
Stop Word and Related Problems in Web Interface
Integration

Eduard Dragut, Fang Fang, Prasad
Sistla, Clement Yu

Computer Science Department
University of Illinois at Chicago

{edragut,ffang,sistla,yu}@cs.uic.edu

Weiyi Meng
Computer Science Department

SUNY at Binghamton

meng@cs.binghamton.edu

ABSTRACT
The goal of recent research projects on integrating Web
databases has been to enable uniform access to the large
amount of data behind query interfaces. Among the tasks
addressed are: source discovery, query interface extraction,
schema matching, etc. There are also a number of tasks
that are commonly ignored or assumed to be apriori solved
either manually or by some oracle. These tasks include (1)
finding the set of stop words and (2) handling occurrences of
“semantic enrichment words” within labels. These two sub-
problems have a direct impact on determining the synonymy
and hyponymy relationships between labels. In (1), a word
like “from” is a stop word in general but it is a content word
in domains such as Airline and Real Estate. We formulate
the stop word problem, prove its complexity and provide an
approximation algorithm. In (2), we study the impact of
words like AND and OR on establishing semantic relation-
ships between labels (e.g. “departure date and time” is a
hypernym of “departure date”). In addition, we develop a
theoretical framework to differentiate synonymy relationship
from hyponymy relationship among labels involving multi-
ple words. We scrutinize its strength and limitations both
analytically and experimentally. We use real data from the
Web in our experiments. We analyze over 2300 labels of 220
user interfaces in 9 distinct domains.

1. INTRODUCTION
Enabling uniform access to the large amount of data be-

hind query interfaces has been the goal of recent research
projects on integrating Web databases. Among the tasks ad-
dressed so far in the literature are: source discovery, schema
matching, consistent naming of attributes in integrated user
interfaces etc. The problem of consistent naming is to assign
labels to the attributes of an integrated query interface, rep-
resented as a schema tree, such that (1) no two sibling nodes
(fields) have synonymous or hypernymous labels and (2) the
label of a node must be a hypernym of the label of any de-

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Data Base Endowment. To copy otherwise, or to republish, to post
on servers or to redistribute to lists, requires a fee and/or special permission
from the publisher, ACM.
VLDB ‘09, August 24-28, 2009, Lyon, France
Copyright 2009 VLDB Endowment, ACM 000-0-00000-000-0/00/00.

scendant node [14]. Many techniques use the names and/or
the labels of the attributes to infer that two attributes are
synonyms/hypernyms. These techniques need to address is-
sues like: removal of the so-called stop words, handling of
“semantic enrichment words”, defining a suitable similarity
measure between the strings of the labels, etc. An imper-
fect solution to any of these problems may greatly affect the
effectiveness of the matching result.

The Stop Word Problem
Consider the labels Where do you want to go? and When do
you want to travel?. The words do, to, when, where and you
are commonly regarded (e.g. according to [1]) as not con-
veying any significant semantics to the texts or phrases they
appear in. Consequently, they are discarded. This kind of
words are called stop words. The former label becomes want
go and the latter label becomes want travel after the removal
of the stop words. Given that go and travel are synonyms by
WordNet[16], one infers that want go is semantically equiv-
alent to want travel. Thus, one wrongly deduces that the
original labels are semantically equivalent as well. The ex-
ample illustrates that there are instances when stop words
express important semantic information and their removal
may lead to erroneous logic inferences. For instance, the
removal of the words where and when along with the other
stop words from the above labels yielded the wrong semantic
relationship between the two labels.

The central problem addressed in this paper is finding the
set of stop words in a given application domain. This prob-
lem is complicated because a stop word in one domain may
not be a stop word in another domain. The example above
illustrates that the word where is a content word in the Air-
line domain. The same word is a stop word in the Credit
Card domain because its removal from the label Cell phone
[where] we may call you does not affect the meaning of the
label. A quick note: throughout the paper we refer to the
data set used for the experimental study, the description of
the data is postponed to Section 6.

To the best of our knowledge, there is no high quality
mechanism to determine stop words for information inte-
gration problems. Nevertheless, we have noticed two strate-
gies to handle stop words. First, before a task like schema
matching in an application domain is undertaken, an expert
manually analyzes all the labels or names of the schemas
and compiles a set of stop words. This approach is time con-
suming, error prone and far from being trivial, especially for
integration solutions that consider large sets of schemas at a
time (e.g., integration of deep Web sources, Web directories

Figure 1: Example of a user interface.

or catalogs). For example, in our Credit Card domain, which
has 20 forms, there are 818 labels (made of 2157 non-distinct
words, out of which 373 are distinct) and it would take sub-
stantial time and effort to properly classify the words occur-
ring in this domain into the two categories. Furthermore,
since the number of application domains is very large and
growing (a recent study estimated millions of such sources
[25]), the manual operation is not feasible. Second, a pre-
compiled generic list of stop words is considered—e.g., by
searching such a list on the Web. Such a list is domain in-
dependent; unfortunately, a stop word in one domain is not
necessarily a stop word in a different domain.

Information Retrieval has theoretical mechanisms to clas-
sify a set of words into stop words and content words. This is
usually accomplished by defining a so-called language model
[2]. A language model is a probability model that assigns
probabilities/weights to words to reflect the degree of signif-
icance. The weight of a word is derived from the frequency
of the word in the database of documents. Intuitively, the
more documents having the word, the less useful the word
is in distinguishing the documents having it from those not
having it. Unfortunately, this strategy cannot be applied to
the information integration problem. For example, in the
Airline domain, the word what, which is a stop word, has
a very low occurrence frequency, while the word passenger
has a high occurrence frequency. Hence, this model would
wrongly determine what to be a content word and passenger
to be a stop word.

Semantic Enrichment Words

The labels of attributes may contain semantic enrichment
words such as AND and OR. Pick-up date and time and From
city or airport code are examples of such labels. The ques-
tion is: what is the semantic relationship between Pick-up
date and time and Pick-up date, or the relationship between
Pick-up date and Date and time? A human being may ar-
gue that the semantics of Pick-up date and time subsumes
the semantics of Pick-up date and the semantics of Date and
time subsumes that of Pick-up date and time. But in order to
make computer more intelligent, we need a systematic ap-
proach to handle such phrases. Words and phrases acquire
meaning from the way they are used in society, blogs, inter-
net web pages, etc. To understand the meaning and usage
of these words, we manually investigated all the labels of the
220 interfaces containing them. We noticed a consistency of
their use both lexically and topologically. The latter refers
to their placements within query interfaces, i.e., whether
these words occur consistently either in labels of fields or in
labels denoting sections on Web query interfaces. For exam-
ple, in the interface in Figure 1 OR appears only in the labels
of the leaves (fields), e.g., the label From city or airport.

Evaluation

The problem of determining semantic relationships (syn-
onymy and hypernymy) between the labels of the internal

Figure 2: Example of a schema tree.

nodes of query interfaces is used to evaluate the impact of
the problem of correctly identifying the stop words and the
role of semantic enrichment words. Two algorithms are im-
plemented: a naive algorithm and an improved one. Our
experiments (see Section 6) show that without properly han-
dling stop words, the accuracy (F-score) may decrease by al-
most 30% when the naive algorithm is applied (in domains
such as Car Rental, Credit Card) and by almost 40% when
the improved algorithm is used (e.g., Car Rental).

