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ABSTRACT
One of the most prominent data quality problems is the existence
of duplicate records. Current duplicate elimination procedures usu-
ally produce one clean instance (repair) of the input data, by care-
fully choosing the parameters of the duplicate detection algorithms.
Finding the right parameter settings can be hard, and in many cases,
perfect settings do not exist. Furthermore, replacing the input dirty
data with one possible clean instance may result in unrecoverable
errors, for example, identification and merging of possible dupli-
cate records in health care systems.

In this paper, we treat duplicate detection procedures as data pro-
cessing tasks with uncertain outcomes. We concentrate on a family
of duplicate detection algorithms that are based on parameterized
clustering. We propose a novel uncertainty model that compactly
encodes the space of possible repairs corresponding to different
parameter settings. We show how to efficiently support relational
queries under our model, and to allow new types of queries on the
set of possible repairs. We give an experimental study illustrating
the scalability and the efficiency of our techniques in different con-
figurations.

1. INTRODUCTION
Data quality is a key requirement for effective data analysis and

processing. In many situations, the quality of business and sci-
entific data is impaired by several sources of noise (e.g., hetero-
geneity in schemas and data formats, imperfection of information
extractors, and imprecision of reading devices). Such noise gen-
erates many data quality problems (e.g., missing values [14], vi-
olated constraints [21], and duplicate records [27, 16]) that im-
pact the effectiveness of many data querying and analysis tasks.
Databases that experience such problems are usually referred to as
unclean/dirty databases. Data cleaning is a labor intensive process
that is intended to repair data errors and anomalies.

Many current commercial tools [1, 2] support the extraction,
transformation and loading (ETL) of business (possibly unclean)
data into a trust-worthy (cleansed) database. The functionalities of-
fered by ETL tools include data extraction, standardization, record
merging, missing values imputation, and many other tasks. We re-
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Figure 1: One-shot Vs. Probabilistic Cleaning

fer to this approach as the one-shot cleaning approach (Figure 1(a)
), where cleaning procedures process the unclean data based on
cleaning specifications such as carefully chosen parameter settings
of cleaning algorithms, or fixed rules and business logic, to produce
a single clean data instance (i.e., a repair for the unclean database).

1.1 Motivation and Challenges
Data cleaning often involves uncertainty (e.g., in deciding

whether two records are duplicates). Generating a single repair
necessitates resolving the uncertain cases deterministically, which
is usually done using fixed rules and/or domain experts. This ap-
proach may induce errors in the cleansed output. Such errors are
unrecoverable once the cleansed output is decoupled from the dirty
data and loaded in the database. Moreover, relying on domain ex-
perts involves extensive labor work, which is infeasible for large
databases. Additionally, maintaining only one clean instance im-
poses strong dependency between the cleansed data and the used
cleaning procedures. Changing these procedures (or their parame-
ter settings) invalidates the cleansed data, and requires re-applying
the cleaning procedures.

Maintaining multiple repairs for the dirty data addresses these
problems by capturing the uncertainty in the cleaning process and
allowing for specifying query-time cleaning requirements. We pro-
pose using principles of probabilistic databases to build a clean-
ing system with such capabilities. We refer to our approach as the
probabilistic cleaning approach (Figure 1(b) ), where an uncertainty
model is used to describe the possible repairs that represent differ-
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Figure 2: One-shot vs. Probabilistic Duplicate Detection

ent clean data instances. This approach can be useful in various
settings. For example, a user may require finding the minimum
and maximum possible numbers of distinct entities (e.g., clients)
in a dirty database for best-case and worst-case capacity planning.
Another example is aggregation queries, where a user may require
probabilistically quantified aggregate values (e.g., in the form of
confidence intervals), rather than single values, to drive decision
making processes based on the clean data with high confidence.

In this paper, we study the problems of modeling and querying
possible repairs in the context of duplicate detection, which is the
process of detecting records that refer to the same real-world entity.
We give the next example to illustrate our approach.

EXAMPLE 1. Figure 2 shows an input relation representing
sample census data that possibly contains duplicate records. Du-
plicate detection algorithms generate a clustering of records (rep-
resented as sets of record ID’s in Figure 2), where each cluster is a
set of duplicates that are eventually merged into one representative
record per cluster.

In Example 1, the one-shot duplicate detection approach iden-
tifies records as either duplicates or non-duplicates based on the
given cleaning specifications (e.g., a single threshold on records’
similarity). Hence, the result is a single clustering (repair) of the
input relation. On the other hand, in the probabilistic duplicate de-
tection approach, this restriction is relaxed to allow for uncertainty
in deciding on the true duplicates (e.g., based on multiple similar-
ity thresholds). The result is a set of multiple possible clusterings
(repairs) as shown in Figure 2.

Probabilistic modeling of possible repairs is motivated by the
fact that errors in similarity measures induce noise in the input
of the deduplication algorithms. In fact, it is common to assume
a probabilistic model of such noise (e.g., [24]), which induces a
probability model over the parameter settings governing the dedu-
plication algorithms. In this paper, our focus is not on providing a
new duplicate detection technique with better quality (e.g., in terms
of precision and recall), but on providing an approach to model and
query the uncertainty in duplicate detection methods with the ob-
jective of allowing for greater flexibility in cleaning specifications.

The challenges involved in adopting a probabilistic duplicate de-
tection approach are summarized as follows:

• Generation of Possible Repairs: Uncertainty in duplicate de-
tection yields a space of possible repairs. Efficient generation
of such a space, and quantifying the confidence of each repair
are key challenges in our problem.

• Succinct Representation of Possible Repairs: The space of
possible repairs can be huge as it corresponds to all possible
clusterings. Identifying the set of likely repairs and com-
pactly encoding such a set is imperative for efficient storage
and processing of the cleansed output.

• Query Processing: Modeling possible repairs allows support-
ing new query types with online cleaning requirements (e.g.,
a query that finds record clusters belonging to the majority
of possible repairs). Efficient answering of these queries, in
addition to conventional relational queries, is challenging as
it involves processing multiple repairs.

1.2 Contributions
Our key contributions are summarized as follows:

• We introduce an uncertainty model for representing the pos-
sible repairs generated by any fixed parameterized clustering
algorithm. The model allows specifying cleaning parameters
as query predicates by pushing the expensive record cluster-
ing operations to an offline construction step.

• We show how to modify hierarchical clustering algorithms to
efficiently generate the possible repairs.

• We describe how to evaluate relational queries under our
model. We also propose new query types with online clean-
ing requirements that are not supported by current one-shot
cleaning methods.

• We show how to integrate our approach into relational
DBMSs to allow storage of possible repairs and performing
probabilistic query processing efficiently.

We also conduct an experimental study to evaluate the scalability
and efficiency of our techniques under different configurations.

The remainder of this paper is organized as follows. In Section 2,
we define the space of possible repairs. An algorithm-dependent
uncertainty model is given in Section 3. In Section 4, we discuss
how to support relational queries. In Section 5, we discuss imple-
menting our model inside relational DBMSs and show new query
types supported by our system. An experimental evaluation is given
in Section 6. We discuss related works in Section 7. We conclude
the paper with final remarks in Section 8.

2. THE SPACE OF POSSIBLE REPAIRS
In this section, we define the space of possible repairs and de-

scribe multiple approaches to limit the space size for efficient pro-
cessing. We start by formally defining a possible repair:

DEFINITION 1. Duplication Repair. Given an unclean rela-
tionR, a repairX is a set of disjoint record clusters {C1, . . . , Cm}
such that

⋃m
i=1 Ci = R. 2

A repairX partitionsR into disjoint sets of records that coverR.
By coalescing each set of records inX into a representative record,
we obtain a clean (duplicate-free) instance of R.

Repairs have clear analogy to the concept of ‘possible worlds’
in uncertain databases [22, 4, 15], where possible worlds are all
possible database instances originating from tuple and/or attribute
uncertainty. However, in our settings, the repairs emerge from un-
certainty in deciding whether a set of records are duplicates or not.

