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ABSTRACT . -
. . o o Table 1: Sources in the motivating example. We also show the number
Modern information management applications often require inte- of the out-of-business restaurants that Google Maps lists.

grating data from a variety of data sources, some of which may Source | Coverage| Exactness| Freshness #Closed-rest
copy or buy data from other sources. When these data sources [MenuPages 66 08 85 35
model a dynamically changing worle.Qg, people’s contact infor- TasteSpace 44 .97 .30 123
mation changes over time, restaurants open and go out of business),| NYMagazine 43 .99 52 69
sources often provide out-of-date data. Errors can also creep into | NYTimes A4 98 -38 75
data when sources are updated often. Given out-of-date and erro-| ActiveDiner 44 96 93 81
. ) . L TimeOut 42 .996 .64 45
neous dzflta prowded. by dlﬁgrent, possibly dependent, sources, it is SavoryCities 26 99 42 34
challenging for data integration systems to provide the true values. | villagevoice 22 94 40 47
Straightforward ways to resolve such inconsistenaieg, (voting) FoodBuzz .18 .93 .36 65
may lead to noisy results, often with detrimental consequences. NewYork 14 .92 43 34
In this paper, we study the problem of finding true values and D?nﬁﬁgéi%i i(% -3(2) -‘1‘8 é%
determining the copying relationship between sources, when the GoogleMaps - . . 278

update history of the sources is known. We model the quality
of sources over time by thetoverage, exactnesmd freshness
Based on these measures, we conduct a probabilistic analysis. First
we develop a Hidden Markov Model that decides whether a source
is a copier of another source and identifies the specific moments
at which it copies. Second, we develop a Bayesian model that ag-,
gregates information from the sources to decide the true value for
a data item, and the evolution of the true values over time. Ex-
perimental results on both real-world and synthetic data show high
accuracy and scalability of our techniques.

over time, restaurants open and go out of business), and sources
often frequently update their data to capture the changes. Such
evolution presents new challenges to truth discovery.

First, true values can evolve over time and in many applications
e are interested in the whole history or a fragment of the history
of true values for particular itemg(g, a person’s addresses in the
past five years, the history of a customer’s billing information, and
the previous chairs of an organization). However, errors can creep
into data and data can go out of date. It is challenging to determine
which values were once true and in which periods they were true.
1. INTRODUCTION Second, sources are often of different quality and a natural thought

Modern information management applications often require in- 1S t0 take this into consideration when we decide true values. How-

tegrating data from a variety of data sources. Among these sources €Ver, low-quality data can be caused by many reasons: some sources
some may copy others (often without proper attribution on the web), make a Iot_ of errors in their _prowded data; some provide correct
crawl or aggregate data from othersd, Google), exchange data data but fail to update according to later changes; and some, though
with or buy data from other sources [1]. Sources often provide they update, do so slowly. All these reasons can lead toa low accu-
out-of-date and erroneous data, and such data can be propagatefcY of a snapshot of data and we should treat them differently.

by copiers. Resolving conflicts in data from different sources and ~ Third, a source may copy data from other sources and often copy
determining the true values is critical for improving quality of in- ~ €rroneous and out-of-date data unknowingly. Straightforward ways
tegrated data. Recent work on this topic focuses on resolving con- {0 resolve conflicts€.g, voting) fall short in presence of copying.
flicts from a snapshot of data [5, 12]. However, the real world is addition, the copying relationship can evolve over time as well:

dynamically changinge(g, people’s contact information changes @ Source can stop copying and become independent, can change
sources from which it copies, and can copy at some times and pro-

*Visiting research program supported by the European Comamig&rant vide data independently at other times. These can make copying
FP6-MOIF-CT-2006-041000). detection extremely tricky.

Permission to copy without fee all or part of this material iarged provided

that the copies are not made or distributed for direct commieadizantage, ExampLE 1.1. We collected data on Manhattan restaurants from

the VLDB copyright notice and the title of the publicatiorddts date appear, 12 web sources (listed in Table 1) weekly from 1/2009 to 3/2009

and notice is given that copying is by permission of the VerygeaData and examined opening and closing of restaurants. There are 5269
Base Endowment. To copy otherwise, or to republish, to posiesvers restaurants mentioned by at least 2 data sources and among them

or to redistribute to lists, requires a fee and/or speciamnigsion from the we found that 280 went out of business recently

publisher, ACM. . . -
VLDB ‘09, August 24-28, 2009, Lyon, France We decided the life period of each of the 5269 restaurants from

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/GD/0 the data and the copying relationship between the sources (shown



data-integration tasks, including source recommendation, plagia-

FoodBuzz TimeOut OpenTable rism detection, query optimization in data integration, and so on.

TasteSpace NYTimes ; NewYork evaluating source quality are of independent interest in a variety of
S

VillageVoice MenuPage DiningGuide

2. OVERVIEW
ActiveDiner NYMagazine — SavoryCities This section formally defines the problem we solve in this paper

. ) ) ) ) ) and defines quality measures of data sources.
Figure 1: Copying relationship we discovered between sources in the q y

motivating example. An arrow from one source to another indcates 2.1 Problem definition

the former is a copier of the latter. . . .
P Let O be a set of objects, each representing a particular aspect of

in Fig. 1). Accordingly, we computed for each source its cover- & real-world entity, such as th(_e affiliation_of a person. We assume
age (how many existing restaurants are provided and how many the problem of _schema _matchlng_ and object resolu_tlon has alregdy
closed restaurants are removed), exactness (how many updates ar®®€n solved using existing techniques, so each object has a unique
correct at the time of being made), freshness (how quickly sources!dentity. Each objec € O is associated with a value at a partic-
capture changes and update), and the number of closed restaurants!ar timet and can be associated with different values at different
they still provide in their lists (shown in Table'1We observe that times; if O does not exist at, we COﬂS_Ider it associated with a spe-
sources do provide stale data, their quality measures vary highly, ci&! value_L. Formally, we define théfe spanof O as a sequence

and some do copy from others. In particular, we found that source Of transitions(ir,v1), ..., (trs, vi), where (1)l is the number of
FoodBuzz which may be an aggregator, seems to have copied from Periods inO's life time; (2) the value ofO changes ta; at time

several other sources, including some out-of-date listings, and ac- t7#:% € [L,1]; (3) v1 # L, andv; # v for eachi € [1,1 - 1];
cordingly has a lower exactness. 0 and (4)try < tra < --- < tr;. We denote by» the beginning time

we are interested in and, = © if an object already exists at that

In this paper, we examine the update history of sources and studyime. In our paper we focus on atomic categorical values; we can
how to decide the evolving copying relationship between sources tréat set (or list) of atomic values as a whole and adapt techniques
and the evolving true values. Our first contribution is to propose I [3] for value similarity. As a special casé) can be associated
several quality measures of data sources, which play a key role inWith only two values, exist and non-exist}, so its life span de-
our probabilistic analysis. These measures inclooleeragehow scribes appearing and disappearingofExample 1.1).
many values in the history a source covessactnesshow many Let S be a set of structured data sources. Each sofiree S
updates conform to the reality, afréshnesshow quickly a source can (put not necessarily) provide a value for an object at a partic-
captures a new value (Sec. 2). These measures are orthogonal andla ime, and can change the value over time. We observe data
all contribute to the accuracy of the latest version of the data, as aProvided by the sources at different times; by comparing an obser-
low accuracy of current data can be due to either a low exactness ofVation with its previous observation, we can infer receptlates
provided data (erroneous data), or a low coverage or freshness fo Formally, we denote biI* = {to, ..., t,} the set of observation
capturing recent changes (outdated data). points and byU(S, ti),i € [0,n], the updates we .|nfer at t;me

