Proof: First, we need to make the following auxiliary definition:
Msw(Q, X, t) = argmax x|y {AQ, XT)}. (27)

In words, Msw (Q, X, t) is the subsequence df ending at po-
sition (X, ¢) that has the highest Smith-Waterman score wjth
Then, we can prove Proposition 2 as follows:

ubgy (Q) 2|Q| — b (Q) (28)
> 2Q| - A(Q, M(Q, X, 1)) (29)
> 2|Q| - A, Msw(Q, X,1)) (30)
> 1L19Q,X) (31)

In justifying the above derivation, the most important step
showing tha2|Q| — A(Q, Msw (Q, X, t)) > LI (Q, X). The
argument for that is as follows: Consider the optimal aligmin
(according to Smith-Waterman) betwe@eand Msw (Q, X, t). If
Q perfectly matches\isw (Q, X, t), then the alignment score is
2|Q|, since we get a reward dPy,atcn = 2 for every letter ofQ.
Any mismatch and gap in the optimal alignment causes tha-alig
ment score to decrement by at least 1. Therefore, we knovitthat
number of mismatches and gaps in the optimal alignment ¢dreno
greater thar2|Q| — LI?1*(Q, X). At the same time, the optimal
alignment betweer) and Msw (Q, X,t) defines a sequence of
edit operations (substitutions for mismatches and insestor dele-
tions for gaps) that conver@ to Msw (Q, X, t). Consequently,
the edit distance betweef and Msw (Q, X,t)) cannot exceed
21Q| - LI?M(Q, X).

]

Notice that since Smith-Waterman is a similarity score (aoich
distance measure) upper bounds established efficientiyglarfil-
tering step can be used to prune away candidate databaseasatc
while guaranteeing that the correct answer will not be pdurighis
is quite analogous to the use of lower bounds for efficierrfitig
when looking for the best matches under a distance measure.

4.3 Offline Selection of Reference Sequences

We have shown how to use reference-based alignment scores
computed for database positions and for the query in ordaltain
lower bounds of the edit distance or upper bounds for the fsmit
Waterman similarity score between the query and subsegsenc
ending at each database position. We say that, for a aQery
database positiofLX, j) is pruned usingR;, if 1b35(Q) > dq,
wherelb%’ (Q) is as defined in Eq. 16, anflis the maximum
amount (expressed as fraction of the query length) of diffee
between the query and its subsequence match that we anegadli
tolerate. We note that, if the best match has an edit distafoere
thandq from @Q, we are not interested in retrieving that match.

The filter step of RBSA, which is described in Section 4.4 eI
database positions using information from reference sezpse How-
ever, given a querg), it would take too much time to check for each
database position if it can be pruned using every singleeate
sequence. Therefore, we perform an off-line preprocesstiei, at
which we identify, for every database position, the bestnezice

sequences (out of thousands of available sequences) tontsaf
position. Intuitively, reference sequencidor which FZ (X, j) is
high (meaning thar is far from any subsequence af ending at
position j) tend to provide tighter lower bounds according to Eq.
16. Our reference selection method is inspired by that of, [dR2
though that approach was proposed in the context of full secg
matching.

For the reference selection process, we use two sets: 1) a set

Qsample = {Q1,. .., Q|01+ Of randomly generated queries
with |Q;| = ¢, and 2) a set of randomly generated reference objects
R = {Ri,..., Rjg|} with |R;| = ¢. For each database position
(X, 7). the set of reference objects to use for that position are se-
lected using a greedy approach. More specifically, for eaxdip
tion (X, 5), we first choose reference objeléﬁ to be the reference
sequenceR that prunes positioiiX, j) for the largest number of
queries iNQsample. Then, the queries for whidhX, j) is pruned by
R} are removed fronQsampie. Similarly, we choose reference ob-
ject Rj to be the reference sequenBghat prunes positio(LX, j)
for the largest number of queries Dsample, Where Qsampie has
been modified to exclude queries for Whl(:h’ j)is pruned using
the previously chosen reference objeﬂlﬁ R“

The final outcome is the s®* = {R¥, R‘X‘}, where
Rf contains the topK reference objects for positi()JX, j). For

each position X, j) we also store all values'™i (X, j), for i =

., K. The pseudocode for selecting reference objects for each
database position is given in Algorithm 1. We should not¢ thea
selection of reference objects is an offline process andesigrd
only once.

4.4 Filter Step

Next we describe the online behavior of RBSA at query time,
for queries of fixed siz@. The retrieval process, givel, consists
of a filter step and a refine step. Given a qué&yits embeddings
F®i(Q) under all reference objects iR are computed. Then, for
each database positi¢iX, j), eachR§ € Rf{ is considered, until
either anR’ is found that prune¢X, j), or all R} € R} have
been considered. In the latter case, posi{iaf j) is a candidate
endpoint of a subsequence match, that will be consideredhdy t
refine step. The filter step is described in Algorithm 2.

4.5 Refine Step

The filter step produces seindidates that contains endpoints
of possible database matches for the query. At the refine steh
of those candidates is evaluated. Naturally, depending loettver
we want to retrieve the best matches according to the edérdis
or Smith-Waterman, we use respectively the edit distan&oth-
Waterman to evaluate each candidate endpoint.

For the case of the edit distance, the refine step is showrngo-Al
rithm 3. It is fairly straightforward to adapt that algonithto work
for the Smith-Waterman similarity measure.

4.6 Alphabet Collapsing

The filtering power of RBSA is improved by employing an al-
phabet collapsing technique. In particular, for the cas®NA
sequences the alphabetiis= {A,C,G,T}. We can reduce the
alphabet size to 2 by applying four possible collapsing swse

e Schemd: No collapsing (letters remain unchanged).
Schemel: A andC map toX, G andT map toY'.
Scheme2: A andG map toX, C' andT map toY'.

