Oracle SecureFiles: Prepared for the Digital Deluge

Niloy Mukherjee, Amit Ganesh, Vinayagam Djegaradjane, Sujatha Muthulingam, Wei Zhang,
Krishna Kunchithapadam, Scott Lynn, Bharath Aleti, Kam Shergill, Shaoyu Wang

Oracle Corporation
500 Oracle Parkway
Redwood Shores, CA 94065

{Niloy Mukherjee, Amit.Ganesh, Vinayagam.Djegaradjane, Sujatha.Muthulingam, Wei.Zhang,
Krishna.Kunchithapadam, Scott.Lynn, Bharath.Aleti, Kam.Shergill, Shaoyu.Wang}
@Oracle.com

ABSTRACT

Digital unstructured data volumes across enterprise, Internet and
multimedia applications are predicted to surpass 6.023x10%
(Avogadro’s number) bits a year in the next fifteen years. This
poses tremendous scalability challenges for data management
solutions in the coming decades. Filesystems seem to be preferred
by data management application designers for providing storage
solutions for such unstructured data volumes.

Oracle SecureFiles is emerging as the database solution to break
the performance barrier that has kept unstructured content out of
database management systems and to provide advanced
filesystem functionality, while letting applications fully leverage
the strengths of the RDBMS from transactions to partitioning to
rollforward recovery. A set of preliminary performance results
was presented at the 34th International Conference on Very Large
Data Bases (VLDB 2008). It was claimed that SecureFiles would
scale maximally as physical storage systems scale up. We
legitimize our claims on SecureFiles scalability through this
paper, presenting the scalability aspects of SecureFiles through a
performance evaluation of I/O bound filesystem like operations
on one of the latest high performance cluster of servers and
storage.

We are presenting benchmark results that we believe represent a
world record database insertion rate for any published result - at
over 4.4GB/s using a cluster of seven servers. For 100 byte rows,
that represents an insertion rate of 45 billion records a second in
relational terms. In terms of unstructured data storage, the scale
represents an insertion rate of more than 3.7 million 100 MB
high-resolution multimedia videos a day.

1. INTRODUCTION

The rapid growth of web services as well as digital media
volumes over the past decade has been driving software
applications to deal with data objects of all sizes ranging from a
few kilobytes to a few gigabytes. Most of these application data
objects consist of unstructured content accompanied by relational

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date
appear, and notice is given that copying is by permission of the Very Large
Database Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permissions from the
publisher, ACM.

VLDB 09, August 24-28, 2009, Lyon, France.

Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

or structured content. Application designers have the choice to
use either filesystems or database management systems or a
combination of both to manage such data. It has been observed
that filesystems have been preferred over database management
systems for providing storage solutions for unstructured data,
even though database systems are equipped with advanced and
secure data management features such as transactional atomicity,
consistency, durability, manageability, availability and
queriability that are not present in most filesystems. Databases on
the other hand have been the universal choice for application
designers to manage relational content. The reasons for such
preferences are based on certain myths — databases are optimized
to process small size objects that undergo frequent updates while
filesystems are optimized to provide better throughput for larger
data objects that are more archival in nature. Several studies have
been conducted to explain the above decision tradeoffs with more
soundness [1][2][3]. One of them suggests that 256 KB serves as
a breakeven point and recommends filesystems as the more
preferred option for sizes greater than 256 KB [2]. Given the fact
that today’s applications generate larger and larger objects, such a
break-even point implies that around 85% of unstructured content
will be staying out of databases [4].

Oracle SecureFiles [5] was introduced in 2007 as a completely
new clustered filesystem-like data storage architecture to get rid
of such break-even points. It was primarily designed to provide
filesystem like or better throughput across all object sizes along
with advanced filesystem features such as compression,
encryption and de-duplication [6], without compromising on the
advanced data management features available in the Oracle
RDBMS. However, it was also designed to meet one urgent
objective - to be able to meet and beat the scalability challenges
of data management in the years to come resulting from explosion
of the digital data universe.

2. EXPLOSION OF DATA VOLUMES

Growth of data volumes has been following patterns of Moore’s
law, however, at a more aggressive scale. An IDC research [7]
demonstrates that 281 exabytes of data was ingested in the year
2007 alone. It predicts that the same will be around 1800 exabytes
by 2011. This implies that in the next 15 years, the amount of data
ingested per year will surface Avogadro’s number in terms of
numbers of bits (602,200,000,000,000,000,000,000). The

abundance of data management applications has been contributing
to the growth of physical hardware and storage devices. The
growth in scale of physical hardware is also making it cheaper.
The above cause-effect cycle is driving applications to ingest
larger and larger data objects, thereby resulting in a recursive
demand for more data ingestion.

Multimedia services, Internet access in emerging countries,
sensor-based applications, datacenters, and social networks are
contributing to the digital deluge, driving software applications to
deal with a diverse range of object sizes, from several gigabytes
of DVD quality videos to a few kilobytes of email messages. The
number of data objects — documents, images, videos, and emails
— is growing 50% faster than the number of gigabytes [7]. The
information created in 2011 will be contained in more than 20
quadrillion of such data objects, thereby posing a tremendous
management challenge for data management solutions. Michael
Brodie [8] presented a big picture of data volumes and ingestion
rates faced by data management software applications. In 2007
alone, Internet applications such as YouTube witnessed more than
a million videos ingested per day. Users of MySpace loaded more
than 1 million images, 25 million mp3 format songs, and 60000
videos per day across 250 servers. Cisco Systems [9] predict that
Internet traffic will quintuple between now and 2011, resulting in
around 11 exabytes per month of data. Out of all growing content,
25% are original while the rest is replicated. 95% of this data is
unstructured; consumer generated and growing while the rest 10-
15% of the data is structured [10].