Our second contribution is a set of Hidden Markov Models (HMM) {i; @S & special casé; (S, o) contains valuess' provided atto”.
that decide whether a source copies from another source and af\Ote thatan update it'(:S, ¢;), i € [1, ], can happen at any time

which moment it copies (Sec. 3). Our models consider not only N (ti—1,%i] and we may miss updates that are overwritten before
whether two sources share similar update history while one of- the next observation; thus, frequent collection can often preserve

ten updates later than the other, but also the coverage, freshnes&0re information and benefit our techniques. O.ur techniques can

and exactness of the sources, to avoid identifying slow updaters asP€ adapted to the case where we know exact timestamps of each
copiers. In addition, although the copying relationship between a UPdate. _ _

pair of sources can evolve over time, frequent radical change is less, Ve classify data sources intedependenénes andcopiers An

likely: in other words, a copier is more likely to remain as a copier. independent source updates according to its own observation of the

Our HMM models capture this intuition and so are able to make €@l world. A copier can copy from one or more other sources.
more accurate decisions both on the copying relationship and onYhen a copier copies, it may copy only a subset of updates and
when the copying is conducted. may meanwhile observe the real world independently and conduct
Third, we develop a Bayesian model to decide when the true upda_tes accord_lngly (validating or modlfylng a_copled value is also
value for a particular data item changes and what the new value is considered as independent updating). A copier may not copy all
(Sec. 4). Our model considers both source quality and data copy-th€ time: it can copy at some times and update independently at
ing, and so is less affected by possible wrong updates, stale data®ther times. In addition, a copier can stop copying from a particular
and copied data. In addition, we consider different publish patterns, S0urce and vice versa. Note that the case of a source being inde-
such as a source instantly publishing collected data, and publishingP€ndent and the case of a source being a copier but not copying at
data collected over a period of time in a batch mode (Sec. 5). a particular moment are conceptually different, but not distinguish-
We describe experimental results on both real-world data and @Pl€ from behavior of the source at that moment. ,
synthetic data, showing that our models are accurate and scalable FOr now we considenstant publishingpublishing a value right

both in detection of the evolving copying relationship and discov- after it is observed (from the real world or from another source); in
ery of evolution of true values (Sec. 6). other words, the published updates conform to the observation at

We note that although we propose our technigues in the frame- th€ point of publishing (though the observation may not conform
work of truth discovery, our techniques for detecting copying and O the reality). We consider other publish patterns in Sec. 5.

IWe describe the data set, the measures, and our techniquetinin the
rest of this paper. As we show in Sec. 6, we have evidence foostipome 2\We assume a source starts providing data befgrbut our techniques can
copyings we discovered. be easily adapted for the opposite case.



Wisc 1 2 3 I L, lMSR Ls
Table 2: Researcher affiliation example. The last update on each ob- Dewitt.aff o | | | 4 >
ject by each source is in bold font. < : le J_l Wiscl
Life span S1 So S5 Sa 55 ’ 2003 2005 2007 |
S(®, UCB) | (03,MIT) | (00,UCB) |(01, UCB)|(05,MIT )| (03, UCB) Figure 2: Computing CEF measure for Ss.
(02, MIT) (06,MIT) (05,MS)
D (&, Wisc)| (00, Wisc) | (00, UW) | (01, UW) (05, Wisc)| (03, UW)

h . than two values in the domain @1, each slice is mis-capturable.
(08, MSR) | (09,MSR) ((gé ’,\\,’IVS'SF;:)) (02, Wisc) ((§$5Wﬁc) A mis-capturable slice imis-capturedf it ends with an update of
B (®, MSR)| (00, MSR) (00:MSR) (01,MSR)|(07, MSR) (03,'MSR) S to awrong valug Thus, a slice that does not end with an update
C (G, Propel) (04, BEA) |(05,AT&T )| (06, BEA)[(07, BEA)| (07, BEA) is neither captured nor mis-captured. In Fig. 2, all 5 slices are mis-

(02, BEA) | (09,UCl) capturable, and.1, L, L3, and L5 are capturable; among them,
(08, UCI) L, andL» are mis-captured, anfls is captured.

H(©, UW) [ (00, UW) | (00, Wisc) [(01, Wisc) (05, UW) | (03, Wisc) We denote bycl(S, 0), ¢(S,0), mi(S,0), andm(S, O), re-
(05, Google)(07,Googlg (()(gzégc\gl) A (06,UW) (0(3'766\‘,)\/9)"5 spectively, the number of capturable, captured, mis-capturable, and

mis-captured slices fa$ on O. We define the coverage 6&f, de-
EXAMPLE 2.1. Consider the (synthetic) data sources in Table 2. noted byC'(S), as

They provide information on affiliations of five database researchers— C(s) = >oeco c(S,0) . (1)
Stonebraker(S), Dewitt(D), Bernstein(B), Carey(C), Halevygthd > oeco d(S,0)

we observe their data each year since 2000. Among the five sourcesyye define the exactness §f denoted byt (S), as

S1 and S; are independentSs was once a copier of> and then ) m(s,0)

changed to be a copier ¢f; since 2006 (despite difference of their BE(S)=1- 20607150. 3}
latest data);S, is a copier ofS1; Ss is a copier ofS3 but copies ) oco™ (_ 0) _

only periodically (in 2003 and 2005). 0O We define freshness ¢f by a distribution function of length of

the captured slices. We denote &y5) = >, ., ¢(S, O), and by

Our goal is to determine the evolving copying relationship be- ca(S), A > 0, the number of captured slices with length no larger
tween sources and the evolving true values of objects. Formally, thanA. Then, the freshness function §f denoted by (S, A),

we decide can be computed as follows (thus(.S, +o0) = 1).
ca(S
1. copying: for every S1,S» € S andt € T, the probability F(5,A) = l?(é))' ©)
that5y is a copier ofS att and if so, the probability ob: Note that the three different measures are orthogonal and all con-
actively copying fromS: att; tribute to the accuracy of data provided by the source at any mo-
2. life span:for every objectO € O andt € T, the true value ment: low exactness causes erroneous data whereas low coverage
(including L) of O att. or freshness causes out-of-date data.

In practice, it is often easier to capture a long slice than a short
one, and easier to make a mistake during a long slice than a short
one. We can thus compute the weighted measure, where the weight
292 Quality of data sources of a capturable slice is proportional to its length and that of a mis-

capturable slice is inversely proportional to its length. Our experi-
mental results show higher accuracy with weighted CEF-measure.

In this paper we do not consider simultaneous cyclic copying,
which happens rarely in practice.

We first introduce three quality measures of data sources, namely,
coverage, exactnesandfreshnessas a whole referred to as the
CEF-measurgon which we rely heavily in our probabilistic anal-
ysis. Ideally, a high-quality source should provide a new value for 3. DISCOVERING COPYING OF SOURCES
an objecif and only if andright after, the true value of the object This section describes how we discover copying between data
evolves to that value; we capture these three conditions by the threeggrces. As we need to reason about update pattern over time, a
measures respectively. Specifically, given a source, its coveragenayyra| choice is to use a Hidden Markov Model (we compare with
measures the percentage of all transitions of different objects that yiher options and validate its advantage in experiments (Fig. 16)).
it captures; its (in)exactness measures the percentage of all tranye start from a review of the HMM model (Sec. 3.1), then describe
sitions it mis-captures (by providing a wrong value); its freshness 5 pasic HMM model for copying discovery (Sec. 3.2), and next
measures how quickly it captures the transitions. The definition eyiend it for periodical copying (Sec. 3.3). This section assumes

of CEF-measure relies on two notiorsaptureand mis-capture knowledge of the life span of each object and we present how we
which we define next. compute it in Sec. 4.

