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ABSTRACT
Web archives preserve the history of born-digital content and
offer great potential for sociologists, business analysts, and
legal experts on intellectual property and compliance issues.
Data quality is crucial for these purposes. Ideally, crawlers
should gather sharp captures of entire Web sites, but the
politeness etiquette and completeness requirement mandate
very slow, long-duration crawling while Web sites undergo
changes.

This paper presents the SHARC framework for assessing
the data quality in Web archives and for tuning capturing
strategies towards better quality with given resources. We
define quality measures, characterize their properties, and
derive a suite of quality-conscious scheduling strategies for
archive crawling. It is assumed that change rates of Web
pages can be statistically predicted based on page types, di-
rectory depths, and URL names. We develop a stochastically
optimal crawl algorithm for the offline case where all change
rates are known. We generalize the approach into an online
algorithm that detect information on a Web site while it
is crawled. For dating a site capture and for assessing its
quality, we propose several strategies that revisit pages after
their initial downloads in a judiciously chosen order. All
strategies are fully implemented in a testbed, and shown to
be effective by experiments with both synthetically generated
sites and a daily crawl series for a medium-sized site.
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1. INTRODUCTION

1.1 Motivation
The Web is in constant flux. 80% of the pages change

within a half a year. To prevent the content from disap-
pearing, national libraries and organizations like the In-
ternet Archive (archive.org) and the European Archive
(europarchive.org) are collecting and preserving the ever
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changing Web. These archives not only capture the history of
born-digital content but also reflect the zeitgeist of different
time periods over more than a decade. This is a gold mine
for sociologists, politologists, media and market analysts, as
well as experts on intellectual property (IP, e.g., at patent
offices) and compliance with Internet legislation (e.g., for
consumer services). For example, when a company is accused
of violating IP rights (regarding inventions or trademarks), it
may want to prove the existence of certain phrases on its Web
pages as of a certain timepoint in the past. Conversely, an
Internet-fraud investigation may aim at proving the absence
of certain phrases (e.g., proper pricing statements or rights
of withdrawal) on a Web site. Clearly, this entails that Web
archives need to be maintained with a high standard of data
quality.

Crawling the Web for archiving substantially differs from
crawling performed by major search providers. Search en-
gines aim at broad coverage of the Web, target the most
important pages, and schedule revisits of the pages based
on their individual freshness and importance. It may even
be sufficient to see the href anchor in order to index a page
without ever visiting the page itself. In contrast, archive
curators are interested in a complete capture of a site either
at reasonably regular time points (weekly, monthly, quar-
terly) or in aftermaths (natural disasters, political scandals,
research projects).

During a site crawl, pages may undergo changes, resulting
in a blurred snapshot of the site. We borrow the terms blur
and sharpness (the opposite of blur) from photography to
denote the quality of the snapshot. Similarly to photography,
the longer the exposure time (timespan of the entire site
crawl), the higher the risk of blurring the capture (archiving
pages in different states of the site). In contrast, if the site’s
pages did not change at all (or changed little) during the
crawl, we say that the snapshot is sharp (or almost sharp).

Avoiding blurred captures is important for the quality as-
surance of the Web archive and its professional usage. Ideally,
a user should get mutually consistent pages. In case mutual
consistency of pages can not be fully assured, there should be
at least guarantees (deterministic or stochastic) for the qual-
ity of the Web archive. For example, a journalist can hardly
use a web archive of a soccer team because of its inconsistent
content. She finds the page of a soccer match of April 18th
pointing to the details of the match of April 24th. The pages
are inconsistent and not helpful to the journalist. Similarly,
an archive of a Web site was disapproved as evidence in a
lawsuit about intellectual property rights [23]. The archive
was of insufficient quality and no guarantees could be made



about the consistency of its content. In these cases a strategy
for getting a sharp capture or stating the level of consistency
for the capture could have made a difference.

The simplest strategy to obtain a sharp capture of a Web
site and avoid anomalies would be to freeze the entire site
during the crawl period. This is impractical as an external
crawler cannot prevent the site from posting new information
on its pages or changing its link structure. On the contrary,
the politeness etiquette for Internet robots forces the crawler
to pause between subsequent HTTP requests, so that the
entire capturing of a medium-sized site (e.g., a university)
may take many hours or several days. This is an issue for
search-engine crawlers, too, but it is more severe for archive
crawlers as they cannot stop a breadth-first site exploration
once they have seen enough href anchors. So slow but
complete site crawls drastically increase the risk of blurred
captures.

An alternative strategy that may come to mind would be
to repeat a crawl that fails to yield a sharp capture and
keep repeating it until eventually a blur-free snapshot can
be obtained. But this is an unacceptably high price for data
quality as the crawler operates with limited resources (servers
and network bandwidth) and needs to carefully assign these
to as many different Web sites as possible.

1.2 Contribution
While the issue of web-archive quality is obvious, it is

unclear how to formalize the problem and address it techni-
cally. This paper is the first to provide framework for quality
assurance of Web archives. It develops a model of quality
properties as well as a suite of algorithms for crawls that
allows us to assess and optimize site-capturing strategies.

Our framework, coined SHARC for Sharp Archiving of
Web-Site Captures, is based on a stochastic notion of sharp-
ness. In line with the prior literature [1, 7, 20], we model site
changes by Poisson processes with page-specific change rates.
We assume that these rates can be statistically predicted
based on page types (e.g., MIME types), depths within the
site (e.g., distance to site entry points), and URLs (e.g.,
manually edited user homepages vs. pages generated by
content management systems). The user-perceived blur by
subsequent access to site captures is derived from a random-
observer model: the user is interested in a former timepoint
uniformly drawn within a large interval of potential access
points.

Within this model, we can reason about the expected
sharpness of a site capture or the probabilistic risk of ob-
taining a blurred (i.e., not perfectly sharp) capture during
a crawl. This in turn allows us to devise crawl strategies
that aim to optimize these measures. While stochastic guar-
antees of this kind are good enough for explorative use of
the archive, access that aims to prove or disprove claims
about former site versions needs deterministic guarantees.
To this end, SHARC also introduces crawl strategies that
visit pages twice: a first visit to fetch the page and a later
revisit to validate that the page has not changed. The order
of visiting and revisiting pages is a degree of freedom for the
crawl scheduler. We propose strategies that strive for both
deterministic and stochastic sharpness (absence of changes
during the site capturing).

SHARC includes a suite of novel algorithms:

• SHARC-offline assumes a-priori knowledge of all URLs
and their specific change rates, and arranges downloads

in an organ-pipe manner with the hottest pages in the
middle. It comes with a stochastic guarantee about the
expected sharpness.

• SHARC-online drops these assumptions and operates
with an estimate of the number of pages on the site
but without prior knowledge of any URLs other than
the crawl’s entry point. The algorithm aims to approxi-
mate the organ-pipe shape, but can lead to suboptimal
schedules.

• For deterministic guarantees, SHARC-revisits visits
page twice to detect changes during the crawl and
ensure exact dating. It provides an easily measurable
notion of sharpness.

