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ABSTRACT
The problem of connectivity is an extremely important one
in the context of massive graphs. In many large communi-
cation networks, social networks and other graphs, it is de-
sirable to determine the minimum-cut between any pair of
nodes. The problem is well solved in the classical literature,
since it is related to the maximum-flow problem, which is ef-
ficiently solvable. However, large graphs may often be disk
resident, and such graphs cannot be efficiently processed
for connectivity queries. This is because the minimum-cut
problem is typically solved with the use of a variety of com-
binatorial and flow-based techniques which require random
access to the underlying edges in the graph.

In this paper, we propose to develop a connectivity in-
dex for massive-disk resident graphs. We will use an edge-
sampling based approach to create compressed representa-
tions of the underlying graphs. Since these compressed rep-
resentations can be held in main memory, they can be used
to derive efficient approximations for the minimum-cut prob-
lem. These compressed representations are then organized
into a disk-resident index structure. We present experimen-
tal results which show that the resulting approach provides
between two and three orders of magnitude more efficient
query processing than a disk-resident approach at the ex-
pense of a small amount of accuracy.

1. INTRODUCTION
The problem of managing and mining graph data has seen

renewed interest in recent years because of the increased in-
terest in a number of structural applications such as chem-
ical data, biological data, XML data, and computer net-
works. A number of important data mining and manage-
ment algorithms have recently been explored in the context
of graph data [1, 15, 16, 17, 18, 19]. Detailed surveys on
graph mining algorithms may be found in [4].

In many application domains such as the web and com-
puter networks, the underlying graphs are so large that they
cannot be stored in main memory, but may need to be stored
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onto disk [6, 7, 8, 11]. For example, a typical communication
network may have millions of nodes, and the number of edges
are several orders of magnitude greater. The web-graph [7,
8] is even larger, and may require specialized hardware to
enable storage of the underlying graph structures. In such
cases, it is necessary to design efficient and effective meth-
ods for indexing and retrieval. Many algorithms which are
effective for the case of memory-resident data are no longer
effective in this scenario. Some recent techniques have been
designed [17, 18] for the case of disk resident graphs for
query processing and indexing.

In this paper, we will study the minimum connectivity
problem for massive disk-resident graphs. For a given pair
of nodes s and t, it is desirable to determine the minimum
number of edges required in order to disconnect the graph
into two components such one of them contains s and the
other contains t. This problem is identical to that of find-
ing a minimum-cut between the pair s and t. This prob-
lem is particularly useful in diagnosing survivability in large
communication networks. For example, the solution to the
problem can be used to determine the number and identity
of the minimum number of links which can be used to dis-
connect the communication network between a given pair of
nodes. It can also be used to determine and isolate dense
regions in large connected graphs.

The minimum-cut problem has been widely studied in the
literature [2], and is well known to be the mathematical dual
of the maximum flow problem. A variety of very efficient al-
gorithms exist for solving the maximum flow problem in the
memory-resident case. The best algorithms for the problem
can solve it in (slightly worse than) O(n · m) time, where
n is the number of nodes, and m is the number of edges.
However, most of the existing techniques [2, 3] are designed
with the implicit assumption that the underlying graphs are
memory-resident. The problem is significantly more diffi-
cult for disk-resident graphs. This is because most of the
existing algorithms for this problem use combinatorial or
flow-based techniques which can access the edges in the un-
derlying graph in arbitrary order. Each operation such as
updating the flows or node labels will lead to a random ac-
cess on disk. This leads to impractical running times for
a problem which is easily solvable in the memory-resident
case. Furthermore, a user may repeatedly query the graph
over different source-sink pairs, and may therefore expect
online response times. In general, our goal is to create an
index which can provide extremely efficient responses even
for very large graphs.

One possible solution to this problem is to pre-store the



minimum-cut between every pair of vertices. However, this
is not a practical solution to the problem. This is because for
large graphs, the number of possible source-sink pairs may
be too large to store the underlying cut values explicitly. For
example, for a graph containing 106 nodes, the number of
possible node pairs will be over 1011. The detailed informa-
tion for the corresponding cuts may require storage in the
tera-byte order. This level of pre-storage may not be avail-
able on most platforms today. Furthermore, since the size of
many graph data sets encountered in applications continue
to increase over time, it is critical to have an approach which
scales well with the size of the underlying data set.

In order to achieve this goal, we will design a disk-based
query index for connectivity queries. We will use a random-
ized contraction approach in order to create compressed rep-
resentations of the underlying graph. Repeated probabilistic
contractions are used in order to create different compres-
sions of the overall graph. These compressions are used to
create an index which provides high-quality responses. The
idea behind repeated storage of probabilistically compressed
data is to ensure that each of the compressed graphs is small
enough to handle effectively with the use of memory-resident
algorithms. At the same time, the repetition in the storage is
leveraged during query processing in order to provide robust
responses. We will show that such an approach is extremely
effective in creating an index for connectivity queries. At
the same time, the approach retains its efficiency, because it
can be decomposed into multiple problems of smaller size,
rather than one graph of very large size. The savings in
solving smaller combinatorial problems are far greater than
the overhead of having to solve them multiple times.

This paper is organized as follows. In the next section,
we will discuss the overall approach for creating the index
for connectivity queries. We will discuss the details for con-
structing the index and then show how to use it for query
resolution. In section 3, we will provide an analysis of the
approach. The experimental results are discussed in section
4. Section 5 contains the conclusions and summary.