Scheme3: A andT map toX, C andG map toY'.

input . Qsample- @ set of randomly generated queries.
‘R: a set of reference objects.
{F%i(X,j)}: the embeddings of all position§X, ;)
under allR; € R;.
X database sequence.
¢: target dissimilarity percentage.
K: number of reference objects to be returned for each
database position.

output : {R[}: for each database positiqiX, j), the setR}* of
K reference objects to use for that position.

for 7 = 1to | X|do

Il initialize Rf(to the empty set.

RE ={};

I/l Insert all queries into a lisP.

Q= liSt(Qsamplc);

for r = 1to K do

[l initialize pruned to zero.

pruned = uchar[|R|] = 0;

for eachR; € R do

for k =1to|Q|do

/I compute lower bound for the, query.
if (lbZ o '5(Q) > ¢d) then pruned [i]++;

end

end

BestRef = null; BestPrune = —1;
for i =1to |R|do

if pruned[i] > BestPrune then
BestPrune = pruned|i];
BestRef = R;;

end

end

RK RK U {BestRef};

1 remove pruned queries froM usingQPrune
Q = EliminatePruned(Q, j, BestRef);

end
end

Algorithm 1.
tion.

Selecting reference sequences per database g0

A combination of the four schemes is used to improve the fil-
tering power of RBSA. Lefl; be a transformation function that
converts an input string defined in alphal¥to its correspond-
ing string defined in scheme In the offline selection of reference
sequences for each database position (Section 4.3), eacanee
sequenceR € R eventually generates four different reference se-
quences:Ty(R), T1(R), T2(R) andT5(R). The same transfor-
mations are also applied to the database thus produfifig),
Tl(X), TQ(X) andTg(X).

Reference object;(R) can be used to obtain bounds and prune
database positionsY, ;) by comparingt"”: (/) (T;(Q)) with
FT:(®)(T;(X), 4)). Bounds obtained using any of the transforma-
tions T; are still true for the untransformed sequences, since we
can easily show that, for any of the folli's, the edit distance
A(A,B) > A(T3(A), T;(B)). The offline process for reference
selection considers each of tiig{ R)’s as a separate candidate ref-
erence sequence and typically chooses, for each databsitemo
reference sequences obtained from all letter collapsihgrees.

At query time, the query) is also converted into each of the
four representationg(Q), 71(Q), T>(Q) andT3(Q). Filtering
is modified to include these transformations. For each @da@b
position(X, j), lower bounds are computed for egEh

input 1 Q: query.
X database sequence.
4: target dissimilarity percentage.
FR(Q) = {FFi(Q): embeddings of querg).
{Rf}: the set of reference sequences selected for position
(X, 4)-
{F®i(X,7)}: embedding of each database positiaf ;)
under each reference objet, € RJK

: candidates: database positions to be passed to the refine
step.

output

/l insert all database positions into listndidates.
candidates = {1,...,|X|};
/Il define lower bound cut-off threshold.
threshold = ¢d;
for: =1to K do
for 5 = 1to | X|do
x = FR (X, j) - F(Q);
if x > threshold then
| candidates = candidates — {j};
end
end
end

Algorithm 2. Filtering with maximum pruning.

We have found empirically that we get more pruning power by
combining bounds from the untransformed sequences anddsoun
from the transformed sequences obtained using letterpsitig.
Reference objects obtained via letter collapsing havegetarari-
ance in their distances to database subsequences, thiggléad
better pruning. We should underline that in [42] it is alsdetb
(in the context of full sequence matching) that pruning poime
proves when using reference objects whose distances tbadsta
sequences have higher variance, but that approach did exettesr
collapsing.

5. RBSAFORVARIABLE QUERY LENGTH

The discussion in Section 4 addressed the problem of efficen
trieval of subsequence matches for query sequences of érgth
g- In this section we describe how to build upon the solutiams p
posed for the fixed query length problem to obtain soluticors f

the variable query length problem. We assume that we have al-

ready prepared an index, as described in Section 4.3, foepsing
queries of fixed siz@. In our experimentsy = 40.

Let @ be a query. In principleQ) can have arbitrary size, but
for simplicity we assume thd)| = aq, for somea € N. No
constraints are placed an anda can be different for each query.
At query time, the query is broken into non-overlapping segta
Q',...,Q~ of sizeq. We now proceed to describe two differ-
ent methods, one exact, and one approximate, for usingtses
tained for the different segmentg’ in order to identify the subse-
guence match for the entire query.

5.1 Exact RBSA

The exact version of RBSA is based on a simple observation:
if @ has a subsequence match with edit distadcé|R|, then at
least one of the query segmeid@é has a subsequence match with
edit distance< dq. This can be seen by observing that each of
the edit operations that transforminto its subsequence match
is applied to one of the individual query segments. Afteredlit

input 1 Q: query.
X database sequence.
4: target dissimilarity percentage.
sorted: an array of candidate endpoints sorted in
decreasing order of.
output (X, Jstart), (X, jend): Start and end point of estimated best
alignment.
distance: distance betweeid) and estimated best align-
ment.
columns: number of database positions evaluated by the
edit distance dynamic programming.
for : = 1to | X| do
| unchecked[i] = 0;
end
for ¢ = 1 to |sorted| do
| unchecked [sorted|7]]

end
distance = § x |Q| + 1;
columns = 0;
n = [sorted|;
/I main loop, check all candidates sorted[1], ..., sorted[n
for k =1tondo
candidate = sorted[k];
if (unchecked [candidate] == 0) then continug
j = candidate + 1,
fori=|Q|+1to1do
| cost[t][j] = oo;
end
while (true) do
J=Jj—-1
if (candidate — j > |Q|é + 1) then break;
if (unchecked[j] == 1) then
unchecked[j] = 0;
candidate = 7; // found another candidate endpoint.
cost[|Q| + 1][j] = 0;
endpoint[j + 1] = j;

1;

else
| cost[|Q| + 1][j] = oo; /l § is not a candidate endpoint.
end

for i = |Q|to 1 do

previous = {(i + 1,7), (i,5 + 1), (i + 1,5 + 1)}
(pisp;) = argl’nin(mb)Eplrevi(,»usCOSt [al[b];

cost[i][j] = D(Qi, X;) + cost[p;][p;];

endpoint[i|[j] = endpoint|p;][p;];

end
columns = columns + 1;

end
end

Algorithm 3. The refine step for the edit distance.

operations have been applied, each query segr@értias been
transformed to a database subsequence. If each query se@hen
needed more thatig edit operations to be converted to its opti-
mal database match, then the entire query would need mone tha
adq = 6|Q| operations to be converted to its optimal database
match.