• Finally, when (parts of) sites change at a high rate
so that no acceptable crawl strategy would be able
to guarantee sharp captures, SHARC-threshold uses a
tunable threshold for disregarding hot pages that are
“beyond hope”.

All SHARC strategies are fully implemented in our testbed.
We present experimental evaluation studies with both syn-
thetically generated Web sites and repeated crawls of the
medium-sized domain (www.mpi-inf.mpg.de) (our institute)
over an extended time period. The experiments demonstrate
the practical feasibility of our approach and the advantages of
our strategies compared to more traditional crawl methods.

The paper is organized as follows. Section 2 reviews related
work and the state of the art in archive crawling. Section 3
introduces our computational model for Web archiving and
site capturing. Sections 4 through 7 present our crawl algo-
rithms: the offline strategy, the online strategy, the strategy
with page revisits, and the strategy with thresholding for
hopeless pages. Finally, Section 8 presents an experimental
evaluation of all strategies.

2. RELATED WORK
The book on Web archiving [12] gives a thorough overview

on issues, open problems, and techniques related to Web
archiving. The most typical Web archiving scenario is a
crawl of all pages for a given site done once (or periodically)
for a given starting time (or given periodic starting times).
The book draws a parallel between a photograph of a moving
scene and the quality of the Web archive, however the issue
is left as an open problem. Mohr et al. [17] describe the
Heritrix crawler, an extensible crawler used by European
Archive and other Web archive institutions. By default
Heritrix archives sites in the breadth-first order of discovery,
and is highly extensible in scheduling, restriction of scope,
protocol based fetch processors, resource usage, filtering, etc.
The system does not offer any tools or techniques to measure
and optimize crawling for sharpness.

Data caching is the most related work in the field of
databases. Data caching stores copies of the most important
data items to decrease the cost of subsequent retrievals of the
item. Key issues are distribution of the load of data-intensive
Web applications [22, 13], efficiency issues in search engines
[3], performance-effective cache synchronization [21, 11]. It
is realistic and typical to assume notifications of change.
Data quality for Web archiving raises different issues. The
Web site cannot notify about the changes of Web pages,
the archive does not synchronize changed pages, archives



should optimize for sharpness while the perfect consistency
is a prerequisite in data caching.

Crawling of the Web for the purpose of search engines re-
ceived a lot of attention. Key issues here are efficiency [15, 8],
freshness [4], importance [18], relevance to keyword queries [6,
9, 5, 10]. Different weights of importance are assigned to the
pages on the Web and resources are reserved (frequency of
crawls, crawling priority, etc). The freshness, age, PageRank,
BackLink, and other properties are used to compute the
weights. Other metrics to measure when and how much of
the individual pages has been changed have been proposed as
well [19, 1]. Web change models characterizing the dynamics
of Web pages have been developed [16, 14]. Typically the
changes of page pi are modeled with a Poisson process [6]
with the average change rate λi. The number of changes per
time unit ∆ is distributed according to Poisson distribution
with parameter λi if

P [#changes of pi in ∆ is k] =
e−λi∆

`
∆λi

´k

k!
.

This is equivalent to postulating that the time between two
successive changes of the page pi is exponentially distributed
with parameter λi:

P [time between changes of pi is less than ∆] = 1− e−λi∆.

Mathematically, the change rate λi is the limit of the number
of changes per time unit ∆ as ∆ approaches to zero.

Olston and Pandey have designed a crawling strategy
optimized for freshness [20]. In order to determine which page
to download at time point t, Olston and Pandey compute the
utility function Upi(t) for each page pi and its time points
of changes. The utility function is defined such that it gives
priority to those pages whose changes will not be overwritten
by subsequent changes for the longest timespan. Our setup is
very different. We optimize the sharpness of entire captures
and not the freshness of individual pages.

3. WEB ARCHIVING MODEL
The Web archive, or archive for short, periodically crawls

a large number of sites, e.g., on a weekly or monthly basis.
So each site is covered by a series of versions, called (site)
captures. Each crawl aims to obtain a complete capture of
the entire site. Crawling needs to observe the politeness
requirements of a site, with pauses of several seconds or even
a minute between successive HTTP requests. Thus, an entire
site capture may span several days. (The crawler may crawl
many sites in parallel to utilize the throughput.) When a
new site crawl starts we assume that either the URLs of
all pages are known upfront or at least one entry page is
known from which the crawl can explore the site’s page graph.
The former is an assumption made by the SHARC-offline
strategy, and is relaxed by the SHARC-online strategy. We
may assume that the total number of pages in a site can be
estimated when a crawl starts, based on site properties such
as domain name or attributes obtained by the HTTP reply
when fetching the site’s entry page.

Recalling the related work presented in Section 2, we
assume that pages undergo changes according to a Poisson
process and a change rate λi, and that λi can be statistically
predicted by regression models. In practice, good quality
predictors can be developed for classes of similar pages based
on 10–20 of features including its MIME type (e.g., html
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Figure 1: Web Archiving Model

vs. pdf), depth in the site graph relative to the entry point,
URL (user homepages versus pages generated by the content
management system), presence of javascript [1, 7].

The archive is typically accessed by time-travel queries
for a user specified time point t. This query is mapped
to an existing capture. When the archive does not have a
capture that matches t, the user’s request is mapped either
to the most recent available capture whose timestamp does
not exceed t or to the nearest capture in the past or future
(whichever is closer to t). The first variant corresponds
to the simplest standard semantics in temporal database
systems [2]. The second variant may appear non-standard,
but makes sense in our Web archive setting because the
user’s timepoint of interest may often be fuzzy or a crude
estimate for exploration purposes. For example, when a
sociologist wants to investigate opinions of a social group
on a particular topic using the content of a site as of May
2001 (which could technically be interpreted as mid May, i.e.,
May 15, if a real timepoint is needed), she may be equally
happy with a capture from April 28 or June 3 if the site was
not captured during May. For use cases that entail proving
the absence or presence of certain contents on the site, this
observation-mapping mode works as long as the user’s access
request specifies an interval (e.g., April 2001, meaning April
1 through April 30) and any timepoint from the interval is
acceptable.

Figure 1 illustrates our web archiving model. All pages of
the Web site are captured periodically (cf. rectangles in the
figure) defining capture intervals. Each capture corresponds
to an observation interval (cf. Capture and Observation
Intervals in the figure). All temporal queries falling into
the interval are mapped to the capture. The changes of the
pages (indicated as black circles on the figure) during the
observation interval introduces blur. If no changes occurred
in the observation interval we call the capture sharp.

The Web archiving model is quite different from the crawl
models of search engines. Search engines aim at broad cover-
age of the most important pages in the Web (not necessarily
entire sites), recrawling the pages and optimizing their fresh-
ness (the most recent version compared to now timepoint).
In contrast, Web archives should archive all (or specifically
selected) versions (at regular crawl time points) of the entire
site and return the most appropriate version of the page for a
given time-travel query, which is not necessarily the freshest
version.