2. GCONNECT: THE CONNECTIVITY IN-
DEX

In this section, we will discuss the method for creating the
connectivity index. Before describing the algorithm for cre-
ating the index, we will introduce some notations and defini-
tions. We assume that the connectivity queries are designed
for a large graph with node set N and edge set A. For sim-
plicity of discussion, we assume undirected graphs, though
the approach discussed in this paper can be extended to the
case of directed graphs. The number of nodes in the set N
is n. We assume that the size of n is quite large, though
it is typically dwarfed by the number of edges. Such large
graphs can be stored only on disks. Typical maximum flow
or minimum-cut algorithms cannot be efficiently applied to
such cases, since the maximum-flow based methods [2] use
combinatorial or flow-based techniques, which may require
random access to edge information on disk. Such random
access may cause so much performance deterioration, that it
may become impractical to use these approaches effectively
for disk-resident data. Furthermore, it is impossible to store
pairwise information on minimum s-t cuts effectively, since
the number of possible pairs may be too large to store effec-
tively.

A natural solution to this problem is to replace a single
large problem, with multiple-smaller approximations which
can be efficiently solved. The solutions from the different
approximations can be combined in order to create a single
robust solution. We will use a probabilistic compression ap-
proach in order to create the connectivity index. In order
to design the connectivity index, we will use some contrac-
tion techniques which are also used in [13] for the memory-
resident case. While the contraction ideas discussed in [13]
are useful for finding a global minimum-cut in a graph, they
are not very useful for determining the minimum s-t cut
between an arbitrary pair of vertices. Furthermore, we are
interested in creating an index which allows responses to
arbitrary source-sink pairs in online response times. In this
paper, we will show how to adapt some of the broad ideas in
this approach effectively in order to create an efficient con-
nectivity index. We will also provide a theoretical analysis
of the effectiveness of such an index. This also allows the in-
dex to provide an estimate of the accuracy of the cut-based
approach. While the accuracy of the minimum connectivity
estimation is different for different pairs of vertices, we will
see that the estimation is particularly effective for the case
of vertex pairs in which the value of the underlying mini-
mum cuts is low. Such cuts are also the most critical in
network connectivity applications, because they could lead
to network disconnection by the removal of a few edges.

The probabilistic compression approach creates multiple
compressed representations of the underlying graph with the
use of sampling. In order to create these representations,
we need to sample edges from the underlying data. This is
achieved by drawing on the concept of reservoir sampling.
The compressed representations are used in order to cre-
ate an index. The overall approach is to randomly sample
the data in order to create edge sampled and node sampled
compressions from the underlying data. We will first define
edge-sampled compressions for creating compressed graphs:

Definition 1. Let G be a graph with node set N and
edge set A. For any fraction in f ∈ (0, 1), an edge-sampled
compression H(f) of a connected graph G is one in which
we sample a fraction f of the edges of the graph. Let this
sampled edge set be denoted by S. We contract each con-
nected component induced by the edge set S into a single
node. Then we use this contracted set of nodes in order
to reconstruct the contracted graph H(f) using the original
edge set A, which is denoted by A′ on the contracted node
set. All self-loops (which will be created as a result of the
contraction) from A′ are removed.

An example of graph coarsening process is illustrated in Fig-
ure 1. The set of edges sampled are (1, 2), (3, 4), (5, 6) and
(5, 7) and are illustrated by bold lines. In this case the
nodes within the dotted circles are compressed to super-
nodes. This is because the nodes within the dotted circles
remain connected after sampling. We will see that edge-
sampled compressions have the property that the resulting
compressed graph is probabilistically biased towards retain-
ing cuts of lower value from the original graph. This is es-
sentially because edges in dense components are more likely
to be sampled, and will eventually result in a contraction.
This is also why contraction based techniques [13] work well
for determining global minimum cuts. However, the tech-
niques of [13] cannot be directly used for disk-resident cases
or for determining minimum s-t cuts for a specific source or
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Figure 1: Illustration of Graph Coarsening

Algorithm GConnect(Graph: G,
Edge-based Compressions: ke,
Node-based Compressions: kn,
Target Node Size: mt);

begin
Create ke edge-sampled compressions of graph G, each

with target size mt;
Create kn node-sampled compressions of graph G, each

with size mt;
Create inverted index on information for assignment

of original nodes to node identifiers of
compressed graphs;

end

Figure 2: Overall Approach for Constructing the
Connectivity Index

sink node. Furthermore, the aim of this paper is to design
an effective index for the disk-resident case. Next, we will
define the concept of node-sampled compressions.

Definition 2. Let G be a graph with node set N and edge
set A. For any integer m, we can define the node compressed
graph J(m) as follows. For each node, we map it to one of
the integers from 1 through m by using an unbiased die. This
is used in order to partition the nodes into m sets. Each of
the m sets is then mapped into a contracted node. Then we
use this contracted set of nodes in order to reconstruct the
contracted graph J(m) using the original edge set A, which
is denoted by A′ on the contracted node set. All self loops
(which will be created as a result of the contraction) from A′

are removed.

The overall algorithm uses the parameters ke and kn in
order to regulate the number of edge-compressed and node-
compressed graphs. The number of edge-compressed graphs
is denoted by ke, and the number of node compressed graphs
is denoted by kn. In addition, we use a target compression
size mt which represents the target number of nodes in the
compressed graphs. The optimal size of the compression is
dependent upon the structure of the graph, and is therefore
a hard problem. In general, we would like to pick a target
compression size which is such that the resulting graph can
be loaded in main memory. Note that the maximum size of
the graph with mt nodes is at most O(m2

t ). Therefore, for
a memory size of M , it is best to pick a target size which
is at least equal to mt ≥

√
M . For the case of the node

compressed graphs, this target is met in a straightforward
way by choosing a die with mt sides. For the case of the
node compressed graphs, this target is met in a straightfor-
ward way by choosing a die with mt sides. In the case of
edge-compressed graphs, this target is met by choosing the

fraction f of the edges carefully. We will discuss more on
this issue slightly later.