Let X** be a subsequence match for the entire qu@rwith
distance< 4|Q|. Then, we can show that there exists at least one
Qi that has, within ***, a subsequence matéfi” ‘" with distance
< dq, and such that' € {t — q(a — i) — 4|Q|,...,t — q(a —

i) + 6|Q|}. Conversely, if for some segme@’ we have found a
matchX "t with distance< dg, this generates a set of candidate

endpoints for a subsequence match of the entire query. €hisfs
candidate endpoints is equal{t + ¢(a—1) —8|Q|, . . ., t+q(a—
i) +6|Ql}.

Let sorted be the union of the sets of candidate endpoints gen-
erated from all matches of all segmel@é, and let's assume that
sorted is sorted in descending order. Then, evaluating those €andi
date endpoints can be done by invoking Algorithm 3, i.e. gtkect
same algorithm that was used for the refine step of the fixedyqu
length version. It should be clear from the preceding pauplgs
that this algorithm is guaranteed to identify the correttsaquence
match, as long as that match is within edit distadge| from Q.

As in the fixed-length case, Algorithm 3 can easily be adapbed
use Smith-Waterman instead of the edit distance, so as mtifige
the optimal Smith-Waterman match for the query (but stifias-
ing an edit distance §|Q| from Q).

5.2 Approximate RBSA

In the exact version of RBSA we try to find subsequence matches
within d¢ edit distance of each of the query segment§®. An
important question, whose answer forms the foundation @i+
proximate version of RBSA, is the following: what if, insteaf
using all segment§’, we used a single rando@‘? What would
be the probability of the endpoint of the subsequence maich f
the entire query being included in the set of candidate eintfpo
generated by that singl@'? It turns out, as we prove next, that un-
der some fairly reasonable assumptions, this probabgigt least
50%.

In order to prove the above claim, we need to make some as-
sumptions about the distribution of edit operations nedadexbn-
vert @ into its optimal subsequence match. We denote the best
subsequence match fin X asM(Q, X). Since we assume that
A(Q, M(Q, X)) < 4|Q|, at mosts|@| edit operations are needed
to convert@ to M (Q, X). Each of these edit operations is applied
to one and only one of the segments)® that the query has been
partitioned to. We denote b° the query segment where the
m-th edit operation is applied, and (¢, = i) the probability
that them-th edit operation is applied to segmept.

PROPOSITION 3. Let@ be a query, and/(Q, X) be the opti-
mal subsequence match®@fn X . We assume thak (Q, M (Q, X))
=n < 6|Q|, @ > 4, P(em = 1) is uniform over alli, and the
distributions P(c,, =) corresponding to alin are mutually in-
dependent. In other words, we assume that the distributian,o
does not depend on anmy;, for n # m. Consider the optimal se-
quence of edit operations that convétto M (Q, X). Given any
Q*, there is a probability of at leasi0% that, out of those edit
operations, at mosiq edit operations are applied t@°.

Proof: The probability that exactly out of then edit operations
are applied ta’ follows a binomial distribution, where we hawe
trials, “success” is the case where an edit operation iSegpmQ°,
and the probability of success for an individual trial (i specific
edit operation) i%. The expected number of successes aver
trials is 2 (as a remindery is defined a3Q|/q). If a > 4, as we
assume, the probability of success<is0.25, and for that case it
has been shown [12] that there is at lea50% probability that the
number of successes will not exceed the expected vglue Since
n < 4|Q), it follows that 2 < 5% = dq, and the probability that
at mostdq edit operations are applied &' is at least0%.

O

Based on Proposition 3, by choosing a single and generat-
ing candidate endpoints for the subsequence match of thee ent

query based on subsequence matches retrieve@%owe have a
probability of at leas60% to include the correct endpoint (i.e., the
endpoint of the optimal subsequence match for the entireyjjire
those candidates. If the correct point is not included is¢hcandi-
dates, it follows that more thafy edit operations were applied to
Q'. In that case, for any # i, the probability that at mosig edit
operations are applied @7 is still at least;0%, and it is actually
higher now that we know that more thagp edit operations were
applied toQ".

By extending that reasoning, if we generate candidate eéntipo
for the match of the entir€) usingp segmentsQ® ..., Q'», the
probability of not including the correct endpoint in thosendidates
is at mostzip, and thus drops exponentially with respecptdf the
correct endpoint is indeed included in those candidates) the
optimal subsequence match is guaranteed to be identifind the
same refine step as in exact RBSA, and as in Algorithm 3. In our
experiments, we usg = 10, so that the probability of retrieving
the correct result is at leag89.9%.

6. EXPERIMENTS

The performance of RBSA is evaluated on biological data ob-
tained from the NCBI repository. RBSA is compared with state
of-the-art methods for string matching under the edit distaand
the Smith-Waterman similarity measure. With respect toeti@
distance, we have compared with Q-grams. With respect totSmi
Waterman, we have compared with:

e BLASTZ2[2]: the expect valué has been adjusted to achieve
retrieval accuracies di5%, 98% and 100%. In the tables
and figures that follow, this adjustment is denoted as
BLAST X, which means that th&' values have been ad-
justed to guarante& % retrieval accuracy compared to Smith-
Waterman.

e BWT-SW[22]: alocal alignment method that guarante@.
retrieval accuracy.