Consider a sourc8 € S. An update ofS on a particular object
O can be triggered either by a transition©f(to reflect the value 3.1 Review of HMM
change).or by a previous uanteS)(to ks previous error). Thus, A Hidden Markov Model (HMM) [10] contains a set bidden
we consider all transition points @ and update points & on O .
. . . o statesH = {hi, ho,...,hn}, N > 1, and a set of observation
and sort them in ascending order. These points divide the whole X
. L . symbolsO = {o01,02,...,0m},M > 1. At each timet, the
observation period into a set slices The real value 0® in each o ’ !
model is in a particular hidden statg € H and we observe a

slice is the real value at the beginning of the slice. As an example, ; : -
Fig. 2 depicts the life span @fewitts affiliation and updates by partlcylar observation symbpt € O. AnHMM X = (4, B, )
contains three components:

on it; we divide the whole observation period into 5 slices.
A Sl.lce is capturableif at its beginning, the valug pr.OVIded by 3Inthe rest of the paper, when a transition and an update csathe object
S is different from the real value. A capturable slicecaptured occur between two consecutive observations, in absencaaflidge of

if it ends with an update of' to the real value. A slice isnis- which happens earlier, we treat the update as correct amealite conforms
capturableif S can update to a wrong value; when there are more to the value of the new transition or that of the previoussiton.
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Figure 3: Hidden states and transitions in the basic HMM model.

e the state transition probabilitied,y, v = {as;]4,5 € [1, N1},
wherea;; = P(qi+1 = hj|g: = h;) is the probability that
the model transits from state to h;;

e the observation probability distribution in each stadbe; 1 =
{bL]|Z S [17]\7},]' (S [1,M}}, Wherebz-,- = P(et = 0j|qt =
h;) is the probability of observing; in stateh;;

e the initial state distributionsy = {m;|i € [1, N]}, where
m; = P(gq1 = hy) is the initial probability of states;.

Given a sequence of observations, we can apptward-backward
inference to decide the probability of each state at each time point.
In addition, by applyingdaum-WelcHearning, we can decide the
parameters i, B andr from a set of observation sequences [10].

3.2 The basic HMM

Let S; and S> be two data sources. We decide if one of them
copies from the other. We apply an HMM, where the hidden states
correspond to whethe$; or S is copying at a particular moment

and the observations correspond to their updates. We next describe

our model in detail.

3.2.1 Hidden states
We first decide the set of hidden states. As we assume acyclic

copying, at each moment there can be at most one copier between

S1 andSz. In case a particular source is a copier, it can copy or
independently update at a particular observation point. Thus, there
are five hidden stated:, C1.,C1-.,C2., andC2-.. Statel rep-
resents independence$f andS,. State<”1. andC'1-. represent
thatS; is a copier ofSs; the former represents; actively copying
from S2 and the latter represents not copying at that moment.
Similarly, statesC'2. andC2-.. representS; copying or not copy-

ing while being a copier of.

Note thatC'1-., C2-., andI are not distinguishable from the
action of Sy andSz: in all casesS; andS. make independent up-
dates. We separate them because the probability of transition from
one of these states to statél. (or C2.) can be different: intu-
itively, S1 is more likely to actively copy fron: (so in state”'1.)
next when it is in stat€'1-,. than in statel. To avoid ambiguity,
we disallow transition betweefi1 . and any off, C2., andC2-..
(similar for C2_..); thus, the period of; being a copier starts from
and ends after a real copying. Fig. 3 shows the transition graph.

3.2.2 Initial and transition probabilities

We now consider how to assign initial and transition probabil-
ities for the states. Note that many transitions include the same

Vo 7
O (Transiton) —@——@—>
tr tr
©)
. e
Figure 4: An update and its previous transition.

S, (Update)

be learned from real data lBaum-Welchearning). Then, we have
initial probabilities as

P(I) = o,
11—«

4)
®)

We next define three parameters that we use to compute proba-
bilities of transitions between states.

P(C1,) = P(C2.) =

e f(0 < f < 1): the probability that a copier copies at a
particular time point.

e t.(0 < t. < 1): the probability that between a pair of
sources, a copier remains as a copier of the other source. In-
tuitively, this is more likely to happen than transformation to
independence, so typically > .5.

e ¢;(0 < t; < 1): the probability that a pair of independent
sources remain as independent. Typically> .5.

The probabilities of transitions are computed as follows. For
convenience, we denote Y, ,/ the transition from staté to A’
and byay, ;- its probability.

e Transition7;,; happens whe§; andS; remain as indepen-
dent, so has probability;. TransitionsT;,c1. and T c2.
have the same probability;;*.

When S, is a copier ofSs, it transforms to be independent
with probability 1 — ¢.. Then,S; andS, become indepen-
dent; they remain so with probabilityy, and otherwisesS-
becomes a copier df,. Thus,aci.,r = (1 —t.) - ¢; and
aci,.,c2, = (1 —t)(1 — t;) (similar for C2.).

Once S; remains as a copier df», it copies at a particu-
lar moment with probabilityf. At stateC'l., S; remains
as a copier with probability., soaci.,c1. = f - t. and
aci.,ci.. = (1 — f) - tc. AtstateC'l-., S1 has to remain
as a copier, saci_.,ci. = fandaci_..ci.. = 1—f
(similar for C2. andC2-.).

3.2.3 Observation probability distribution

Now we consider the probability &f; andS> making particular
sets of updates in a state. There are a huge number of possible
updates for each source at each moment; enumerating them and
assigning a probability for each is infeasible. Instead, we describe
equations for computing the probability of a particular observation.
We focus our attention on three types of updates at each partic-
ular point: those made by, and recently (we define “recently”
shortly) by S, denoted byUs, .s,; those made bys, before, but
not by S;, denoted byl/_s, s,; and those made b, but not re-
cently byS,, denoted byUs, —s,. Typically, the more updates in
Us, .s,, the more likely thatS; is copying fromSs; the more up-
dates inU_s, s, andUs, —s,, the less likely thatS; is copying.
Note that we do not consider updates performed neithe&s;bgnd
S2, both because enumerating them is often infeasible, and because
the set of updates that “should” be performed depends on previous

behavior, such as transformation between being a copier and beingupdates and so varies for sources. We denot@ pthe distribution

independent; thus, instead of having different transition probabili-
ties for the 15 possible transitions, we can compute them using only
a few parameters, as we describe next.

Since the period of a source being a copier starts with a real copy-
ing, the initial state cannot b@1-.. or C2_.. Assume the a-priori
probability of two sources being independentigparameters can

of Us, 55, Usy ~s,, U-s, 5, ata particular moment and defife
for S, similarly (note thatUs, s, andUs, s, can be different, sim-
ilar for other pairs of sets). We summarize observations at each
point using; and€.
Intuitively, the fact thatS; always follows updates of> can
ring an alarm in copying detection. However, this fact in itself does



not necessarily imphp; being a copier, as; might just be a slow
updater (has low freshness). Soufeis more likely to be a copier
of S if in addition one of the following holds: (1§, andS> have

Table 3: Observation 2 for S5 with respect to S3 in Example 2.1. We
skip the years when all sets are empty.

only low to medium coverage but their updates highly overlap in Year Uss. 53 U-s5.55 Uss,~s3

a close time frame; (2%, andS2 make a lot of common mistakes 2003 ® h/]{é%)u(CHB\a\}isc} 0 {(D, uw)}
(e.g, sourceS, andSs in Example 2.1); (3) the overlapped updates : —— (S, MS), 0,1
are performed byS; after the real values have already changed 2005 0 0 (H, Google}
(e.g, sourceSs andSs’s updates orHalevys affiliation after 2005 2007 {(D, Wisc), 0 0

in Example 2.1). These three cases are more suspectable because (C, BEA), (H, UW)}

they are low-probability events i§; and.S, are independent. We 2009 [ {(S, MIM)} 0

next examine the probability of an update by a source conditioned Table 4: Probabilities of hidden states forS- vs. S
on the source |ndependently updatlng or copying. . State 031 64 1 05106 107 88 039
We first consider the case whefg is mdeper_mlently updating, ConyCl | T [ 431 2 43 1] 39| 12
denoted byS; 4 S2, and compute the probability thai makes idie(C1-c) | 0 | 51| .89 51| 0 | 35| .52
an updatd’ at timet. Assumel updates the value @ to v and
the last transition or© by timet is (tr,vo) (Fig. 4). If v = wo,

the update is correct; does not make a mistake and captures the P(Q1,Q2|1) = P(Q,Q2|Cl-c) = P(Q1,Q2[C2-c)

correct value within time — ¢r, so the probability is = P([S1 /4 S2) - P(Q2]S2 / S1);  (16)
P(U, 81,t|S1 /> Sa, U true) = E(S1)C(S1)F(S1,t —tr).  (6) P(1,02|Cle) = P(|S1 — 52) - P(22|S2 /> S1); - (17)
P(Q1,Q2]|C2:) = P(Q1|S1 4 S2) - P(Q2]S2 — S1). (18)