The algorithm proceeds in phases. In the first phase the
algorithm constructs ke edge-sampled graphs, each of which
has a target size of mt. Note that the definition of edge-
sampled graphs is expressed as a function of the sampling
fraction f rather than a target number of nodes. Therefore,
the sampling fraction needs to be picked carefully in order to
obtain the desired target number of nodes. We will discuss
this issue slightly later. In the second phase, we create kn

node-sampled compressed graphs. In this case, we create mt

nodes in each node sampled graph. We note that each of the
compressed graphs typically required much lower space as
compared to the original graphs. This is because the com-
pressed graph will contain many parallel edges between the
compressed nodes. Such parallel edges can be compressed
into a single edge with the appropriate weight. Furthermore,
a large fraction of the edges in the compressed graph will be
self-edges which can be eliminated. For example, in the case
illustrated in Figure 1, the compressed graph on the right
hand side has fewer edges than the original graph on the left
hand side.

Once all the compressed graphs have been created, we
store the mapping of the original nodes to the new com-
pressed node identifiers in a way which facilitates easy query
processing. In order to achieve this goal, we use an inverted
mapping from the original node identifiers to the compressed
node identifiers of the different compressed graphs. Note
that since a total of (kn + ke) compressions are created, we
need to store the mapping information for (kn +ke) different
graph compressions. For the node i, let the corresponding
node identifiers in the h = (kn + ke) graphs be denoted
M(i, 1) . . . M(i, h). Thus, we denote the mapping of the ith
node in the jth compression by M(i, j). We note that i is
an integer drawn from {1 . . . n}, j is an integer drawn from
{1 . . . h}, and M(i, j) is an integer drawn from {1 . . . mt}.

The inverted index is defined as follows. For the ith node,
we store the list of h = (kn + ke) 2-tuples. Specifically,
the list for the ith node contains the tuples (1, M(i, 1)) . . .
(h, M(i, h)). Thus, the size of each list is h = (kn +ke). The
overall approach for constructing the index is illustrated in
Figure 2.

Once the index has been created, it can be used very ef-
fectively for query processing. For any user-specified pair
of nodes s and t as source-destination pairs, we access the
inverted lists for s and t. These inverted lists provide us
with the mapping to the node identifiers for the h different
graphs. It remains to describe how the index is used for
query processing. We will also describe how the compressed
graphs are constructed by edge and node sampling. In a
later section, will also provide an analysis as to why such an
approach should be effective. Further, we need to design a
way to implement this approach efficiently.

2.1 Creating the Indexed Representation from
Compressed Graphs

In this section, we will discuss the process of creating the
indexed representation from the compressed graphs. The
actual process of creating the compressed graphs will be de-
scribed slightly later. Let us assume that the total number
of compressions is denoted by h. Then, for each of the h
compressions, a given node i maps onto one of the mt par-
titions. As discussed earlier the mapping of the ith node for



Algorithm QueryProcess(Inverted Representation: I ,
Source: s, Sink: t, Compressed Graphs: H1 . . . Hr);
begin

Use inverted representation to determine mapping from
nodes s and t to corresponding nodes M(s, r) and
M(t, r)

for each compressed graph with index r ∈ {1 . . . h}
for which M(s, r) 6= M(t, r) determine

minimum-cut vr using efficient in-memory
algorithms;

report the minimum among all values of vr

and the corresponding cut;
end

Figure 3: Query Processing with the Connectivity
Index

the jth compression is denoted by M(i, j).
We create an inverted representation, in which each node i

points to a list denoted by (1, M(i, 1)) . . . (h, M(i, h)). Note
that this inverted list provides the information necessary
for determining the appropriate mappings to the sources
and sink nodes in the compressed graphs for a given query.
We also maintain a list of h pointers to the disk-resident
data structures for the compressed graphs. The compressed
graphs are represented in the form of adjacency lists. For
each node, we maintain a list of their edges, along with
the corresponding weight, which is also the number of par-
allel edges which consolidate into a single edge. We note
that these adjacency lists are much smaller than those of
the original graph. This is because many of the edges in
the graph are removed during compression, and other edges
were consolidated during the compression process. While
the graphs are stored on disk during the index creation, it
is assumed that each individual graph is small enough to be
read into main memory for effective query processing. The
additional space required by the inverted representation is
h ·n, where n is the number of nodes and h is the number of
compressions. While this can be quite large, we will see that
only two of these lists are accessed for a given query. This
ensures that a given query can be resolved very efficiently.

2.2 Query Processing from the Connectivity
Index

In this section, we will discuss the techniques for query-
processing with the use of the connectivity index. The pro-
cess of querying with the index is relatively straightforward.
For a given query-node pair (s, t), we first use the inverted
representation in order to determine all the corresponding
source-sink pairs in the compressed representation. These
correspond to (M(s, 1), M(t, 1)) . . . (M(s, h), M(t, h)) in the
compressed representation. For a given graph index j, we
note that the pair (M(s, j), M(t, j)) represents the source-
sink pair in the compressed representation. We note that we
need to use only those pairs (M(s, j), M(t, j)) for which we
have M(s, j) 6= M(t, j). We note that for a given source-sink
pair, we need to access only two inverted lists in order to
determine the identity of the compressed graphs for which
the source and sink do not map onto the same node.