Usage

Automatically naming the attributes of an integrated query
interface [14], as part of Web interface integration, requires
that the semantic relationships (i.e. synonyms and hyponyms)
among labels of attributes are determined. Furthermore,
synonymy relationships should be distinguished from hy-
ponymy relationships. For example, the labels of different
fields of the integrated interface should not be synonyms
(homonymy problem [28]). When the labels of fields con-
sist of one word only it may be possible to check if they
are synonyms in an electronic dictionary, such as WordNet.
The problem is however increasingly harder when the labels
are complex phrases. For example, no electronic dictionary
would be able to say that Area of study is a synonym of Work
area. Therefore, techniques that establish semantic relation-
ships between multi-word phrases beyond those in electronic
dictionary are of practical use. Another example is the inte-
gration of hierarchies (e.g., Web directories/categories). It is
important to distinguish between synonymy and hyponymy
as the former usually results in collapsing the synonym con-
cepts into one concept, whereas the latter requires the in-
sertion of the more specific concept as a descendant of the
less specific one in the integrated hierarchy.

There are already techniques developed for computing se-
mantic similarities between words and phrases [6, 7, 8, 9,
10, 20, 21, 24, 29]. Semantic similarity only suggests a likely
relationship between phrases. It does not differentiate the
synonymy relationship from the hyponymy relationship. It
may even suggest “wrong” semantic relationships like find-
ing that “true” and “false” have a similar semantics [9]. This
is particularly the case of similarities computed from the
number of hits returned by search engines.

The contributions of this paper are:
• A study of the stop word problem within the Web interface

integration problem. We believe our study is the first to
tackle this problem in the literature.

• A study of extending the definition of semantic relation-
ships from one-word phrases to multi-word phrases. It
also includes a comprehensive analysis of the role of the
semantic enrichment words on determining semantic rela-
tionships between multi-word phrases.

• An extensive experimental study of our algorithms. The

average precision, recall and F-score of our algorithm for
computing the stop words are 92.4%, 99.5% and 95.6%,
respectively. We present a naive algorithm for computing
semantic relationships between labels of internal nodes.
This algorithm achieves an average precision of 76.1%, an
average recall of 75.4%, and an average F-score of 74.9%.
Our contribution is an algorithm that improves the aver-
age precision to 95%, the average recall to 90.4% and the
average F-score to 92.6%.

The rest of the paper is organized as follows. Section 2
briefly introduces the problem of integrating Web query in-
terfaces. Section 3 covers the stop word problem. Section 4
discusses the issues of computing semantic relationships be-
tween multi-word labels. Section 5 contrasts two algorithms
for computing semantic relationships. We describe the ex-
perimental study in Section 6. Our work is contrasted with
others in Section 7. The paper concludes in Section 8.

2. BACKGROUND
The most advocated approach to integrate Deep Web sources

is to undergo integration domain-wise. First, relevant sources
are discovered [3]. Second, query interfaces are identified,
extracted from the relevant Web pages [12] and clustered on
subject domains [4]. Third, fields of different query inter-
faces in the same domain are matched [19, 30, 31]. This is
the well-known schema matching problem. Fourth, different
user interfaces are merged to form a unified interface [13].
Fifth, the unified interface needs to be consistently labeled
[14]. Sixth, a user’s query on the unified interface is trans-
lated to queries against interfaces of specific sources [32].
Last, returned data by individual sources needs to be cor-
rectly extracted and the results ranked in descending order
of desirability (e.g., price). The problems addressed in this
paper are relevant to the schema matching (step 3), merging
(step 4) and naming (step 5) problems.

Representation of Query Interfaces

Data in searchable databases are accessible through form-
based search interfaces (mostly HTML forms). The basic
building blocks for these forms are: text input boxes, selec-
tion lists, radio buttons, and check boxes. We will generi-
cally call them fields. The structure of a query interface can
be captured using a schema tree [31]. It is an ordered tree of
elements so that leaves correspond to the fields in the inter-
face, internal nodes correspond to groups or super-groups of
fields in the interface, and the order among the sibling nodes
within the tree resembles the order of fields in the interface
(usually this is top-down and left-to-right). Figure 1 shows
a typical example of a query interface in the airline domain
and its corresponding hierarchical representation is depicted
in Figure 2.

3. COMPUTING THE SET OF STOP WORDS
For a set of Web query interfaces in a given application

domain, the problem to be addressed is to determine the
stop words within the labels of the attributes (fields and
internal nodes) of the interfaces.

Our solution to the stop word problem is based on the
heuristic observation that the set of stop words from an in-
formation integration perspective is a subset of the set of
stop words from an information retrieval perspective. For

example, the word last is in general a stop word [1], but not
a stop word in the label Last name. We propose to tackle the
stop word problem as follows: take an arbitrary general pur-
pose dictionary of stop words and find its maximal subset
that satisfies constraints specific to the information integra-
tion problem. In our experiments we performed a search on
Google with the query “stop words” and picked a link [1]
that pointed to such a list. We consider three constraints,
called stop word constraints. After the removal of incorrect
stop words, the following situations arise:

1. Empty label: A non-empty label becomes empty after
the removal. The empty label cannot be used to convey
necessary information to users. Also, it cannot be used
to derive any knowledge.

2. Homonymy: Two sibling nodes in a hierarchy have syn-
onym labels (the well-known homonymy problem [28]).

3. Hyponymy: Two sibling nodes in a hierarchy have a
hyponymy relationship between them.

Before these constraints are illustrated we draw attention
to a possible logic trap. The stop words have to be removed
from labels before semantic relationships could be estab-
lished between labels. But, in order to remove the stop
words a definition for these relationships is necessary. The
problem seems circular. To avoid this issue, we regard the
labels as sets of words. A label A is a hyponym of label B
if the set of words of B is strictly contained in the set of
words of A. A label A is a synonym of label B if they have
identical sets of words. The intuition of these rather simple
definitions is that the labels of sibling nodes within a query
interface share many of their words and the designer uses
some key distinct words to emphasize the semantic mean-
ings of the sibling fields. Observe that the sibling leaves
of the internal node Where do you want to go? (Figure 2)
have the same set of words except for the words from and
to, which we actually aim to find.

Each of the stop word constraints is now motivated in
turn. Consider the field with label From in the interface in
Figure 3. The word from is a stop word according to most
stop word dictionaries. However, by removing it from the
label, we are left with an empty label which is practically
useless for any knowledge inference. Thus, an important in-
dicator of a word not being a stop word is when the removal
of the word leads to an empty label. The homonymy condi-
tion is illustrated by the example of the labels From city or
airport code and To city or airport code in Figure 1. By dis-
carding both From and To, the two labels become identical,
which is an obvious undesirable consequence. We use the
labels of the interface in Figure 3, Where do you travel? and
When do you travel?, to motivate the third criterion. The
obvious stop words are do and you. Their removal does not
impact the logic inferences between the two labels. How-
ever, the removal of where from the label [Where do you]
travel? makes this label a hypernym of the label When [do
you] travel? (because {travel} ⊂ {when, travel}).

It is erroneous to enforce the homonymy and hyponymy
constraints over an entire schema tree, because the same
label may be used to denote distinct concepts in different
branches of the tree. As a case in point, the label Address is
used to denote both home address and company address in
interfaces in the Credit Card domain. Since the label appears
in two distinct branches of the tree (which branches, corre-

Figure 3: Another example of schema tree.

spond to different sections of the user interface), one branch
describes the home information and the other branch de-
scribes employment information, there is no danger of mis-
interpreting the meaning of the label.