If instead,v # vo, S makes a mistake. Let be the number of
wrong values in the domain. Not assuming a-priori knowledge on ngte that since state§'1_.,C2_. and I are not distinguishable

which wrong values are more likely to be provided, we Have from the behavior of the data sources, the probabilitie€ pand
P(U, S1,t|S1 /4 Sa,U false) = ﬂ. (7) Q- conditioned on them are the same.
. om We now present several features of our model that conform to
We denote the probability of, performingU by P(U). Ac- the intuition presented early in our discussion (the proof is given in

cording to if U is correct or not, we apply Equation (6) or (7) t0  the full version of the paper [4].)
computeP (U). Obviously,
P(U € Us, s, UUs, 5,|S1 7> S2) = P(U); ®) THEOREM 3.1. Lets be the selectivity of copying amd be the
[ s S0 = 1— P(U o number of wrong values in the domain. The observation probability
(U € Ussy,5,151 > S2) =1 = P(U). ©) distribution has the following properties:
We next consider the case whefeis copying fromsS,, denoted
by S1 — S». Then,S; copies a subset of recent updatesShyand . - :
can also update independently. Lsetbe theselectivityof a copier |nc(;ease§Uprobab|(ljlty of stat@lhc att, in‘g.ﬁ‘d‘?'”g a correct
(i.e., probability of copying an update). If we denote By(U) the update tol-s, s, decreases that probability;

probability that a copier independently performs an updatéor 2. if m > 1, adding a wrong update t&’s, s, at timet in-
Sy's recent updates, we have creases probability of stat€'1. at ¢, and adding a wrong

update tollsl,s2 decreases that probability;

3. if E(S1) > .5, adding a correct update t0's, s, at timet
decreases probability of statél. att;

For an update not performed 9 recently, we have 4. adding a wrong update t0s, s, at timet decreases prob-
P(U € Us, 5,51 — S2) = P(U). (12) ability of stateC'1.. att. O

We computeP.(U) in the same way a$(U); however, we ]
should use different CEF-measure 8y here: that of updates by ~ Recent updates:We next define what we mean byrecentup-
S, but not previously bys,. Computing such measure introduces a date by a source. To avoid penalizing updates that are not copied
big overhead, as we need to compute for every pair of sources. Weimmediately, we considerwaindowof sizelV. AssumeS; makes
can approximate by assumiisy and S have the same number of W + 1 consecutive copyings attinig,, ..., x,,,0 < ko <--- <

capturable and mis-capturable slices and so computing by k. < n (recall thatt,, is the last observation). Thecentupdates
by S5 include all of its updates at timgy,,, tx,, ], not overwritten

1. if C(S1) < s, adding a correct update t&'s, s, at timet

P(U € Us,,s5,|51 — S2) = s + (1 = s) Pe(V); (10)
PU € U-g,,5,|51 — S2) = (1 —s)(1 — P(U)). (11)

C(51182) = C(S1) — sC(S2); (13) by S»'s later updates on the same objects, and not performet] by
E(S51]52) = E(S1) + s(1 — E(S2)); (14) yet. Here, we mark a time point as a possible “copying” point if
F(S1,Al82) = F(51,A). (15) updates bys; at that time overlap with recent updates $y.

Our experiments show that such approximation significantly re-
duces execution time without affecting the results much.

To make our computation tractable, we assume independence o
updates by one source and can thus comg®:|S1 — S2)
andP(921|S1 4 S2) (our model with this assumption already ob-
tains high accuracy on real-world data and synthetic data in our
experiments; we leave consideration of update correlation for fu-
ture work). Then, the probability of observatior;( €22) for each
state comes along naturally:

ExampPLE 3.2. Consider source$s and S5 in the motivating
fexample. Table 3 showsfor S5 with respect taSs. Year 2003 and
2007 are considered as copying points. As an exan$jgléas four
updates in 2003: three overlap wisfy’s recent updates and are in
Uss,s,, and one, (Dewitt, UW), does not overlap and i$/ig, s,
(S3's update (Dewitt, UW) in 2001 is later overwritten in 2002).

Table 4 shows the probability of stat€d . and C'1-. we infer
for S5 vs. S5 (we set. = t; = .9, f = .5). Thus, our HMM model
is able to identify thatS; is a copier ofS3, copying in the years of
“We can incorporate techniques in [5] for non-uniform valigribution. 2003 and 2007. O
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Figure 5: Hidden states and transitions in the timespan HMM model.

3.3 Considering time span

Once a source remains as a copiet, it copies sooner or later. Typ-

ically, the longer it has not copied yet, the more likely that it copies
next. Itis also possible that a copier copies periodically: it makes
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Figure 6: Possibilities of the next updatel/ (S).
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4.1 Deciding life span

Consider an objea® € O. To discover its life span, we need
to decide both time and value of each transition. We proceed it-
eratively: we first decide the value 6 at timet,, then find the
most likely time point and value faD’s next transition, and repeat

independent updates for a period of time and then copies the recenthis process until we decide there is no more transition. Note that

updates by the original source.

To capture these intuitions, we need to reason about the time pe-
riod that a copier has been independently updating; however, first-

order Markov, where the probability of falling in a hidden state only

the transition points we decide have to be some observation points;
in presence of precise time stamp of updates, we can extend our
algorithm for more fine-grained results.

Deciding the initial value We denote byd our observation of

relies on the state at the previous time, cannot capture this naturally. hich value each sourcg € S initially provides forO. LetV(0)

As we only care about the time period of stété_.. andC2-., we
stick to first-order Markov, which is easy for learning and inference,
and revise our HMM model by dividing stat€1-. (similar for
C2-.) into a set of stateg'1’,.,C12,,...,C1%., whereq is the
number of observations within which a copier typically will con-
duct at least one copying (we discuss how togssbon). Among
Cc1t.,C1%.,...,C1%,, C1. can transit only to state’1',; for
eachi ¢ [1,q), C1%, can transit either t€1%%" or to C1.; fi-
nally, C1%. can transit to itself or ta’'1.. Essentially, for a state
C1%,, i acts as a timer to count for how lorfy has not copied yet.
Note that this model is more meaningful when the lengths of time
between consecutive observations are similar.

Fig. 5 shows the revised HMM model, wheféi), i € [1,q], is
the transition probability fron€'1” . to C'1. andf(0) is this proba-
bility from C'1. whensS; remains as a copier (with probability).
There are various ways to defiffé;) and we give a few examples.

e If we set them all as the same, the model is reduced to the
basic HMM model (Fig. 3).

e According to the intuition that the longer a copier has not
copied, the more likely that it will copy next, we can use an
attenuation function such as

it f
Fi) =
Sof(0) = fandf(q) — 1. We can sety as the minimum
such thatf (i) > 1 — 60, wheref is a number close to 0.

e To model periodical copying where the copier copies once
everyk observations, we can set= k, f(i) = 0 for every
i€ [0,k)andf(i) =1—6fori=k.

fe(0,1). (19)

Finally, we can learrf (i) by Baum-Welchearning. As different
sources can have different copying patterns, this learninhgcil
and is performed foeachpair of sources, different from thgdobal
learning of other parameters.

4. DISCOVERING LIFE SPAN OF OBJECTS

We now present a Bayesian model that decides life span of an ob-

ject. We start by considering a set of independent sources (S¢c. 4.1

be the domain 0O. Then, our goal is to find € V(O) that max-
imizes P(v|¥). According to the Bayes rule, we just need to find
thev that maximizesP(¥|v).

First, suppose # L. Consider a sourc@ € S. There are three
cases for the initial value it provides f6r:

e S provides the correct value, with probabiliti(.S)C/(.S)
(we ignore freshness as the first observation contains updates
accumulated over time);

e S does not provide a value f@p, with probability £(S)(1 —
C(9))s
e S provides a wrong value, with probability29).
We denote by (v) the set of sources providingon O initially and

by S(0) the set of sources not providing any value @rinitially.
Assuming independence of sources, we have

P(¥|v) =TIlge gy E(S)C(S) - Hgegpy E(S)(1 = C(S))
1— E(S)

Mses—s@w)-s0)—, (20)
With similar analysis, whem = L, we have
1—-E(S
P(¥|L) = Hseg(@)E(S) . HSES—S(O)) ( ). (21)

We can thus decide the initial value ©faccordingly.