For each of these pairs, we determine the minimum-cut
in the compressed graph. The minimum of all these cuts is
reported as the final solution. The overall algorithm is illus-
trated in Figure 3. A key observation is that each of these

Algorithm EdgeCompress(Target: mt, Samples: ke)
begin

s = n − mt;
Create ke edge reservoirs with size s each in

one data pass;
while at least one of the ke reservoirs
induces a graph with more than mt components do

begin
Double the edges in the reservoirs which induce
graphs with more than mt components in a
database pass;

end
Remove edges one-by-one from all reservoirs for which

the induced graphs have less than mt

components until the induced graph for each
reservoir has exactly mt components;

Compress each connected component for the induced
graphs into a single node;

Remove all self-loops from compressed graphs and
consolidate parallel edges;

end

Figure 4: Creating the Compressed Graphs

graphs is assumed to be small enough to be read into main-
memory. Since the minimum-cut s-t problem is known to be
efficiently solvable for memory-resident graphs [2], it follows
that each of these problems can be solved efficiently. Even
though the minimum-cut may need to be determined mul-
tiple times over the different compressed graphs, it is still
much more efficient to do so, because the disk-to-memory
scale up for each individual problem needs to be taken into
account in addition to the reduction of the individual prob-
lem size. Most maximum-flow based techniques require aug-
menting path or other preflow-push techniques in order to
determine the minimum-cut [2]. Such techniques do not
access the edges in any particular order which can be ef-
ficiently pre-stored contiguously. Therefore, such methods
are not very practical on the original disk-resident graph,
since they may require random accesses to disk. On the
other hand, since our approach is able to read the entire
compressed graph in main memory at one time, this results
in much more efficient algorithm, even though we need to
perform the operation on multiple graphs. The overall ap-
proach for query-processing is illustrated in Figure 3.

2.3 Creating the Compressed Representation
In this section, we will discuss the process of creating the

compressed graphs from the data. We will construct the
edge-sampled graphs with the process of reservoir sampling.
The key difficulty is that the edge sampled graph H(f) is
defined in terms of sampling fraction f , but we do not know
what this sampling fraction should be in order for the com-
pressed graph to have node cardinality which is approxi-
mately equal to the target mt. We note that if we sample
too many edges, this will typically result in some inefficiency
in terms of storage, but we will see that the resulting reser-
voir can always be used to create a compressed graph of
the appropriate size. Therefore, we will show how to use a
logarithmic number of passes in order to achieve a reservoir
of the appropriate target size. We note that the minimum
number of edges required in order to create mt components
is n−mt, and such a graph would be a perfect forest with no
cycles. Therefore, we first create a reservoir of n−mt edges
in the first pass, and check if the resulting graph has no more



than mt components. Typically, the number of components
would be much greater than mt because of the presence of
cycles in the sampled edges. Therefore, we will perform an-
other pass and double the number of edges present in the
reservoir, by adding an equal number of edges to those al-
ready present in the reservoir. We again check if the number
of components in the graph is no more than mt. We repeat
the process of doubling the number of edges until the num-
ber of components in the resulting graph is no more than mt.
We then randomly delete edges one by one from the reser-
voir, until the number of components is exactly mt. The
final set of edges in the reservoir defines the mt connected
components. We note that such an approach requires only
a logarithmic number of passes over the data set in order to
work effectively. We summarize as follows:

Lemma 1. For a graph with n nodes, the reservoir sam-
pling approach requires O(log(n)) passes over the data in or-
der to determine the compressed representation of the graph
for a target node size of mt.

The results of the lemma are easy to prove, since the size of
the reservoir doubles in each pass, and an upper bound on
the reservoir size is the maximum number of edges, which is
at most n2. Note however, that we need ke different reser-
voirs in order to construct ke different compressed graphs.
Building the reservoirs sequentially would blow up the num-
ber of passes by a factor of ke. Therefore, we can build all
the ke reservoirs in parallel. In a given pass, we add to
each of the reservoirs for which the number of components
in the corresponding induced graph still exceeds mt. Thus,
the number of passes continues to be logarithmic, even when
multiple compressions have to be handled at one time.

We note that the only purpose of the reservoir is to define
the connected components in the graph. Once the connected
components have been determined, we go back to the origi-
nal graph, and perform the following steps:

• We compress each connected component in the original
graph into a single node. We note that this will result
in parallel loops and self-edges.

• We remove all self-loops. We also consolidate all paral-
lel edges into a single edge with the appropriate weight.

The resulting graph is the edge-compressed graph. This
graph is of significantly smaller size than the original graph.
As in the previous case, the process of constructing the
corresponding compressed graphs can be parallelized. The
overall procedure for creating the edge-compressed graphs
is illustrated in Figure 4.

Next, we construct the compression with the use of node
sampling. In this case, each node is assigned to one of mt

partitions by using random assignment, where the probabil-
ity of each partition being included is equal. Once the node
partitions have been constructed, we use the same pair of
steps as in the previous case in order to create the com-
pressed graph.

A question arises as to why we need both node-based and
edge-based compression. As we will see, the process of edge-
based compression is biased towards preserving cuts with
low value. Dense subgraphs are typically compressed into a
single node in edge-sampled compressions. This leads to the
possibility that the source and sink may map into the same
node for edge-sampled compressions. In this case, it is not

possible to determine the minimum-cut over the compressed
graph in order to estimate the minimum connectivity over
the original graph. In order to guard against this possibility,
we also add a few node-sampled compressions. As we will
see in the analysis section, the addition of a small number
of node sampled compressions allows us to ensure with very
high probability that the source and sink nodes map onto
different nodes in at least one or more compressed graphs.

3. ANALYSIS OF ALGORITHMIC EFFEC-
TIVENESS

In this section, we will provide an analysis of the algo-
rithmic effectiveness of the approach. We first make the
following simple observation about the correctness of the
approach.