4. SHARC-OFFLINE
In this section we establish the metric of blur (sharpness)

for a given archive and develop SHARC-offline, the optimal
crawling strategy for Web archiving in an ideal environment.
SHARC-offline is not a feasible solution in a realistic run-time
setting, but it is a useful baseline for developing practically
viable algorithms and assessing their quality. We assume
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Figure 2: Example of a Web Site with Change Rates

that the Web archive consists of Web pages p0, . . . , pn (all
URLs are known in advance), which change according to the
Poisson distribution with average change rates λ0, . . . , λn

(the number of changes in a time unit). For convenience
we assume that the indexes of the pages are chosen so that
λ0 ≤ · · · ≤ λn. This simplifies and shortens the indexes and
the algorithms without the loss of generality. We assume that
the download times of the pages are periodic with politeness
delay ∆ in between the downloads (the most typical scenario).
To simplify mathematical expressions we assume that the
capture interval starts at time 0 and the observation interval
coincides with the capture interval: [os, oe] = [cs, ce] =
[0, n∆]. Later in Section 4.4 we generalize the equations and
omit the assumption. Figure 2 presents an example that we
use throughout the paper.

4.1 Blur
Blur of a page and the archive are the key measures to

assess the quality of the Web archives.

Definition 4.1 (Blur). Let pi be a Web page archived
at time ti. The blur of the page is the expected number
of changes between ti and query time t, averaged through
observation interval [0, n∆]:

B(pi, ti, n, ∆) =
1

n∆

Z n∆

0

λi · |t− ti|dt =
λiω(ti, n, ∆)

n∆
, (1)

where

ω(ti, n, ∆) = t2i − tin∆ +
(n∆)2

2
. (2)

is the download schedule penalty.
Let P = (p0, . . . , pn) be Web pages archived at times T =

(t0, t1, . . . , tn). The blur of the archive is the sum of the blurs
of the individual pages:

B(P, T, n, ∆) =
1

n∆

nX
i=0

λiω(ti, n, ∆). (3)

The blur of a Web page in the capture is the multiplication
of its average change rate and ω(ti, n, ∆). ω(ti, n, ∆) depends
on the download time and the length of the capture interval
n∆ and does not depend on the page. Therefore ω(ti, n, ∆)
can be interpreted as penalty of downloading page pi at time
ti.

Example 4.2 (Blur). Consider the Web site in Fig-
ure 2 with download time i for page pi (for example page p3

is downloaded at time t3 = 3). The blur of p1 is

B(p1, 1, 5, 1) =
1 · (12 − 1 · 5 · 1 + (5 · 1)2/2)

5 · 1 = 1.7.

p0
0
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1
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Figure 3: Organ Pipes

Similarly B(p0, 0, 5, 1) = 0, B(p2, 2, 5, 1) = 2.6, B(p3, 3, 5, 1) =
3.9, B(p4, 4, 5, 1) = 6.8, B(p5, 5, 5, 1) = 12.5. The blur of the
archive is

B(P, T, 5, 1) = 0 + 1.7 + 2.6 + 3.9 + 6.8 + 12.5 = 27.5

Properties of the download schedule penalty immediately
allows to reason about the blur of the capture for different
delay intervals.

Theorem 4.3. (Properties of the schedule penalty)
Doubling download delay quadruples the schedule penalty and
doubles the blur of the archive:

ω(i∆, n, ∆) = ∆2ω(i, n, 1), (4)

B(P, T, n, ∆) = ∆B(P, T, n, 1). (5)

Proof. The proof follows from the definitions of the sched-
ule penalty and the blur.

The result in Theorem 4.3 comes at no surprise: the
schedule penalty is a quadratic function and doubling the
delay between the downloads increases the blur four times.

4.2 Optimal Download Schedule
Different download schedules results in different levels

of blur. In the rest of the section we investigate the op-
timal download schedule of the archive. Mathematically,
for the given Web site p0, . . . , pn we will identify the op-
timal sequence t0, . . . , tn, (a permutation of 0, ∆, . . . , n∆)
that minimizes the blur of the archive (cf. Equation (3)). In
particular we show that the pages that change most should
be downloaded in the middle of the crawl.

Example 4.4 (Optimal Download Schedule). Lets
continue Example 4.2. The optimal download schedule is
t0 = 0 and t1 = 5 (the most outer points of the interval) for
the least changing pages p0 and p1, t1 = 1 and t2 = 4 (the
next outer points) for the second and third least changing
pages p2 and p3, followed by t3 = 2 and t4 = 3 for pages that
change most p4 and p5. The blur of the capture with optimal
download schedule is B(P, T ′, 5, 1) = 22.7.

Figure 3 illustrates the optimal download schedule where the
change rate of the scheduled download is visualized as a line
of length proportional to the download rate. The visualization
resembles the organ-pipes with the highest pipes allocated as
much in middle as possible.

Theorem 4.5. (Optimal Download Schedule) Let p0,
p1, . . . , pn be the Web site such that λ0 ≤ λ1 ≤ · · · ≤ λn.
Then the optimal download schedule t0, . . . , tn is defined by
the following

ti =
i

2
if i is even and ti = n− i− 1

2
otherwise (6)

for i = 0, 1, . . . , n.



Proof. The proof of Theorem 4.5 is based on three ob-
servations:

(i) λi are ordered increasingly: λi ≤ λi+1,

(ii) Equation (6) orders ω(ti, n, ∆) decreasingly:
ω(ti, n, ∆) ≥ ω(ti, n, ∆),

(iii) Equation (3) is minimized when λi are ordered decreas-
ingly and ω(ti, n, ∆) are ordered increasingly.

λi are scheduled increasingly because of the assumption
of the theorem, and therefore case (i) is true.

Function ω(t, n, ∆) is quadratic wrt t with its minimum
at tmin = (n∆)/2. Equation (6) schedules tis in such a way
that ω(tn, n, ∆) is smallest. The greater the index i, the
closer to the middle ti is allocated. Therefore ω(ti, n, ∆) are
scheduled decreasingly and Case (ii) is true.

The proof of Case (iii) is given in Lemma 4.6 below.

Lemma 4.6. Let λ0 ≤ λ1 ≤ · · · ≤ λn and ω(t0, n, ∆) ≥
ω(t1, n, ∆) ≥ · · · ≥ ω(tn, n, ∆). Let j0, . . . , jn be a permuta-
tion of 0, . . . , n. Then

nX
m=0

λmω(tm, n, ∆) ≤
nX

m=0

λtim
ω(tjm , n, ∆). (7)

Proof. Indeed, let i0, . . . , in be the optimal permuta-
tion of 0, . . . , n such that (λi0 , . . . , λin) and (ω(tj0 , n, ∆), . . . ,
ω(tjn , n, ∆)) minimize the right hand side of Equation (7).