Deciding the next transition Deciding the next transition is harder
than deciding the initial value, as we need to consider an additional
dimension-the time. Essentially, we solve the following problem.
Given the last transitioff” (O) = (tr',v") we have discovered on
O, decide the next transitiofi’(O) = (tr,v),v € V(O),v #
V' tr > tr' (T"(0) andT'(O) can happen within the same obser-
vation period). We start from a simple case, where for each source
S € 8, there is an update at timg, € [tr’, tr) corresponding
to T"(0O) (we consider other possibilities shortly). We denéts
next update by/(.S) and the observation @f (S) for eachS € S
by ®. According to the Bayes rule, we need to fincind¢r that
maximizesP(®|T(0) = (tr,v)).

If T(O) = (¢r,v), there are three possibilities f6F(S):
Case I.S captures the transition by updating the value-ofo v,
at time [tr, t,,] (recall thatt,, is the last observation point ')

then extend our model by considering copiers (Sec. 4.2), and finally (Fig. 6(a)). The probability of not making an error and capturing

present the complete algorithm (Sec. 4.3).

the transition isE(S)C/(.S), and the probability of capturing it at
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Figure 7: Possibilities of update(s) for the previous transitionZ” (O).

a particular point is decided by the freshness function. Thus (we
assumer’(S, A) = 0 whenA < 0),

P(U(S) = (tu,v), tu € [tr,tn]|T(0) = (tr, »U))

ty—tr

= E(S)C(9) / (22)

ty—1—tr

Case I1.S misses the transition by not updatindiat ¢,,] (Fig. 6(b)).
The probability of not making an error but not capturing the transi-
tion either is then

P (WIT(O) = (¢r, u)) = E(S) (1 — C(S)F(S, tn — tr)). (23)

F(S,t)dt.

Case lIl. S makes an error either by updating to a different value
(Fig. 6(c)), or by updating before (Fig. 6(d)). The probability of
making an error id — E(S). The error can be made at any time
between(¢,, t,.], so the probability of observing an error at each
pointt,, is t;‘nfgj . Among all values inV(0), the probability of
providing a particular wrong value is approximately. So

P(U(S) = (tu, )y tu € (s, 1) V vy # 0|T(O) = (tr,v))
_ (L= B(S)(tu ~ tum1)

(24)
m(t" — tul)
As we assume independence of sources, we have
P(@IT(0) = (tr,v)) = Tses PWU(S)IT(O) = (tr,v).  (25)

LIFESPAN(S, O)
while life span changes && no oscillation of life spalo
for eachS € S do
Compute CEF-measure of; endfor
HMMDEPEN(S, O); //Decide copying between sources
for each updaté/ of a sourceS € S do
ComputeP (U indep); endfor
for eachO € O do
Decide life span ofD; endfor
endwhile

OCO~NOUITRWNE

Figure 8: Algorithm LIFESPAN decide copying between data sources
and life span of objects.

such updates (Fig. 7(b)). The third case is especially tricky be-
cause some of the updates may fix previous errors (so correspond
to 7"(0)) and some may respond to later transitions. We conduct
a simple voting on the value of each moment sitéeand find the

first point when the value of) changes from’ to another value.
Accordingly, we consider updates t6 before this point as corre-
sponding taI” (O) and choose the last one &4(.S).

4.2 Considering copiers

We next consider existence of copiers. We first need to decide
the probability that an updat€ is independent. At each observa-
tion pointt, for each pair of sourceS; andS2, we can compute
the probability thatS; is actively copying fromS>, denoted by
P(S1 — S2,t). We considerS; being a copier ofS; att if the
probability of statel at¢ is less than .5 and the probability 5%
being a copier P(C1.) + P(C1-.)) is larger than that forSs.
Given an updaté/ at timet¢, we consider the probability dfl be-

ing copied fromS>, denoted b)P(SlgSQ), asP(S1 — Sa,t) if

We apply similar analysis in case there does not exist any more (1) S, is a copier ofSs att, (2) S2 provides the same value f6r

transition aftefI”, denoted byl’(O). We have

P(U(9)IT(0)) = E(S); (26)
(1= E(8))(tu — tu—1),
mtn —ty)
We can thus choose the pairiefandv with the maximum value
of P(®|T(O) = (tr,v)) as the next transition, or terminates when
P(®|T(0)) has the maximum value.
This Bayesian model has the following properties, conforming
to the intuition that the more sources update the valu@ & v in
a close time frame, the more likely that the transition involves value
v and happens before their updates.

7

P<U(S) = (tu,vu)s by >ty |m) -

PROPOSITION 4.1. Let S be a source and’(O) be a transi-
tion. AmongF(S,0) and F(S,t;) — F(S,ti—1),i € [1,n], let
Fraz(S) be the maximum one arfd,,;, (S) be the minimum one.
Consider¥, ¥, ¥3, which differ only in that/(.S) conforms to
T(0), does not exist, or does not conformZgO), respectively.
Then,

e If C(S) > P(T(0)|¥1) > P(T(0)|¥2);
o If B(S) > trmemmm s P(T(0)¥1) > P(T(0)|¥s3);
o If E(S) > trma=ersy P(T(0)|¥2) > P(T(0)|¥3). O

-1
F(S‘O)+F7YLU.‘L(S> !

Finally, note thatU/(S) is defined as the update after the up-
date corresponding ' (O), denoted by/’(.S). Intuitively, U’ (.S)
should be an update that changes the valu® o v' in [tr', tr).

att, and (3)S2 makes that update no later théy and as 0 other-
wise. We assume copying between sources are independent; thus,
the probability ofS; independently making an upddieis

P(Uindep = Ig,es,s5,25, (1 - P(S15:52)).  (28)
When we computd®(®|7(O)), we revise Equation (25):
P(®|T(0)) = Hses PU(S)T(0)V () e (29)

Finally, we note that our copying discovery technigques cannot
avoid a transitive inference of loop copying among more than two
sources, and we can end up marking the same updates at the same
time by sources in the loop all as copied (with a probability). How-
ever, such coincidence is typically rare and can be ignored.

4.3 Putting them all together

Finally, we consider how we decide the life span of each object
given updates by each source. In this process, we should consider
copying between sources and CEF-measure of sources. However,
discovering source copying requires knowledge of the life span of
each object and the CEF-measure of each source, and computing
CEF-measure requires knowledge of life spans of objects.

Our algorithm thus proceeds in an iterative fashion. In each
round, we first compute the CEF-measure of each source (depend-
ing only on life spans), then compute the probability of copying
between sources, and finally (re)decide the life span of each ob-
ject, until the discovered life spans do not change. Note that in the
first round we do not know the life span yet; we initialize the CEF-

However, there can be three cases: (1) there is one and only onemeasure of each source to the same default value except setting the

such update (Fig. 6), so we consider iti@5.S); (2) there is no
such update (Fig. 7(a)), so we consid&i(.S) not existing,U (.S)
as the first update after’, andt,, = tr’; (3) there are multiple

coverage as the percentage of objects being covered by the source;
and we assume each update has a probability of .5 to be true when
applying the HMM model for copying detection.
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Figure 9: Different types of delayed publishing.

Fig. 8 shows the complete algorithm. Convergence of the algo-
rithm remains an open problem, but in our experiments we observe
that when the total number of transitions is far more than the num-
ber of sources, the algorithm converges quickly. Time complexity
of each round is shown as follows.

PROPOSITION 4.2. Let m be the number of values in the do-
main of an object, and be the total number of updates by sources
in S. We denote byX | the size of seX. Then, complexity of one
round in AlgorithmLIFESPANiS O(|O| - |S|? - |T| +m - |O| - |S]| -
T +u- [S)).

ExAMPLE 4.3. Consider Example 2.1. Table 5 shows the life
span discovered fdlalevy. The algorithm converges in four rounds.