Observation 1. The query processing technique for the
GConnect algorithm always results in an approximation, which
is an upper bound to the true minimum-cut value.

The logic for this observation is as follows. For each cut
in the compressed graph, a cut with equivalent value exists
in the original graph. This ensures that the minimum-cut
in the compressed graph is also represented in the original
graph. On the other hand, the converse is not true. A cut in
the original graph may not have a corresponding cut in the
compressed graph. Therefore, the minimum-cut in the com-
pressed graph is always an upper bound on the minimum-cut
in the original graph. By using a larger number of com-
pressed graph samples, this bound can be tightened. At a
slightly later stage, we will investigate the nature of this
bound with the use of different input parameters.

First, we will compute the probability that some cut can
always be found with this sampling approach. We note that
since the source and sink nodes may map onto the same
node, a given compression may not yield a minimum-cut
value in the compressed graph. If this is true across all com-
pressions, then it will not be possible to provide an estimate
of the minimum-cut value. Therefore, we define a (s, t)-valid
compression for a source-sink pair s-t as follows:

Definition 3. A (s, t)-valid cut for a given compression
and a source-sink pair s-t is defined as a compression in
which s and t map onto different nodes in the compressed
graph.

We note that edge-sampled compressions typically tend to
contract dense subgraphs into a single node. Note that when
all edge-sampled compressions map the source s and sink t
to the same node, it implies that the source and sink are
densely connected. Such cuts are typically less important
from the perspective of connectivity queries. This is because
typical networking applications attempt to find communica-
tion bottlenecks with small minimum-cut value. Therefore,
it is more important to determine those cases in which the
connectivity between the source-sink pairs is as little as pos-
sible. However, even for such cases, we would like to be able
to provide a reasonable estimate of the minimum-cut value.
This is precisely the reason that node-sampled cuts are cre-
ated. Since nodes are assigned randomly to the mt different
partitions, the probability that the source-sink pairs are as-
signed to different partitions is given by 1/mt. When the
sampling is repeated over kn different independent compres-
sions, the probability is given by (1/mt)

kn . We note that



when for modest values of kn and mt, such as mt = 100, and
kn = 10, the probability of being able to obtain at least one
(s, t)-valid compression is 1− 10−20 ≈ 1. This probability is
quite acceptable for most practical applications. In practice,
a fraction (mt − 1)/mt of the node-based compressions may
turn out to be (s, t)-valid, and this leads to an even more
robust estimate. We summarize the result below:

Lemma 2. Let kn node-sampled graphs be created with
node size of mt. Then, for any source-sink pair (s, t), the
probability of obtaining at least one (s, t)-valid compression
is given by 1 − (1/mt)

kn .

We note that the entire purpose of the node-sampling ap-
proach is to allow a high probability of obtaining (s, t)-valid
compressions, even when the source and sink are chosen from
the same densely connected component. Even a modestly
small value of kn is sufficient to achieve this goal.

Next, we will study the effect of sampling on the quality of
the underlying cuts. We would like to provide the end-user
with some estimates on the quality of the underlying cuts for
a given query. To this effect, we will use the edge-sampled
cuts, since they are biased towards retaining cuts of low
value. For each of the ke edge sampled graph compressions,
let f(1, mt) . . . f(ke, mt) be the fraction of edges (from the
original graph) which are needed to be sampled in order
to reduce the compressed graph to mt nodes. Note that
while f(1, mt) . . . f(ke, mt) cannot be controlled by the end-
user (since they are dependent on a randomized sampling
process), they can certainly be known a-posteriori, once the
reservoir-based sampling process has been completed. This
estimation is helpful in providing the user with the necessary
data required in order to provide feedback about the quality
of the cut. This data is stored after the creation of the
compressed graphs. We make the following assertion:

Lemma 3. Let V (s, t) be the minimum connectivity be-
tween the nodes s and t in the original graph G. Let us
consider an (s, t)-valid compression for the jth graph, where
1 ≤ j ≤ ke. Then, the probability that the minimum-
cut is unaffected by the compression is given by at least
(1 − f(j, mt))

V (s,t).

Proof. We note that a minimum-cut will survive in the
compressed graph, if none of the edges in it are sampled.
The probability that a particular edge is sampled is given
by 1 − f(j, mt). Since the minimum-cut contains V (s, t)
edges, it follows that the probability that none of the edges
in the cut are sampled in the reservoir is given by (1 −
f(j, mt))

V (s,t).

An important observation is that since V (s, t) represents the
number of edges in the minimum-cut, it typically contains
far fewer edges than an average cut. This increases the rela-
tive probability of the survival of the minimum-cut. This is
also the reason why such an approach for minimum connec-
tivity indexing is likely to work in practice. Furthermore, we
will see that typical values of the sampled fraction f(j, mt)

are quite small. In such cases, the value of (1−f(j, mt))
V (s,t)

can be modestly large. For example, in important connec-
tivity applications, cuts containing a small number of edges
are especially important from an application point of view.
For example, consider a vulnerable cut containing at most
5 edges, and f(j, mt) = 0.1. In such cases, the probabil-
ity that the cut survives is given by 0.95 ≈ 0.59. The use

of multiple samples can reduce the probability of survival
to arbitrarily large values. This is the reason for using ke

different edge-sampled compressions. For example, if we
use ke = 10, and each of these samples are (s, t)-valid with
a similar value of f(j, mt), then the probability that the
minimum-cut survives in none of the compressions is given
by (1−0.59)10 ≈ 1.34∗10−4 . This probability is sufficiently
small to assure us of the minimum-cut with high probability.
While the value of f(j, mt) may be different across different
values of j, the aim of this example was to show that the ap-
proach retains its effectiveness over small values of ke. Next,
we will quantify the effect of using multiple compressions on
the probability of the survival of the minimum-cut value. In
order to achieve this goal, we will introduce some additional
notations.