The scenario has been posing an urgent requirement for a
consolidated industry-strength data management solution to be
able to scale to meet and beat this upcoming data explosion in the
next few years. We claimed that Oracle SecureFiles architecture,
introduced in 2007, could achieve such scale based on our
preliminary throughput evaluations. In our previous papers
[5][11], we had mentioned that SecureFiles architecture is capable
to provide maximum scalability achievable with any hardware
and storage system configuration. This paper builds on [5] to
legitimize our claims on Oracle SecureFiles scalability, serving as
the platform to explore whether the architecture is really capable
of meeting the data explosion challenges.

The remainder of the paper is organized as follows. We present a
brief review of SecureFiles architecture in section 3. Section 3
also discusses some of the architecture components as well as
features inherited from the Oracle database server that contribute
to its scalability. The primary focus of the paper is a performance
evaluation of SecureFiles scalability on I/O bound filesystem like
operations. We perform an exhaustive performance evaluation of
data ingestion and retrieval operations like write and read on a
high-end hardware platform, a cluster of seven server machines,
each equipped with 4 quad-core Intel Xeon processors and 32GB
of memory, connected to a disk array of 15 drive modules, each
containing 16 drives of 146GB storage capacity. The experiments
reveal that SecureFiles is able to maximally scale on the above
system delivering an ingestion rate of more than 4.5 GB/s. This
extreme scalability translates to around 3.7 million most high-
resolution YouTube videos a day just using a single seven-node
hardware cluster. Details of experimental setup, performance
experiments and evaluations are presented in section 4. Section 5
enumerates a few published throughput results achieved by
existing database solutions and compares them with the ones

generated by SecureFiles. The paper is concluded in section 6
followed by acknowledgements and references.

3. SCALABLE ARCHITECTURE

The section provides a brief overview of Oracle SecureFiles and
subsequently discusses some of its components as well as
inherited features from the Oracle database server that contribute
to the scalability of the system.

3.1 SecureFiles: A Brief Review

Oracle SecureFiles stores data as first-class objects within the
database and supports all types of content and all file sizes. The
underlying database storage serves the purpose of a physical
filesystem-like repository. Oracle tables, indexes, table partitions,
index organized tables and other logical data structures can be
enhanced to define combined filesystem and relational metadata
repositories. Unstructured data resides in SecureFiles segments
[5] consisting of a set of Oracle database extents where each
extent is a set of logically contiguous storage blocks. Unlike
traditional filesystems, SecureFiles are not assigned fixed storage
space. Instead, they grow dynamically with the workload
requirements. Individual blocks in SecureFiles segments are
mostly meant for file like data with a few percent of them are
reserved for segment metadata operations. Application data
objects are stored in the segment as SecureFiles objects. A
SecureFiles object is a set of chunks allocated from the segment
with a few blocks reserved for filesystem inode like metadata
management. SecureFiles architecture follows ‘copy-on-write’
semantics, i.e., updates and overwrites of SecureFiles objects are
never in-place. Multiple SecureFiles objects can be modified
under a single database transaction. An individual SecureFiles
object can be modified by a single transaction at a given point in
time. The theoretical limit of a SecureFiles segment size is 128
terabytes that can be scaled out to around 8 exabytes using Oracle
Partitioning [5]. An Oracle database can host multiple filesystem
repositories using different SecureFiles segments. The physical
storage of SecureFiles segments can vary from being SCSI,
SATA, FLASH or TAPE without changing the logical view of the
system. The database server serves the role of a filesystem server
for SecureFiles. Clients for Oracle SecureFiles provide SQL
standards compliant database interfaces.

Oracle Databases can be run on multi-node, shared-cache shared-
disk clusters using the Real Application Clusters feature [12].
Real Application Clusters or RACs allow multiple instances of an
Oracle database across multiple server systems to share access of
the entire underlying disk subsystem staging the database. Unlike
traditional disk-based data coherency mechanisms, Real
Application Clusters use Cache Fusion [13]. Cache Fusion
employs interconnect network across the shared disks and the
database nodes to maintain coherence in database buffer caches
across all database nodes. Apart from providing maximum
availability and fail-over capacity in the database as all servers in
the cluster have the capability to access the entire database, RAC
provides opportunities for maximizing scalability of execution of
database operations. Oracle SecureFiles inherit the capabilities
provided by Real Application Clusters, thereby leveraging the
scalability possible with multi-node clustered systems. Several
components of SecureFiles architecture have been designed to
provide maximum scalability on multi-node clusters.

Given that scalability on multi-node clusters is an important
objective to be met, scalability requirements on single node
systems remain equally important. Multi-core multi-processor
systems have been scaling up cost-effectively over the last few
years, thereby, posing requirements for SecureFiles to be able to
maximally scale on such systems.

The rest of this section details various components within
SecureFiles as well as features inherited from the Oracle database
server that contribute to prevent scalability bottlenecks during
data manipulation as well retrieval operations in the system.

3.2 Scalability: Data Manipulation Ops

Figure 1 illustrates a logical setup of Oracle SecureFiles on a
multi-node cluster for data manipulation operations. Each
individual node is a multi-core system with a very high degree of
concurrency of server processes performing SecureFiles object
data manipulations (writes / updates / deletes / overwrites). The
components responsible for providing scalability during these
operations are described in details subsequently.

Server Processes

BN EEEE.

ogl |00 |00 |00
IR | || | EEE

Hl B . instances
® @ e

[

‘ SecureFiles Segment

l

Disk Groups: Automatic Storage Management

|:| Write Gather Cache,
Compression, De-duplication

- Uncom mitted
Free Space Blocks

- Inmemory Space Dispenser

. Background Space Monitor

Figure 1. Scalability components in SecureFiles for data
manipulation operations

3.2.1 Write Gather Cache

The Write Gather Cache (WGC) is a subset of the database cache
private to Oracle SecureFiles object data. Individual server
processes allocate buffers from process private memory pools. As
a result, multiple concurrent server processes alleviate the need to
contend on shared memory resources. Individual server processes
can buffer large amounts of SecureFiles data up to a user-
specified parameterized value during write operations before
flushing or committing to the underlying storage layer. Buffering

of in-flight data for every server process allows for fewer
invocations of inode, space and I/O management layers. As a side
effect, it also results in fewer but larger contiguous space
allocations implying larger contiguous physical I/O. Overall,
write performance throughputs scale up with the number of server
processes running concurrently on single node systems as well as
multi-node clusters.