The CEF ofS; converges at a high coverage and exactness, whereas

that of S> converges at a low coverage and exactness. d

5. CONSIDERING DELAYED PUBLISHING

Previous sections assume instant publishing. In this section we

considerdelayed publishingwhere a source can publish an update
later than the change is observed (from the real world or from other
sources). Delayed publishing can happen when a weekly newspa

per publishes news collected through the whole week, when a web

portal publishes data crawled in a period of time in a batch mode,
when we observe only a subset of sources each time, and so on.
assumalump publishingwhere a source publishes all data it has

collected since the last publishing. This is common in practice and

our techniques can be easily extended to the case where a sourc

publishes only a subset of collected data each time, but does so i
an ordered manner.

In dump publishing, an update decision can be made at any point

between two consecutive publishings; we revise our models ac-
cordingly to consider all possibilities.

CEF-measureTo compute CEF-measure, we need to decide if a
slice is captured or mis-captured. In case of delayed publishing,
if a slice L ends with an updaté/, but the previous publishing
happens before the beginning bf thenU may actually tend to
capture the value of’s previous slices. As an example, in Fig. 9,
the updat€ O, a') att,, is to capture the value of slidg,, not L.
Formally, consider sourc& and objecO. Let Ly, ..., Ly, k >
1, be a set of consecutive slices fSrand O, such thatL, ends
with an updatd/ on O, and the previous publishing§ub happens
in slice L,. Letl; be the difference between the time of publishing
Pub and the end of slic&1, and letl;, i € [2, k], be the length of
L;. Then, with probabilityp; zklilzj” € [1,k], U is collected

(though not published) in slicei.JAccordingly, L; is captured by

U with probability p; if U provides the real value df;, and mis-
captured with probability; otherwise. We thus computés, O)
andm (S, O) by summing up the corresponding probabilities. Sim-
ilarly, when we compute freshness, if a slieg ¢ € [1, k], is cap-
tured, we consider equal likelihood of the update being captured at
any time inL;.

Wi the real world, examining contribution of different components

n

Life span Deciding the next transitioff'(O) relies on computing

the conditional probability ot/ (S) = (tu,v.). AssumeS pre-
viously publishes at time,,.., pre € [0,u). Then the update is
published at,, once the source decides to make the update at some
time in (¢pre, tu], SO we should take the sum of the probabilities:

P(U(S,T) = (b, v)IT(0)) = >0 P(U(S) = (ti,0a)|T(0)).
i=pre+1
’ (30)

Copying When deciding source copying, we need to compute the
probability of a source independently making an update at a partic-
ular time, P(U, S1,t.|S1 # S2). In case of delayed publishing,
an update decision actually can be made at any time after the pre-
vious publishing,.; the probability of the decision at a particular
observation point is proportional to the length of that observation
period. We thus take the weighted average of the probabilities (note
the difference from computing (U (S) = (tu, vu)|T(0))):

- ti —ti_
P(U,S1,talS1 2 82) = 37 P(U,S1,t:l51 > 82) -

i=pre+1 w tp're

(31)
In addition, when we decide the independence probability of an
updateU by S;, we consider thal/ is possibly copied fronb if
the updated value is the same as a value once providéd bince
the last publishing of .

6. EXPERIMENTAL RESULTS

This section presents experimental results on life-span discovery
and copying detection. We first present results on a real-world data
set (Sec. 6.2), showing that the problems we address in this paper
are real issues in the world, and our methods can improve qual-
ity of the integrated data. Since in most cases we have no means

to check the actual copying relationship and the precise life span
of objects in the real world, we also experimented on synthetic
data. We first present results on a data set that mimics complexity

to our algorithms (Sec. 6.3.2). We then consider a harder case,
where we care about only existence of sources so variety of update
fraces by different sources significantly reduces. We examine the
performance and robustness of our models on life-span discovery
(Sec. 6.3.3) and copying detection (Sec. 6.3.4).

6.1 Experiment setup

We consider a set of data sources and objects as described in
Sec. 2 and refer to them asuaiverse We refer to the special case
where each object has only two possible values, existing and non-
existing (L), asbinary universe Our goals are to decide life span
of objects and copying between sources in a given universe.

For life-span discovery, our algorithm has three main compo-
nents:copy-considering copying between sourcegF-considering
CEF-measure of sources, atielay-considering publish delay. We
implemented several variants by combining different components.

e NAIVE: For each object, vote for its value at each observa-
tion point.

SIMPLE: First apply NaIve and then decide transition points
iteratively: for each point where the voted value changes to
a new valuev, find the earliest point since the last transition
when a source providesand does not update until poitit
Copry: The same asIBIPLE except considering copying in
voting (Eqg. (28)).

CEF: Consider CEF-measure (Eq. (20-27)).

CEFDEeLAY: CEFdelay(Eqg. (30)).



Table 5: Discovered life span forHalevy and computed CEF-measure forS; and Sy in Example 2.1.

Round Life span forHalevy S1.C | S1.E | S1.F(0) | S1.F(1) | S2.C | S2.E | S2.F(0) | S2.F(1)
0 .99 .95 1 2 .99 .95 1 2
1 (2000, Wisc), (2002, UW), (2003, Google) .97 | .94 27 A4 57 | .83 17 3
2 (2000, UW), (2002, Google) 92 | .99 27 4 64 8 18 27
3 (2000, UW), (2005, Google) .92 .99 .27 4 .64 .8 .25 42

Table 6: Discovered ever-existing restaurants (#Rest) and closed
restaurants in Manhattan. We skip results of CopYCEFDELAY as al-
most all sources update every week, and skip results @&iMpPLE and
CopyY, which are similar to NAIVE.

Ever-existing Closed )
Method #Rest Prec T Rec | E-msr #Rnds | Time(s)
ALL - .60 1 75 - -
ALL2 - 94 | 34 .50 - -
NAIVE 1192 .70 | .93 .80 1 158
CEF 5068 .83 | .88 .85 7 637
CopPYCEF 5186 .86 | .87 .86 6 1408
GOOGLE - .84 | .19 .30 - -

e CoPYCEF:copyCEF. (Algorithm LIFESPAN).
e COPYCEFDeLAY: copyrCEFtdelay(Eqg. (30-31)).

For copying discovery, we compared static modets ] CURR,
TRACE), various HMM models (HMM5, HMM, HMM3), and
HMM with consideration of publish delay (HMMELAY):

e INIT/CURR: Consider only initial or latest values.

TRACE: Compute2; and(2, for each observation point and
reason over the accumulated results (Eq. (16-18)).
HMM3: An HMM model with three states, C'1., andC?2,,
the same transition probabilities as Fig. 3 except that =

ti — f,ar,c1. = ar1,c2. #
(1 —t)ts +tc(1—f).

HMMS5: The basic HMM model with 5 states (Fig. 3).
HMMN: The timespan HMM model (Fig. 5) witfi(¢)
.4 =5

HMMD ELAY: HMMS5 with publish delay (Eq. (31)).

,AC1.,I = AC2.,1 =

By default, we computed weighted CEF-measure and applied
HMMS5 in life-span discovery. Initially we set = f = .5,¢;, =
« =0.99,s = .8, m = 100, but may applyBaum-WelcHearning
to learn the parameters in some experiments.

We measure life-span discovery resultsdujt distancedefined

5231 appeared in our first crawling, and 5251 appeared in our last
crawling. In these two months, we did not notice many changes on
attribute values such as phone and address, thus focused on exis-
tence of restaurants (so a binary universe).

We considered two cases as deletion of a restaurant from a source:
the source explicitly marks the restaurant as “(CLOSED)”, or the
source implicitly removes the restaurant from its list. We consid-
ered the set of restaurants that a source provided once but deleted
later. There are 467 such restaurants. For each of them, we called
its phone number to verify if it is still open and used it as the golden
standard; we found that 280 of them are indeed clas&de ran
various algorithms to decide life span (existence periods) of each
restaurant, and reportemtecision, recall,and F-measuredenoted
respectively as?, R, F', of our results. Formally, among the 467
restaurants, we defin@ as the set of restaurants that atesed
in the golden standard an as the set of restaurants that our al-
gorithm decided as closed. TheR, = ‘C"gf‘7R = ‘G‘ng‘, and
F = %. In addition, we searched each of the restaurants on
Google Maps and reported the three measures as well.