The largest element of λ-s must be multiplied by the small-
est element of ω(til), otherwise the solution is not optimal.
We prove this step by contradiction. Let

(λi0 , . . . , λik
, . . . , λil

, . . . , λin )
(ω(tj0 , n, ∆), . . . , ω(tjk

, n, ∆), . . . , ω(tjl
, n, ∆), . . . , ω(tjn , n, ∆))

be the optimal sequence, however λik = λ0 (the smallest
among all λis) and ω(tjl , n, ∆) = ω(t0, n, ∆) (the largest
among all ω(ti, n, ∆)s). Then we can show that the by
swapping λik with λil (or alternatively ω(tik , n, ∆) with
ω(til , n, ∆)) we can further decrease the sum in Equation (7).
Indeed, the sum without the swap is:X

m=1,...,n
m 6=l,m6=k

λimω(tjm , n, ∆) + λ0ω(tjk , n, ∆) + λilω(t0, n, ∆)

(8)
The sum with the swap is:

X
m=0,...,n
m 6=l,m6=k

λimω(tjm , n, ∆) + λ0ω(t0, n, ∆) + λik
ω(tjl

, n, ∆) (9)

Since the first sums in Equations (8) and (9) are the same
we reach the contradiction if we prove that

λ0ω(tjk , n, ∆) + λilω(t0, n, ∆)

> λ0ω(t0, n, ∆) + λikω(tjl , n, ∆). (10)

The left hand side (LHS) of Equation (10) is:

LHS = λ0ω(tjk , n, ∆) + λilω(t0, n, ∆)

= λ0

“
ω(t0, n, ∆) +

`
ω(tjk , n, ∆)− ω(t0, n, ∆)

´”
+ λilω(t0, n, ∆)

= λ0ω(t0, n, ∆) +
`
λil + (λ0 − λil)

´
×

`
ω(tjk , n, ∆)− ω(t0, n, ∆)

´
+ λilω(t0, n, ∆)

= λ0ω(t0, n, ∆) + λilω(tjk , n, ∆)

+
`
λil − λ0

´`
ω(t0, n, ∆)− ω(tjk , n, ∆)

´
= RHS + strictly positive number,

since λ0 is the smallest among λis and ω(t0, n, ∆) is the
largest among ω(tj , n, ∆)s.

The proof of lemma follows with the help of mathematical
induction. The induction basis is trivial. The optimal solu-
tion for n reduces to the optimal solution for n− 1 elements,
since the λ0 must be multiplied with ω(t0) in the optimal
solution.

4.3 SHARC-offline Algorithm
Algorithm 1 depicts the algorithm of SHARC-offline. Since

all the pages are known and sorted in advance we need to
scan all the pages only once to schedule the downloads.

input : sorted pages p0, . . ., pn

output: download schedule pD
0 , . . ., pD

n

begin1

for i = 0, 1, . . . , n do2

if i is even then pD
i = pi/23

else pD
i = pn−(i−1)/24

end5

end6

Algorithm 1: SHARC-offline

4.4 General Observation Interval
In this section we generalize the blur and the optimal

download sequence for the case when observation interval
[os, oe] does not coincide with the capture interval. Then the
blur of a Web page is

B(pi, ti, n, ∆) =
1

oe − os

Z oe

os

λi · |t− ti|dt =
λiω(ti, os, oe)

oe − os
,

where

ω(ti, os, oe) = t2i − ti(os + oe) +
o2

s + o2
e

2

is the generalized download sequence penalty and the blur
of the capture is the sum of the blurs of the individual pages
(cf. Equation (3)).

Theorem 4.5 schedules the most changing pages in the
middle of the capture interval (point n∆/2). In case the
observation interval does not coincide with the capture inter-
val and there are no restrictions for the start of the capture
interval we should schedule the most changing pages around
the middle of the observation interval (point (os + oe)/2).
We formalize it in the theorem bellow.



Theorem 4.7. Let t0, . . . , tn be the optimal download sched-
ule for Web site with [0, n∆] observation interval. Then

ti +
oe + os − n∆

2

is the optimal download position for page pi with [os, oe]
observation interval.

In case the observation interval and the capture inter-
vals are fixed, the most changing pages should be allocated
as close to the middle point of the observation interval as
possible.

5. SHARC-ONLINE
The SHARC-offline strategy assumes that all URLs of the

Web site are known in advance. In this section we relax
the assumption and introduce SHARC-online, the archive
crawl optimization strategy with no or limited knowledge
of the web site. Starting with a given set of seeds SHARC-
online incrementally extract the urls of other pages from
the downloaded pages and schedules the pages for download
so the archive is optimized for sharpness. We organize this
section as follows. First, we explain the incremental detection
of the Web site structure and discuss most common crawl
strategies in Section 5.1. We develop the SHARC-online
strategy by example in Section 5.2. Finally, we formally
define the SHARC-online strategy and present the algorithm
of the strategy in Sections 5.3 and 5.4.

5.1 Discovery of the Web Graph
Typically crawlers do not know the URLs of the pages

in the crawled site. The archive crawlers start with the
download of a given set of URLs (seeds of the crawl), extract
the URLs of the downloaded pages, and continue the process
until all the documents are downloaded and no new URLs
are detected. At any iteration the crawler keeps a DD-
list (Downloaded-Detected list) of URLs. The downloaded
list of URLs consists of all URLs that are already crawled,
while the detected URLs comprise the extracted from the
downloaded pages but not yet downloaded URLs. Different
crawl strategies schedule the URLs in a different manner.
Below we demonstrate the most popular crawl strategies:
depth-first and breadth-first on the example Web graph in
Figure 2.

Table 1 depicts the detection and download of Web pages
of the depth-first strategy. The strategy starts with the seed
page p0 and inserts it into the detected part of the DD-list (cf.
p0 in the iteration I = 0 in Table 1). Then it downloads the
page (p0 is moved to the downloaded part of the DD-list, cf.
I = 1 in the table) parses the html page and inserts detected
URLs p1, p2 into the detected part of the DD-list. The depth
first strategy inserts newly detected pages at the beginning
of the detected list, thus the depth-first pages have higher
priority for download (cf iteration I = 2 in the table). In
contrast, breadth-first strategy appends newly discovered
pages, assigning a higher priority for breadth-first pages (cf.
Table 2).

5.2 SHARC-online Strategy by Example
At any given iteration the crawler does not know all pages,

but only the pages of the Web site in the DD-list. Our
SHARC-online strategy optimizes the download and detec-
tion of the Web pages incrementally. Given the (estimated)

I DD-list
Downloaded |Detected

0 |p0

1 p0 |p1, p2

2 p0, p1 |p3, p4, p2

3 p0, p1, p3 |p4, p2

4 p0, p1, p3, p4 |p2

5 p0, p1, p3, p4, p2 |p5

6 p0, p1, p3, p4, p2, p5 |

Table 1: Depth-First Crawl Strategy

I DD-list
Downloaded |Detected

0 |p0

1 p0 |p1, p2

2 p0, p1 |p2, p3, p4

3 p0, p1, p2 |p3, p4, p5, p5

. . . | . . .
6 p0, p1, p2, p3, p4, p5|

Table 2: Breadth-First Crawl Strategy

size of the Web site, the SHARC-online produces a download
schedule that resembles the schedule of the SHARC-offline
strategy.

Table 3 illustrates the SHARC-online strategy for the
running example. The SHARC-online crawl starts with p0

page as a seed and the estimated number of pages in the
site n + 1 = 6. The crawl downloads page p0 and detects
another two pages p1, p2. The algorithm is in its ascending
phase, and therefore it schedules the downloads in increasing
schedule of the change rate λi. In the I = 2 iteration the
algorithm downloads p1 and detects additional pages p3 and
p4. The number of detected and downloaded pages exceeds
the middle of the interval and the algorithm switches to
the middle phase to preserve the middle of the organ-pipes.
The algorithm downloads p4 and p3 in the middle phase.
Then the number of downloaded pages exceeds the middle
the algorithm finishes in the descending phase with the
downloads of p2 and p5.