In general, there are two key problems when dealing with the
space of all possible repairs. First, the number of possible repairs
can be as large as the number of possible clusterings of R, which
is exponential in |R| (by correspondence to the problem of set par-
titioning [7]). Second, quantifying the uncertainty in the space of
possible repairs by, for example, imposing a probability distribution
on the space of possible repairs, is not clear without understanding
the underlying process that generates the repairs.
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Figure 3: Constraining the Space of Possible Repairs

There are multiple ways to constrain the space of possible repairs
including imposing hard constraints to rule out impossible repairs,
or filtering the repairs that do not meet specific requirements (e.g.,
specifying minimum pairwise distance among clustered records).
In this paper, we consider the subset of all possible repairs that are
generated by any fixed duplicate detection algorithm.

Algorithm-Dependent Possible Repairs
Given any parameterized cleaning algorithm, we limit the space

of possible repairs to those generated by the algorithm using differ-
ent parameter settings. This approach has two effects:

1. Limiting the space of possible repairs has a direct effect on
the efficiency of query processing algorithms and the space
required to store the repairs.

2. By assuming (or learning) a probability distribution on the
values of the parameters of the algorithm, we can induce
a probability distribution on the space of possible repairs,
which allows for a richer set of probabilistic queries (e.g.,
finding the most probable repair, or finding the probability of
clustering two specific records together).

Constraining parameterized algorithms to a specific class of al-
gorithms can further reduce the space complexity and improve the
efficiency of query processing algorithms. More specifically, for
hierarchical clustering algorithms, the size of the space of possible
repairs is linear in the number of records in the unclean relation (we
give more details in Section 3.2). Moreover, a hierarchical cluster-
ing algorithm can efficiently generate the possible repairs through
simple modifications to the algorithm.

Figure 3 depicts the containment relationship between the space
of all possible repairs, and the possible repairs generated by any
given parameterized algorithm. Figure 3 also shows examples of
hierarchical clustering methods that we discuss in Section 3.2.

3. MODELING POSSIBLE REPAIRS
In this Section, we discuss how to represent a set of possible re-

pairs. We focus on modeling the space of possible repairs generated
by any fixed clustering algorithm.

There are multiple approaches that can be adopted to model pos-
sible repairs. In the following, we present two extremes within the
spectrum of possible representations.

• The first model is the triple (R,A,P), where R denotes the
unclean relation,A denotes a fixed clustering algorithm, and
P denotes a set of possible parameter settings for the algo-
rithmA. This approach is a compact representation that does
not materialize any possible repairs, and thus no construction
cost is incurred.
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Figure 4: An example model of possible repairs

• The second model is the set of all possible repairs that can be
generated by the algorithm A using all possible parameter
settings P .

Other representations between these two extremes involve (par-
tial) materialization of possible repairs and storing views that possi-
bly aggregate these repairs. For example, a possible representation
is to associate each pair of records with the relative frequency of
repairs in which both records belong to the same cluster (i.e., de-
clared as duplicates). The problem of finding a suitable view of
the possible repairs is analogous to the problem of selecting which
materialized views to build in relational databases. Choosing a suit-
able view depends on several factors such as the cost of material-
izing the view and the types of queries that can be answered using
that view as we illustrate in Example 2.

EXAMPLE 2. Consider two sets of possible repairs, denoted A
and B, that involve the base records {r1, r2, r3} as shown in Fig-
ure 4. The relative frequency of repairs in which two records are
clustered together is the same for all pairs of records w.r.t. both sets
of repairs. These frequencies are shown in the symmetric matrix in
Figure 4.

The view consisting of the pair-wise clustering frequency de-
picted in Figure 4 can be used to efficiently answer some queries
(e.g., is there any repair in which r1 and r2 are clustered together).
However, Example 2 shows that the proposed view is a lossy rep-
resentation of repairs. That is, this view cannot be used to restore
the encoded set of possible repairs. Therefore, such representation
cannot be used in answering any given query that is answerable
using the set of possible repairs. For example, finding the relative
frequency of repairs in which r1, r2 and r3 are clustered together
is not possible using the view in Figure 4.

We summarize our proposed desiderata regarding modeling the
possible repairs as follows:

• The model should be a lossless representation of the possi-
ble repairs in order to allow answering queries that require a
complete knowledge about these repairs. In other words, we
have to ensure that all possible repairs can be restored using
the model.

• The model should allow efficient answering of a set of im-
portant queries types (e.g., queries frequently encountered in
applications).

• The model should provide materialization of the results of
costly operations (e.g., clustering procedures) that are re-
quired by most queries.

• The model should have small space complexity to allow ef-
ficient construction, storage and retrieval of the possible re-
pairs, in addition to efficient query processing.



In Section 3.1, we describe our proposed model that addresses
the aforementioned requirements. In Section 3.2, we show how to
efficiently obtain the possible repairs for the class of hierarchical
clustering algorithms.

3.1 Algorithm-Dependent Model
In this section, we introduce a model to compactly encode the

space of possible repairs generated by any fixed parameterized du-
plicate detection algorithm A that uses a single parameter to deter-
mine its output clustering.

We represent possible parameter values of a duplicate detection
algorithm A using a random variable τ . For the sake of a con-
crete discussion, we assume that τ is a continuous random variable.
However, it is straightforward to adapt our approach to address dis-
crete parameters. We denote by the interval [τ l, τu] the possible
values of τ , and we denote by fτ the probability density function
of τ defined over [τ l, τu].

The probability density function fτ can be given explicitly based
on user’s experience, or it can be learned from training data. While
learning fτ is an interesting problem by itself, we do not study this
problem in this paper. Hence, we assume that fτ is given. Applying
A to an unclean relation R using a parameter value t ∈ [τ l, τu]
generates a possible clustering (i.e., repair) of R, denoted A(R, t).
Multiple parameter values may lead to the same clustering.

The set of possible repairs X is defined as {A(R, t) : t ∈
[τ l, τu]}. The set X defines a probability space created by drawing
random parameter values from [τ l, τu], based on the density func-
tion fτ , and using the algorithm A to generate the possible repairs
corresponding to these values. The probability of a specific repair
X ∈ X , denoted Pr(X), is derived as follows:

Pr(X) =

∫ τu

τl

fτ (t) · h(t,X) dt (1)

where h(t,X) = 1 if A(R, t) = X , and 0 otherwise.
In the following, we define uncertain clean relation (U-clean re-

lation for short) that encodes the possible repairs X of an unclean
relation R generated by a parameterized clustering algorithm A.

DEFINITION 2. U-Clean Relation. A U-clean relation, de-
noted Rc, is a set of c-records where each c-record is a represen-
tative record of a cluster of records in R. Attributes of Rc are all
attributes of Relation R, in addition to two special attributes: C
and P . Attribute C of a c-record is the set of records identifiers
in R that are clustered together to form this c-record. Attribute P
of a c-record represents the parameter settings of the clustering al-
gorithm A that lead to generating the cluster represented by this
c-record.

The parameter settings P is represented as one or more intervals
within the range of the algorithm parameter τ . We interpret each
c-record r as a propositional variable, and each repair X ∈ X as
a truth assignment for all c-records in Rc such that r = True if
records in Attribute C of r form a cluster in X , and r = False
otherwise. Note that it is possible to have overlapping clusters rep-
resented by different c-records in Rc since Rc encapsulates more
than one possible repair of R.