For the purposes of the experimental evaluation, we demhete t
exact version of RBSA as E-RBSA, and the approximate veiason
A-RBSA. For notation purposes, the distance/similarityaswee
(edit distance (ED) or Smith-Waterman (SW)) used in the esfin
step of RBSA is added as a suffix at the end of each notation. For
example, E-RBSA-ED is the exact version of RBSA using the edi
distance at the refine step, whereas A-RBSA-SW denotes the ap
proximate version of RBSA using Smith-Waterman at the refine
step. In the following sections we use the teRBS A to refer to
our method in general. The other notation is only used tardist
guish within different versions of RBSA when needed.

6.1 Datasets

RBSA has been tested on Human Chromos@2e The size
of this chromosome 85,059,634 bases. For the experiments de-
scribed in section 6.2.1, the database sequence consisteifinst
184,309 bases of the chromosome. For the rest of the experiments,
the database sequence consisted of the whole chromosouhe, an
thus had a length 085,059,634 letters. Queries have been ex-
tracted from random chromosomes of the mouse genome. Their
size varied fromi0 to 10K nucleotides (i.e40 to 10K letters) and
their similarity to the database varied witHif%, 10% and15% edit
operations, which as also discussed earlier is a reasoreige of
o0 values needed for the applications targeted by this pajpsersl
sets of queries have been created, one for each combindtiba o
above parameters. Each set cont&0s queries.

6.1.1 Performance Measures

The two key measures of performance in this context are accu-
racy and efficiency. E-RBSA isxact meaning that it is always
guaranteed to find the optimal match for each query. Hence its
accuracy is alway300%. On the other hand, A-RBSA &pprox-
imate, therefore we use the terRetrieval Accuracy (RA) to ex-
press the percentage of the correct nearest neighbors foerd
the total number of queries. Efficiency is measured baseden t
Retrieval Runtime Percentage (RRP¥or each query. RRP is de-
fined as follows:

RBSA in sec

RRP
brute forcein sec

100%.

(32)

For our experiments the brute-force case is the full dyngrie
gramming algorithm. Efficiency is also measured based ocdhle
costfor each query, which is the percentage of database position
visited during the refine step.

Specifically, two sets of experiments have been performed: f
the first set, the edit distance has been used at the refinedtepeas
for the second we used the Smith-Waterman similarity measur
The system was implemented in C++, and run on an AMD Opteron
8220 SE processor running at 2.8GHz. For all the experimeats
rameterK of Algorithm 1 was set t&0.

6.2 Experimental Results

First we show the experimental performance of RBSA when the
edit distance is used at the refine step. In this case, the coain
petitors are the g-gram based methods. Then, we comparethe p
formance of RBSA on Smith-Waterman against BLAST and BWT-
SW. To provide a thorough experimental analysis we show ¢ne p
formance of RBSA considering the following factors: 1) ttieet
of letter collapsing, 2) the effect of query size afidand 3) the
effect of the number of reference objects used for the filiep.s

6.2.1 Edit Distance: Comparison with Q-grams

The major competitors in the case of edit distance are the g-
gram based approaches. Their inefficiency for long querigls w
a relatively large deviation from the database has alreaéy llis-
cussed earlier in this paper. In Table 1 we show that theinpru
ing power deteriorates for queries of size larger thaf and for
values of§ that exceed%. For this experiment only, we used a
small dataset that included the fiist4,309 bases of Human Chro-
mosome22. The queries had a match withtih= 5%, 10% and
15%. The experiment was organized as follows: for each query
size|@Q| we used a set of sliding windowd’ with size varying in
[1Q](1 —4), |Q|(1+ §)]. The database was scanned usitigand
all possible sequences were enumerated. For each quergrgize
0 value we show the cell cost for the optimalalue. Clearly, for
query sizes larger that00 or § values greater that0%, the prun-
ing power of g-grams deteriorates significantly, rendethem in-
appropriate for such string searches in large string datgaDue
to this observation, we did not perform any further expenise
with g-gram based state-of-the-art methods for subsegueiatch-
ing. Also, an application of a full sequence matching q-gkased
algorithm like [24, 25] would not work either as these al¢jums
are designed for full sequence matching (as pointed out kyobn
the authors of [24, 25]).

For the experiments described in the remainder of this @ecti
the database sequence is the whole Human Chromo22niext,
we show the performance of E-RBSA-ED in terms of retrievalru
time percentage and cell cost for various query sizes anduar
¢ values on Human Chromoson22. E-RBSA-ED is not signif-
icantly affected by the query size as regards its retrievatime

Cell cost of E-RBSA-ED vs. Q-grams
Method | [Q] 0=5% 0=10% 0=15%
Q-grams| 20 2.1% (g=9) 8.2% (q=6) | 28.4% (g=4)
RBSA 40 0.55% 1.02% 1.47%
Q-grams| 40 | 3.2% (q=10) | 9.3% (g=7) | 31.9% (g=5)
Q-grams| 100 | 15.3% (q=15)| 27.4% (q=8) | 58.8% (q=6)
RBSA 200 0.32% 0.89% 1.22%
Q-grams| 200 | 32.9% (q=17)| 45.5% (g=9)| 73.7% (q=6)

Table 1: Cell cost of Q-grams vs. E-RBSA-ED (exact RBSA using
edit distance at the refine step) for different query sizes adh different
values ofd. For E-RBSA-ED, alphabet collapsing has not been applied.
For g-grams, the bestq value for each case is shown. Notice that the
database used in this experiment contains the first84,309 nucleotides
of Human Chromosome22, i.e. | X| = 184,309.