However desirable these constrains are, the stop word
problem is intractable. Worse, we will show that regard-
less of the subset of constraints chosen the problem remains
“equally” hard.

Here we show that the stop word problem is NP-complete.
We define a label to be a set of words. The labels of a set
of sibling nodes in a schema tree are called a set of sibling
labels, denoted by SL. SL also includes the label of the root,
if exists. Let S be the set of all sets of sibling labels from
all the schema trees in an application domain. For each set
of sibling labels SL ∈ S, we need to check the stop-word
constraints. Thus the stop-word problem is defined as fol-
lows. Given a set S of sets of sibling labels and a set T of
words, called potential stop words, find the largest subset T ′

of T such that by deleting all words of T ′ from every label
in SL, SL ∈ S, the resulting multi set S ′ satisfies the fol-
lowing property: no label in SL′, SL′ ∈ S ′, is a super set of
another label in it. Note that each set of sibling labels SL′

satisfying the above property also satisfies the following con-
ditions: the empty set does not belong to SL′ (i.e., empty
label condition) and no two members of it are identical (i.e.,
homonymy condition).

Example 1. We use only one schema tree, namely the
one in Figure 3, to exemplify the stop word problem. The
set of labels {Where do you travel?, When do you travel?} is
a set of sibling labels. The set of all sibling labels induced
by this schema tree is S = { {From, To}, {Where do you
travel?, When do you travel?}, {Leaving date, Return date},
{Where and when do you travel?}}. Suppose the set of po-
tential stop words is T = {do, from, to, when, where, you}.
The words from and to are not stop words because their re-
moval leaves some labels empty. The removal of where from
the label [Where] do you travel? makes the label a hypernym
of its sibling label When do you travel?, because the former
is a proper subset of the latter. The word when behaves sim-
ilarly to the word where. Hence, the largest subset T ′ of T
satisfying the stop word constraints is {do, you}.

Theorem 1. The Stop word problem is NP-complete.
Sketch of Proof: Reduction from the set covering problem

It turns out that even if a single schema tree and its set
of sibling nodes are considered, the stop word problem is
NP-complete. Or, in the above formulation, the problem
remains “hard” even when the cardinality of S is 1.

A first reaction to this result is to try to solve the stop
word problem by eliminating one or more of the conditions
stated above. For instance, we could attempt to solve the
problem by keeping the “empty label” and “homonymy”
constraints, and by dropping the “hyponymy” constraint.
Unfortunately, this problem is also NP-complete. The proof

StopwordsAlgorithm
Input: an arbitrary stop word dictionary T ,

the set of schema trees QI
Output: a maximal set of stop words T ′

1. T ′ ← ∅
2. W = the set of all words in the domain
3. D = T ∩W
4. pick word w ∈ D
5. for each interface q ∈ QI
6. remove w from the labels of interface q
7. check the stop word constraints for the labels

of sibling nodes
8. if no stop word constraint is violated then

T ′ ← T ′ ∪ {w};
else remove antonyms of w appearing in D from T ′

9. goto 4
10. return T ′;

Figure 4: Stop word algorithm

is by reduction from the set covering problem. Another at-
tempt would be to keep only the “empty label” constraint.
This version of the stop word problem is also NP-complete.
The proof is by reduction from the independent set problem.
By now it should be pretty clear that the problem is hard
regardless of the combination of constraints chosen. The
common practice to handle NP-complete problems is to de-
vise approximation solutions that come as close as possible
to the ideal solution. Next we present an approximation
algorithm to the stop word problem.

The approximation solution relies on the following obser-
vations. First, we assume that the source query interfaces
satisfy the following constraint: Source interfaces do not
have sibling nodes whose labels are either homonymys or
hyponyms/hypernyms. The attributes whose labels are ini-
tially empty are ignored. Second, with this assumption, it
is trivial to show that the empty set of stop words obeys the
stop word constraints. Since this set satisfies the desired
properties, it becomes the initial list of stop words in the
given application domain. Third, the main idea is to tra-
verse a given general purpose dictionary of stop words and
for each word in the dictionary to check if the stop word
constraints are satisfied. If they are satisfied, the word is
a stop word in the given application domain. These steps
actually characterize the algorithm given in Figure 4.

Proposition 1. The algorithm StopwordsAlgorithm
returns a maximal set of stop words with respect to the stop
word constraints.

Two points need to be clarified about the algorithm. First,
the generic list of stop words is intersected with the set of
words used in the labels. We search for the stop words
only in this new set. Second, we observe that some stop
words come as antonym pairs (e.g., “last”, “first”) in general
purpose stop word dictionaries [1]. Hence, we also employ
the rule that if a word is not a stop word then its antonym is
also not a stop word, to derive more content words (in step
8). The assumption is that for each potential stop word, if
it is determined to be a non-stop word, then its antonyms,
if they exist in the potential list of stop words, will also be
non-stop words.

4. SEMANTIC RELATIONSHIPS AMONG
LABELS

The main objects manipulated in the integration of Web
query interfaces are the labels of the source interfaces. In
order to establish semantic relationships (e.g., hypernymy)
between labels across user interfaces we represent them as
sets of content words (we discard the stop words). For ex-
ample, {provide, financial, information} corresponds to Please
provide us with some financial information. The semantic rela-
tionships we focus on are: synonymy and hypernymy. They
are computed based on the relationships among the tokens
of the labels as given by WordNet.

Definition 1. Given two labels A and B along with their
set of content words representation Acw = {a1, ..., an} and
Bcw = {b1, ..., bm}, respectively, m, n ≥ 1, we define the
following relationships between A and B:
• A synonym B, if there exists a bijective function f : Acw →

Bcw with f(a) = b if a is either the same as or synonym
with b, where synonymy between a and b is given by Word-
Net. (E.g. Area of Study synonym Field of Work since area
is a synonym of field and study is a synonym of work, by
WordNet.)

• A hypernym B, if there exists an injective function f : Acw →
Bcw with f(a) = b if a rel b, where rel is either identity,
synonymy or hypernymy, by WordNet. (E.g. Financial In-
formation hypernym Household Financial Information.) If
n = m then at least one rel is hypernymy by WordNet.
(E.g. Employment Information hypernym Job Information,
because Employment is a hypernym of Job.)

• A hyponym B if B hypernym A

The intuition behind this definition is that a label B is
hyponym of label A (or, the meaning of B is subsumed by
that of A) if the set of content words of A is “contained” in
the set of content words of B (containment means that the
elements of A can be mapped into B using a 1-to-1 func-
tion). The reason is that additional words usually restrict
the meaning of a phrase.

The synonymy and hyponymy relationships are defined in
terms of bijective and injective functions between sets of la-
bels (Definition 1). In general, between two sets A and B,
with A and B having n and m elements (n ≤ m), respec-
tively, there can be P (m, n) injective functions (P stands
for permutation) and m! bijective functions, if n = m. One
way to test for hyponymy is to generate all combinations
of mapping the elements of A into those of B and test if
there exists one mapping that satisfies Definition 1. This ap-
proach takes exponential time. In the rest of the section, we
show that the problem of computing the semantic relation-
ships according to Definition 1 can be reduced to bipartite
matching problems with well-known polynomial algorithms.