Figure 5 illustrates our model of possible repairs for two unclean
relations Person and Vehicle. U-clean relations Personc

and Vehiclec are created by clustering algorithms A1 and A2

using parameters τ1 and τ2, respectively. For brevity, we omit
some attributes from Personc and Vehiclec (shown as dot-
ted columns in Figure 5). Parameters τ1 and τ2 are defined on
the real interval [0, 10] with uniform distributions. We provide
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more details of the construction process in Section 3.2. Rela-
tions Personc and Vehiclec capture all repairs of the base re-
lations corresponding to possible parameters values. For example,
if τ1 ∈ [1, 3], the resulting repair of Relation Person is equal
to {{P1,P2}, {P3,P4}, {P5}, {P6}}, which is obtained using c-
records in Personc whose parameter settings contain the interval
[1, 3]. Moreover, the U-clean relations allow for identifying the pa-
rameter settings of the clustering algorithm that lead to generating
a specific cluster of records. For example, the cluster {P1,P2,P5}
is generated by algorithm A1 if the value of parameter τ1 belongs
to the range [3, 10].

3.2 Constructing U-clean Relations
Hierarchical clustering algorithms cluster records of an input re-

lationR in a hierarchy, which represents a series of possible cluster-
ings starting from a clustering containing each record in a separate
cluster, to a clustering containing all records in one cluster (e.g.,
Figure 6). The algorithms use specific criteria, usually based on a
parameter of the algorithm, to determine which clustering to return.

Hierarchical clustering algorithms are widely used in duplicate
detection. Examples include link-based algorithms (e.g., single-
linkage, average-linkage and complete-linkage), hierarchical cut
clustering [18], and CURE [20]. Other algorithms can be altered to
allow producing hierarchical clustering of records such as the fuzzy
duplicate detection framework introduced in [10], as we show later
in this section. Hierarchical clustering is also used as a basis for
other duplicate detection algorithms such as collective entity reso-
lution [9], and deduplication under aggregate constraints [11].

Due to the nature of hierarchical clustering algorithms, only mi-
nor modifications are necessary to allow constructing U-clean rela-
tions as we discuss in the following case studies.

Case Study 1: Link-based Hierarchical Clustering Algorithms
Given an input unclean relation R of n records, a hierarchical

linkage-based clustering algorithm is generally described based on
two components: (1) a distance function dist : 2R × 2R → R,
where 2R is the power set ofR, that gives the distance between two
disjoint clusters of records, and (2) a threshold τ such that any two
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clustersC1 andC2 with dist(C1, C2) > τ are not linked (merged).
Clusters are merged iteratively starting from all singleton clusters.
At each iteration, the function dist is used to pick the closest cluster
pair to link. If the value of dist of such pair is below the threshold
τ , the two clusters are merged by creating a parent cluster in the
hierarchy composed of the union of the two original clusters. The
distance between two records is determined through various func-
tions such as Euclidian distance, Edit Distance, and Q-grams [16].
The distance between two clusters is an aggregate of the pair-wise
distances. For example, in single-linkage [23], dist returns the dis-
tance between the two closest records in the two clusters, while
in complete-linkage, dist is the distance between the two furthest
records in the two clusters.

Figure 6 gives an example of the hierarchy generated by a
linkage-based algorithm for the relation R = {r1, . . . , r5}.
The parameter τ represents a threshold on inter-cluster dis-
tances which are represented by the Y -axis. Different repairs
are generated when applying the algorithm with different val-
ues of τ . For example, at τ ∈ [0, 3], the produced repair is
{{r1}, {r2}, {r3}, {r4}, {r5}}, while at τ ∈ [3, 4], the produced
repair is {{r1}, {r2}, {r3}, {r4, r5}}.

We modify the link-based clustering algorithm to build U-clean
relations as described in Algorithm 1. The algorithm performs clus-
tering of records similar to the conventional greedy agglomerative
clustering algorithm. However, we additionally create and store all
c-records corresponding to the clusters linked at distances within
the range [τ l, τu]. We denote by r[A] the value of Attribute A of
the record r. Initially, the algorithm creates a singleton cluster and
its corresponding c-record for each record in R (lines 1-5). The
initial parameter settings of created c-records are the entire range
[τ l, τu]. The algorithm incrementally merges the closest clusters
Ci and Cj , and creates a c-record corresponding to the new cluster
(lines 6-10). Additionally, we update the c-records corresponding
to Ci and Cj as shown in lines 11-15. The algorithm terminates
when the distance between the closest clusters exceeds τu or when
all records are clustered together.

Case Study 2:NN-Based Clustering
In [10], a duplicate detection algorithm based on nearest neigh-

bor (NN) techniques is introduced. The algorithm introduced in
[10] declares a set of records as duplicates whenever they represent
a compact set that has sparse neighborhood. A set of records S is
compact if ∀r ∈ S, the distance between r and any other record
in S is less than the distance between r and any record not in S.
The neighborhood growth of a record r, denoted ng(r), is defined
as the number of records with distance to r smaller than double the
distance between r and its nearest neighbor. A set S has a sparse
neighborhood if its aggregated neighborhood growth Fr∈S ng(r)
is less than a threshold τ , where F is an aggregate function such as

Algorithm 1 U Cluster(R(A1, . . . , Am), τ l, τu)

Require: R(A1, . . . , Am): The unclean relation
Require: τ l: Minimum threshold value
Require: τu: Maximum threshold value
1: Define a new singleton cluster Ci for each record ri ∈ R (i.e., Ci

contains a unique identifier of ri)
2: C ← {C1, . . . , C|R|}
3: for each ri ∈ R do
4: Add (ri[A1], . . . , ri[Am], Ci, [τ

l, τu]) to Rc
5: end for
6: while (|C| > 1 and distance between the closest pair of clusters

(Ci, Cj) in C is less than τu) do
7: Ck ← Ci ∪ Cj
8: Replace Ci and Cj in C with Ck
9: rk ← get representative record(Ck) {See Section 3.3}

10: Add (rk[A1], . . . , rk[Am], Ck, [dist(Ci, Cj), τ
u]) to Rc

11: if (dist(Ci, Cj) < τ l) then
12: Remove the c-records corresponding to Ci and Cj from Rc

13: else
14: Set the upper bounds of parameter settings of the c-records cor-

responding to Ci and Cj to dist(Ci, Cj)
15: end if
16: end while
17: return Rc

max or average.
Although the clustering algorithm in [10] is not presented as a

hierarchical clustering algorithm, we prove in [8] that compact sets
form a hierarchy (i.e, compact sets are necessarily nested). Such
a fact allows using the NN-based clustering algorithm to provide a
hierarchy of clusters as we describe in the following.

If the used aggregation function F is max (or any other mono-
tone function w.r.t. to the size of a compact set), increasing τ re-
sults in a monotonic decrease of the number of clusters by merg-
ing two or more compact sets into one compact set. The rea-
son is that for any two compact sets Si, Sj such that Si ⊂ Sj ,
maxr∈Si ng(r) ≤ maxr∈Sj ng(r). Thus, the NN-based clus-
tering algorithm effectively constructs a hierarchy of compact sets
where neighborhood spareness is used as the stopping condition.

In order to allow efficient construction of U-clean relations, we
modify the NN-based clustering algorithm similar to link-based al-
gorithms. We construct compact sets incrementally, starting with
singleton compact sets until reaching compact sets of the maxi-
mum size allowed (using the same technique in [10]). Each com-
pact set with aggregated neighborhood growth above τ l and below
τu is stored in Rc. For any two compact sets Si, Sj ∈ S such that
Si ⊂ Sj and they have the same neighborhood growth, we only
store Sj in Rc in order to comply with a property of the algorithm
in [10], which is to report the largest compact sets that satisfy the
sparse neighborhood criterion. Parameter settings are maintained
for each c-record similar to the linkage-based algorithms.

Time and Space Complexity
In general, our uncertain hierarchical clustering algorithms have

the same asymptotic complexity of the conventional algorithms.
The reason is that we only add a constant amount of work to each
iteration which is constructing c-records and updating their param-
eter settings (e.g., lines 9-15 in Algorithm 1).