Table 6 shows results of various methods. We observed as fol-
lows. (1) CopYCEF and CEF obtain high precision and recall. Be-
tween them, ©rPYCEF considers copying and thus obtains higher
precision and discovers more restaurants that have ever existed. (2)
NAIVE seems to have a high F-measure; however, as most restau-
rants are often mentioned by only a few sources, it concludes that
only 1192 out of 5269 restaurants have ever existed. (3) Consid-
ering all of the 467 restaurants as closed (referred to ias) Aas
low precision (.60), while considering only restaurants that are re-
moved by at least two sources as closed (referred tola2phas
low recall (.34). Finally, we observed that Google Maps lists many
out-of-business restaurants, reflecting staleness of data on the web.

Among the 66 pairs of sources, we detected copying relationship
between 12 pairs (Fig. 1). Among the sources, it is more likely
thatFoodBuzzVillageVoice andOpenTableare copiers anienu-
Pagesand TimeOutare being copied. Although we do not know
the real copying relationship, we have the following evidence to

as the Levenshtein distance between decided life-span periods an§UPPOrt some of our results. FirshodBuzzndVillageVoiceeach

real periods, where insertion or deletion of a period is penalized
by the length of the period, and substitution of a period with the

same value is penalized by the difference of the beginning points.
Ideally, the edit distance should be 0. We describe how we measur
copying-detection results in Sec. 6.3.4.

formats addresses of different restaurants in very different ways
so may copy them from various sources; in additisBoodBuzzn-
serted restaurants even after the restaurants were closed, so possibly

eCopied the data. SeconlllenuPagesas been on the web for the

longest time among the 12 sources and has the highest coverage

We implemented our models in Java and conducted experiments(-66), SO itis possible that is was copied by other sources.

on a WindowsXP machine with AMD Athlon(tm) 64 2GHz CPU
and 960MB memory.

6.2 Experiments on real-world data

We randomly selected 12 web sources (listed in Table 1 at the
beginning of this paper; the source freshness ggs 0) for each
sourceS) that provide information on restaurants in Manhattan.
We crawled their data from 1/22/2009 to 3/12/2009, once every
week, so 8 times in total. For each restaurant listing, we collected

name, phone number, address, direction, neighborhood, and price
range whenever possible. We identified restaurants by their names

We observed that GpYCEF and CEF both converged at the 5th
round and took 23.5 and 10.6 minutes respectively. Since life-span
discovery is a one-time process, the execution time is acceptable.

6.3 Experiments on synthetic data
We next describe how we generated the synthetic data and re-

ported experimental results.

6.3.1 Synthetic data

Objects: A universe contains 100 objects. In a multi-valued uni-
verse, the domain for each object contains 102 values (including

and considered Only restaurants that are mentioned by at least tWOSSome of the 280 restaurants were closed before 1/22/2009 arel al
data sources. In total there are 5269 such restaurants; among thenmeady marked “(CLOSED)” by some sources on 1/22/2009.



Table 7: Source-generation parameters and their settings. l?,:f::lfgfﬂj::f::::uﬁ?::::]] D'sc°vere°:M"Lf|:_s:’:: df"m'u,ﬁ::ﬂ:: Universe
Parameter| p: Ps fo Ji NSy | 08y Ay 5 5 e e
Default | .75 | .99 A 5 .8 2 | .075 J W 7 e simole
Range | 0-1| .951| .1-1|.1-1| 11| 2 | 0-15 ﬂ - ﬁ o
] 8 - CEF
1). We have 20 periodical observationstat. . . , t19. A Universe & E g —6—ceroeiy
can be eithesingle-periodor multi-period in the former an object j | j | —* -CopyCe
exists atto with probability p; = .5 and att,1o with probability T i
pe = .3, and a transition happens with a random value at a random Feoplers Heopiers
observation point; in the latter an object existgatvith probabil- Figure 10: Life-span discovery for the random universe. CoPY-
ity p, = .5, transits at each point with probabilify. = .1, and CEFDeLAY always obtains the best results.
once transits, disappears with probabifity= .1 or changes to an-
other random value. We note that results with more objects, more =~ Qualityof discovered Fespan Quality of discovered Ifespan
observations, or larger domains show similar patterns. S -
Sources:According to different types of data sources, we classify Natve
- Simple

a universe into three categories.

—%—Copy
—&—CEF

«««««« CEFDelay
—e—CopyCEF

Edit distance
L

e Independence universentains 10 independent sources.
e Copier universeontains 10 independent sources and 9 copiers
all copying from the same independent source. 01 02 03 04 05 05 07 05 03 1 61 02 03 04 05 05 07 05 03 1
e Random universeontains 10 independent sources and a num- Frobabiliy oftrus value (¢t il freshness (f2
ber of copiers. Each copier copies from a randomly selected
source, either independent or being a copier as well, but there
is no loop copying.

Edit distance
o koM ow B ou @

— — CopyCEFDelay

Figure 11: Life-span discovery for copier universe with instant pub-
lishing. CopYCEF always obtains the best results whileCopYCEF De-
LAY obtains slightly worse results. We observed similar trendsvhen

For each independent sour§@nd objec), ateachobservation Py is higher, but higher edit distance for each method.
point S updates the value @ to a random false value with proba- . .
bility p;, and updates to the true value with probabifity- f(A), and have several observations. (1pEYCEFDeLAY obtains the

where A is the difference between the observation and the tran- P€st results in most cases: when there are 80 copiers, it reduces
sition of that true value. We defin&(A) = fo - 22 when0 < the edit distance by 51% compared withv8LE and by 69% com-

A < —log fo, andf(A) = 1 whenA > —log fo,0 < fo < 1. pared with NuVE in the multi-period case. (2) @ YCEF obtains

Note that although,, p; andf are related to the CEF-measure, the slightly worse results, but performs better than other methods. (3)
definitions are not exactly the same and we chose to do so to testCEF and ©py have similar results and improve overv®LE.
robustness of our model. Table 7 shows how we set the parametersNOte that in case of multi-period life spans, the improvement by
For therandom universewe randomize, py, fo by Gaussian dis- CEF is slight, as the length of each period tends to be short and the
tribution with mean75, .95, .1 respectively. CEF-measure may not be computed accurately. _

For each copie”’ and its original sources, at each observa- We next test robustness of our model on various settings of pa-
tion point, C' copies fromS with probability f.. For thecopier rameters for universe generation. We describe our results on the
universe whenC' copies, with probabilityns., it copies a value binary universe, which forms a harder case, but observed similar

provided bys since last copying and with probability., it copies trend on multi-valued universe as well.
a value provided byS earlier. For each object on which it does
not copy, with probabilitya,, it independently provides the true
value; Table 7 shows setting of these parameters. Foratingom
universe we randomizef,,, ns., a,, by Gaussian distribution with

mean.5, .8, .1 respectively; when a copier does not copy on a par- ) ! :
ticular object, it examines the object with probability and pro- better results than NvE and SMPLE in all different settings. (2)
vides a value according ta, p; and . CopPY obtains similar, but sometimes even worse results thar S

By default we consider instant publishing and no transformation PLE, Showing that considering copying in itself is not enough in bi-
between being a copier and being independent; though, we considefary universe. Once we consider both copying and CEF-measure,

different settings in some experiments. In taadom universehalf the results are significantly improved: whep = .01 andfo = .1,
initial independent sources and half initial copiers can transform ©On average OPYCEF reduces the edit distance by 27.8% over

between being independent and being a copier, and the probability SIMPLE and by 18.3% over CEF. (3) CEFDAY and QpYCEFDe-
of transformation at each observation point is .1. Once a source LAY obtain slightly worse results than CEF and®yCEF respec-
transforms to a copier, it can chooses a source it has not copiedtivVely, showing that considering publish delay in case of instant
from before. Among each kind of sources, half sources publish Publishing does lose information, but only slightly. (4) Typically,
instantly and half can delay publishing. CopPYCEF obtains better results with higher CEF-measure (lower
For each setting, we ran the experiments 10 times and reported?s higherp. or fo). The only exception is when the CEF-measures
the average measure. are all very high, so all sources are highly similar andrFGCEF
can wrongly identify an independent source as a copier.
6.3.2 Results for multi-valued universe We observed similar trends on tlirdependence universex-
Fig. 10 shows results of various methods for taedom uni- cept that @PYCEF and CEF obtain similar results, showing no
verse which tries to mimic the complexity of the real world. We  Negative effect in considering copying when there is no copiers.
considered both single-period life span and multi-period life span Quality of original source: We varied quality of the source that is