4.1 The Senses of a Word in a Domain
In order to acquire a better understanding of the meaning

of the content words with respect to a dictionary (WordNet),
we constructed inverted lists of content words for each of the
9 domains on which we perform experiments. Associated
with each content word, we created an inverted list of labels
containing the word in a domain. Table 1 shows an example
of such lists. In total, the inverted lists have 735 content
words and 2,319 labels. Note that the same word may ap-
pear in multiple lists as it may be used across domains. For

Table 1: Example of inverted list of content words
Domain Word Labels

Credit Card Address Home address, Company address, Email address
Credit Card Type 3rd party credit card type, Major credit card type
Real Estate Type Property type, Parcel type, Type of use
Real Estate Area Select an area, Minimum floor area

example, Table 1 shows the word Type in the Real Estate
and Credit Card domains along with some of the labels it
appears in. For each entry in the list we manually check the
number of meanings the word is used within a given applica-
tion domain. For example, the usage of the word Address in
the Credit Card domain shown in Table 1 is consistent with
only one sense in WordNet: “the place where a person or
organization can be found or communicated with”. Among
the 735 words, we found only one content word that has
multiple senses in the same domain. This is the word Area
and it is shown in the table. The word has two senses in the
Real Estate domain. Its meaning in the label Select an area
is “a particular geographical region of indefinite boundary”.
Whereas its meaning in the label minimum floor area is “the
extent of a 2-dimensional surface enclosed within a bound-
ary”. Thus we conclude that in a given application domain
the occurrence of words with multiple meanings is extremely
rare and we state this in the following assumption:

Assumption 1. We assume that each content word used
across a set of query interfaces in a given domain of dis-
course (e.g. airline, car rental) has a unique sense.

The assumption is also supported by real life facts. First,
it is very unlikely for a well-designed query interface to have
the same content word used to denote different concepts
within an application domain. For one, this may have the
risk to confuse the user. Second, it has been observed in
practice [19] that the majority of deep Web sources in the
same domain are consistent on some “core” content words
(e.g., title) and others are variations of the core ones (e.g.,
title of book). Thus, even though title has 12 senses by the
electronic dictionary WordNet, its use across the interfaces
in the Book domain is consistent with only one of these
senses (i.e., “the name of a work of art on literary compo-
sition”). The assumption helps us to build a formal frame-
work that facilitates a systematic way to reason about the
labels. Nonetheless, it is not trivial in practice to determine
the actual sense of a word (or phrase) in a given context.
Our finding is consistent with the observation made in [8]
that domain specific text tends to greatly constrain which
senses of a word will appear.

Proposition 2. The relations introduced above have the
following properties:
1. Hypernymy is transitive, asymmetric and irreflexive.

2. Synonymy is an equivalence relation on labels.

The unique sense assumption is key in proving the above
statements. The result of the proposition is later used to
establish the relationship between the bipartite matching
problems and the problem of computing the semantic rela-
tions. The reduction of the latter problem to the former
problem is discussed next.

4.2 Conversion to Bipartite Matching
We first introduce several graph theory definitions. A bi-

partite graph G = (V = (A, B), E) is a graph whose vertices

can be divided into two disjoint sets A and B such that every
edge in E connects a vertex in A to one in B. A matching
M in G is a set of edges with no two edges sharing a com-
mon vertex. A maximum bipartite matching is a matching
that contains the largest possible number of edges. A per-
fect matching is a matching which covers all vertices of the
graph. That is, every vertex of the graph is incident to
exactly one edge of the matching. A maximum weighted bi-
partite matching in a weighted bipartite graph is defined as
a perfect matching where the sum of the values of the edges
in the matching has the maximum value.

Let A and B be two labels. Denote their sets of con-
tent words by Acw = {a1, ..., an} and Bcw = {b1, ..., bm},
respectively, m, n ≥ 1. A bipartite graph G = (V, E) is
constructed as follows: the set of vertices V = Acw ∪ Bcw

and an edge e = (ai, bj) ∈ E, 1 ≤ i ≤ n, 1 ≤ j ≤ m, if
ai is either equal to, a synonym of or a hypernym of bj by
WordNet. According to Definition 1, label A is a synonym
of label B if there exists a bijective function from Acw to
Bcw. Since the bijective function corresponds to a perfect
matching in the associated bipartite graph, then the prob-
lem of finding a synonymy relationship between two labels
becomes the problem of finding a perfect matching in the as-
sociated bipartite graph that consists only of synonym edges.
In Figure 5, we give a simple example of a perfect matching
corresponding to a synonym relation between labels Area of
study and Field of work.

Finding hypernymy relationships is somewhat more com-
plicated because two cases have to be considered: 1) when
the number of content words in one set is smaller than the
number of content words in the other set and 2) when the
numbers of content words of the two sets are equal. Case
1: suppose |Acw| < |Bcw|, then label A is a hypernym of
label B if there exists an injective function from Acw to Bcw.
In the bipartite graph formulation, the problem of finding
a hypernymy relationship is reduced to finding a maximum
bipartite matching that consists of synonym or hypernym
edges and the cardinality of the matching is equal to |Acw|.
Case 2: |Acw| = |Bcw|, since a bijective function needs to
be determined, this case is similar to finding a synonymy
relationship, but in this case at least one relation must be a
hypernymy relationship. Hence, we have to solve the prob-
lem of finding a perfect matching in the associated bipartite
graph that consists of synonym edges and at least one hy-
pernym edge.

When |Acw| = |Bcw|, we need a way to distinguish be-
tween a matching corresponding to a synonymy relationship
and a matching corresponding to a hypernymy relationship.
The problem boils down to determining if at least one hy-
pernym edge is present in the matching. It is inefficient to
generate all possible matchings and test if the above con-
ditions are met. This instead can be realized by assign-
ing different weights to synonym and hypernym edges. A
weight of 1 is assigned to a synonym edge and a weight
of 2 is assigned to a hypernym edge. Then the problem
of capturing the semantic relationships between the labels
becomes a maximum bipartite weighted matching problem
(recall that maximum bipartite weighted matching is also
a perfect matching). The trick is to observe that a maxi-
mum weighted bipartite matching for a synonymy relation-
ship has the sum of the values of its edges equal to |Acw|.
Whereas the maximum weighted matching for a hypernymy
relationship has the sum strictly larger than |Acw|. The next

Figure 5: Example of bipartite matching.

proposition summarizes this in a concise formal manner.

Proposition 3. Let A and B be two labels with their
set of content words representation Acw = {a1, ..., an} and
Bcw = {b1, ..., bm}, respectively, m, n ≥ 1. Let G = (Acw ∪
Bcw, E) be the bipartite graph associated with the two la-
bels.
1. A is a synonym of B iff m = n and the sum of the values

of the edges in the maximum weighted bipartite matching
is equal to m.

2. A is a hypernym of B iff
(a) either n = m and the sum of the values of the edges

in the maximum weighted bipartite matching is larger
than n;

(b) or n < m and the cardinality of the maximum bipartite
matching is equal to n.

The maximum bipartite matching problem can be solved
in polynomial time. We implemented the Edmonds-Karp
algorithm [15]. The maximum bipartite weighted matching
problem has also a polynomial solution and we implemented
the Hungarian algorithm [27]. It can be proven that it is
impossible to have both synonymy and hypernymy relation-
ships between two labels.

5. DICTIONARY VERSUS CONTEXT
We argue that, even though a content word may have

unique sense in a dictionary, the task of establishing re-
lationships between the labels of schema trees cannot be
accurately carried out unless additional features are consid-
ered. To illustrate this point, we first present an algorithm
that relates the labels of internal nodes across schema trees
employing only Definition 1 and ignoring any other struc-
tural information. Conversely, we devise another algorithm
that combines the structural information of schema trees
and Definition 1. In this section, an analytical argument is
laid out to explain why the latter is better than the former.
The experimental section shows the dramatic accuracy im-
provement of the latter algorithm over the former algorithm.