3.2.2 Compression and De-duplication

Compression and de-duplication methods in SecureFiles also
contribute to its overall scalability by reducing the amount of data
to be materialized in physical storage. The Compression layer,
when enabled, can automatically detect if SecureFiles object data
is compressible and compresses using special multiple file
compression algorithms. If compression does not yield any
savings or if the data is already compressed, SecureFiles will
automatically turn off compression for such objects. Compression
is performed for a server process when buffered contiguous data
staged in its Write Gather Cache exceeds a configured boundary
threshold. Multiple contiguous compression subunits are
encompassed within a larger unit whose size is determined by the
Write Gather Cache flush threshold. Compression is performed
piecewise in such a way that efficient random access of large files
is possible. Compression not only results in maximization of
storage utilization but also improves overall scalability of
SecureFiles by reducing physical 1/O sizes, data logging for
media recovery, and encryption overheads, if encryption is
enabled. The SecureFiles architecture provides varying degrees of
compression that represent a tradeoff between physical I/O and
CPU costs.

When de-duplication is enabled for a SecureFiles segment,
checksums are generated on SecureFiles data objects staged by
the segment. A secure prefix hash is generated for the first few
kilobytes and a full hash is generated for the entire object. The
hashes are stored in an Oracle index. During writes, as data gets
staged in the Write Gather Cache for a server process, the prefix
hash is generated and compared to the set of existing prefix
hashes. If there is a prefix match, then the SecureFiles object
associated with the original prefix hash is read and byte-by-byte
comparison is performed across the buffered data and the master
version. At the end of the write, if the full hash matches and the
full object matches on a byte-by-byte basis, then a reference
pointer directing to the master version is maintained in the row
column intersection. The component therefore contributes in
scaling up throughput of applications that are required to store
multiple instances of data objects, by preventing redundant
physical I/O on the underlying storage system.

3.2.3 Free Space Management

The free space management is one of the major components
responsible for scalability of SecureFiles throughput during data
manipulation operations. The layer is responsible for allocating
logical free space to SecureFiles objects from SecureFiles
segments and de-allocating used space from SecureFiles objects
back to SecureFiles segments keeping the real density and seck
amortization trend in mind. The scalable space management
features are listed as follows.

3.2.3.1 Variable Size Chunks
The space management layer supports allocation of variable sized
chunks. With SecureFiles objects being cached in the Write

Gather Cache, the space management layer is able to meet larger
space requests from the inode manager through more contiguous
layout on disk, therefore providing more scalable read and write
access.

3.2.3.2 Background Free Space Monitor

The background free space monitor is responsible for managing
space usage for SecureFiles segments. A SecureFiles segment
comprises of a collection of database extents that are spread
across the entire underlying storage system. As has been
mentioned in section 3.1, SecureFiles segments are not pre-
allocated with a fixed size, unlike typical filesystems. Individual
nodes in clusters spawn respective background space monitors.
The free space monitor checks space usage in the segment
proactively collecting statistics from its individual node. Based on
the amount of space consumed by SecureFiles objects as well as
the amount of space reusable from old versions (resulting from
deletes, truncates as well as ‘copy-on-write’ operations), the
monitor decides to allocate necessary space in terms of database
extents to grow the segments. Extents allocated to SecureFiles
segments are first pre-split into chunks using methods that
preserve the benefits of the Write Gather Cache. The metadata
associated with the chunks are stored on various metadata blocks
(Committed Free Space Blocks or CFS) in the segment that are
handled through the database buffer cache. The CFS blocks are
hashed on chunk sizes and meet space requests on a best-fit basis.
The free space in SecureFiles segments mapped by these blocks is
shared across all the instances in a distributed Oracle Real
Application Cluster environment. The background space monitors
perform their operations in a non-blocking manner. They do not
proceed if they require waiting while acquiring latches, pins and
other forms of locks on the space metadata blocks.

3.2.3.3 In-memory Space Dispenser

To achieve maximum scalability within a single node system
under high concurrency environments, free space allocations to
SecureFiles objects are managed in-memory through a shared-
memory data structure known as the in-memory space dispenser.
Individual database nodes create in-memory dispensers that are
never shared across multiple nodes in a clustered system.

Once created, the in-memory dispenser requests the background
space monitor to transfer free space entries from the underlying
SecureFiles segment. This results in the distribution of cluster-
wide free space in the segments to individual nodes. As a result,
free space allocations requested by server processes are met by
the local database instance, thereby reducing cluster wide network
and disk traffic.

The design of the in-memory dispenser allows space allocation
operations to scale with the degree of concurrency on a single
database node. Private in-memory space dispensers in individual
nodes prevent the need for server processes to communicate
across nodes in a clustered system to maintain free space
metadata coherence. The design therefore alleviates scalability
bottlenecks of space allocation operations as the number of nodes
in a cluster is scaled up.

3.2.3.4 Uncommitted Free Space Blocks

Operations such as full overwrites / rewrites, updates and deletes
of SecureFiles object follow ‘copy-on-write’ semantics resulting
in de-allocation of space previously occupied by the offsets
affected by the operation. In such cases, the space management

metadata entries are inserted back to a different set of on-disk
metadata blocks (Uncommitted Free Space Blocks or UFS) while
maintaining transactional atomicity. Uncommitted Free Space
Blocks are affined to individual database nodes. The space
monitor coalesces the free space entries if possible and moves
them from UFS to CFS blocks if and only if the transactions
associated with the generation of these free space entries have
committed. The free space entries are transferred to the in-
memory dispensers as and when requested.