RRP of E-RBSA-ED
B [Q]=40 | 1Q]=200 | [Q]=2,000] |Q]=10,000
15% [3.49% | 3.50% 3.52% 3.56%
10% | 0.89% | 0.91% 0.91% 0.94%
5% 0.27% | 0.28% 0.28% 0.29%
Cell cost of E-RBSA-ED
B [Q]=40 | 1Q]=200 | |Q]=2,000] |Q]=10,000
15% [1.12% | 1.01% 0.87% 0.76%
10% | 0.11% | 0.10% 0.088% 0.077%
5% 0.01% | 0.011% | 0.009% 0.008%

Table 2: RRP and cell cost of E-RBSA-ED (exact RBSA using edit
distance at the refine step) for various query sizes and varigs § values
without applying letter collapsing. The number of referene objects
used at the filter step is50.

percentage. We also note that larger query sizes lead tdesroell
cost. This behavior is expected since the longer the quegythie
more segments will be used for pruning; thus the pruning powe
increases. With respect & it is clear that as the similarity of
the query to the database increases, E-RBSA-ED improvésitot
terms of retrieval runtime percentage and cell cost. Tabderd-
marizes the results.

6.2.2 Effect of Alphabet Collapsing

Table 3 shows how alphabest collapsing affects the perfocma
of E-RBSA-ED and E-RBSA-SW. From the experiments we can
see that applying alphabet collapsing can improve the pagnce
of E-RBSA in most cases by factors ©f3 and 1.55 or more, in
terms of retrieval runtime percentage and cell cost respygt

6.2.3 RBSA-SW: Comparison with BLAST and BWT-
SW

For the remaining part of our experimental analysis we famus
the performance of RBSA on local alignment, i.e. when thet&mi
Waterman similarity measure is used at the refine step. Tiferpe
mance of RBSA-SW is compared against two state-of-thesast |
alignment methods, BLAST and BWT-SW, for various query size
and ¢ values. We also show the significant improvement on both
retrieval runtime percentage and cell cost for the apprexéver-
sion of RBSA (i.e. A-RBSA-SW). For the following experimsnt
alphabet collapsing has been applied. Notice that A-RBSA-S
has not been studied for query siz#sand 200 since the number
of possible chunks in both cases is extremely small to gteean
a high retrieval accuracy. Our findings are summarized inerab
4. For clarity purposes, the same results are also shownguréi
1. It can be seen that A-RBSA outperforms BLAST by more than
an order of magnitude for large queriex Q00 and 10, 000). The

RRP of E-RBSA-ED with Alphabet Collapsing

RBSA | [Q]=40 | |Q]=200 | |Q]=2,000| [Q]=10,000
Coll. 2.342% | 2.386% | 2.400% 2.473%
Uncoll. | 3.49% | 3.50% 3.52% 3.56%
Cell cost of E-RBSA-ED with Alphabet Collapsing
RBSA | [Q]=40 | |Q]=200 | |Q]=2,000| [Q]=10,000
Coll. 0.735% | 0.663% | 0.571% 0.499%
Uncoll. | 1.12% | 1.01% 0.87% 0.76%

RRP of E-RBSA-SW with Alphabet Collapsing

RBSA | |Q[=40 | [Q[=200 | |Q|=2,000 | |Q[=10,000
Coll. | 2.630% | 2.679% | 2.695% | 2.777%
Uncoll. | 3.579% | 3.638% | 3.660% | 3.754%

Cell cost of E-RBSA-SW with Alphabet Collapsing

RBSA | Q=40 | [Q[=200 | |Q]=2,000 | |Q]=10,000
Coll. | 0.826% | 0.745% | 0.641% | 0.560%
Uncoll. | 1.358% | 1.224% | 1.055% | 0.921%

RRP of RBSA-SW vs. BWT-SW and BLAST far= 15%

Table 3: RRP and cell cost of E-RBSA-ED (exact RBSA using edit
distance at the refine step) and E-RBSA-SW (exact RBSA usingsth-
Waterman at the refine step) for various query sizes andd = 15%.
The first column describes whether alphabet collapsing hasden used
(Coll.) or not (Uncoll.). The number of reference objects used at the
filter step is 50.

retrieval accuracy of A-RBSA i& 99.5% for all the experiments
described in this section. Fér= 15% and10%, A-RBSA has a
retrieval accuracy 099.5% when|Q| = 2,000, and100% when

|Q| = 10,000. Ford = 5%, A-RBSA achievesl00% accuracy
for both query sizes. As regards BWT-SW, in terms of retdieva
runtime percentage it outperforms BLAST and E-RBSA by over
an order of magnitude foiQ)| = 40 and is up to almos$ times
faster than BLAST forlQ| = 200. Its performance deteriorates,
however, a3Q)| becomes larger.

6.2.4 RBSA-SW: Effect of the Number of Reference

Objects used for Filtering

Experiments so far, assumed tHiit reference objects are as-
signed to each database position. In this section, we shoeftact
of the number of reference objects assigned per databastqioi
the performance of RBSA-SW. We experiment on two query sizes
200 and2, 000 with 6 = 10%. Also for these experiments alphabet
collapsing has been applied. Table 5 summarizes our findgiiths
respect to retrieval runtime percentage and cell cost. nyles
the number of reference objects decreases, both retrieatinte
percentage and cell cost deteriorate. In particular, © lgmt30
reference objects are used, RBSA-SW outperforms the houte-
Smith-Waterman by a factor smaller thau®, and for10 reference
objects this factor is less than

6.2.5 RBSA-SW: Experiment on Queries with Vari-
ouss Values

Finally we created a set of queries whérearies from1% to
15% in increments oR%. Two query sizes have been studied)

and2,000. We have created one query set per query size using

differentd values. The total number of queries in each seii.