Hierarchical clustering arranges records in the form of an N -ary
tree. The leaf nodes in the tree are the records in the unclean rela-
tion R, while the internal nodes are clusters of records that contain
two or more records. Let n be the size of R, and n′ be the number
of clusters containing two or more records (the number of internal
nodes). The maximum value of n′ occurs when the tree is binary,
in which n′ is equal to n−1. Thus, the total number of nodes in the



clustering hierarchy is less than or equal to n′ + n = 2n− 1. The
size of Relation Rc is equal to the number of the possible clusters
which is bounded by 2n− 1. It follows that the size of Rc is linear
in the number of records in R.

The number of repairs encoded by Rc is equal to the number
of internal nodes n′ as each internal node indicates merging multi-
ple clusters together, which results in a new repair. Moreover, the
maximum repair size is n (the number of leaf nodes).

3.3 Representative Records of Clusters
Records in the same cluster within a repair indicate duplicate

references to the same real-world entity. Queries that reason about
attributes of entities usually require resolving potential conflicts be-
tween attributes of duplicate records. We assume that conflicts in
attribute values of the cluster records are resolved deterministically
using a user defined merging procedure (line 9 in Algorithm 1),
which can be decided based on application requirements. For ex-
ample, conflicting values of Attributes Income and Price in Fig-
ure 5 are resolved by using their average as a representative value.

Note that deterministically resolving conflicts in attribute values
of records that belong to the same cluster may lead to loss of infor-
mation and introduce errors in the generated repairs. In [5], authors
tackled this problem by modeling uncertainty in merging records.
The authors assume that a representative record for a cluster is a
random variable whose possible outcomes are all members of the
cluster. We see uncertainty in the merging operation as another
level of uncertainty that could be combined in our framework. For
the sake of clarity, we focus on uncertainty in clustering records.
We describe how to extend our approach to handle uncertain merg-
ing in the full version of the paper [8].

4. QUERY PROCESSING
In this section, we describe how to support multiple query types

under our model such as selection, projection, join and aggregation.

4.1 Semantics of Query Answering
We define relational queries over U-clean relations using the con-

cept of possible worlds semantics [15]. More specifically, queries
are semantically answered against individual clean instances of the
dirty database that are encoded in input U-clean relations, and the
resulting answers are weighted by the probabilities of their origi-
nating repairs. For example, consider a selection query that reports
persons with Income greater than 35k considering all repairs en-
coded by Relation Personc in Figure 5. One qualified record is
CP3. However, such record is valid only for repairs generated at
the parameter settings τ1 ∈ [0, 3]. Therefore, the probability that
record CP3 belongs to the query result is equivalent to the proba-
bility that τ1 is within [0, 3], which is 0.3.

4.2 SPJ Queries
In this section, we define the selection, projection and join (SPJ)

operators over U-clean relations.
Model closure under SPJ queries is important in order to allow

query decomposition (i.e., applying operators to the output of other
operators). To make our model closed under SPJ operations, we ex-
tend Attribute C in U-clean relations to be a composition of multi-
ple clusters, and extend Attribute P to be a composition of multiple
parameter settings of one or more clustering algorithms. Similar
methods are proposed in [15], where each record is associated with
a complex probabilistic event.

We interpret Attribute C (and similarly Attribute P ) of a base
c-record r as a propositional variable that is True for repairs con-
taining r, and is False for all other repairs. We define Attribute

SELECT ID, Income 
FROM Personc

SELECT DISTINCT Price
FROM Vehiclec

WHERE Income>35k Price C P
4k {V4} [0,5]
5k {V1} [0,4]

ID Income C P
CP2 40k {P3 P4} [0 10]

6k {V1,V2}v{V3,V4} [4,10]v[5,10]
7k {V2} [0,4]
8k {V3} [0,5]

CP2 40k {P3,P4} [0,10]
CP3 55k {P5} [0,3]
CP5 39k {P1,P2,P5} [3,10] { } [ , ]

(a) (b)

SELECT Income, Price
FROM Personc , Vehiclec

WHERE Income/10 >= Price

Income Price C PIncome Price C P
40k 4k {P3,P4} ^ {V4} τ1 :[0, 10] ^ τ2 :[0,5]

55k 5k {P5} ^{V1} τ1 :[0, 3] ^ τ2 :[0,4]

55k 4k {P5} ^ {V4} [0 3] ^ [0 5]55k 4k {P5} ^ {V4} τ1 :[0, 3] ^ τ2:[0,5]

(c)

Figure 7: Relational Queries (a) Selection (b) Projection (c) Join

C (and similarly P ) in U-clean relations resulting from SPJ queries
as propositional formula in DNF over Attribute C (similarly P ) of
the base U-clean relations. Note that the propositional formulae
of Attributes C and P of a c-record r are identical DNF formulae
defined on the clusters and the parameter settings of the base c-
records corresponding to r, respectively. We give examples in the
following sections.

SPJ operators that are applied to U-clean relations are conceptu-
ally processed against all clean instances represented by the input
U-clean relations, and the resulting instances are re-encoded into
an output U-clean relation. We add a superscript u to the opera-
tors symbols to emphasize awareness of the uncertainty encoded in
the U-clean relations. In the following, we show how to efficiently
evaluate SPJ queries without an exhaustive processing of individual
repairs, based on the concept of intensional query evaluation [15].

4.2.1 Selection
We define the selection operator over U-clean relations, denoted

σu, as follows: σup (Rc) = {r : r ∈ Rc ∧ p(r) = True}, where p
is the selection predicate. That is, a selection query σup (Rc) results
in a U-clean relation containing the c-records in Rc that satisfy the
predicate p. The operator σu does not change Attributes C or P of
the resulting c-records. The resulting U-clean relation encodes all
the clean instances represented by Rc after filtering out all records
not satisfying p.

For example, Figure 7(a) shows the result of a selection query
posed against Relation Personc in Figure 5, where we are inter-
ested in finding persons with income greater than 35k. The query
produces three c-records that are identical to the input c-records
CP2, CP3, and CP5.

4.2.2 Projection
We define the projection operator Πu over a U-clean relation

as follows. The expression Πu
A1,...,Ak

(Rc) returns a U-clean rela-
tion that encodes projections of all clean instances represented by
Rc on Attributes A1, . . . , Ak. Therefore, the schema of the result-
ing U-clean relation is (A1, . . . , Ak, C, P ). Under bag semantics,
duplicate c-records are retained. Hence, Attributes C and P of
the projected c-records remain unchanged. Under set semantics, c-
records with identical values with respect to AttributesA1, . . . , Ak
are reduced to only one c-record with Attributes C and P com-
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Figure 8: Distribution of Possible Repairs in Relation Personc

puted as follows. Let ŕ ∈ Πu
A1,...,Ak

(Rc), where ŕ is a projected
c-record corresponding to duplicate c-records {r1, . . . , rm} ⊆ Rc.
Attribute C of ŕ is equal to

∨m
i=1 ri[C] and Attribute P of ŕ is

equal to
∨m
i=1 ri[P ].

For example, Figure 7(b) shows the results of a projection query
(under set semantics) posed against Relation Vehiclec in Fig-
ure 5, where we are interested in finding the distinct car prices. The
only duplicate c-records w.r.t. Attribute Price are CV3 and CV6.

4.2.3 Join
We define the join operator ./u over two U-clean relations as

follows. The expression (Rci ./
u
p R

c
j) results in a U-clean relation

that contains all pairs of c-records in Rci and Rcj that satisfy the
join predicate p. Additionally, we compute Attributes C and P of
the resulting c-records as follows. Let rij be the result of joining
ri ∈ Rci and rj ∈ Rcj . AttributeC of rij is equal to the conjunction
of values of AttributeC of both ri and rj . That is, rij [C] = ri[C]∧
rj [C]. Similarly, rij [P ] = ri[P ] ∧ rj [P ]. Therefore, the schema
of the resulting U-clean relation contains only one occurrence of
Attributes C and P . The resulting U-clean relation encodes the
results of joining each clean instance stored in Rci with each clean
instance stored in Rcj .