5.3 Formalization of SHARC-online
SHARC online schedules the detected pages of the DD-list

for download. The strategy aims to resemble the schedule of
the SHARC offline strategy. Due to the limited knowledge of
the detected pages the algorithm has three phases: ascending,
middle, and descending phases.

I DD-list
Downloaded |Detected

0 |p0

1 p0 |p1, p2

2 p0, p1 |p2, p3, p4

3 p0, p1, p4 |p2, p3

4 p0, p1, p4, p3 |p2

5 p0, p1, p4, p3, p2 |p5

6 p0, p1, p4, p3, p2, p5|

Table 3: SHARC-online Crawl Strategy



The SHARC-online strategy maintains the list of detected
pages (pE

0 , pE
1 , . . . , pE

nE−1) (sorted in ascending order accord-
ing to the change rates), the number of downloaded pages
nD, the number of detected pages nE , and an approximated
overall number of the pages n + 1. The SHARC-online strat-
egy expresses the next page to be downloaded pD

nD in terms
of these three variables.

5.3.1 Ascending Phase
The ascending phase resembles the beginning of the organ-

pipes and is applied when the number of downloaded and
detected pages is below the estimated middle point of the
crawl. During this phase the algorithm implements the cheap-
est first strategy. Equation (11) formalizes the ascending
strategy.

pD
nD = pE

0 (11)

The ascending strategy is executed as long as the number
of downloaded and detected pages is less than half of the
size of the site:

nD + nE ≤ n + 1

2
. (12)

Example 5.1. (Ascending Phase) Consider I = 1 step
in Table 3. The number of downloaded pages nD = 1,
the number of detected pages nE = 2, and the list of de-
tected pages sorted in ascending order according to the λs is
(pE

0 , pE
1 ) = (p1, p2) Lets assume that the estimated number

of pages in the crawl is n + 1 = 6. Since nD + nE = 1 + 2 ≤
3 = n+1

2
, therefore the algorithm is in the ascending phase

and the next download element is pD
1 = pE

1 = p2.

5.3.2 Middle Phase
The middle phase schedules the next download so the sym-

metry around the middle of the organ-pipes is preserved as
much as possible. For each downloaded page on the ascend-
ing part we reserve an appropriate page on the descending
part of the organ-pipes. The strategy is applied when the
overall number of downloaded and detected pages exceeds
the half of the number of the pages, but the number of
downloaded pages has not reached the middle of the crawl.
Equation (13) formalizes the phase.

pD
nD =

(
pE

nD if nD < nE ,

pE
nE−1 otherwise.

(13)

Equation (14) formalizes the conditions when the middle
phase is applied.

nD + nE >
n + 1

2
, nD ≤ n + 1

2
. (14)

Example 5.2. (Middle Phase) Lets continue Example 5.1
with I = 2 step. The number of downloaded pages nD = 2,
the number of detected pages nE = 3, and the list of detected
pages sorted in ascending order according to the λs is

(pE
0 , pE

1 , pE
2 ) = (p2, p3, p4).

Since

nD + nE = 2 + 3 > 3 =
n + 1

2
and nD = 2 < 3 =

n + 1

2
,

therefore the algorithm is in the middle phase and the next
download element is

pD
2 = pE

2 = p4.

5.3.3 Descending Phase
The descending phase resembles the ending of the organ-

pipes and is applied when the number of downloaded pages is
more than the half of the (estimated) page number. During
this phase the algorithm implements the most expensive first
strategy. Equation (15) formalizes the descending strategy.

pD
nD = pE

nE−1 (15)

The descending phase is executed as soon as the number
of downloaded pages exceeds the middle of the organ-pipes
and until all detected URLs are downloaded:

nD >
n + 1

2
, nE 6= 0. (16)

Example 5.3 (Descending Phase). Lets continue Ex-
ample 5.2 with I = 4 step. The number of downloaded pages
nD = 4 and the number of detected pages nE = 1. Since
nD = 4 > 3 = n+1

2
, therefore the algorithm is in the descend-

ing phase and the next download element is pD
5 = pE

0 = p2.

5.4 SHARC-online Algorithm
Algorithm 2 depicts the SHARC-online algorithm. At

each iteration (lines 4–12) the algorithm inspects the sizes
of downloaded and detected lists and identifies whether the
algorithm is in the ascending (line 5), middle (line 6) or
descending (line 8) phase and computes the index of the next
download.

input : sorted seeds (p0, . . . , pm),
estimated size of the crawl n

output: download sequence (pD
0 , . . . , pD

n )

begin1

PD = (pD
0 , . . . , pD

nD ) = (), nD = 02

PE = (pE
0 , . . . , pE

nE ) = (p0, . . . , pm), nE = m3

while PE 6= ∅ do4

if nD + nE ≤ (n + 1)/2 then pos = 05

else if nD ≤ (n + 1)/2 then6

pos = nD < nE?pE
nD : pE

nE−17

else pos = nE
8

append(PD, pE
pos), remove(P

E , pE
pos)9

add sort(PE , urls(pE
pos))10

nD++, nE−−, nE = nE + |urls(pE
pos)|11

end12

end13

Algorithm 2: SHARC-online

5.5 Other Online Strategies
SHARC-online is an online strategy that resembles the

organ-pipes of the SHARC-offline. Other online strategies
are possible. Consider, for example, the greedy strategy
where the smallest elements are allocated at the beginning
and largest elements are allocated at the end without the
middle phase (cf. Pipes in Figures 4). This strategy performs
around two times worse than SHARC-online (cf. the average
distribution of λs in Figures 4 for the skewed and very-skewed
cases). If the data is less skewed (not that typical in real world
cases), SHARC-online resembles the ending and beginning
parts of the organ-pipes better with almost the same middle
part (cf. Figure 4(a)). If the data is heavily skewed (very



typical in real world) SHARC-online is still two times better
on average, however this is almost not visible, since both
techniques are very close to the theoretical minimum (cf.
Figure 4(b)).
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Figure 4: Other Online Strategies

6. WORST-CASE ANALYSIS
In this section we investigate the worst case scenario for

the SHARC-online strategy. In SHARC-offline the most
changing pages are in the middle of the download interval.
Since SHARC-online does not possess the full knowledge
about the URLs of the site it may require to download pages
that do not follow the SHARC-offline strategy at certain
download positions. To cope with the complexity of the
task we assume that SHARC-online can schedule (n + 1)− k
downloads optimally. However, k downloads do not follow
the SHARC-offline (k-misplacements).

The worst k-misplacements are the most outwards down-
load positions with the most changing pages. Example 6.1
illustrates the strategy.