For a given source s and sink t, and index j ∈ {1 . . . ke},
we define the binary bit B(j, s, t) to be 1, if the jth edge-
sampled graph is (s, t)-valid. Otherwise, we define B(j, s, t)
to be 0. We note that the value of B(j, s, t) can be deter-
mined from the inverted representation for a source s and
sink t. Then, the estimated value of the probability that the
minimum-cut survives is as follows.

Lemma 4. Let V (s, t) be the minimum connectivity be-
tween the nodes s and t in the original graph G. Then,
the probability that the minimum-cut is obtained from the
ke different edge-sampled compressions is given by at least
1 − Πj∈{1...ke},{B(j,s,t)=1}(1 − (1 − f(j, mt))

V (s,t)).

Proof. These results can be proved directly from Lemma
3. We note that the minimum of the cut values is the true
minimum-cut, if a minimum-cut survives in at least one of
the ke edge-sampled compressions in which s and t map
onto different nodes. The complement of this event is one
in which the cut survives in none of the edge-sampled com-
pressions. We can obtain the value of this complement by
multiplying together the probabilities for each of the indices
j for which the value of B(j, s, t) is 1. The individual prob-
abilities in this product may be determined by using the
results of Lemma 3. The result follows.

We note that V (s, t) is not known explicitly. However, an
over-estimate on V (s, t) can be obtained by using the least
of the minimum s-t cut values across the different compres-
sions. As long as we use an over-estimate on the value of
V (s, t), the results of Lemma 4 continue to hold true. We
use this over-estimate in order to provide bounds on the
quality of the results obtained by the index.

3.1 Further Optimizations
As discussed earlier, we use node-sampled compressions in

order to reduce the probability that the source and sink pair
map to the same partition in a given compression. This situ-
ation often arises in the case of edge-sampled compressions,
but does not arise too often in node sampled compressions.
The reason that this situation often arises in edge sampled
compressions is that some of the dense subgraphs are very
large, and may absorb too many of the nodes. In order
to improve the results further, we put a constraint on the
size of each edge-sampled component during the contrac-
tion process. In other words, during the process of contrac-
tion, we ignore edges which are incident on the components
whose size has reached this maximum. We note that this
option essentially incorporates some of the concepts of node
sampled compression into the edge sampled compressions as



well. Furthermore, the node-sampled compressions are used
for estimation in query processing only for cases where a
valid pair is not available from the edge-sampled compres-
sions.

4. EXPERIMENTAL RESULTS
In this section, we will present the experimental results of

the GConnect index. We will present the effectiveness and
efficiency on a number of real data sets. We note that the
minimum-cut method needs to be implemented as a sub-
routine for query-processing in our disk based index. For
this purpose, we used the HIPR implementation available
in [20]. This is essentially an efficient version of the push-
relabel algorithm [3] for the s-t maximum flow problem. We
also create a disk-based implementation of this algorithm,
in which each access to a node or an edge was required to
go back to the disk in order to determine the appropriate
parameters. This also means that all operations such as
retrieving an edge, updating the capacity information, or
performing a relabel need to access the disk in an order
which cannot be controlled a-priori. Because of this ran-
dom access, the disk-based version is orders of magnitude
slower than the memory-based version. Nevertheless, it is
the only reasonable solution for very large graphs. In this
paper, we will show that the repeated use of the memory-
resident technique (which is required by our index structure)
is much more efficient than even a single application of the
disk-based algorithm.

The algorithm is tested on six real data sets. The first five
are matrix data sets, which are downloadable from the Uni-
versity of Florida Sparse Matrix Collection web site 1. The
particular data sets used from that web site were graham1,
ex3sta1, Andrews, gupta1, and cage13. The sixth data set
is the well known DBLP data set2.

The overall process comprises the main steps of index con-
struction and query processing. We will test the effective-
ness of query processing, and the efficiency of both. In the
index construction step, we generate ke edge-based contrac-
tions and kn node-based contractions. The default value of
ke was set to 100, and the value of kn is set to 0.2 ·ke in our
experimental setting. We will explicitly specify the places
at which these parameters are set to different values. The
query processing step is tested with 500 queries in order to
illustrate the effectiveness and efficiency of our algorithm.
We will provide detailed results in this section.

4.1 Accuracy Analysis
The objective of the GConnect algorithm is to efficiently

determine the connectivity of a large graph by shrinking its
size without significantly compromising accuracy. The effec-
tiveness of the GConnect algorithm in terms of the compres-
sion factor and the accuracy is illustrated in Table 1. The
table provides the size of the original data set, the com-
pressed graph size, the compression ratio, and the accuracy
in terms of the percentage of time that the minimum-cut is
correctly determined. We note that the compressed graph
size is the average behavior of a single graph, and the total
size of all compressed graphs may possibly be larger than the
original data. The raw sizes of the data sets are dominated
by the number of edges rather than the number of nodes.

1http://www.cise.ufl.edu/research/sparse/matrices
2http://www.informatik.uni-trier.de/˜ley/db/
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Figure 5: Accuracy Plot (Data Set ex3sta1)
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Figure 6: Accuracy Plot (Data Set Andrews)

In each case, the results are averaged over 500 source-sink
pairs. In order to calculate the compression ratio, we com-
puted the percentage reduction in the size of the graph size
as a result of the compression process. It is evident from Ta-
ble 1 that the reduction in the size of the compressed graphs
is greater than 95% in almost all the cases. Thus, the com-
pressed graph is at least an order of magnitude smaller than
the original graph. We will see in a later section that this
reduced size results in orders of magnitude improvement in
the processing times of the GConnect algorithm. This is
especially the case because the running times scale quadrat-
ically with the underlying graph size.