For example, Figure 7(c) shows the results of a join query on
Relations Personc and Vehiclec in Figure 5. The query finds
which car is likely to be purchased by each person by joining a per-
son with a car if 10% of the person’s income is greater than or equal
to the car’s price. Note that the parameter settings of c-records in
the join results involve two parameters: τ1 and τ2. Therefore, we
precede each interval in Attribute P with the referred parameter to
avoid ambiguous settings.

4.3 Aggregation Queries
The aggregation query Agg(Rc, expr) uses the function Agg

(such as sum, count, and min) to aggregate the value of the
expression expr over all c-records in Rc. Examples of expr in-
clude a single attribute in Rc, or a function defined on one or more
attributes. The result of an aggregation query against one clean
database instance is a single scaler value. However, in our settings,
Relation Rc encodes multiple possible clean instances. Hence, the
answer of an aggregation query over Rc is a probability distribu-
tion over possible answers, each of which is obtained from one or
more clean possible instances.

To simplify the discussion, we assume that the aggregate query
involves a base U-clean relationRc that is generated by a clustering
algorithmA using a single parameter τ . We discuss in the extended
version of the paper [8] how to answer aggregation queries over U-
clean relations resulting from SPJ queries.

For example, consider the aggregation query
average(Personc,Income), where we are interested in
finding the average of persons’ incomes, given the possi-
ble repairs represented by Personc in Figure 5. Figure 8
shows the possible repairs of Relation Person, which are
{CP2, CP3, CP4, CP6, CP7}, {CP1, CP2, CP3, CP4} and
{CP2, CP4, CP5} whose probabilities are 0.1, 0.2 and 0.7, re-
spectively. The aggregate value for the three repairs are 37.4k, 39k
and 36.33k, respectively. Hence, the query answer is the following
discrete probability distribution: Pr(average = 37.4k) = 0.1,
Pr(average = 39k) = 0.2, Pr(average = 36.33k) = 0.7.

A straightforward algorithm to answer aggregation queries over
a U-clean relation Rc is described as follows.

1. Identify the distinct end points t1, . . . , tm (in ascending or-
der) that appear in Attribute P of all c-records in Rc. Define
Vi to be the interval [ti, ti+1] for 1 ≤ i ≤ m− 1.

2. For each interval Vi :

(a) Obtain the corresponding repair Xi = {r : r ∈ Rc ∧
Vi ⊆ r[P ]}.

(b) Evaluate Function Agg over Xi.

(c) Compute the probability of Xi:
∫
Vi
fτ (x)dx.

3. Compute the probability of each value of Agg as the sum of
probabilities of the repairs corresponding to such a value.

For example, for the aggregation query
average(Personc,Income), we extract the end points in
Attribute P of Personc, which are {0, 1, 3, 10} as shown in
Figure 8). The corresponding intervals [0, 1], [1, 3], and [3, 10]
represent the repairs X1, X2 and X3, respectively. We compute
the aggregate value corresponding to each repair by evaluating
Function Agg over the c-records in this repair. Finally, we report
each aggregate value along with the sum of probabilities of its
corresponding repairs. The complexity of the described algorithm
is O(n2) due to evaluating the function Agg over individual
repairs (recall that the number of repairs is O(n) and the size of a
repair is O(n) as shown in Section 3.2). In the remainder of this
section, we show how to reduce such complexity to O(n logn).

We employ a method to incrementally evaluate the aggregate
function Agg, which is based on the concept of partial aggregate
states [26, 3]. Such a method is based on defining an aggregate state
for a given subset of the items to be aggregated. States of disjoint
subsets are aggregated to obtain the final result. More specifically,
three functions have to be defined [26]: Function init state that
initializes a state corresponding to a specific set of items, Function
merge states that merges two partial states into one state, and
Function finalize state that obtains the final answer correspond-
ing to a state. For example, in the case of the aggregate function
average, a partial state consists of a pair (sum, count). The ini-
tialization of the empty set returns the state (0, 0), while initializa-
tion of a set with a single item v returns the state (v, 1). The merg-
ing of two states (sum1, count1) and (sum2, count2) returns the
state (sum1+sum2, count1+count2). The finalization function
returns the value of sum/count.

We define a B-tree index, denoted I , over the parameter space
[τ l, τu] such that each interval Vi is represented as a leaf node in
I (denoted as Vi as well). Additionally, we associate a partial ag-
gregate state to each node l in I , denoted l.state. We construct I
such that the final aggregate value at each interval Vi is computed
by merging the state Vi.state with states of all ancestors of Vi.



Algorithm 2 Aggregate(Rc, expr, init state,merge states,
finalize state)
Require: Rc: An input U-clean relation
Require: expr: An expression over attributes of Rc
Require: init state,merge states, finalize state: Functions for ma-

nipulating partial aggregate states
1: Define an index I over the space of the clustering algorithm parameter
2: Initialize I to have one node (I.root) covering the entire parameter

space
3: I.root.state← init state(φ)
4: Define a set D (initially empty)
5: Define a partial state record state
6: for each r ∈ Rc do
7: record state← init state({expr(r)})
8: Update Index(I.root, r[P ], record state, merge states )
9: end for

10: for each node l ∈ I , using pre-order traversal do
11: if l 6= I.root then
12: l.state← merge states(l.state, l.parent.state)
13: end if
14: if l is a leaf node then
15: Agg value← finalize state(l.state)
16: Prob← Pr(l) {see discussion in Section 5.1}
17: Add (Agg value, Prob) to D
18: end if
19: end for
20: Merge pairs in D with the same Agg value and sum up their Prob
21: return D

Algorithm 3 Update Index(l, P, record state,merge states)
Require: l: a node in an index
Require: P : parameter interval to be updated
Require: record state: a new state to be merged within the interval P
Require: merge states: A function to merge multiple states
1: if range of node l is entirely contained in P then
2: l.state← merge states(l.state, record state)
3: else if l is an internal node and l intersects with P then
4: for each child node l′ of l do
5: Update Index(l′, P, record state,merge states)
6: end for
7: else if l is an leaf node and range of l intersects P then
8: Split l into multiple nodes such that only one new leaf node l′ is

contained in P and the other node(s) are disjoint from P
9: Set states of all new leaf nodes to the state of the old leaf node l

10: l′.state← merge states(l′.state, record state)
11: end if

Algorithms 2 and 3 outline our procedure to obtain the PDF
of the aggregate value. Initially, the entire parameter space is
covered by one node in the index, named I.root. The state of
I.root is initialized to the state of the empty set (e.g., (0, 0) in
case of the function average). For each c-record in Rc, the pro-
cedure Update Index is invoked. Update Index recursively
traverses the index I starting from the root node. For each node l,
if the associated parameter range is completely covered by the in-
terval P , we update the state of l, otherwise, if l is an internal node,
we recursively process its children nodes. If l is a leaf node, we
split it into multiple nodes such that one of the new nodes is con-
tained in the interval P (and thus we update its state accordingly),
and the other node(s) are disjoint from P (and thus their states are
not changed). Whenever a node is split (as it becomes full, or due
to the condition at line 7 in Algorithm 3), new nodes will have the
state of the original node. If a new root is introduced, its state is set
to init state(φ).

Once all c-records are consumed (after line 9 in Algorithm 2),
we traverse the index I in pre-order, and we merge the state of each
node with the state of its parent. For each leaf node, a pair con-

State: (70k,2) State: (70k,2)
1 3 P Avg Prob.