Method [Q]=40 | [Q]=200 | [Q]=2,000 | |Q]=10,000
A-RBSA 0.476% 0.086%
E-RBSA 2.630% | 2.679% 2.695% 2.777%
BWT-SW 0.34% 3.30% 8.63% 12.72%
BLAST95 | 11.17% | 7.57% 7.46% 7.84%
BLAST98 | 16.34%| 7.88% 7.60% 8.11%
BLAST100 | 19.35% | 9.29% 8.20% 9.66%
RRP of RBSA-SW vs. BWT-SW and BLAST fdr= 10%
Method [Q]=40 | [Q]=200 | [Q]=2,000 | |Q]=10,000
A-RBSA 0.087% 0.018%
E-RBSA 0.481% | 0.490% 0.493% 0.508%
BWT-SW 0.204% | 2.600% 6.889% 8.900%
BLAST95 | 4.623% | 3.133% 3.086% 3.243%
BLAST98 | 6.783% | 3.271% 3.155% 3.362%
BLAST100 | 8.251% | 3.965% 3.498% 4.118%
RRP of RBSA-SW vs. BWT-SW and BLAST fdr= 5%
Method [Q]=40 | [Q]=200 | [Q]=2,000 | |Q]=10,000
A-RBSA 0.019% 0.0053%
E-RBSA 0.106% | 0.108% 0.109% 0.112%
BWT-SW 0.083% | 0.688% 2.170% 5.460%
BLAST95 | 4.293% | 2.910% 2.866% 3.011%
BLAST98 | 6.231% | 3.005% 2.898% 3.089%
BLAST100 | 7.437% | 3.573% 3.153% 3.711%
Cell cost of RBSA-SW vs. BWT-SW and BLAST for= 15%
Method [Q]=40 | [Q]=200 | [Q]=2,000 | |Q]=10,000
A-RBSA 0.126% 0.024%
E-RBSA 0.826% | 0.745% 0.641% 0.560%
BWT-SW 0.017% | 1.298% 6.107% 7.347%
BLAST95 | 6.032% | 3.972% 3.751% 4.641%
BLAST98 8.98% 4.73% 4.55% 5.56%
BLAST100 | 9.35% 5.87% 5.44% 6.6%
Cell cost of RBSA-SW vs. BWT-SW and BLAST for= 10%
Method [Q]=40 | [Q]=200 | [Q]=2,000 | |Q]=10,000
A-RBSA 0.016 0.003%
E-RBSA 0.103% | 0.093% 0.080% 0.070%
BWT-SW 0.015% | 1.166% 5.483% 6.596%
BLAST95 | 4.974% | 3.175% 2.793% 3.127%
BLAST98 | 7.917% | 4.170% 4.011% 4.902%
BLAST100 | 9.862% | 4.936% 4.574% 5.550%
Cell cost of RBSA-SW vs. BWT-SW and BLAST for= 5%
Method [Q]=40 | [Q]=200 | [Q]=2,000 | |Q]=10,000
A-RBSA 0.001% 0.0002%
E-RBSA 0.010% | 0.009% 0.008% 0.007%
BWT-SW 0.012%| 0.911% 4.285% 5.155%
BLAST95 | 4.428% | 2.397% 1.800% 2.512%
BLAST98 | 5.998% | 3.216% 2.242% 3.123%
BLAST100 | 6.150% | 4.583% 3.278% 3.479%

Table 4: RRP and cell cost of BLAST and BWT-SW vs. A-RBSA-
SW (approximate RBSA using Smith-Waterman at the refine stepand
E-RBSA-SW (exact RBSA using Smith-Waterman at the refine sg).
The number of reference objects used at the filter step i50. Results
are shown ford = 15%, 10%, and 5%.

To summarize our findings, A-RBSA can support relativelgéar

Also, 50 reference objects have been used at the filter step. Re-queries without significant loss in retrieval accuracy amtper-

sults on retrieval runtime percentage and cell cost are sanmed
in Table 6. For the set of queries with si2e000 we show the ap-

forms current state-of-the-art local alignment methodsABT and
BWT-SW) by over an order of magnitude in terms of retrieval-+u

proximate version of RBSA. At the refine step we have used the time percentage. For completeness we should mention thath

Smith-Waterman similarity measure. For both query siz&8SR
is at least one order of magnitude faster than BLAST and BWIT-S
The retrieval accuracy of A-RBSA #9.75%.

10

erage retrieval runtime for the brute-force local aligntnesmpu-
tation for queries of siz&0, 200, 2, 000 and10, 000 is 28.5, 132.4,
1317.8 and6620.1 seconds respectively.

RRP of RBSA vs. BWT-SW and BLAST with delta 15%

18
16

14

212

i

308

04|

04

02|

0

2000 10000 40 200

Cell Cost of RBSA vs. BWT-SW and BLAST with delta 15%

[A-RBSA-SW|
I E-RBSA-SW|
[1BTW-sW
I GLASTSS
I BLASTSS
EBLASTI0

EGLASTSS
I BLASTSS
EELASTI00

retrieval runtime perce

40 200
query size

2000
query size

10000

RRP of RBSA vs. BWT-SW and BLAST with delta 10%

1

09|

08

0.7

209

= % 0|
I E-RBSA-SW| 8

[I8Tw-sw 304

I GLASTOS

IBLASTSS 03

IBLAST100 02

0.1

0

2000 10000

Cell Cost of RBSA vs. BWT-SW and BLAST with delta 10%

[A-RBSA-SW|
I £-RBSA-SW|
[IBTw-sw
I 6LASTOS
I BLASTO8
I BLAST100

40 200 2000 10000
query size

retrieval runtime perc

40 200
query size

RRP of RBSA vs. BWT-SW and BLAST with delta 5%

005
00s5
004
0035

£ 00
g 0025
3 0o
0015
o0y
0005

o

10000 0

Cell Cost of RBSA vs. BWT-SW and BLAST with delta 5%

|

10000

[A-RBSA-SW|
I E-RBSA-SW|
C_JsTw-sw

[A-RBSA-SW
I E-RBSA-SW|
C_Jsw-sw
I BLASTSS
I GLASTSS

I BLAST100
ILAST100

0 200
query size

2000 2000

query size

Figure 1: RRP (on left column) and cell cost (on right column) of
BLAST and BWT-SW vs. A-RBSA-SW (approximate RBSA using
Smith-Waterman at the refine step) and E-RBSA-SW (exact RBSAs-
ing Smith-Waterman at the refine step). The number of referece ob-
jects used at the filter step i50. Also,§ = 15% on top row, § = 10% on
middle row, and § = 5% on bottom row. Notice that A-RBSA has only
been applied for query sizes o2, 000 and 10, 000 and for the latter it
can be barely seen due to its low cost.