3.2.4 Automatic Storage Management

Automatic Storage Management (ASM) [14] is a feature in Oracle
Database that assists manageability of underlying physical
storage. Oracle SecureFiles extensively uses this feature to
guarantee that the physical storage management is optimized to
generate the maximum scalability of the storage system. ASM
provides a simple storage management interface that is consistent
across all server and storage platforms. Automatic Storage
Management virtualizes the physical shared-disk database storage
into disk groups. One or more disk groups can be assigned to
SecureFiles segments. Automatic Storage Management automates
the physical placement of the logical segments within those disk
groups. It spreads the segment layout evenly across all available
storage resources to scale performance and maximize utilization.
This even distribution of segment layouts makes the manual I/O
performance tuning obsolete. ASM provides three mirroring
options for protection against disk failure: none, two-way, and
three-way mirroring. As a vertically integrated volume manager,
purpose-built for Oracle databases, ASM combined with
SecureFiles provides the performance benefits of raw
asynchronous /O within database transaction boundaries.
Furthermore, ASM allows change of physical storage
configuration without having to take the database offline. ASM
automatically rebalances SecureFiles segments across the disk
group after disks have been added or dropped.

3.3 Scalability: Data Retrieval Ops

Figure 2 illustrates a logical setup of Oracle SecureFiles on a
multi-node cluster for data retrieval operations. The components
specifically responsible for providing scalability for read
operations are described in details subsequently.

3.3.1 CR Mechanism and SecureFiles Inodes

Oracle’s Consistent Read (CR) [15] is a fundamental mechanism
built in Oracle database server that contributes to the maximum
scalability of read operations. CR is a version-based concurrency
control protocol that allows transactions to perform reads without
acquiring any locks. Each transaction in Oracle is associated with
a snapshot time, known as the System Change Number (SCN)
[16], and the CR mechanism guarantees that any data read by a
transaction is transactional consistent as of that SCN. When a
transaction performs a change to a block, it stores the information
required to undo that change in a rollback segment. When a
transaction reads a block, the CR mechanism uses the stored undo
information to create an earlier version of the block (a clone) that
is consistent as of the reading transaction’s SCN. Clones are
created in-memory and are never written to disk. A read operation
therefore never needs to wait for another transaction to commit or
abort since the CR mechanism automatically reconstructs the
version of the block required by the operation. This mechanism
therefore allows high concurrency for read operations.

SecureFiles Inode management layer makes use of the Oracle CR
mechanism to allow for maximum scalability of read operations
on individual objects. The inode management layer is responsible
for initiating on-disk storage and access operations on SecureFiles
object buffers being communicated by the upper layers in the
SecureFiles architecture. As a client of the space management
layer, the inode manager requests for on-disk free space to store
the amount of data being flushed by the write gather cache. Based
on the array of chunks returned by the space management layer,
the inode manager stores the metadata either in the row-column
intersection of the base table associated with the object, or in the
most current header block of the SecureFiles object. The metadata
information includes start block address and length of a chunk as
well as the start and end offsets of the object being mapped by the
chunk. For compressed SecureFiles object, the metadata structure
is also used to map logical offsets to physical offsets on disk.
Modifications of metadata structures are transactionally managed
and are recoverable after process, session and instance failures.
Read operations on these metadata blocks follow the CR
mechanism, thereby allowing multiple concurrent processes to
retrieve them simultaneously. Each process reads a transactionally
consistent copy of the inode metadata thereby returning consistent
versions of data to the applications without waiting for write
transactions to complete on the objects.

Server Processes

Pttt
| e e O o

Bl

Instances

f

SecureFiles Segment ‘

f

Disk Groups: Automatic Storage Management

JE

l:l SecureFiles Inodes

- Consistent Read [CR) Servers

Figure 2. Scalability components in SecureFiles for data
retrieval operations

SecureFiles objects maintain inodes independent of each other.
This prevents single points of contention in concurrent
environments during update, delete and append operations on

SecureFiles objects. Metadata maintained in the inode can remain
extremely compact because the space management layer provides
the support to return a set of variable sized chunks to store the
data being written to disk. The metadata management structures
can therefore scale to map terabyte-sized objects very efficiently.
SecureFiles inode management layer contributes in further scale-
up of read operations through an intelligent pre-fetching
mechanism. The layer keeps track of access patterns and
intelligently pre-fetches data before the request is actually made.
Read latency is reduced by the overlap of network roundtrip with
the disk I/O thereby scaling up read throughputs to greater
extents.

3.3.2 CR Servers: Cache Fusion: Read-sharing

The mechanism for read sharing in Cache Fusion [13] exploits
Oracle’s Consistent Read (CR) mechanism. In RAC, when
Instance A requires read access to a block that is present in the
buffer cache in Instance B, it requests a copy of the block from
Instance B without requiring any change of resource ownership.
Instance B creates a transactional consistent CR clone of the
block and ships it back to Instance A across the interconnect.
Doing so has no impact on processes on Instance B since
ownership of the block by Instance B is not affected. Only when
the requested block is not present in any instance’s cache is a disk
/O performed for the block. However, the Read-Sharing protocol
guarantees that once a block is read from disk by any instance in
RAC, subsequent read accesses to that block from any other
instance do not require disk I/O or inter-node ownership changes.

Now that we have described details of various components and
features associated with SecureFiles scalability, we demonstrate
their contributions through an exhaustive set of performance
evaluations in the subsequent section.