[0,1] 37.5k 0.1
[1 3] 39k 0 2

1 3

[0,1] [1,3] [3,10]
State: State: State: 

[1,3] 39k 0.2
[3,10] 36.33k 0.7[0,1] [1,3] [3,10]

State: State: State: 
(117k,3) (86k,2) (39k,1) (187k,5) (156k,4) (109k,3)
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Figure 9: Example Aggregation Query (a) Index I after Line 9 in Alg.
2 (b) Index I after Line 19 in Alg. 2 (c) PDF of the Aggregate Value

sisting of the aggregate value and its corresponding probability is
stored. Finally, pairs are grouped by the aggregate value, and the
probabilities of the same values are summed up. The resulting pairs
represent the PDF of the aggregate function. We prove in the ex-
tended version of the paper [8] that our algorithm has a complexity
of O(n logn) , where n is the number of c-records in Rc.

Figure 9 shows an example to illustrate this procedure for the
aggregation query average(Personc,Income). We start with a
node covering the parameter range [0, 10], which is initialized to
state (0, 0). After reading the first c-record CP1, we split the node
[0, 10] into three leaf nodes [0, 1], [1, 3], and [3, 10] associated with
the states (0, 0), (31k, 1) and (0, 0), respectively. At the same time,
a new root is introduced with the state (0, 0). When reading the
next c-record CP2, we update the state of the root node to (40k, 1).
We repeat the same process when reading the remaining c-records.
The final B-tree is shown in Figure 9(a). Then, we merge the state
of each node with the states of its ancestors (Figure 9(b) ). The final
PDF is then derived from the states of leaf nodes (Figure 9(c) ).

5. IMPLEMENTATION IN RDBMS
In this section, we show how to implement U-clean relations and

query processing inside relational database systems. We also pro-
vide new queries that reason about uncertainty of repairing.

5.1 Implementing U-clean Relations
We implement Attributes C and P in a relational database as ab-

stract data types (ADTs). Attribute C is encoded as a set of (ORed)
clauses, each of which is a set of (ANDed) clusters. Attribute P of
a U-clean relation Rc is encoded as an array of hyper-rectangles in
the d-dimensional space, where d is the number of parameters of
the used clustering algorithms. Each hyper-rectangle is represented
as d one-dimensional intervals.

Executing SPJ queries requires manipulation of AttributesC and
P according to the discussion in Section 4.2. The selection and
projection (under bag semantics) operators do not alter the values
of C and P , and hence no modifications are necessary to these op-
erators in relational DBMSs. On the other hand, the join operator
modifies Attributes C and P to be the conjunctions of the joined
c-records attributes. C and P of the results are computed through
functionsConjC(C1, C2) andConjP (P1, P2), whereC1 andC2

are record clusters, and P1 and P2 are parameter settings of cluster-
ing algorithm(s). We implement the functionsConjC andConjP
such that they return the conjunction of their inputs in DNF.

In the current implementation, we do not provide native support
to projection with duplicate elimination (i.e., using the Distinct
keyword). However, we realize projection with duplicate elim-
ination through group-by queries. We implement two functions
DisjC(C1, . . . , Cn) and DisjP (P1, . . . , Pn) to obtain the dis-
junction of clustersC1, . . . , Cn and parameter settingsP1, . . . , Pn,



respectively. Performing projection with duplicate elimination of a
U-clean relation UR on a set of attributes A1,...,Ak is equivalent
to the following SQL query:

SELECT A1,...,Ak, DisjC(C), DisjP (P )

FROM UR

GROUP BY A1,...,Ak

This query effectively projects Relation UR on Attributes
A1,...,Ak and computes the disjunctions of Attributes C and
P of the duplicate c-records.

In the following, we give a list of operations that reason about
the possible repairs encoded by a U-clean relation to allow new
probabilistic query types that are described in Section 5.2.

• Contains(P, x) returns True iff the parameter settings P
contain a given parameter setting x.

• ContainsBaseRecords(C, S) returns True iff a set of
base records identifiers S is contained in a cluster C.

• Prob(P, fτ1 , . . . , fτd) computes the probability that a c-
record with parameter settings P belong to a random repair.
fτ1 , . . . , fτd are the probability distribution functions of the
clustering algorithms parameters τ1, . . . , τd that appear in P .

• MostProbParam(UR, fτ1 , . . . , fτd) computes the param-
eter settings corresponding to the most probable repair
of a U-clean relation UR, given the parameters PDFs
fτ1 , . . . , fτd .

We describe how to efficiently implement the functions Prob
and MostProbParam as follows.

5.1.1 Implementing Function Prob

Prob determines the membership probability of a c-record,
given its parameter settings P , denoted as Pr(P ). For a base U-
clean relation that involve a single clustering algorithm parameter τ
with PDF fτ , this probability is equal to

∫
P
fτ (x)dx. For U-clean

relations resulting from SPJ queries, Attribute P involves d param-
eters and is represented as a union of h hyper-rectangles, denoted
H1, . . . , Hh, each of which is d dimensional. We first divide the
parameters space into a number of disjoint hyper-rectangles (called
cells) as follows. For each parameter τi, 1 ≤ i ≤ d, we extract
the end points of each hyper-rectangle w.r.t. to τi. The resulting
points divide the space of τi into at most 2h+ 1 intervals, and thus
the space of all parameters is partitioned into at most (2h + 1)d

disjoint cells, denoted {L1, L2, . . . }. The probability of a cell Lj
is defined as follows.

Pr(Lj) =

d∏
i=1

∫ Lj .τ
u
i

Lj .τ
l
i

fτi(x)dx (2)

where Lj .τ li and Lj .τ
u
i indicate the lower and upper values

of parameter τi in cell Lj , respectively. Clearly, for each pair
(Hl, Lj), Lj can only be either contained in Hl or disjoint from
Hl. Additionally, each Hl is completely covered by one or more
cells. Thus, we compute Pr(P ) as follows.

Pr(P ) =
∑
j

con(Lj , P ) Pr(Lj) (3)

where con(Lj , P ) is an indicator function that returns 1 if Lj is
contained in any hyper-rectangle of P , and 0 otherwise.

5.1.2 Implementing Function MostProbParam

For base U-clean relations, determining the most probable repair
can be done efficiently by scanning c-records in Rc, and extracting
all end points of their parameter settings. Distinct end points split
the parameter space [τ l, τu] into multiple intervals V1, . . . , Vm cor-
responding to the possible repairs. For example, in Figure 8, the
possible repairs are X1, X2, and X3 corresponding to the inter-
vals [0, 1], [1, 3], and [3, 10], respectively. The probability of each
repair is computed based on its corresponding parameter settings.
Function MostProbParam returns the interval of the repair with
the highest probability (e.g., [3, 10] in Figure 8). The overall com-
plexity of the function MostProbParam is O(n logn) (mainly,
due to sorting the end points of parameter settings).

In U-clean relations resulting from SPJ queries, AttributesC and
P are represented as propositional formulae in DNF. Therefore, our
algorithm needs to be modified to consider such a representation,
as we show in the extended version of the paper [8].

5.2 Other Query Types
In this section, we describe multiple meta-queries that are de-

fined over our uncertainty model. Specifically, the queries we de-
scribe in this section explicitly use Attributes P and C to reason
about the possible repairs modeled by U-clean relations.

5.2.1 Extracting Possible Clean Instances
Any clean instance encoded in a U-clean relation can be con-

structed efficiently given the required parameters values of the
clustering algorithm(s). For a base U-clean relation Rc, the
clean instance at parameter value t is equal to {r[A1, . . . , Am] :
r[A1, . . . , Am, P, C] ∈ Rc ∧ t ∈ P}.

Extracting the clean instance corresponding to a given parameter
value x can be performed through a selection query with the predi-
cateContains(P, x). For example, assume that we need to extract
the clean instance of the output U-clean relation in Figure 7(b) cor-
responding to the parameter setting τ2 = 4.1. This clean instance
is computed using the following SQL query:

SELECT Price

FROM ( SELECT Price , DisjP (C) AS C,DisjP (P ) AS P

FROM Vehiclec

GROUP BY Price)

WHERE Contains(P, 4.1)

which results in the tuples 4k, 6k, and 8k.
It is possible to speed up extraction of clean instances by index-

ing the c-records based on their parameter settings. More specifi-
cally, we create a d-dimensional R-tree index over the space of pos-
sible settings of parameters τ1, . . . , τd. The parameter settings of a
c-record r is generally a union of d-dimensional hyper-rectangles.
For each c-record r ∈ Rc, we insert its hyper-rectangles into the
R-tree, and label them with an identifier of r. To extract the re-
pair at τ1 = t1, . . . , τd = td, we search the R-tree for hyper-
rectangles that contain the point (t1, . . . , td) and report the asso-
ciated c-records.