5.1 The Naive Algorithm
The naive algorithm takes each label of an internal node of

a given schema tree and compares it, using Definition 1, with
all the labels of the internal nodes in the other schema trees.
This is a trivial solution to semantically relate the labels of
internal nodes across schema trees in an application domain.
This algorithm achieves on average a precision of 76.1%, a
recall of 75.4%, and a F-score of 74.9% over the data set
employed in our experiments (see Section 6).

5.2 The Context-based Algorithm
The naive approach has several problems. We only dis-

cuss its main drawback. The same linguistic expression may
be used to denote several unrelated concepts. Based on the
context the label Address occurs within a schema tree, in the
Credit Card domain, it denotes home address, company ad-
dress, a relative’s address, previous address, etc. The naive

Figure 6: Example of user interfaces.

Figure 7: An instance of recursiveness.

technique does not take into account the context of a label
and it will wrongly suggest that Address of interfaces Chase
and HSBC is a hypernym of Current Address of Discover (Fig-
ure 6).

To avoid this problem a label should be regarded as a
tuple 〈l, Cl〉, where l is the actual label and Cl is the con-
text of the label in a given schema tree. The context of
the label l within a schema tree is the set of descendant
leaves of the internal node with the label l. For example,
〈Address, {Company State, Company City, Company Street}〉,
〈Address, {Company City, Company Street}〉 and 〈Current Ad-
dress, {State, City, Street}〉 are the tuple representations of
the three occurrences of Address which appear in the inter-
faces Chase, HSBC and Discover, respectively. Two labels
are compared using Definition 1 only if the intersection of
their sets of descendant leaves is nonempty. A leaf in a user
interface is the “same” as that in another user interface if
it has been determined that they are equivalent in the at-
tribute matching phase. In our example, the labels Address
of Chase and Address of HSBC are compared with each other
because the intersection of their contexts is nonempty. But
neither of them is compared with the label Current Address
of Discover because their contexts do not overlap with the
context of Current Address.

It should be noted that to determine the intersection of
the context of an internal node v in a schema tree with that
of an internal node w in another schema tree we may need to
involve the ancestors of v and w. For instance, the interface
Discover has a leaf State and the interface Chase (Figure 6)
has a leaf Company State. Algorithms such as [11, 26] can
determine that State and Company State do not match by
utilizing the labels of their ancestors.

We employ the example in Figure 7 to reveal another
subtlety of computing semantic relationships using the con-
texts of labels. The figure shows the internal nodes in three
distinct user interfaces that represent financial information.
The dashed lines show the semantically equivalent fields in
the three interfaces. Suppose the order in which the la-
bels of the three interfaces are compared is: NCL, MBNA
and Menards. First, no semantic relationship is established
between the labels Financial Information and Please provide
us with financial information because their sets of descen-
dant leaves do not intersect. Second, Financial Information
is compared to Household Financial Information because the
intersection of their sets of descendant leaves is nonempty.
Third, even though the intersection of the descendant leaves

AlgorithmWithContexts
Input: the schema trees, QI
Output: the list of semantic relationships L
1. do
2. for i=1 to |QI| − 1
3. for each internal node of Ui with label l
4. for j=i+1 to |QI|
5. for each internal node of Uj with label p
6. if Cl ∩ Cp 6= ∅ then
//Cl = set of descendent leaves of the node with label l
7. if l synonym p then

add l synonym p to L;
Cl, Cp ← Cl ∪ Cp; //update contexts

8. else if l hypernym p then
add l hypernym p to L;
Cl ← Cl ∪ Cp; //update context

9. else if p hypernym l then
add p hypernym l to L;
Cp ← Cl ∪ Cp; //update context

10. while no label’s context changes
11. return L

Figure 8: The algorithm using context of labels

of Household Financial Information and Please provide us with
financial information is nonempty no semantic relationship
between them can be determined using Definition 1. The set
representations of the two labels are {household, financial, in-
formation} and {provide, financial, information}, respectively,
and no relationship can be established between them be-
cause provide and household cannot be semantically related
using WordNet. At the end of this iteration, no relation-
ship has been established between Financial Information and
Please provide us with some financial information. This ex-
ample points out two issues. First, whenever a semantic
relationship is established between two labels their contexts
have to be updated. For example, after interfaces NCL and
Menards are compared, the context of Financial Information
should include the leaf Income. Second, multiple iterations
may be needed in order to compute all semantic relation-
ships across the labels of internal nodes of all the schema
trees. In our example, a second iteration is needed to find
that the context of Financial Information intersects that of
Please provide us with some financial information, and there-
fore to find that the former is a hypernym of the latter.

The algorithm for computing semantic relationships be-
tween the labels of the internal nodes of query interface
considering the context of labels is sketched in Figure 8. As
illustrated in the example in Figure 7, the algorithm needs
to iterate over the set of query interfaces until the context
of each label does not change (Lines 1 & 10). Two labels
from two distinct schema trees (Lines 2-5) are compared us-
ing Definition 1 if their contexts intersect (Line 6). If they

Table 2: Occurrences of AND and OR
and or /

section title (internal node) 21 2 11
field (leaf) 2 47 52

are synonyms then their contexts are updated (Line 7) and
this relationship is appended to L, where L is the list of all
semantic relationships found by the algorithm. If one of the
labels is a hypernym of the other then only the context of
the former label is updated (Lines 8, 9). Their relationship
is added to L as well.

5.3 Handling AND and OR
6% of the labels in our data set have either AND or OR.

We call these words semantic enrichment words. Electronic
dictionaries have no entries for these words. Their proper
handling directly impacts the ability to discover additional
relations. It is desirable to understand if there is any seman-
tic relation between the labels Departure date and time and
Leaving date. Applying directly Definition 1 would report
that the latter label is a hypernym of the former label. This
is a wrong relation. A correct understanding of the way
these words are used within Web query interfaces would in-
crease the chances to find semantic relationships between
even more complicated phrases. There are three main is-
sues. First, how to compare two phrases one with and the
other without semantic enrichment words. Second, how to
compare two phrases that both have the same semantic en-
richment word (e.g., City or airport code and City, point of
interest or airport code). Third, should two labels, one con-
taining AND and the other containing OR, be compared?
And, if yes, what should the expected outcome be of such a
comparison?

Table 2 shows the distribution of these words among the
labels of leaves and internal nodes in our data set. There
are 21 occurrences of AND and only 2 occurrences of OR
among the labels of internal nodes. AND appears only 10
times among the labels assigned to leaves. Out of these, 8
appear in the comments attached to the actual label (e.g.,
Seniors (age 65 and over)) and do not have a direct bearing on
the semantics of the actual label. Thus, we infer that AND
is frequently used (91.3%) in the labels of internal nodes
and not in the labels of leaves. When a label of an internal
node (section) combines two concepts with AND it conveys
to users that the section of the interface has fields pertaining
to the meaning of the two concepts. In the section delimited
by the label Where and when do you travel?, in the interface
shown in Figure 3, there are fields pertaining to where and
fields pertaining to when. In this sense, the semantic of AND
is that of a union. In general, a label having n concepts
joined with AND conveys the meaning of the union of the n
concepts. An example of a label of a field containing AND
is: Search one day before and after. The meaning of AND is
still that of union.