In the last column of Table 1, we have also illustrated the
accuracy of the minimum-cut with respect to the true value.
This accuracy is expressed as the percentage of source-sink
pairs for which a correct cut value is returned. In three of
the data sets, we obtained the correct minimum-cut over all
500 cases. In the other data sets, there were errors in only a
small percentage of the cases. While Table 1 provides a good
overview of the accuracy behavior of the algorithm, it pro-
vides little understanding of how this accuracy is affected by
the minimum-cut value and the behavior of the erroneous
cases. The value of the minimum-cut plays a role in the
accuracy level, since the probability of incorrectly contract-
ing the true minimum-cut increases with the value of the
minimum-cut.

In order to provide better insight, we first examine the dis-
tribution of the accuracy with different minimum-cut sizes.
We binned the output values of the minimum-cut into dif-



Original Size Compressed Graph Size Reduction (%) Error (%)
Nodes/Edges Nodes/Edges

graham1 9K / 0.21M 0.6K / 0.9K 99.58 5.8
ex3sta1 16K / 0.33M 3K / 12.7K 96.16 0.0
Andrews 60K / 0.37M 10K / 24.1K 93.15 0.0

dblp 164K / 0.76M 16K /19.8K 97.35 2.8
gupta1 31K / 1.06M 12K / 17.2K 98.39 0.0
cage13 445K / 3.52M 40K / 90.1K 97.44 1.4

Table 1: Size Reduction and Overall Effectiveness
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Figure 7: Accuracy Plot (Data Set gupta1)

ferent ranges and show the accuracy over each range. The
results for the six data sets are illustrated in Figures 5, 6, 7,
8, 9 and 10 respectively. The dark bar in each figure repre-
sents the number of cases tested, and the white bar repre-
sents the number of cases for which the correct minimum-cut
value was returned. In the case of Figures 5, 6, and 7, the
two bars are exactly the same, because all 500 source-sink
pairs are solved correctly for these data sets. On the other
hand, for the cases of Figures 8, 9 and 10, we can see that
there are a few errors in some cases. Most of the errors were
for cases where the minimum-cut value was large. This is
because a larger value of the minimum-cut is more likely to
cause an incorrect contraction. Even in the cases, where the
minimum-cut was not correct, the relative errors which were
obtained were relatively small. Another observation is that
every single minimum cut returned by the index (throughout
the experimental section) was from an edge-sampled com-
pression rather than a node-sampled compression. Never-
theless, the use of node-sampled compressions is necessary
in order to ensure that a theoretically valid cut is always
available. Next, we will examine the error distribution of
the cases in which an incorrect result was obtained by the
algorithm.

We plot the distribution of the relative error behavior with
the output value of the minimum-cut. The relative error is
defined as the ratio of the absolute cut error to the correct
minimum-cut value. The results are illustrated in Figures
11, 12 and 13. In this case, we present the results only for
the three data sets in which some of the source-sink pairs
yield incorrect results. Furthermore, since the number of
incorrect cases is much smaller than the number of correct
cases, we present only the results for the incorrect cases in
order to enable clarity of presentation. The X-axis in each
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Figure 8: Accuracy Plot (Data Set graham1)
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Figure 9: Accuracy Plot (Data Set dblp)

figure contains the range of relative error, while the Y -axis
indicates the number of cases for which this range of relative
error was achieved. In all cases, most of the erroneous cases
had relative error which was less than 0.6. For two of the
data sets (dblp and cage13), the majority of the cases had
relative error which was less than 0.4. Thus, for the small
number of source-sink pairs in which the correct cut was not
obtained, the relative error was quite small and provided a
good idea of the minimum-cut value.

4.2 Computational Efficiency
All experiments were performed on a Microsoft Windows

XP machine with Intel Core2 Duo 2.5G CPU and 1.5GB
main memory. The algorithm was implemented in C++.
The existing minimum s-t cut algorithms require random
access to disk for each operation such as performing a flow



Data Set #Nodes(K)/#Edges(M) Time (secs.)

graham1 9K/0.21M 22.96
ex3sta1 16K/0.33M 65.18
Andrews 60K/0.37M 173.13

dblp 164K/0.76M 691.52
gupta1 31K/1.06M 215.84
cage13 445K/3.52M 2189.67

Table 2: Index Construction Time
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Figure 10: Accuracy Plot (Data Set cage13)
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Figure 11: Relative Error Distribution (Data Set
graham1)

augmentation on an edge or a relabel on a node. This makes
the execution time orders of magnitude slower than memory
resident algorithms. The aim of the repeated compression
approach in our technique is to reduce the underlying graph
size so that it can be efficiently solved with memory resi-
dent algorithms. We further note that the running times of
maximum flow algorithms scale superlinearly with the graph
size. Therefore, the computational time in processing a re-
duced graph is reduced by a much greater factor than the
reduction in size. It is evident from Table 1 that the reduc-
tion in sizes of the different data sets are typically by a huge
factor of nearly 20. Therefore, the CPU time reductions
are by even greater factors. When the combine the savings
from this reduction and the memory-based implementation,
we will see that the query processing time of the GConnect
algorithm is superior to the disk-based implementation in
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Figure 12: Relative Error Distribution (Data Set
dblp)

 0

 2

 4

 6

 8

 10

(0,0.2] (0.2,0.4] (0.4,0.6] (0.6,0.8] >0.8

N
U

M
B

E
R

 O
F 

PA
IR

S

RELATIVE ERROR

Erroneous Cases

Figure 13: Relative Error Distribution (Data Set
cage13)

spite of the fact that the GConnect algorithm needs to run
the method repeatedly in order to effectively approximate
the minimum-cut.