5.2.2 Obtaining the Most Probable Clean Instance
An intuitive query is to extract the clean instance with the highest

probability, as encoded in a given U-clean relation. It is possible
to answer this query using two functions, namely Contains and
MostProbParam, through a selection SQL query. For example,
assume that a user requests the most probable repair from Relation
Personc which is shown in Figure 5. This query can be answered
using the following SQL query:



SELECT ID, Name, ZIP, Income, BirthDate

FROM Personc

WHERE Contains(P,MostProbParam(Personc, U(0, 10)))

Note that MostProbParam is evaluated only once during the
entire query and thus the cost incurred by this function is paid only
once.

5.2.3 Finding α-certain c-records
We consider a query that finds c-records that exhibit a de-

gree of membership certainty above a given threshold α. We
call this type of queries an α-certain query. This query type
can be answered by issuing a selection query with the predicate
Prob(P, fτ1 , . . . , fτd) ≥ α. For example, consider a 0.5-certain
query over the relation in Figure 7(c). This query is answered using
the following SQL query:

SELECT Income,Price, ConjC(PC.C,VC.C), ConjP (PC.P,VC.P )

FROM Personc PC , Vehiclec VC

WHERE Income/10 >= Price

AND Prob(ConjP (PC.P,VC.P ), U(0, 10), U(0, 10)) >= 0.5

This SQL query reports only the first c-record in Figure 7(c),
which has a membership probability of 0.5.

Note that α-certain queries can be considered a generalization of
consistent answers in inconsistent database [6]. That is, setting α
to 1 retrieves only c-records that have absolute certain membership.
The resulting c-records represent consistent answers in the sense
that they exist in all possible repairs.

5.2.4 Probability of Clustering Records
We show how to compute the probability that multiple records

in an unclean relation R belong to the same cluster (i.e., declared
as duplicates). For example, consider a query requesting the proba-
bility that two records P1 and P2 from Relation Person are clus-
tered together according to the repairs encoded in U-clean relation
Personc (Figure 5). The probability of clustering a set of records
is equal to the sum of probabilities of repairs in which this set of
records is clustered together. To compute this probability, we first
select all c-records whose Attribute C contains all query records
(e.g., P1 an P2). Values of Attribute C of the selected c-records
are overlapping since they all contain the query records. Conse-
quently, the selected c-records are exclusive (i.e., cannot appear in
the same repair) and the clustering probability can be obtained by
summing probabilities of the selected c-records:

Pr(clustering r1, . . . , rk) =
∑

r∈Rc:{r1,...,rk}⊆r[C]

Pr(r[P ]) (4)

For example, the probability of clustering records P1 and P2 is
obtained using the following query:

SELECT Sum(Prob(P,U(0, 10)))

FROM Personc

WHERE ContainsBaseRecords(C, ’P1,P2’)

which returns the probability 0.9.
It is worth mentioning that the way we obtain clustering prob-

abilities is substantially different from other approaches that com-
putes the matching probabilities of records pairs. For example, in
[17], Fellegi and Sunter derive the probability that two records are
duplicates (i.e., match each other) based on the similarity between
their attributes. Unlike our approach, probabilities of record pairs

are computed in [17] in isolation of other pairs, which may lead
to inconsistencies. For example, the pair r1, r2 may have a match-
ing probability of 0.9, and the pair r2, r3 has a matching proba-
bility of 0.8, while the matching probability of the pair r1, r3 is
equal to 0. Our approach avoids such inconsistencies by deriving
pair-wise clustering probabilities based on the uncertain output of a
clustering algorithm, which by definition resolves such inconsisten-
cies. Moreover, our approach can obtain the matching probability
of more than two records.

6. EXPERIMENTAL EVALUATION
In our experiments, we focus on the scalability of our approach

compared to the deterministic deduplication techniques. We show
in this section that although our proposed probabilistic cleaning
framework generalizes current deterministic techniques and allows
for richer probabilistic queries, it is still scalable and the time and
space overheads are not significant, which warrants adopting our
approach in realistic settings. We also show that queries over U-
clean relations can be answered efficiently using our algorithms.

6.1 Setup
All experiments were conducted on a SunFire X4100 server

with Dual Core 2.2GHz processor, and 8GB of RAM. We im-
plemented all functions in Section 5.1 as user defined functions
(UDFs) in PostgreSQL DBMS [3]. We used the synthetic data
generator that is provided in the Febrl project [13], which pro-
duces one relation, named Person, that contains persons data
(e.g., given name,surname, address, phone, age). Datasets gener-
ated using Febrl exhibit the content and statistical properties of real-
world datasets [12], including distributions of the attributes values,
error types, and error positions within attribute values. Our experi-
ments parameters are as follows:

• the number of records in the input unclean relation (default
is 100,000),

• the percentage of duplicate records in the input relation (de-
fault is 10%), and

• the width of the parameter range used in the duplicate de-
tection algorithms (default is 2, which is 10% of width of
the broadest possible range according to the distribution of
the pair-wise distance values). We assume that the parame-
ters have uniform distributions. For deterministic duplicate
detection, we always use the expected parameter value.

Our implementation of deterministic and uncertain duplicate de-
tection is based on the single-linkage clustering (S.L.) [23], and the
NN-based clustering algorithm using the function max for aggre-
gating neighborhood growths [10]. Deduplication algorithms are
executed in memory. All queries, except aggregation queries, are
executed through SQL statements submitted to PostgreSQL. Ag-
gregation queries are processed by an external procedure that im-
plements the algorithms described in Section 4.3. All queries are
performed over a single U-clean relation, named Personc, which
is generated by uncertain deduplication of Person. Each query is
executed five times and the average running time is recorded. We
report the following metrics in our experiments:

• The running time of deterministic and uncertain clustering
algorithms. The reported times do not include building the
similarity graph, which is performed by Febrl [13].

• The sizes of the produced relations.
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Figure 11: Effect of Duplicates Percentage on (a) Clustering Time (b) Output Size (c) Queries Running Times (d) SPJ Queries Overhead

• The response times of an aggregate query using the count
function, and the probabilistic queries in Section 5.2 against
Relation Personc constructed by the S.L. algorithm. The
threshold α is set to 0.5 in α-certain queries. In clustering
probability queries, we use two random records as query ar-
guments. We omit queries for extracting clean instances as
they have almost identical response times to obtaining the
most probable clean instance.

• The relative overhead of maintaining Attributes C and P
in U-clean relations during selection, projection, and join
queries as defined in Section 4.2 (we call such queries uncer-
tain queries). We compare the uncertain queries to regular
SPJ queries that do not use, compute, or return Attributes C
and P (we call them base queries). The base selection query
returns Attribute Age of all records, while the uncertain se-
lection query returns Attributes Age,C and P . The base join
query performs a self-join over Personc to join c-records
with the same Surname and different ID. The uncertain join
query additionally computes Attributes C and P of the re-
sults. The base projection query (with duplicate elimination)
projects Relation Personc on Attribute surnamewhile ig-
noring Attributes C and P . On the other hand, the uncertain
projection computes Attributes C and P of the results as de-
scribed in Section 5.1.