4. PERFORMANCE EVALUATION

In this section, we present a set of benchmarks and performance
evaluation data to demonstrate the scalability of Oracle
SecureFiles on one of the latest high-end server and storage
clusters. The experiments are conducted on various workloads
that cover most of the content types as well as object sizes. We
demonstrate the scale up of SecureFiles on a single multi-core
database node as well as scalability across the cluster.

4.1 Dataset

The dataset consists of four sets of workloads. The workloads
include email documents, Microsoft Word and Portable
Document Format documents, low-resolution images, high-
resolution images and video files. Email documents range from 5
KB to 14 KB in size. Word and PDF documents range from 80
KB to 110 KB. The low-resolution images range from 900 KB to
1.2 MB, high-resolution bitmap images range from 8.5 MB to
11.3 MB while videos have a median size of 97 MB.

For experiments on email workloads, 1.6 million files are inserted
and retrieved from a single database node. This results in
approximately 17 GB of unstructured data. For experiments on
Word and PDF documents, more than 1 million files are inserted
from a single database node resulting in approximately 96 GB of
data. 211000 low-resolution image files are used to insert around
202 GB, 22000 high-resolution images are used to insert 211 GB
while 2184 video files are used to load around 208 GB of data
from a single database node.

For multi-node experiments, the amount of data loaded is scaled
up with the number of nodes used in the experiments. This results
in a total of 730 GB in maximum across seven nodes.

4.2 Experiment Configuration

The database server is configured with a total cache size of 4 GB
for a single database instances running on an individual server
node. Out of the 4 GB, 2G B is assigned for shared memory data
structures, and 67 MB is assigned for redo log buffers to host log
records for all metadata and data modification operations in
SecureFiles. 8192 bytes or 8 KB is selected as the data block size,
i.e., SecureFiles chunks as well as other I/O units are multiple sets
of contiguous 8 KB blocks. Each SecureFiles object is associated
with a unique object number. The base table containing the
metadata repository is indexed on object numbers as primary key.
The index is maintained incrementally for every SecureFiles
object insert.

']

. |‘ 4
[memz || mewea
i T W R 10 O L |: 108 N P LY
O M b [R L]
Wi RO M
R e ‘ A

Figure 3. Hardware setup (courtesy of LSI Corporation)

The maximum number of processes as well as sessions per
database node is set to 500. The flush threshold for the Write
Gather Cache is set to 4 MB. SecureFiles is configured to issue
direct I/Os for application data to the underlying storage
bypassing the database buffer cache. However, metadata
operations in SecureFiles (except the in-memory space
management operations) as well as relational operations are
always staged in the database buffer cache to prevent frequent
accesses to underlying physical storage. The database is run in
clustered mode to make use of Real Application Clusters, Cache
Fusion and Read-Sharing features. The clustered database is also
configured to take the advantages of Automatic Storage
Management.

A single SecureFiles segment is used for the scope of the
experiments. The segment is shared across all instances during
multi-instance tests. The segment is configured to bypass logging
of object data modifications as these operations are persisted to
the underlying storage within database transaction boundaries.
Even though the segment is configured to issue direct I/Os, the
1/Os are configured to be asynchronous. This prevents SecureFiles
operations getting blocked on I/O completions during data
manipulation operations.

4.3 Hardware

Figure 3 describes the hardware setup for the experiment. It is one
of the latest multi-node cluster setup by LSI Corporation using
XBB-2 storage.

The setup consists of seven server nodes connected across a
gigabit Interconnect. The servers are IBM 3950 machines
consisting of four quad-core Intel Xeon (3.00GHz) processors,
resulting in sixteen cores, 32 GB of RAM and use Red Hat
Enterprise Linux 5.0. Each server is equipped with a Qlogic 4 GB
dual port fiber channel Host Bus Adapter to connect to the
underlying Storage Area Network. The Storage Area Network
consists of 2 fiberchannel Qlogic SANbox 5600 SAN switches
with a disk array. The disk array consists of a data cache of 4096
MB, 4Gb FC host interface, and 15 drive modules. Each drive
module consists of 16 drives connected though fiberchannels
where each drive has a capacity of 146 GB and 15000 RPMs.
There are 15 Logical Unit Numbers or LUNs assigned to each
server node. Each LUN is capable of driving a maximum
throughput of 50 MB/s for contiguous writes of sizes 1 MB or
more. Read throughputs supported are a bit higher in the range of
60 MB/s for contiguous reads of sizes 1 MB or more. Therefore,
the theoretically maximal write throughput achievable by a single
server node is around 750 MB/s for contiguous writes of 1MB or
more. Similarly the maximal read throughput achievable by a
server node is around 900 MB/s for contiguous reads of 1 MB or
more.

4.4 Scalability Evaluations

The scalability experiments are performed on the datasets
described in section 4.1. For single node evaluations, clients as
well as the database server are run on server 1 and the number of
clients is varied till saturation of throughput is reached. The
clients use OCI application program interfaces to insert and
retrieve objects from the database. Multi-node experiments are
conducted by varying the number of clients across several nodes
in the cluster.

4.4.1 Single Node Results

This subsection reports evaluations of scalability of reads and
writes operations on a single node. The operations are performed
on the five distinct workloads in the dataset.

4.4.1.1 Experiments on Email Dataset

The application involves insert-only operations on the entire
email dataset for archiving the email documents as SecureFiles
objects. Degree of concurrency of inserts was varied from 32 to
128 streams. Average throughput of inserts was measured using
the total number of objects inserted, their sizes and the time taken
for the entire application to complete the loads along with index
maintenance. As evident from figure 5(a), throughput of insert
execution scales up with the degree of concurrency on the

sixteen-core server machine. SecureFiles throughput for this
specific workload is entirely CPU bound as the underlying
physical I/Os comprise of maximal 2 contiguous data blocks.
Following a scale up, the throughput therefore saturates after the
number of processes is increased from 64. The throughput for the
email archiving application is around 54.15MB/sec, thereby
supporting data ingestion rate of approximately 5500 emails per
second.