Example 6.1 (Worst case coherence). Consider a
Web site of n + 1 = 10 pages with λ0 = λ1 = 1, λ2 = λ3 = 2,
λ4 = λ5 = 3, λ6 = λ7 = 4, λ8 = λ9 = 5. Let k = 4 be
the number of pages that may not follow the SHARC-offline
strategy. The optimal SHARC-offline strategy of this site
is illustrated in Figure 5(a) with the worst case scenario in
Figure 5(b).

The highest schedule penalty positions in the crawl are the
first and the last downloads: ω(0, 10, 1) = ω(9, 10, 1) = 40.5,
and downloads of the most changing pages (p8 and p9 with
λ8 = λ9 = 5) at these positions maximizes the blur of the
archive. The next two highest schedule penalty positions
are ω(1, 10, 1) = ω(8, 10, 1) = 32.5 and the next two most
changing pages p6 and p7 are scheduled there. The remaining
positions are scheduled according to SHARC-offline strategy
resulting in an organ-pipes-like middle part of the download
schedule.
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Figure 5: Example of Worst Case Coherence Sce-
nario with n = 9 and k = 4

The increase of the blur for the worst-case scenario is

2(5−1)ω(0, 10, 1)+2(4−2)ω(1, 10, 1)−2(3−1)ω(2, 10, 1)

− 2(4− 2)ω(3, 10, 1)− 2(5− 3)ω(4, 10, 1) = 145.

Since now the blur of the SHARC-offline is 2 ·
P4

i=0 i(i) =
755, the relative increase of the blur of the worst case is
145/755 ≈ 20%.

The following theorem summarizes the increase of the
worst case scenario with k number of misplacements. For
simplicity, we assume that the number of pages n + 1 and
the number of misplacements k are even numbers.

Theorem 6.2. Let the number of pages in the site n + 1
be even with such change rates of the pages: λ0 = λ1 ≤ λ2 =
λ3 ≤ · · · ≤ λn−1 = λn. Let k be the even number of pages
that can be misplaced in the optimal SHARC-offline strategy
and ∆ be the delay between two downloads. In the worst case
the blur of the crawl increases by:

2

k/2−1X
i=0

(λn−2i − λ2i)ω(i∆, n, ∆)

− 2

(n+1−k)/2X
i=0

(λk+2i − λ2i)ω
“`k

2
+ i

´
∆, n, ∆

”
. (17)

Proof. The proof follows from similar arguments as in
Theorem 4.5.

Skew has the largest impact to the increase of blur (cf.
Figure 6(a)). The increase of the skew by one increases
the blur by an order of magnitude. The misplacement of
the most changing pages (cf. the steep increase for k =0–
10 in the figure) are the costliest. As the more and more
pages are misplaced (k = 20, . . . , 100) the increase slows
down. The number of pages in the figure is n + 1 = 100 and
the change rates of the pages are set in the following way:
λ2i−1 = λ2i = 100/iskew, i = 0, . . . , n/2.
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Figure 6: Worst-Case Analysis

The increase of the size of the Web site n + 1 (cf. Fig-
ure 6(b)) changes the increase substantially for small n (cf.
n = 101 and n = 102 in the figure), while the further increase
of the number of pages changes the increase only slightly (cf.
n = 102 and n = 103 in the figure).

7. REVISIT STRATEGIES
In this section we investigate the crawling strategies where

each page is downloaded twice: after all the pages are visited
(first download at tv

i ), we revisit them (second download at
tr
i ). This allows us to deterministically reason about the state

of archive in the interval between the last visit and the first



revisit. We call a page sharp (#page) if its versions at visit
time and revisit time are the same. Then the number of the
sharp pages ( ##pages) deterministically characterizes the
quality of the Web archive for the above mentioned interval.
Below we present two strategies: SHARC-revisits, which
aims at minimizing the blur, and SHARC-threshold which
maximizes ##pages.

7.1 SHARC-revisits
Given Web pages p0, p1, . . . , pn and the average change

rates λ0 ≤ λ1 ≤ · · · ≤ λn the task is to find the first visits
tv
0 , tv

1 , . . . , tv
n and the second revisits tr

0, t
r
1, . . . , t

r
n so that the

blur of the archive is minimized. Since the archive now
consists of two versions of the page we return the version
of the page that is closer to the given query time t (cf.
min{|tv

i − t|, |tr
i − t|} in the definition below).

Definition 7.1. (Blur of page and archive with re-
visits) Let pi be a Web page with tv

i visit and tr
i revisit times.

The blur of Web page pi is

B(pi, t
v
i , tr

i , n, ∆) =
1

(2n + 1)∆

Z2n∆+1

0

λi min{|tv
i − t|, |tr

i − t|}

=
1

(2n + 1)∆
λi

“ Z(tv
i +tr

i )/2

0

|tv
i − t| dt +

Z(2n+1)∆

(tv
i +tr

i )/2

|tr
i − t| dt

”
=

1

(2n + 1)∆
λiω(tv

i , tr
i , n, ∆), (18)

where

ω(tv
i , tr

i , n, ∆) = (tv
i )2 − (tv

i + tr
i )

2

4

+ (tr
i )

2 − tr
i (2n + 1)∆ +

(2n + 1)2∆2

2
(19)

is the download schedule penalty for downloads with revisits.
The blur of the archive with revisits is the sum of the blurs
of the individual pages:

B(P, T v, T r, n, ∆) =

nX
i=0

B(pi, t
v
i , tr

i , n, ∆), (20)

where T v = (tv
0 , . . . , tv

n) are the visit and T r = (tr
0, . . . , t

r
n)

are the revisit times of pages P = (p0, . . . , pn).

Example 7.2. (Blur with Revisits) Consider the Web
site in Figure 2 with tv

0 = 0, tv
1 = 1, . . . , tv

5 = 5 visit and
tr
0 = 6, tr

1 = 7, . . . , tr
11 = 11 revisit times. The blur of page p1

is

B(p1, 1, 7, 5, 1) =
1 · ω(1, 7, 5, 1)

2 · 5 + 1
= 12 − (1 + 7)2

4
+ 72

− 7(2 · 5 + 1) +
(2 · 5 + 1)2

2
= 35/22. (21)

Similarly, B(p0, 0, 6, 5, 1) = 0, B(p2, 2, 8, 5, 1) = 62/22,
B(p3, 3, 9, 5, 1) = 93/22, B(p4, 4, 10, 5, 1) = 140/22,
B(p5, 5, 11, 5, 1) = 215/22, and the blur of the archive is

B(P, T v, T r, 4, 1) = 0+
35

22
+

62

22
+

93

22
+

140

22
+

215

22
≈ 24.77.

Analysis of the optimal visits tv
0 , . . . , tv

n and revisits tr
0, . . . , t

r
n

that minimize the blur of the archive in Equations (18)–(20) is

similar to the analysis of the optimal download schedule with-
out revisits (cf. Theorem 4.5). Again, we need to schedule
all λs ascendingly and all schedule penalties ω(pi, t

v
i , tr

i , n, ∆)
descendingly so the multiplication of them (cf. Equation (18))
minimizes the overall sum. Similarly to the schedule penalty
without revisits, the schedule penalty with revisits is an
elliptic paraboloid wrt tv

i , tr
i with one minimum value (cf.