OR occurs 47 times in the labels of leaves and only twice
in the labels of internal nodes. Hence, it is frequently used
(96%) among the labels of fields (leaves) and not among
those of internal nodes. The label From city or airport code
is a label of a field in the interface in Figure 1. Whenever OR
is used in the label of a field, it expresses that the field plays
multiple semantic roles. In our example, the field accepts
both values denoting cities as well as airport code values.

AndOrAlgorithm
Input: label A and label B
Output: the semantic relation between them
EW = the set of enrichment words
1. if EW ∩A = ∅ and EW ∩B = ∅ then

return Definition 1(A, B);
2. if EW ∩A 6= ∅ and EW ∩B 6= ∅ then

remove EW from A and B;
return Definition 1(A, B);

3. if EW ∩A = ∅ and EW ∩B 6= ∅ then
B′ = B − EW ;
if A synonym B′ then return A synonym B;
if B′ hypernym A then return B hypernym A;
if mapSynHypo(A, B′) then return A hyponym B;

4. if EW ∩A 6= ∅ and EW ∩B = ∅ then
Same as Case 3, but the roles of A and B are reversed.

5. else return no relationship;

Figure 9: Algorithm for computing semantic rela-
tionships

So, OR has the meaning of union, but with the following
caveat: the field can only accept one type of input at a
time (either city or airport code, but not both). When OR
appears in the label of an internal node it has the same
behavior. If the address above is a P.O. Box, a residential or
business address is required is an example of such a label in the
Credit Card domain. The user is required to fill in either the
information about his/her address or some business address,
but not both.

We also analyze the meanings of the character “/” within
labels. In summary, this character has the same meaning as
that of AND whenever it appears in the labels of internal
nodes (e.g., Departure date/time) and it behaves the same as
OR when showing up in the labels of leaves (e.g., Unit/Apt
#). One last observation: No label has both AND and OR.

The question left to be answered is: should two labels, one
containing AND and the other containing OR, be compared?
First, each comparison is done between the label of one in-
ternal node and that of another internal node. Second, the
number of internal nodes involving OR is negligible. Third,
the semantics of AND and that of OR are so close that they
can be considered to be equivalent. Thus, our analysis is
based on the assumption that AND is the only enrichment
word, if exists. Armed with these observations we extend
Definition 1 to handle comparisons between labels with and
without semantic enrichment words.

The general procedure to establish semantic relationships
between phrases is given in Figure 9. In case 1, if labels
A and B do not contain an enrichment word, Definition
1 is applied. If both labels A and B contain enrichment
words, then remove these words from the labels and apply
Definition 1 (Case 2)—e.g., Departure date and time is a
synonym of Leaving date and time. If label A does not have
an enrichment word and label B has an enrichment word,
then the enrichment word is removed from B yielding B′

(Case 3). There are three subcases based on the relationship
between A and B′:
• if A is a synonym of B′ (|A| = |B′|), then the original

labels are synonyms (e.g., City, state, country and City,
state, and country). The intuition is that the two labels
have the “same” set of words, but one of them has an

explicit enrichment word and the other does not.

• if B′ is a hypernym of A (|A| ≥ |B′|), then B is a hyper-
nym of A. This result can be argued using transitivity.
That is, since B′ is a hyponym of B (because B′ is the
same as B, except for the enrichment words) and A is a
hyponym of B′ then, by transitivity, A is a hyponym of B.
E.g., B = Address and housing information is a hypernym
of A = Residence address information because housing is a
hypernym of residence and the remaining content words
in the two labels are the same.

• if the words of A can be mapped into those of B′ (|A| ≤
|B′|) using either synonymy or hyponymy relationship and
at least one of them is a hyponymy relationship (the pro-
cedure mapSynHypo does the mapping) then A is a hy-
ponym of B. Suppose A = Pick-up date and B = Pick-up
date and time. Since the concepts of B are at least as
general as those of A and B has also an enrichment word
(which means union), then B is a hypernym of A. In
other words, the intuition that additional words restrict
the meaning of a phrase is no longer true when an en-
richment word is present. Such words do not restrict, but
rather enrich the meaning of a phrase. Note that this is
contradictory to Definition 1.

This concludes case 3. Case 4 is the same as case 3 except
that the roles of A and B are reversed. If none of these
conditions is met then no relationship is established between
the labels.

The new algorithm of computing semantic relationships
that uses the context and the observations made about AND
and OR attain on average a precision of 97.3%, a recall of
81.2% and an F-score of 88.3%.

5.4 Context Characterization of Labels
Recall that a label, thereafter called tuple-label, is re-

garded as a tuple 〈l, Cl〉, where l is the label and Cl is the
context of the label. Recall also that every time a relation-
ship is found between two labels, their contexts are updated
(algorithm in Figure 8). The context of a label is computed
by iterative application of the procedure in Figure 9. It pro-
vides a semantic characterization of the label in terms of the
fields/leaves across the entire domain. So, this context can
be used to establish semantic relationships among the labels
of the internal nodes from different query interfaces. Given
two tuple-labels 〈l, Cl〉 and 〈p, Cp〉, if Cl = Cp, then l is syn-
onym of p; if Cl ⊂ Cp, then l is a hyponym of p. Using this
definition instead of Definition 1, additional relationships
among labels can be found. (It can be proved that the new
definition is more general than Definition 1.) This definition
is not restrained by the existence of bijection/injection be-
tween the content words of the labels. For example, who is
going in this trip? and How many people are going? cannot
be related by Definition 1 but are found to be synonyms.
The new definition attains on average a precision of 95%, a
recall of 90.4% and an F-score of 92.6%. This algorithm is
referred thereafter as the improved algorithm. It uses all the
features discussed so far.

6. EXPERIMENTS
In this section, we present an experimental evaluation of

the approximation algorithm for computing the dictionary
of stop words. Another experiment is conducted to assess

Table 3: Characteristics of interfaces per domain.
Domain Domain Char. (avg) Integrated Query Interface

LeavesNodesDepthLeavesGroupsDepth Nodes
Airline (20) 10.7 5.1 3.6 24 8 6 13
Auto (20) 5.1 1.7 2.4 18 5 3 7
Book (20) 5.4 1.3 2.3 19 5 2 6

Real Estate (20) 6.7 2.4 2.7 28 8 4 9
Job (20) 4.6 1.1 2.1 19 1 2 2

Car Rental (20) 10.4 2.4 2.5 34 9 4 16
Hotels (30) 7.6 2.4 2.3 26 8 5 15

Credit Card (20) 50.15 20.25 3.6 180 59 6 64
Alliances (50) 15.3 8.32 3.58 31 8 5 12

the ability of the proposed method to establish semantic
relationships. The impact of stop words on determining se-
mantic relationships is also studied.

6.1 Experiment Setup
The testing data set consists of 220 sources over 9 real-

world domains on the Web. Each domain has 20 query in-
terfaces, except Hotels that has 30 and Alliances that has 50.
Table 3 summarizes the characteristics of the source data
sets per domain. The average numbers of fields and internal
nodes on the individual interfaces are given in columns 2 &
3. Column 4 shows the average depth of individual inter-
faces. The characteristics of the resulting global interfaces
for the 9 domains are illustrated in columns 5-8.

The general purpose dictionary of stop words contains 319
entries. The dictionary was the first list of stop words ex-
tracted from the Web through a query submitted to the
Google search engine.