6.3.3 Life-span discovery for binary universe

Quality of sources: First, we compared various methods on the
copier universavhen we varied quality of the independent sources
(Fig. 11). We make the following observations. (1) CEF obtains
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Figure 12: CopYCEFis robust to the quality Figure 13: CopYCEF obtains better results Figure 14: CopYCEFDELAY is robust to pub-
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Figure 15: Copying detection of HMMS5. Figure 16: HMMN obtains the highest F- Figure 17: HMMDELAY is not sensitive to

measure. publish delay.
copied while applied the default parameters for other independent Recall of copying discovery Copying discovery with transformation
sources. Fig. 12 shows difference of the edit distance when all o e e (Copmrn EOLPETS 072
independent sources have the same quality and that when the sourc — earmsektity el = eener e
being copied has different quality. We observe that the difference =~ T\ A
for CopYCEF is very low, and much lower than that of CEF; for N £ i
example, whep; increases from .01 to .05 angd decreases from v // f . //"
.75t0 .1, the edit distance of the results increases only by .28, while | £ = 3° /f_/ :
the difference for CEF is 1.36. Thuso®YCEF is insensitive to it ¢ R
quality of the sources that are copied. S I P
Multi-period life spans: We constructed multi-period life spans e L et

in two ways: (1) randomly generate multiple periods observing
pi = .5,p. = .3; (2) randomly choose the first existence point _. ) . .
in [0, — 1], and generate life span with periods of lengtFig. 13 Figure 18: HMMS w. leaming Figure 191 HMMS is good

shows the results of @:’Y, CEF and ©®PYCEF. We observe that is robust to initial parameter set- at detectlng transformations of
CopYCEF obtains the best results in most cases. For all models, "N9s- copiers.

the edit distance significantly decreases when the average length

of the periods increases; the edit distance remains stable once thdransform to be independent. We examine accuracy of copying de-
length reaches 10, as beyond this point the average length of ex-cision for the following categories: I. two independent sources, I1.
isting and non-existing periods remains as 10. Thusp@CEF a copier vs. its original source, Ill. a source vs. its copier, IV. two
performs better when life-span periods are longer. co-copiers, V. an independent source vs. a copier of anotheresour
and VI. a copier of a source vs. another independent source.

In addition, we measure discovered copying by precision, recall
and F-measure. L&t be the set of ordered paif$;, S») whereSs
ds a copier ofS;, and R be such pairs returned by our model. We
compute the three measures as we described earlier. To prevent a
particular category from dominating the results, we divided the uni-
verse into sub-universes, each containing two copiers, their original
source, and another independent source (so two pairs in each of the
six categories), and take the average over sub-universes. Note that
the recall equals the accuracy of Category .

We start with analysis of HMM5. Fig. 15 shows its accuracy
on various categories of source pairs. We observe that (1) HMM5
6.3.4 Copying detection for binary universe is good at identifying copiers: in Category Il, when the coverage

. . i is above .2, we obtain an accuracy of above 95%; we can miss
We next compare different models for copying detection. copiers when the coverage is low because the copiers actually con-
Overtime copier We start with the case when a copier does not duct more independent updates than copied updates, so are hard to

Publish delay: We constructed sources with delayed publishing in
two ways: (1) each source publishes at the beginning and then pub-
lishes at a particular observation point with probability .5, (2) each
source publishes at the beginning, randomly chooses the secon
publish point in[1, d], and then publishes after evedyobserva-
tions. Fig. 14 shows the resultsoBYCEFDELAY obtains the best
results when there exists publish delay: edit distance of its results
remains stable agd increases; on average it improves overry-

CEF by 26% in presence of delayed publishing; and in general,
the higher the publish delay, the larger improvement. Th® ¥
CEFDeLAY handles publish delay well.



be distinguished from independent sources; (2) HMM5 achieves an discovery considers a snapshot of data (surveyed in [6]). We con-
accuracy of nearly 1 for identifying sources that are independent of sider discovering the whole life span of an object from history of
each other (1, V, VI); (3) The only category for which HMM does source updates and we use more fine-grained source-quality mea-
not do very well is between co-copiers (1V), as they share similar sures: coverage, exactness, and freshness.

update patterns; however, the accuracy is still 88% on average. For copying detection, Berti-Equille et al. [1] recently sketched
We then compared various methods for copying detection in termsseveral high-level intuitions, but did not give concrete algorithms.
of their F-measures (Fig. 16) and their effect on results oP& Dong et al. [5] proposed detecting copying from a snapshot of data

CEF (figure omitted for space consideration). First, considering by examining overlapping errors between sources; such a model,
only a snapshot of data obtains very low precision and recall (on however, can fall short in presence of large overlap of out-of-date
average F1=.25 for GRR and F1=.16 for kiT). Second, TRACE data. We consider update history of sources in copying detection
obtains a low precision and significantly worsen results oP& and decide in which period a source is a copier and at which par-
CEF, especially whep, is high; this is because it accumulates a ticular moments it copies. We are not aware of any other work for
lot of overlapped updates over time and so is likely to conclude copying detection on relational data. In addition, we distinguish
copying. Third, although we cannot compare HMM3 and HMM5  our work fromdata provenancg?], which assumes knowledge of
directly on F-measure of copying detection, we observe that the edit provenance and focuses on management of such information.
distance of discovered life span using HMM3 is 6.7% larger than  Finally, existing work on data freshness [3, 7, 8, 9, 11] defines
HMMS5, as HMM3 does not distinguish an independent source and freshnesas how stale the data in a materialized view are compared
an idle copier (not copying). Finally, HMM obtains the highest  with the original sources, and emphasize update propagation. We
F-measure in most cases by asserting that the longer a copier hahave a different focus and consider consistency of data with re-
not copied, the more likely it should copy next; however, it does spect to evolution of real-world objects over time. We note that
not improve results of GPYCEF much. the notions ofcompleteness, consisten@ndcurrencyin [7] are
Next, we compared HMM5 and HMMELAY when there is analogous to our CEF-measure, but in a different context.
publish delay (Fig. 17). HMMELAY indeed improves over HMM5
by 8.5% on recall, 4.3% on precision, and 6.5% on F-measure on8. CONCLUSIONS

ave_ragl?, but has no ObViOlﬁs iﬁeCt on Iife-slp_an discove_r;; This paper considers how we can explore update history of sources
Finally, we examined whether our model is robust with respect i, jmnroving quality of integrated data. We measure quality of

to different copy patterns by varying the selectivity of copyiag)( source data by coverage, exactness, and freshness, andiagiyord

from .1 to 1, and changing the copy rate to 1. We observe similar jq,60ned an HMM model to decide copying relationship between
precision and show only recall. Fig. 18 shows that if we use the g, 1ces. Then, we developed a Bayesian model to decide life span
default selectivity (.8) in our HMM model, we can obtain alow re- ¢ g0 ohject. Experimental results on real-world and synthetic
call whens,, is low (below .5). If we learn selectivity, the recall  j5ta show high accuracy and efficiency of our models.

increases from .63 to .84 on average; if we learn copy rate in ad- £ fytyre work, one direction is to apply our techniques in Web
d!tlon, the recall increases further to .94 and is high for almost all 2.0 applications to identify sources or users that are trustable. An-
different values ofs,.. The results show robustness of our HMM  giper girection is to optimize query answering in data integration
model to different initial settings of parameters. with knowledge of source quality and dependence.
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