Email Workload
‘—Writes e Reads
. 110 ~
0
S 90 /
2 70
=
S
° 50 /
=
F 30 : : :
0 50 100 150
Concurrent Processes
Documents Workload
‘—Writes e Reads
—~ 530 -
0
o il
s 430 _
+ 330 -
S, 230 |
=]
© 130 -
-
F 30 ; ; ‘
0 50 100 150
Concurrent Processes

Figure 5. Throughput of SecureFiles (a) reads and writes on
email workload ranging from SKB to 14KB file sizes. (b)
reads and writes on documents workload ranging from §0KB
to 110KB file sizes.

Once all the objects are inserted into the database, read
experiments are conducted on the objects. Degree of concurrency
of inserts was varied from 32 to 128 streams. As evident from
figure 5, throughput of read execution scales up with the degree
of concurrency. Again, SecureFiles throughput for reads is
entirely CPU bound. Following a scale up, the throughput
therefore saturates after the number of processes is increased from
64. The throughput for email retrieval is around 92.7MB/sec,
thereby supporting data retrieval rate of approximately 9300
emails per second.

4.4.1.2 Document Workload

The application involves insert-only operations on the entire
Word and PDF documents dataset for archiving them as
SecureFiles objects. Degree of concurrency of inserts was varied
from 32 to 128 streams, similar to section 4.4.1.1. Multi-stream
configurations were implemented to avoid conflicts on the same
sets of rows across processes to prevent overwrites, thereby
keeping the experiment insert-only. As evident from figure 5(b),
throughput of insert execution scales up with the degree of
concurrency on the server machine. SecureFiles throughput for
this specific workload still remains entirely CPU bound, as the
underlying physical I/Os comprise of maximal 64 contiguous data
blocks. Following a scale up, the throughput therefore saturates
after the number of processes is increased from 64. The
throughput for the document archiving application is around
332MB/sec, thereby supporting data ingestion rate of
approximately 3200 documents per second.

Low-Res Images Workload Writes

830 -
0 — e — o — — — — — — —
m
= 630 -
5
Qo
K=
2 430 4
o
S
<
=
230 ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100
Concurrent Processes
Low-Res Images Workload Reads
830 -

0 e e e e e — — — —
o
5
Q
£
D 430
2
=
-
230 T T T T 1

0 20 40 60 80 100

Concurrent Processes

Figure 6. Throughput of SecureFiles (a) writes of low-res
images ranging from 900KB to 1.2MB file sizes. (b) reads of
low-res images

Once all the objects are inserted into the database, read
experiments are conducted on the objects. Degree of concurrency
of inserts was varied from 32 to 128 streams. As evident from
figure 6, throughput of read execution scales up with the degree
of concurrency. Again, SecureFiles throughput for reads is

entirely CPU bound. Following a scale up, the throughput
therefore saturates after the number of processes is increased from
64. The throughput for document retrieval is around
443.4MB/sec, thereby supporting data retrieval rate of
approximately 4400 documents per second.

High-Res Images Workload Writes

830 -
0 o — —— _——
m
£ 630 | o
5
o
<
2 430
(<4
=
=

230 T T 1

0 20 40 60
Concurrent Processes
High-Res Images Workload Reads

830 -
0 o — — — _——
m
£ 630 - Ve
5
o
<
2 430 -
°
-
|_

230 T T 1

0 20 40 60
Concurrent Processes

Figure 6. Throughput of SecureFiles (a) writes of high-
resolution images ranging from 8.5MB to 11.3MB file sizes.
(b) reads of high-resolution images.

4.4.1.3 Low-Resolution Images Workload

The application involves insert-only operations on the low-
resolution images dataset comprising of images around 1MB in
size for archiving them as SecureFiles objects. Degree of
concurrency of inserts was varied from 24 to 96 streams in this
case. As evident from figure 5(a), throughput of insert execution
scales up with the degree of concurrency on the server machine.
With the incoming sizes of writes ranging around 128 to 130 data
blocks, optimized by free space management algorithms to be
maximally contiguous, SecureFiles throughput for this specific
workload starts becoming I/O bound. The throughput therefore
increases irrespective of the number of cores in the server
machine and saturates near the hardware limit. The throughput for
this application is around 686.8MB/sec, thereby supporting data
ingestion rate of approximately 700 images per second.

Once all the objects are inserted into the database, read
experiments are conducted on the images. Degree of concurrency
of inserts was varied from 24 to 96 streams. As evident from
figure 5(b), throughput of read execution scales up with the
degree of concurrency. As in the case of writes, SecureFiles
throughput for reads starts becoming I/O bound. Following a scale
up, the throughput therefore saturates near the hardware limit. The
throughput for image retrieval is around 711MB/sec, thereby
supporting data retrieval rate of approximately 730 images per
second.

Videos Workload Writes
830
0 b o — — — — — — —
m
£ 630 -
5
Q.
=
2 430 1
°
=
™=
230 T T T 1
0 10 20 30 40
Concurrent Processes
Videos Workload Reads
830
0 b o — — — — — — —
m
£ 630 - /
5
Q
<
S 430 |
e
=
=
230 T T T 1
0 10 20 30 40
Concurrent Processes

Figure 7. Throughput of SecureFiles (a) writes of high-
resolution videos ranging from 90MB to 114MB file sizes. (b)
reads of high-resolution videos.

4.4.1.4 High-Resolution Images Workload

The application involves insert-only operations on the high-
resolution images dataset comprising of images around 10MB in
size for archiving them as SecureFiles objects. Degree of
concurrency of inserts was varied from 16 to 48 streams in this
case. As evident from figure 6(a), throughput of insert execution
scales up with the degree of concurrency on the server machine.
With the incoming sizes of writes ranging around 1280 to 1300
data blocks, optimized through Write Gather Cache and free
space management algorithms to be maximally contiguous,
SecureFiles throughput for this specific workload starts becoming
I/O bound at a lower degree of concurrency. The throughput
therefore increases irrespective of the number of cores in the

server machine and saturates near the hardware limit. The
throughput achieved for this application is around 728MB/sec,
close to the throughput limit of the hardware.