We will examine the times required for index construction
and query processing. In order to generate these results, we
used the default value of 100 edge-sampled and 20 node-
sampled compressions. The time required for index con-
struction is illustrated in Table 2. The index construction
time in Table 2, is dominated by two components. The first
component is the creation of the connectivity index with the
use of a sample-based compression approach. This step es-
sentially determines the mapping of nodes to the different
partitions. This mapping is then efficiently stored in the
inverted representation. The second component processes
this compressed graph, removes all self-loops, and consoli-



Data Set GConnect Query Processing Disk-based Running Time Disk-based Running Time
Time (seconds) (seconds) No Cache (seconds) 5% Cache

graham1 1.80 1,550 1,345
ex3sta1 7.59 2,300 2,164
Andrews 22.80 3,070 3,004

dblp 8.20 4,712 4,457
gupta1 12.66 5,245 5,076
cage13 78.37 59,339 58,710

Table 3: Running Time Comparison

dates all parallel edges into a single edge with an appropriate
weight. It is evident from the results of Table 2, that the
running times are quite modest in all cases. Since the index
construction step is a pre-processing step, we have greater
leeway in allowing for larger running times than the query
processing step. It is evident from Table 2, that the con-
struction phase required only a few minutes in most of the
data sets.

Next, we will examine the query processing efficiency of
the GConnect algorithm. We will compare the query pro-
cessing times with a disk-based version of the algorithm. We
also implemented a disk-based version with a cache which
was 5% of the size of the original graph. The cache was used
to speed up processing. The results are illustrated in Table
3. Each row in the table illustrates the running time for ex-
ecuting the minimum-cut algorithm on 50 different source-
sink pairs. It is evident that the the GConnect algorithm is
several orders of magnitude faster than (both versions of)
the disk-based implementation, even though it needs to be
run multiple times on several compressed graphs. This is
quite reasonable because each compressed graph is almost
two orders of magnitude smaller than uncompressed graph,
and we do not need to perform any disk-based computa-
tions. The overall result is that the query-processing time
is between two and three orders of magnitude faster than
the disk-based version of the algorithm. It is also evident
from the results of Table 3, that our approach provides the
difference between an impractical disk-resident solution and
an extremely efficient query processing index for the prob-
lem. We further note that the caching technique was not
particularly helpful because of the random access behavior
of the underlying edges. As a result, the advantage of the
cache did not significantly outweigh the extra overhead of
maintaining the cache.

4.3 Sensitivity Analysis
The experimental results presented so far show that the

GConnect algorithm is extremely effective and efficient over
the different data sets. In this section, we will also illustrate
the robustness of the technique. Clearly, the effectiveness
of the algorithm is sensitive to the number of compressions.
Since edge-sampled compressions are more crucial to the
effectiveness of our approach, we will test its effectiveness
with increasing number of edge-sampled compressions. We
will compare the different techniques over various ranges of
minimum-cut values.

The results for the different data sets are illustrated in Fig-
ures 14, 15, 16, 17, 18 and 19. The X-axis corresponds to the
minimum-cut size and the Y -axis corresponds to the accu-
racy. We have illustrated the accuracy for different number
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Figure 14: Sensitivity Plot (Data Set dblp)
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Figure 15: Sensitivity Plot (Data Set gupta1)

of compressions by bars of different colors. Clearly, the ac-
curacy of the GConnect algorithm increases with increasing
number of compressions. However, it is interesting to see
that the GConnect algorithm was able to provide obtain
modestly accurate results with as few as 30 compressions
in some data sets. A particular example is the case of the
gupta1 data set, which is illustrated in Figure 15. In this
case, the accuracy is always 100% even when as few as 30
compressions are used. In general, the results are extremely
robust across different numbers of compressions for the data
sets illustrated in Figures 15, 17, and 18. In these cases,
extremely robust results may be obtained by using as few
as 100 edge-sampled compressions. These results indicate
that the GConnect technique is an extremely robust method
which is several orders of magnitude more efficient than cur-
rently available techniques, and can be used effectively in a
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Figure 16: Sensitivity Plot (Data Set graham1)
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Figure 17: Sensitivity Plot (Data Set ex3sta1)

wide variety of practical scenarios.

5. CONCLUSIONS AND SUMMARY
In this paper, we presented a connectivity index for mas-

sive disk-resident graphs. The problem of connectivity queries
is extremely challenging in the disk-resident case, because
the query-processing techniques may need to access the edges
on disk in random order. As a result, queries which are
normally quite efficient for the memory-resident case are ex-
tremely slow over such graphs. The goal of the approach
is to create a compressed representation of the underlying
graphs, and use it as an index for connectivity query pro-
cessing. Even though such an approach requires multiple ap-
plications of a minimum-cut algorithm over the compressed
graph, the ability to do so over a memory-resident graph is
an enormous advantage for the technique. The results show
that the approach is an extremely effective technique which
improves the performance by orders of magnitude for the
disk-resident case. At the same time, the approach provides
extremely high accuracy in terms of quality.

This paper discusses the particularly challenging case of
disk-resident graphs. An even more challenging case is that
of graph streams which evolve over time. Such graphs can
arise in the context of a variety of network-based applica-
tions. In future work, we will discuss the extension of this
approach to the case of graph streams. We expect that
such applications will require a more innovative approach to
graph compression, since it is no longer possible to perform
multiple passes over the data set.
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