Figure 7(a)). This suggests a strategy to optimize the sharp-
ness. We schedule the visit and revisit of the most changing
page at the coordinates of the smallest penalty (tv

0 , tr
0) (cf.

Figure 7(b)). Then we mark all points (tv
0 , t) and (s, tr

0) as
invalid and search the next valid position of the smallest
penalty, etc. This results in the visit-revisit pairs on the
diagonal parabola in the elliptic paraboloid (cf. filled circles
in Figure 7(a)).
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Figure 7: Optimization of Archiving with Revisits

Definition 7.3. (SHARC-revisits) Let P = (p0, . . . , pn)
be the Web site such that λ0 ≤ · · · ≤ λn. The pair

(tv
i , tr

i ) =

(
( i
2
, n + 1 + i

2
) if i is even and

(n− i−1
2

, 2n + 1− i−1
2

) otherwise

defines the greedy visit and revisit times of page pi.

Example 7.4. (SHARC-revisits) Let us continue Ex-
ample 7.2. The greedy visit and revisit times for pages
p0, . . . , p5 are (tv

0 , tr
0) = (0, 6), (tv

1 , tr
1) = (5, 11), (tv

2 , tr
2) =

(1, 7), (tv
3 , tr

3) = (4, 10), (tv
4 , tr

4) = (2, 8), (tv
5 , tr

5) = (3, 9). The
blur of the greedy schedule is approximately 22.59.

Theorem 7.5. (Greedy download schedule with re-
visits) The SHARC-revisits strategy downloads the most
changing page at the position with the smallest schedule
penalty at each iteration.

Proof. (tv
min, tr

min) =
“h

2n+1
4

i
∆,

h
3 2n+1

4

i
∆

”
minimizes

Equation (19). (tv
i , tr

i ) in Definition 7.3 is the closest (visit,
revisit) pair to (tv

min, tr
min). Therefore, SHARC-revisits yield

the smallest schedule penalty at each iteration.

7.2 SHARC-threshold
The easiest way to guarantee page sharpness in the archive

is to revisit a page immediately after its visit, simply because
this shortens the visit-revisit interval. However, doing this
for each page separately does not help towards better archive
quality. Instead, we we want to reason on the combined
sharpness of all pages in an entire site capture together. If
the visit-revisit intervals of the pages in a site have a non-
empty intersection, then we have a sharp capture of the
complete site and can effectively date the capture with any



timepoint in the overlap of the visit-revisit intervals. This
would be the gold standard of archive quality and we could
use such a capture in a hard business cases (cf. Section 1).

The following theorem formalizes the conditions for the
non-empty overlap of visit-revisit intervals of pages p0, . . . , pn.

Theorem 7.6. (The middle point) Let [tv
i , tr

i ] be the
visit-revisit times of pi. The visit-revisit interval has a non-
empty overlap if the middle point of the capture interval is
in all visit-revisit intervals (cs + ce)/2 ∈ [tv

i , tr
i ].

Proof. The theorem is proved by contradiction: if one of
the intervals does not have the middle point then both visit
and revisit times are above (below) the middle point. How-
ever, one can find another interval with its visit and revisit
times below (above) the middle points, and the intersection
of the two is empty.

Two conclusions can be made from Theorem 7.6. First,
all intervals should contain the middle point. Second, the
closer the change time to the middle the less chances for all
pages to be sharp. In fact, if there is a page with a change
at the exact middle of the crawl interval the whole capture
cannot be completely sharp.

Analysis of the optimal strategy that maximizes the num-
ber of sharp pages is hard and may require assumptions
about the distribution of the change time. Ultimately, one
should try out all possible visit-revisit intervals (((n + 1)!)2

number in total) and choose the schedule that maximizes the
number of sharp pages. To cope with the complexity of the
problem we use an pyramid organization of the intervals and
define a class of promising pages and optimize only them.
The pyramid organization places intervals so that the smaller
intervals are totally included in the greater ones. This way
all intervals are symmetric, are around the middle of the cap-
ture, and the shortest interval assigned to the page with the
highest change rate. Partitioning of all pages into promising
and hopeless (opposite of promising) allows us to sacrifice
the download positions of the hopeless pages for a better
download positions of the promising ones. The following
definition formalizes the SHARC-threshold strategy.

Definition 7.7. (SHARC-threshold strategy) Let
p0, . . . , pn be the Web site with λ0 ≤ · · · ≤ λn. Let τ be the
probability threshold. The following defines the visit-revisit
intervals iteratively.

Let p be the hottest page at iteration i such that the probabil-
ity P [p changes in[(n−i)∆, (n+i+1)∆]] = 1−exp{−(2(n−
i) + 1)∆λ} is less than τ then page p is called promising and
its visit-revisit interval is

[(n− i)∆, (n + i + 1)∆],

otherwise the page is postponed until the end.
Let ph

0 , . . . , ph
k be the set of hopeless pages such that λh

0 ≤
· · · ≤ λh

k . Then the visit-revisit interval of ph
i is [(k −

i)∆, (2n− 1− k + i)∆]

Theorem 7.8. (Average Number of Sharp Pages)
Let pp

0, . . . , p
p
l and ph

0 , . . . , ph
k be the promising and hopeless

pages. Let the changes of the pages be distributed according
to the independent Poisson processes with λp

0 ≤ · · · ≤ λp
k and

λh
0 ≤ · · · ≤ λh

l . Let [k+ i+1, 2l+k+2− i] be the visit-revisit
interval of pp

i and [k − j, 2l + k + j + 3] be the visit-revisit
interval of ph

j of the SHARC-threshold schedule. Then the
average number of sharp pages is

lX
i=0

e
−λ

p
i

“
2(l−i)+1)

”
∆

+

kX
j=0

e
−λh

j

“
2(l+j)+3)

”
∆

.

Proof. The proof follows from the properties of the Pois-
son process.
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Figure 8: SHARC-threshold

Example 7.9. (SHARC-threshold) Consider the pages
from Figure 2. Let they change in the interval [0, 11] as
follows: p0 does not change, p1 changes at 1, p2 at 2 and 9,
p3 at 2, 8, and 10, p4 at 1, 3, 7, and 11, and p5 at 2, 3, 4, 5, 6,
and 7. Let the visit-revisit intervals follow SHARC-threshold
schedule. If the threshold is such that page 5 is a hopeless page
and the rest of the pages are promising (c.f. Figure 8(a)),
then the number of the sharp pages in 4: 1, 2, 3, and 4.
However, if all pages are promising (c.f. Figure 8(b)), then
the number of the sharp pages is 1.

SHARC-threshold increses the number of the sharp pages
but increases the blur as well (cf. Example 7.9). SHARC-
threshold is similar to the worst case scenario of SHARC-
online with k misplacement (cf. Section 6): worst case sce-
nario schedules the hottest and SHARC-threhold schedules
the hopeless pages at the ends of the interval. Note though
that SHARC-threshold is a revisiting strategy with all pages
downloaded twice, on the other hand worst case scenario
schedules the pages only once.