Once all the objects are inserted into the database, read
experiments are conducted on the images. Degree of concurrency
of inserts was varied from 16 to 48 streams. As evident from
figure 6(b), throughput of read execution scales up with the
degree of concurrency. As in the case of writes, SecureFiles
throughput for reads becomes entirely I/O bound. Intelligent pre-
fetching of object subsets enhances the scale up at a lower degree
of concurrency. Following a scale up, the throughput saturates
near the hardware limit. The throughput achieved is around
728MB/sec.

Writes on Hardware Cluster

@1 Node B2 Node B4 node B7 Node

5000 -

Throughput (MB/s)

Low-Res Videos

Images
Workloads more than 1MB

High-Res
Images

Reads on Hardware Cluster

E1 Node B2 Node B4 node B7 Node

5000 -
4500 ~
4000 -
3500 -
3000 -
2500 -
2000 -
1500 -
1000 ~

500 -

Throughput (MB/s)

Videos

Low-Res
Images

Workloads more than 1MB

High-Res
Images

Figure 8. Write and read throughput scale-out on LSI cluster
4.4.1.5 Multimedia Videos Dataset

The application involves insert-only operations on the high-
resolution images dataset comprising of images around 90-
100MB in size for archiving them as SecureFiles objects. Degree
of concurrency of inserts was varied from 8 to 32 streams in this
case. As evident from figure 7(a), throughput of insert execution

scales up with the degree of concurrency on the server machine.
With the incoming sizes of writes ranging around 12800 to 13000
data blocks, optimized through Write Gather Cache and free
space management algorithms to be maximally contiguous,
SecureFiles throughput for this specific workload starts becoming
I/O bound at even lower degrees of concurrency. The average
throughput for this application is around 716MB/sec, close to the
throughput limit of the hardware.

Once all the objects are inserted into the database, read
experiments are conducted on the images. Degree of concurrency
of inserts was varied from 8 to 32 streams. As evident from figure
7(b), throughput of read execution scales up with a smaller
number of concurrent processes. As in the case of writes,
SecureFiles throughput for reads is entirely I/O bound. Intelligent
pre-fetching of object subsets enhances the scale up at even lower
degrees of concurrency. The average throughput for image
retrieval is around 714MB/sec.

4.4.2 Multi-Node Evaluations

Multi-node experiments are conducted using two, four as well as
all the seven server machines. The experiments are conducted on
workloads of 1MB and greater sizes as throughputs on these
workloads are more storage hardware bound rather than being
CPU bound. For each node involved in the experiments, the
number of client per node is the one that provides the maximum
throughput for the workload. Hence, the numbers of clients on
each individual node in the cluster are chosen as 96 for low-
resolution images, 48 for high-resolution images and 32 for
videos dataset. As evident from figure 8, both read and write
operations scale out with the number of instances across all
workloads. Even though the underlying logical segment as well
the physical storage is shared across nodes, free space
management algorithms, consistent read mechanism, and cluster—
wide read sharing contribute to the scale out of throughput. The
write operations are driven with more than 4.4 GB/s ingestion rate
while the reads generate a throughput of more than 4 GB/s across
the cluster.

4.5 Evaluations Summary

The performance evaluations detailed in this section effectively
demonstrate the scalability potential of SecureFiles. SecureFiles
scale up with number of clients on a single database node across
all workloads used, which cover object sizes from tens of
kilobytes to hundreds of megabytes. For small sizes, the
maximum throughput achieved by SecureFiles gets bound by
CPU, while for sizes around IMB and larger, it maximizes to the
limit of the hardware setup. For both data inserts as well as
retrieval operations, SecureFiles scales maximally with the scale
of the hardware used. SecureFiles ingests and retrieve several
thousands of emails and documents per second using a single
database node and is able to drive a throughput of more than
710MBY/s, close to theoretical limits of the server machine. On a
cluster of seven servers, SecureFiles scale out to provide more
than 4.4GB/s for data insert operations and 4.4GB/s for read
operations.

In real world applications, these results translate to support for
extreme data ingestion rates across all object types and sizes. On a
single node, data ingestion by SecureFiles is equivalent to around
480 million emails / 280 million Word documents / 63 million
low-resolution images / 6.4 million high resolution images /

640000 high resolution videos a day We believe that insertion
rates greater than 4.4 GB/s represent a world record in the area of
databases. Such an insertion rate implies provision of more than
3.7 million highest resolution YouTube videos ingested a day just
using a single seven-node hardware cluster.

5. COMPARISON WITH PUBLSIHED
RESULTS

We try to compare our results with some published database
benchmark results to highlight the extreme load scalability
provided by SecureFiles, as has been claimed in the previous
section. Unfortunately, benchmarks for unstructured data object
loads using database management systems do not exist yet.
Therefore, there are no published results that directly compare
SecureFiles load performance with that of other database
solutions. However, there exist database benchmarks that deal
with ad-hoc queries and bulk loads of large volumes of purely
relational data, TPC-H [17] being the most popular. Even though
TPC-H benchmarks report query-per-hour performance, they
provide public information about data load amounts and durations
that can be used to infer load throughputs. The above scenario
comes close to SecureFiles with respect to workloads used in the
experiments. We therefore choose a few of the published results
from these benchmarks to claim world-record SecureFiles load
performance with respect to existing database solutions, with the
caveat that the workloads compared are not similar.

TPC-H benchmark results report database load times that include
creations of tables, loading of data from flat files and creation of
indexes. Given the fact that creation of tables is a trivial
operation, the reported time durations mainly comprise of data
loads and index maintenance operations, somewhat similar to the
experiment configuration described in section 4.