RRP and cell cost of RBSA-SW varying # of references
RRP Cell Cost

of references| |Q[=200 | [Q]=2,000 | |Q]=200 | |Q]=2,000
50 0.490% | 0.493% | 0.093% | 0.080%
40 1.143% 1.149% | 0.217% | 0.187%
30 7.873% 7.920% | 1.498% | 1.290%
20 28.440% | 28.609% | 5.411% 4.661%
10 64.743% | 65.126% | 9.012% 8.931%

Table 5: RRP and cell cost of E-RBSA-SW (exact RBSA using Smith-
Waterman at the refine step) varying the number of reference bjects
assigned to each database point.

7. DISCUSSION AND CONCLUSIONS

RBSA uses precomputed alignment scores between reference s
guences and database positions to efficiently identifgrga query
Q, arelatively small number of candidate subsequence maiohe
the database. RBSA has an exact version that is guarantéed to
the correct subsequence match, as long as that subsequetadde m
has edit distance of at mostQ| to Q. In our experiments, for
|Q| > 200, the exact version of RBSA outperforms state-of-the-art
competitors such as BLAST, BWT, and g-grams.

Furthermore, we present an approximate version of RBSA that

11

RRP and cell cost of RBSA-SW vs. BWT-SW and BLAST|
RRP Cell Cost
Method [Q]=200 | |Q]=2,000]| |Q[=200 | |Q[=2,000
RBSA 0.530% 0.098% 0.088% 0.018%
BWT-SW 1.370% 2.958% 0.873% 4.233%
BLAST95 2.727% 2.406% 2.651% 2.640%
BLAST98 2.575% 2.483% 3.823% 3.815%
BLAST100 | 3.927% 3.304% 4.431% 4.454%

Table 6: RRP and cell cost of RBSA vs. competitors for variables
values. For query size2, 000 we have used A-RBSA (the approximate
version of RBSA using Smith-Waterman at the refine step). Thaum-
ber of reference objects used at the filter step i50.

for large queries, can efficiently identify candidate matby con-
sidering only a relatively small number of fixed-size segtaenf
Q. We show that, under some realistic assumptions, the pilebab
ity of failing to retrieve the correct match, for approxiregRBSA,
drops exponentially with the number of query segments clemed.
It is important to note that the number of query segments eeed
to guarantee a certain probability of success is indepdrafehe
|Q|, making approximate RBSA scale very well with large query
lengths. This version also achieves significant speedups the
exact version and produces speedups of one to two ordersgf ma
nitude compared to existing competitors, f@| > 2, 000.

An open question is whether we can extend RBSA, so that it
does not require matches to be within edit distadicg| from Q.
It will also be interesting to study more extensively thesefs of
letter collapsing, and analyze theoretically the reasbas letter
collapsing improves performance. Finally, we believe ihatay
turn out to lead to more significant improvements in domaiith w
larger alphabet sizes, such as proteins. We aim to explegeth
issues in future work.

Acknowledgements: George Kollios and Panagiotis Papapetrou were
partially supported by the NSF 11S-0812309 grant. Vasdikitsos has
been supported by NSF grants 11S-0705749 and 11S-0812680TAsstartup
grant to Professor Athitsos, and UTA STARS awards to Profss€hris
Ding and Fillia Makedon. Dimitrios Gunopulos was partiadiypported by
the NSF 11S-0534781, the ONR N00014-07-C-0311 Aware, thaltHee-
Child, and the SemsorGrid4Env grants.

8. REFERENCES

[1] S. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman.
Basic local alignment search todburnal of Molecular
Biology, 215:403-410, 1990.
S. Altschul, T. Madden, R. Schffer, J.Zhang, Z.Zhang,
W.Miller, and D. Lipman. Gapped blast and psi-blast: a new
generation of protein database search progradusleic
Acids Res25:3389-3402, 1997.
[3] V. Athitsos, P. Papapetrou, M. Potamias, G. Kollios, and
D. Gunopulos. Approximate embedding-based subsequence
matching of time series. IACM International Conference
on Management of Data (SIGMO[)ages 365-378, 2008.
R. S. Boyer and J. S. Moore. A fast string searching
algorithm.Commun. ACM20(10):762—772, 1977.
S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof,
E. Rivals, and M. Vingron. g-gram based database searching
using a suffix array (quasar). International Conference on
Computational Molecular Biology (RECOMB)jages 77-83,
1999.
S. Burkhardt and J. Karkkainen. Better filtering withpped
g-gramsFundam. Inf.56(1,2):51-70, 2002.

(2]

(4]
(5]

(6]

[7] C. Cao, L. C. Shuai, and A. K. H. Tung. Indexing dna
sequences using g-grani¥atabase Systems for Advanced
Applications 3453:4-16, 2005.

[8] X. Cao, B. C. Ooi, A. Tung, H. H. Pang, and K.-L. Tan.
DSIM: A distance-based indexing method for genomic
sequences. IEEEE Symposium on Bioinformatics and
Bioengineering (BIBE)pages 97— 104, 2005.

[9] W. 1. Chang and E. L. Lawler. Sublinear expected time

approximate string matching and biological applications.

Technical Report CSD-91-654, University of California at

Berkeley, 1991.

M. Crochemore and T. Lecroq. Pattern matching and text

compression algorithms. IWNCM Computing Survey4996.

E. Giladi, M. G. Walker, J. Z. Wang, and W. Volkmuth. SST:

an algorithm for finding near-exact sequence matches in time

proportional to the logarithm of the database size.