8. EXPERIMENTAL EVALUATION
In this section we experimentally evaluate SHARC-offline,

SHARC-online, SHARC-revisits, and SHARC-threshold and
compare them with the most related techniques: Breadth-
first and Depth-first (most typical techniques by archive
crawlers), Hottest-first and Coldest-first (most promising
naive crawlers), and Olston and Pandey [20] (the best fresh-
ness-optimized crawling technique). SHARC-offline requires
the knowledge of all URLs of the site in advance. The careful
setup of the experiment allowed us to apply this strategy
as an ideal baseline. In practice, it is rather unrealistic
to assume such knowledge, and SHARC-online should be
used instead. Breadth-first and Depth-first schedule the
downloads based on the graph (crawl tree) structure of the
site. Breadth-first downloads the urls of the pages first
and then the urls of the children, while Depth-first visits
all urls of the children first and only then the urls of the
pages. Hottest-first and Coldest-first sort the detected pages
according to the average change rates and schedule the pages
in the descending and ascending order respectively. The
Olston and Pandey strategy at each step orders the pages



according to the values of their utility functions Upi(i) and
downloads the one with the highest value.

Since including the revisits changes the settings for the
experiments, we run two independent sets of experiments:
all (relevant) strategies without revisits and all (relevant)
strategies with revisits independently. The classical Breadth-
first, Depth-first, Hottest-first, Coldest-first and Olston and
Pandey do not have revisits but for a fair comparison we
added the second run of the strategies to simulate the revisits.

In the experiments without revisits we compute the exact
blur (as opposed to the stochastic-average in Sections 4–
7). Let (h0, . . . , hm) be the history of changes and t be the
download time of page p. Then the exact blur of page p in
the observation interval [os, oe] is:

B(p) =
1

oe − os

“ X
os≤hj≤t

(hj−os)+
X

t<hj≤oe

(oe−hj)
”
. (22)

The exact blur B of the archive (p0, . . . , pn) is the sum of
the exact blur of all pages:

B(p0, . . . , pn) =

nX
i=0

B(pi).

The exact blur with revisits can be extended similarly.
Let tv be the visit and tr be the revisit time of the page.
Then the exact blur with revisits of page p in the observation
interval [os, oe] is:

B(p) =
1

oe − os

“ X
os<hj≤tv

(hj − os) +
X

tv<hj≤
tv+tr

2

(
tv + tr

2
− hj)

+
X

tv+tr
2 <hj≤tr

(hj −
tv + tr

2
+

X
tr<hj≤oe

(oe − hj)
”
. (23)

The exact blur with revisits B of the archive (p0, . . . , pn)
is the sum of the exact exact blur with revisits of all pages:

B(p0, . . . , pn) =

nX
i=0

B(pi).

The Olston and Pandey utility function Up can be ex-
pressed in terms of the exact blur. Up is the exact blur of
page p in interval [os, oe] given that the page is downloaded at
oe: Up = B(p) = 1

oe−os

Pm
j=0(hj − os). The utility function

gives a higher priority to pages with late changes.
We test the approach on a synthetic and a real world

datasets. In the synthetic dataset we simulate changes
according to Poisson processes with {λ0, . . . , λn}, where
λi = λn−i = 1/(iskew). Pages in the graph of the archived
site form a tree; each page pi is pointing to outdegree
number of children. The default values are skew = 1.75,
outdegree = 8, and n = 1024. The spanning tree used by
the simulated crawls is such that the pages with high change
rates are placed on the top levels. The real world data con-
sists of the pages of the Web site of the Max Planck Institute
for Computer Science (daily changes of 60682 pages between
04.09.2008 and 18.09.2008 of the www.mpi-inf.mpg.de site).

8.1 Impact of the Crawl Duration
We compared the techniques by varying the crawl duration

on real world data (cf. Figure 9(a)) in this experiment.
Summarizing, SHARC-online outperforms the competitors
and it performs as well as SHARC-offline. Short capture

intervals encounter the problem that there is not enough data
data to estimate the change rates with sufficient accuracy. As
a result SHARC-offline does not drastically reduce the blur.
With increasing crawl duration and larger amounts of data
gathered the problems are overcome and the SHARC-online
strategy gets considerable advantage over the competitors.

The blur decreases when revisits are introduced. The
greedy SHARC-revisits strategy is the best strategy in all
cases (cf. Figure 9(b)). SHARC-threshold optimizes a dif-
ferent metric (the number of sharp pages, cf. Section 7) and
results in higher blur.
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Figure 9: Blur in Varying Crawls

8.2 Impact of the Observation Interval
In this experiment we use the synthetic dataset and vary

the observation interval for a fixed crawl interval. We expect
that the differences between the techniques disappear as the
length of the observation interval increases. The reason are
the changes outside the crawl interval which increase the
blur substantially for all strategies.

Figure 10(a) confirms our expection. SHARC-offline and
SHARC-online outperform other techniques with the largest
gain for the same observation and capture interval (cf. Fig-
ure 10(a)). The differences between the techniques are less
pronounced as the observation interval increases.

The results are similar for the experiment with the revisits
(cf. Figure 10(b)). The greedy SHARC-revisits yields the
lowest blur, while SHARC-threshold not being designed for
blur minimization is outperformed by the other strategies.

Table 4 measures the number of sharp pages for 1:1 case.
Here, SHARC-threshold has the highest number of sharp
pages, while other techniques perform similarly.
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Figure 10: Blur for Observation Periods

Strategy ##pages

SHARC-revisits 770
SHARC-threshold 874

Breadth-first 766
Depth-first 776

Olston 782
Hottest-first 765
Coldest-first 776

Table 4: Number of Sharp Pages

8.3 Robustness of SHARC Strategies
In this test we assess the robustness of the SHARC strate-

gies to mis-estimation of change rates λ. In the experiment
we used the synthetic dataset and simulated the worst case
mis-estimation of change rates for our strategies: first we
vary a fraction of mis-estimated pages and then for each such
page pi with λi we use the change rate 1− λi. Figures 11(a)
and 11(b) show the results. SHARC-online and SHARC-
revisits perform better than the competitors if the change
rate estimation is accurate for at least 50% of the pages.
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Figure 11: Change Rate Approximation Error
(the Legend is the Same as in Figure 10)

9. CONCLUSION AND FUTURE WORK
Data quality is crucial for the future exploitation of Web

archives. To this end, the paper defined and investigated
two quality measures: blur and number of sharp pages
(## pages). The blur measure is appropriate for explo-
rative use of archives. The ##pages measure is appropriate
for lawyer-style use of archives. For each of the measures we
presented strategies applicable in practice. SHARC-online
minimizes the blur and SHARC-threshold maximizes the
number of ## pages. The experiments confirm that SHARC-
online and SHARC-threshold outperform their competitors.

There are a number of possible research directions. In our
stress experiments there was not a single time interval where
all pages where sharp. In this case it is a challenge to identify
the pages that should be mutually consistent and schedule
the downloads of the pages so this consistency is guaranteed.

Another research direction is to combine the SHARC-online
and SHARC-threshold strategies. This would allow us to
have a single archive for both exploration and lawyer style
access. Yet another research direction is to develop strategies
with multiple revisits or even continuous archiving with a
given budget on the number of downloads.
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