6.2 Results
We observe that the overhead in execution time of the uncertain

deduplication, compared to the deterministic deduplication, is less
than 30% in case of the S.L. algorithm, and less than 5% in case of
the NN-based clustering algorithm. The average overhead in space
requirements is equal to 8.35%, while the maximum overhead is
equal to 33%. We also note that extracting a clean instance takes
less than 1.5 seconds in all cases which indicates that our approach
is more efficient than restarting the deduplication algorithm when-
ever a new parameter setting is requested.

The effect of changing the experiments parameters are shown in
Figures 10, 11 and 12. We discuss these effects as follows:

Effect of Dataset Size (Figure 10): The overhead of the uncertain
S.L. algorithm is almost fixed at 20% compared to the determinis-
tic version. The running times of both versions of the NN-based
algorithm are almost identical. Output sizes (Figure 10(b) ) and
responses times of queries (Figure 10(c) ) exhibit linear (or near-
linear) increase with respect to dataset size.

The overhead of processing SPJ queries varies among query
types (Figure 10(d) ). Selection queries suffer from the lowest
overhead (almost zero) because the only extra operation is convert-
ing data types of Attributes C and P into string format in output.
Join queries have almost fixed relative overhead (about 5% in all
cases) due to the constant time consumed in computing Attributes
C and P per record in the join results. The projection query suffers
from an overhead that increases linearly with the relation size due
to evaluating the aggregate functions DisjC and DisjP .
Effect of Percentage of Duplicates (Figure 11): The overhead
of executing uncertain S.L. algorithm remains low (30% at most)
as the percentage of duplicates rises (Figure 11(a) ). The uncer-
tain NN-based algorithm has almost no overhead regardless of the
amount of duplicates. The output size slightly declines at higher
percentages of duplicates due to the increasing number of merged
records (Figure 11(b) ). Produced clusters mainly consist of sin-
gletons. Hence, query response times are hardly affected by the
increased percentage of duplicates (Figures 11(c) and 11(d) ).
Effect of Width of Parameter Range (Figure 12): The running
times and the output sizes of the deterministic clustering algorithms
do not change because the parameter value remains fixed at the ex-
pected value. In contrast, the running times of the uncertain cluster-
ing algorithms increase due to having greater upper bounds of pa-
rameters, which results in testing and clustering additional records.
The output size also grows as more candidate clusters are emitted to
the output U-clean relation (Figure 12(b) ). Consequently, queries
suffer from increased response times (Figures 12(c) and 12(d) ).

7. RELATED WORK
A number of integrated data cleaning systems have been pro-

posed with different focuses and goals. For example, AJAX [19]



(a) (b) (c) (d)

0

20

40

60

80

100

120

0 2 4
Width of Parameter Range

Cl
us

te
ri

ng
   

Ti
m

e 
(s

ec
) Uncertain S.L.

Determinsitic S.L.
Uncertain NN
Determinsitic NN

0

0.2

0.4

0.6

0.8

1

0 2 4
Width of Parameter Range

Re
sp

on
se

 T
im

e 
(s

ec
) Aggregate

Most Prob Inst
Clustering Prob
alpha-certain

50

100

150

200

0 2 4
Width of Parameter Range

Re
co

rd
s 

  (
x1

00
0)

Uncertain S.L.
Determinsitic S.L.
Uncertain NN
Determinsitic NN

0%

20%

40%

60%

80%

100%

0 2 4
Width of Parameter Range

O
ve
rh
ea
d

Selection

Projection

Join

Figure 12: Effect of Parameter Range on (a) Clustering Time (b) Output Size (c) Queries Running Times (d) SPJ Queries Overhead

is an extensible framework attempting to separate the logical and
physical levels of data cleaning. The logical level supports the de-
sign of the data cleaning workflow and specification of cleansing
operations performed, while the physical level regards their imple-
mentation. IntelliClean [25] is a rule based approach to data clean-
ing that focuses on duplicates elimination. Such approaches do not
capture uncertainty in the deduplication process.

The ConQuer system [5] addresses the deduplication problem in
existence of uncertainty in the merging of cluster members. Each
entity (i.e., cluster) is assumed to be equal to one of its member tu-
ples. However, unlike our approach, the authors assume that clus-
tering of records is deterministically performed prior to applying
the uncertain merging.

A related problem is discussed in [29], which is to integrate two
lists of items that possibly contains duplicate references to the same
real world entities. The authors presents an XML-based uncertainty
model to capture multiple possibilities concerning the output list.
However, capturing dependencies between outcomes of clustering
decisions is done through partial materialization of possible worlds,
which results in less compact representation. Such representation
is not appropriate in case of highly correlated decisions (e.g., in
case of parameterized clustering where all clustering decisions are
correlated through their dependency on the algorithm parameter).

In [28], the K-means clustering algorithm is modified to work
on objects with uncertain distance metric. The proposed algorithm
uses expected distances between objects and clusters centroid to
capture distance uncertainty. In contrast, we assume that similari-
ties between pairs of records are deterministic, while uncertainty
emerges from the inability to identify the optimal clustering of
records based on their similarities.

8. CONCLUSION
In this paper, we introduced a novel approach to address uncer-

tainty in duplicate detection and model all possible repairs corre-
sponding to multiple parameter settings of clustering algorithms.
We introduced efficient methods to construct a representation of
possible repairs by modifying hierarchical clustering algorithms.
We showed how to support relational operations and proposed new
probabilistic query types, which are not possible under current de-
terministic approaches. We conducted an experimental study to
illustrate the efficiency of our algorithms in various configurations.

9. REFERENCES
[1] Bsiness objects, http://www.businessobjects.com.
[2] Oracle data integrator,

http://www.oracle.com/technology/products/oracle-data-integrator.
[3] PostgreSQL database system, http://www.postgresql.org.
[4] S. Abiteboul, P. Kanellakis, and G. Grahne. On the Representation

and Querying of Sets of Possible Worlds. SIGMOD Rec., 1987.
[5] P. Andritsos, A. Fuxman, and R. J. Miller. Clean answers over dirty

databases: A probabilistic approach. In ICDE, 2006.

[6] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers
in inconsistent databases. In PODS, 1999.

[7] E. Balas and M. W. Padberg. Set partitioning: A survey. SIAM
Review, 1976.

[8] G. Beskales, M. A. Soliman, I. F. Ilyas, and S. Ben-David. Modeling
and querying possible repairs in duplicate detection. Technical
Report CS-2009-15, University of Waterloo.

[9] I. Bhattacharya and L. Getoor. Collective entity resolution in
relational data. ACM TKDD, 2007.

[10] S. Chaudhuri, V. Ganti, and R. Motwani. Robust identification of
fuzzy duplicates. In ICDE, 2005.

[11] S. Chaudhuri, A. D. Sarma, V. Ganti, and R. Kaushik. Leveraging
aggregate constraints for deduplication. In SIGMOD, 2007.

[12] P. Christen. Probabilistic data generation for deduplication and data
linkage. In IDEAL, 2005.

[13] P. Christen and T. Churches. Febrl. freely extensible biomedical
record linkage, http://datamining.anu.edu.au/projects.

[14] Y. C.Yuan. Multiple imputation for missing data: Concepts and new
development. In the 25th Annual SAS Users Group International
Conference, 2002.

[15] N. N. Dalvi and D. Suciu. Efficient query evaluation on probabilistic
databases. VLDB J., 2007.

[16] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate
record detection: A survey. TKDE, 2007.

[17] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of
the American Statistical Association, 64(328), 1969.

[18] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering
and minimum cut trees. Internet Mathematics, 2004.

[19] H. Galhardas, D. Florescu, D. Shasha, E. Simon, and C.-A. Saita.
Declarative data cleaning: Language, model, and algorithms. In
VLDB, 2001.

[20] S. Guha, R. Rastogi, and K. Shim. CURE: an efficient clustering
algorithm for large databases. In SIGMOD, 1998.

[21] J.-C. F. Heiko Mller. Problems, methods, and challenges in
comprehensive data cleansing. Technical Report. Humboldt
University Berlin, 2003.
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