TPC-H council reports results for database sizes ranging from
100GB to 30TB database sizes. The maximum throughput among
all the topmost database solutions for each category is inferred to
be around 1.74GB/s, achieved on a system comprising of a cluster
of 32 dual-core dual Power6 processors servers, each quipped
with 32GB RAM [19]. SecureFiles, on the other hand, achieve
more than 4.4GB/s on a cluster of seven sixteen-core servers.

6. CONCLUSION AND FUTURE WORK

The data management scenario has been evolving over the years
with the growth of web services as well as multimedia
applications. Software applications in enterprises, science and
research, entertainment and other industries are dealing with data
objects of all sizes ranging from a few kilobytes to a few
gigabytes. It is predicted that data volumes will reach more than
6.023x10> bits a year within the next fifteen years.

Filesystems have somehow been preferred over database
management systems for providing storage solutions for
unstructured data on grounds of performance. Oracle SecureFiles
is emerging as the database solution to provide filesystem like or
better throughput for storage of unstructured data across all data
object sizes and types, breaking the performance barriers without
compromising the strengths of the relational data management
features. The paper demonstrates that the design is capable to
meet the scalability challenges posed by the explosion of data
volumes and ingestion rates in the coming years. The
performance evaluation successfully proves the potential of

Oracle SecureFiles technology to provide extreme scalability in
massive data management environments for I/O bound operations,
claiming a world record database insertion rate for any published
result - at over 4.4GB/s.

Future work includes efforts to evaluate SecureFiles on HP Oracle
Exadata Storage servers and database Machine [20], the latest
high-performance hardware setup offered by Hewlett Packard
Company and Oracle Corporation. Apart from testing the
infrastructure using database interfaces, exhaustive evaluation is
required to compare SecureFiles against traditional filesystems
using standard filesystem interfaces and benchmarks.

7. ACKNOWLEDGEMENTS

We are thankful to LSI Corporation for providing us with the
entire hardware setup. We thank Niraj Srivastava for assisting us
with the hardware setup as well as guidelines for performance
optimizations. We acknowledge all members of the Oracle
SecureFiles team for conducting performance testing of Oracle
SecureFiles. We also acknowledge the contributions of B.
Baddepudi, Manosiz Bhattacharyya, Vipin Gokhale, Liwen
Huang, Chao Liang, Xiaoming Liu, and Neil Macnaughton.

8. REFERENCES

[1] Gray, J. Greetings! From a Filesystem User. 4" USENIX
Conference on File and Storage Technologies, San
Francisco, CA, 2005.

[2] Sears, R., Ingen, C., Gray, J. To BLOB or not to BLOB:
Large object Storage in a database or a Filesystem?
Microsoft Research Technical Report, MSR-TR-2006-45,
2006.

[3] Shapiro, M., Miller, E. Managing Databases with Binary
Large Objects. Proceedings of the 16™ IEEE Mass Storage
System Symposium, San Diego, CA, 1999.

[4] Blumberg, R., Atre, S. The Problem with Unstructured Data.
DM Review Magazine, Feb. 2003.

[5] Mukherjee, N., Aleti, B., Ganesh, A. et. al. Oracle
SecureFiles System. Proceedings of the 34™ Very Large Data
Bases Endowment, 1(2), 1301-1312, 2008.

[6] Biggar, H. Experiencing Data De-Duplication: Improving
Efficiency and Reducing Capacity Requirements. A
SearchStorage.com White Paper, Feb 2007.

[71 An Updated Forecast of Worldwide Information Growth
Through 2011. An IDC White Paper — Sponsored by EMC,
2008.

[8] Brodie, M. Computer Science 2.0: A New World of Data
Management. Invited Industrial Talk, VLDB, 2007.

[9] Cisco Visual Networking Index — Forecast and Methodology,
2007-2012. A Cisco White Paper, 2008.

[10] Lallier, J. Storage Management in the Year 2010. Computer
Technology Review, September 2004.

[11] Mukherjee, N., Ganesh, A., Kunchithapadam, K.,
Muthulingam, S. Oracle SecureFiles - A Filesystem
Architecture in Oracle Database Server. ICSOFT
(SE/MUSE/GSDCA), 60-63, 2008.

[12] Oracle Corporation. Oracle9i Real Application Clusters
Concepts Release 1 (9.0.1), Part Number A89867-01.

[13] Labhiri, T., Srihari, V., Chan, W., Macnaughton, N.,
Chandrasekaran, S. Cache Fusion: Extending Shared-Disk
Clusters with Shared Caches, Proceedings of the 27" VLDB
conference, 2001.

[14] Manning, P. Automatic Storage Management technical
Overview. An Oracle Technical White Paper, 2003.

[15] Bridge, W., Joshi, A., Keihl, M., Lahiri, T., Loaiza, J., and
Macnaughton, N. The Oracle Universal Server Buffer
Manager. Proceedings of the 23rd Very Large Data Bases
Endowment, 1997.

[16] Joshi, A., Loaiza, J., and Lahiri, T. Checkpointing in Oracle.
Proceedings of the 24th Very Large Data Bases Endowment,
1998.

[17] Transaction Processing Performance Council.
http://www.tpc.org.

[18] Traeger, A., Zadok, E., Joukov, N., and Wright, C. 4 Nine-
Year Study of File System and Storage Benchmarking. ACM
Transactions on Storage, 4(2), 2008.

[19] TPC Benchmark™ H Full Disclosure Report-IBM System p5
575 Using IBM DB2 Universal Database 8.2.
http://www.tpc.org/results/FDR/tpch/IBM_570 10000GB_2
0071015_FDR.pdf

[20] Weiss, R. A Technical Overview of the Oracle Exadata
Storage Server. An Oracle Technical White Paper, 2008.