Bioinformatics 18(6):873-877, 2002.

K. Hamza. The smallest uniform upper bound on the

distance between the mean and the median of the binomial

and poisson distributionStatistics and Probability Letters

23(1):21-25, 1995.

[13] X.Huang and K.-M. Chao. A generalized global alignment
algorithm.Bioinformatics 19(2):228-233, 2003.

[14] C. V. Jongeneel. Searching the expressed sequencesig (
databases: Panning for genB@informatics 1:76-92, 2000.

[15] K. J. Kalafus, A. R. Jackson, and A. Milosavljevic. Pash
Efficient genome-scale sequence anchoring by positional
hashing.Genome Resource$4(4):672678, 2004.

[16] R. M. Karp and M. O. Rabin. Efficient randomized
pattern-matching algorithm#éM J. Res. Dey.
31(2):249-260, 1987.

[17] W. J. Kent. Resource BLAT-The BLAST-Like Alignment
Tool. Genome ResearcR002.

[18] M.-S. Kim, K.-Y. Whang, J.-G. Lee, and M.-J. Lee.
n-gram/2l: A space and time efficient two-level n-gram
inverted index structure. Imternational Conference on Very
Large Data Bases (VLDBpages 325-336, 2005.

[19] Y. J.Kim, A. Boyd, B. D. Athey, and J. M. Patel. miblast:
scalable evaluation of a batch of nucleotide sequenceesieri
with blast.Nucleic Acids Re33:4335-4344, 2005.

[20] D. E. Knuth. The art of computer programmirprting and
Searching 3, 1973.

[21] I. Korf and W. Gish. Mpblast : improved blast performanc
with multiplexed queriesBioinformatics 16:1052—-1053,
2000.

[22] T. W. Lam, W. K. Sung, S. L. Tam, C. Wong, and S. Yiu.

Compressed indexing and local alignment of dna.

Bioinformatics 24(6), 2008.

V. |. Levenshtein. Binary codes capable of correcting

deletions, insertions, and reversaaviet Physics

10(8):707-710, 1966.

C. Li, J. Lu, and Y. Lu. Efficient merging and filtering

algorithms for approximate string searches|BEEE

International Conference on Data Engineering (ICDE)

pages 257-266, 2008.

C. Li, B. Wang, and X. Yang. Vgram: improving

performance of approximate queries on string collections

using variable-length grams. International Conference on

Very Large Data Bases (VLDB)ages 303—-314, 2007.

D. J. Lipman and W. R. Pearson. Rapid and sensitive prote

similarity searchesScience227(4693):1435-1441, March

[10]

[11]

[12]

(23]

[24]

[25]

[26]

12

1985.

[27] W. Litwin, R. Mokadem, P. Rigaux, and T. Schwarz. Fast

ngram-based string search over data encoded using algebrai

signatures. Innternational Conference on Very Large Data

Bases (VLDB)pages 207-218, 2007.

U. Manber and G. Myers. Suffix arrays: a new method for

on-line string searches. BODA '90: Proceedings of the first

annual ACM-SIAM symposium on Discrete algorithms

pages 319-327, 1990.

C. Meek, J. M. Patel, and S. Kasetty. Oasis: An online and

accurate technique for local-alignment searches on hicdbg

sequences. Imternational Conference on Very Large Data

Bases (VLDB)pages 910-921, 2003.

[30] G. Myers. Whole-genome dna sequenci@gmputing in
Science and Enggpages 3343, 1999.

[31] C. Navarro, E. Sutinen, J. Tanninen, and J. Tarhio. ivg

text with approximate g-grams. BOM '00: Proceedings of

the 11th Annual Symposium on Combinatorial Pattern

Matching pages 350-363, 2000.

G. Navarro and R. Baeza-Yates. A new indexing method for

approximate string matching. l@ombinatorial Pattern

Matching, 10th Annual Symposiupages 163-185, 1999.

S. Needleman and C. Wunsch. A general method applicable

to the search for similarities in the amino acid sequence of

two proteins.Journal on Molecular Biology48(3):443-53,

1970.

Z.Ning, A. J. Cox, and J. C. Mullikin. SSAHA: A fast

search method for large dna databasasnome Resources

11(10):1725-1729, 2001.

[35] W. R. Pearson and D. J. Lipman. Improved tools for

biological sequence comparisdProc Natl Acad SciU S A

85(8):2444-2448, April 1988.

B. Phoophakdee and M. J. Zaki. TRELLIS+: an effective

approach for indexing genome-scale sequences using suffix

trees. InPacific Symposium on Biocomputing. Pacific

Symposium on Biocomputingages 90-101, 2008.

D. E. K. J. Pratt and R. Vaughan. Fast pattern matching in

strings.SIAM Journal on Computing(2):323-350, 1977.

[38] G.J. Russell and J. H. Subak-Sharpe. Similarity of the
general designs of protochordates and invertebratatire
266:533-536, 1977.

[39] T. F. Smith and M. S. Waterman. Identification of common
molecular subsequencekurnal of Molecular Biology
147:195-197, 1981.

[40] E. Ukkonen. Algorithms for approximate string matogpin
Information Contro) 64(1-3):100-118, 1985.

[41] E. Ukkonen. On-line construction of suffix trees.
Algorithmica 14(3):249-260, 1995.

[42] J. Venkateswaran, D. Lachwani, T. Kahveci, and

C. Jermaine. Reference-based indexing of sequence

databases. Imternational Conference on Very Large

Databases (VLDB)pages 906—-917, 2006.

X. Yang, B. Wang, and C. Li. Cost-based

variable-length-gram selection for string collections to

support approximate queries efficiently. ACM

International Conference on Management Of Data

(SIGMOD) pages 353—-364, 2008.

Z.Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy

algorithm for aligning dna sequence®urnal of

Computational Biology7:203—-214, 2000.

(28]

[29]

[32]

[33]

[34]

[36]

[37]

[43]

[44]