6.2 Evaluating Stop Words
The evaluation of our algorithm for computing the set of

stop words with respect to an application domain is per-
formed for each of the 9 domains. The standard F-score
[19], which combines precision and recall, is used to mea-
sure the effectiveness of finding the correct stop words. For
each domain, the intersection of the stop word dictionary
and the set of all words appearing in the labels is computed.
For example, in the Credit Card domain there are 53 words
in the intersection of the general purpose dictionary of stop
words and the set of words in the labels of this domain.

The golden standard of stop words for an application do-
main has been manually generated following the intuition:
a word in the intersection list is not a stop word if there
is a label whose meaning changes so “drastically” after the
removal of the word from the label that the new label does
not resemble in any way the original meaning of the label.
The remaining words in the list are the golden standard stop
words. For example, in the Credit Card domain, the word
yourself is not a stop word because there is a label Please tell
us about yourself whose meaning completely changes once
the word yourself is discarded.

Figure 10 presents the outcome of the experiment for the
9 domains. In Auto, Credit Card, Hotel, Job and Real Estate
domains, the algorithm achieves a nearly perfect score. Ta-
ble 4 shows the only non-stop word missed, yourself. The
word appears in the label Please tell us about yourself. The
word cannot be discovered as a non-stop word because of the
following problems. The only non-stop word with respect to
the general purpose dictionary is tell in the label. The label
of its sibling is Please give us some financial information. Note
that the words Please and us can be removed from the two
labels as the stop word constraints are satisfied. The labels

Figure 10: Stop word algorithm evaluation (from
left to right Precision, Recall, F-score)

Table 4: Example of non-stop words commonly re-
garded as stop words

Domain Found Non-stop words Missed Non-stop words
Airline first, last, from, to, when, and, or where, who

Alliances from, to, on, yourself, no, for, there, and, or where, when, who, by
Auto first, last, from, to, within, or
Book first, last, before, or after

Car Rental to, and, or from, last
Credit Card first, last, per, and, or yourself
Real Estate to, from, or

become tell about yourself and give some financial informa-
tion. Similarly the words about and some can be removed
yielding tell yourself and give financial information, respec-
tively. At this stage there is no restriction precluding the
removal of yourself from the label because there is no seman-
tic relationship between what is left from the label and give
financial information. For the other domains, the F-score is
over 90% except for the Car Rental domain. In this domain
we missed two non-stop words from and last (see Table 4).
The word last appears in the label Last name and in all the
schemas having this label there is no neighboring node with
labels pertaining to name. Hence, no stop word constraint
is violated when last is removed from Last name.

Efficiency/scalability discussion: The average time to
run the algorithm to produce the set of stop words for an
application domain is about 30 seconds; the maximum is
about 120 seconds. The time complexity of the algorithm
is O(|D| × |QI| × NS × mSL2 × mL), where D is the set
of potential stop words, QI is the set of interfaces in the
domain, NS is the number of sets of sibling nodes in an
interface, mSL is the maximum number of sibling nodes in
an interface and mL is the maximum number of words in a
label. The algorithm is scalable, because it is linear in the
number of user interfaces and is performed off-line.

6.3 Evaluating Semantic Relationships
Golden standard: For each pair of query interfaces in

each of the 9 domains we manually mapped the labels of
the internal nodes with the appropriate semantic relation-
ship type. For example, there are 812 relationships in the
Hotel domain. In total, the golden standard contains 7,544
relationships. Out of them 4,103 (54.4%) are synonymy rela-
tionships and 3,441 (45.6%) are hypernymy/hyponymy re-
lationships. The pie chart in Figure 11 gives the overall
distribution of the relationships per domain. A couple of
domains stick out: Credit Card and Alliances which together
account for more than 66% of all relationships. This is not

Figure 11: Domain-wise distribution of relationships
in the golden standard.

surprising because Credit Card domain has interfaces 4 to 10
times larger than the interfaces in any other domain (see
Table 3). The Alliances domain consists of 50 interfaces,
which is twice as large as the number of interfaces in all
other domains but Hotel.

Naive Algorithm: Recall that the naive algorithm em-
ploys only the senses of the content words present in Word-
Net. The outcome of the algorithm is evaluated again us-
ing Precision, Recall and F-score. The graph in Figure 12
depicts the performance of the algorithm for each of the 9
domains. Notice that the F-score ranges from 39% to 97.3%.
The question arises as to why the accuracy of the algorithm
is so poor and ranges over such a large interval. There are
a couple of explanations. First, as we argued in Section
5, this algorithm blindly compares two labels without tak-
ing into consideration where within the interfaces the labels
are placed. Second, the vocabulary of the majority of Deep
Web sources in the same domain is confined to a limited
number of content words. As a case in point, it has been
shown that the vocabulary of Deep Web sources in the same
domain converges at a very steep rate [19]. Moreover, the
labels in the same domain are consistent on some core con-
tent words. For example, the word Address is a core term
and Employer address, Company address are variations of it in
the interfaces shown in Figure 6. Hence, in general, this al-
gorithm wrongly establishes semantic relationships between
labels that share some words. Another observation drawn
from the graph is that for domains with small interfaces,
such as Auto, Book, the performance is significantly bet-
ter than the performance for domains with larger (complex)
interfaces, such as Car Rental, Credit Card. This can be ex-
plained by the fact that smaller interfaces have fewer in-
ternal nodes, and thus a smaller number of labels, whereas
larger interfaces have more internal nodes, and thus many
labels. Consequently, in larger interfaces the same words or
their synonyms tend to be reused. For instance, there are
interfaces where Address appears in both Home Address and
Company Address.

The Improved Algorithm: We implemented an algo-
rithm for computing the synonymy and hypernymy relation-
ships that combines the context of labels and semantic en-
richment words. The performance of the algorithm is given
in Figure 13 in terms of precision, recall and F-score. A
brief visual inspection of the graph of this algorithm and
that of the naive algorithm shows that the new algorithm
has a more stable behavior from one domain to another. Its
F-score ranges from 82.1% to 99.3%, with the mean at 92.6%

Figure 12: Naive algorithm accuracy (from left to
right Precision, Recall, F-score)

and a standard deviation of 5.9%. The naive algorithm has
a mean F-score of 74.9% and a standard deviation of 18.5%.
Moreover, overall the algorithm improves the average preci-
sion to 95%, the average recall to 90.4% and the average F-
score to 92.6%. The algorithm has the poorest performance
in Car Rental and Alliances. The problem mainly stems from
the fact that the designers of these domains use words and
phrases that are commonly perceived as synonyms in these
domains but not in WordNet. For example, drop-off and
return are synonyms in the Car Rental domain but not by
WordNet. Notice that while the precision is constantly over
90%, the recall for some domains is around 80%. In addition
to the problem we just mentioned, another problem is that
many labels are complex sentences, such as So, what do you
do for a living?. These labels elude the algorithm.

In Table 5 we randomly selected some examples of pairs
of labels from different domains that cannot be related by
the improved algorithm. More sophisticated linguistic tech-
niques beyond electronic dictionary abilities are attempted
to enable the finding of semantic relationships between such
labels. We used the Normalized Google Distance (NGD) [9]
for the randomly picked pairs of labels. NGD is a similar-
ity distance to measure the semantic similarity of two words
or phrases using the number of hits returned by the search
engine Google. We are not able to get consistent results on
our labels. As an example, in the Car Rental domain we
expect to find that drop-off is a synonym of return. Our
algorithm fails to find this relationship between them. So
we tried NGD: NGD(drop-off, return) = 1.02. And we also
tried NGD(drop-off, leaving) = 0.63. According to NGD,
drop-off is more similar to leaving than to return. Similar
experiments were performed for more complex cases. One
possible explanation for not obtaining consistent results is
that to get meaningful hits from Web search engines the
queries need to be noun phrases. Many of the relationships
we miss are between labels that are not noun phrases (e.g.,
How flexible are you?). We also tried to use the kernel func-
tion for measuring the semantic similarity between pairs of
short text snippets reported in [29]. For drop-off and re-
turn, the similarity score is very low because most of the
top 20 documents returned by Google for the former term
refer to varied drop-off locations whereas the documents for
the latter refer to return on an investment and the return
statement in programming languages.

Stop words and semantic relationships: The follow-
ing experiments were conducted to understand the role of
stop words when determining semantic relationships. For

Figure 13: The improved algorithm accuracy (from
left to right Precision, Recall, F-score)

Table 5: Example of challenging semantic relationships
Domain Label Rel Label
Airline Outbound Syn Origin date
Airline How flexible are you? HypSearch one day before and after

Car Rental End Hyp Dropoff date
Car Rental Pick-up Syn Start
Car Rental Pickup Location Syn Rental location information
Credit Card 2nd card holder Syn Additional authorized user
Credit CardSo, what do you do for a living?Syn Employment information
Credit Card Please tell us about yourself Syn Personal information
Real Estate Size Hyp Square feet

each domain, we run the improved algorithm for computing
semantic relationships with the following four possible sets
of stop word:
• S1 is the set of stop words produced by our algorithm;

• S2 is the gold standard of stop words;

• S3 is the empty set;

• S4 is a domain independent stop word set used by a typical
IR system; e.g., reference [1].

The F-score of the computed semantic relationships among
labels using S1 is on average 17.6% better than that using
S3. The largest difference is 43% in Car Rental. This shows
that it is essential in using a suitable set of stop words. The
F-score of the computed semantic relationships among labels
using S2 is only 0.03% above that of using S1. This shows
that our algorithm produces a set of stop words which is
close to the ideal set of stop words. The F-score using S1 is
on average 8% better than that using S4. For the Car Rental
domain, the former is 33% better than the latter. If S4 is
used, then a significant number of labels for the leaf nodes
(fields) (labels such as from and to in the airline domain) will
become empty and integration of query interfaces will not
be possible. The graphs of these experiments are omitted
due to space limitation.

7. RELATED WORK
Synonym and near-synonym relationships between short

phrases have been recently studied [7, 29]. We are not aware,
however, of works that find hypernymy relationships and dis-
tinguish hypernyms from synonyms. Nevertheless, there is
a great deal of work to represent meaning of words in var-
ious areas of research: linguistics, computer science, cogni-
tive phycology, etc. There are two lines of work to develop
means to capture the similarity between words. The first
one, led by projects like Cyc [23] and WordNet [16], aims to
manually create semantic networks of words of such vast pro-

portions that knowledge about the real world spontaneously
emerge. The second one aspires to devise generic methods
to measure word similarity or word association. There are
two directions: those that use word (phrase) frequencies in
text corpora [6, 8, 20, 21, 24] and those that employ the Web
search engine counts (hits) to identify lexico-syntactic pat-
terns [7, 9, 10]. For the pairs of words we could not find to
be semantically related in WordNet (e.g, (drop-off, return),
(bed, bedroom)) we tried using the Normalized Google Dis-
tance [9]. We were not able to obtain consistent similarity
scores between these pairs. NGD was reported to have good
results when applied to matching ontologies in the music
domain [18]. This work also uses a particular case of the
hypernymy definition given in this paper.

There are a number of dictionary-based semantic match-
ing techniques [5, 17, 22] developed for relational/XML schema
and ontology alignment. They first annotate the name of
each concept of a schema with the most appropriate se-
mantic meaning from a dictionary. This process is semi-
automatically carried out. Using this annotation they then
use the dictionary to establish semantic correspondences
across schemas. For complex phrases not present in the
dictionary, they manually assign the most appropriate sense
according to the dictionary. Consider the labels Please tell
us about your job and Employment information. To determine
that the two labels are synonyms, they need to be apriori
annotated with the word employment. In this paper we de-
veloped a method to automatically compute the relationship
between such phrases which is relevant to these works.

8. CONCLUSIONS
The main goal of this work is to address the stop word

problem. Its proper handling is a key ingredient to devel-
oping fully automated integration solutions. We formulated
the stop word problem in the context of Web query interface
integration. The problem was shown to be NP-complete and
an approximation solution was given. We feel that the for-
mulation of the problem is generic enough to be applicable
to other integration areas. Furthermore, we introduced a
framework to compute concrete semantic relationships be-
tween phrases. Among others, we showed that the problem
of computing such relationships can be regarded as finding
maximum matchings in bipartite graphs. A comprehensive
study of the semantic roles of the words AND and OR within
labels/names was also carried out. Extensive experiments
were performed to quantitatively assess the performance of
our solutions.

Acknowledgements: This work is supported in part
by the following NSF grants: IIS-0414939 and IIS-0414981.
The authors would also like to express their gratitude to the
anonymous reviewers for providing helpful suggestions.

9. REFERENCES
[1]

dcs.gla.ac.uk/idom/ir resources/linguistic utils/stop words.
[2] R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern

Information Retrieval. John Wiley and Sons, Inc.,
1999.

[3] L. Barbosa and J. Freire. Combining classifiers to
identify online databases. In WWW, 2007.

[4] L. Barbosa, J. Freire, and A. Silva. Organizing
hidden-web databases by clustering visible web
documents. In ICDE, 2007.

[5] D. Beneventano, S. Bergamaschi, F. Guerra, and
M. Vincini. The momis approach to information
integration. In ICEIS, 2001.

[6] M. Berland and E. Charniak. Finding parts in very
large corpora. In Proc. of ACL, 1999.

[7] D. Bollegala, Y. Matsuo, and M. Ishizuka. Measuring
semantic similarity between words using web search
engines. In WWW, 2007.

[8] S. A. Caraballo. Automatic construction of a
hypernym-labeled noun hierarchy from text. In ACL,
1999.

[9] R. L. Cilibrasi and P. M. Vitanyi. The google
similarity distance. TKDE, 19(3), 2007.

[10] P. Cimiano and S. Staab. Learning by googling.
SIGKDD Explor. Newsl., 6(2):24–33, 2004.

[11] H. H. Do and E. Rahm. COMA - A System for
Flexible Combination of Schema Matching
Approaches. In VLDB, pages 610–621, 2002.

[12] E. Dragut, T. Kabisch, C. Yu, and U. Leser. A
hierarchical approach to model web query interfaces
for web source integration. In VLDB, 2009.

[13] E. Dragut, W. Wu, P. Sistla, C. Yu, and W. Meng.
Merging source query interfaces on web databases. In
ICDE, 2006.

[14] E. Dragut, C. Yu, and W. Meng. Meaningful labeling
of integrated interfaces. In VLDB, 2006.

[15] J. Edmonds and R. M. Karp. Theorectical
improvements in the algorithmic efficiency for network
flow problems. ACM, 19:248–264, 1972.

[16] C. Fellbaum. Wordnet: An on-line lexical database
and some of its applications. 1998.

[17] F. Giunchiglia, P. Shvaiko, and M. Yatskevich.
S-match: an algorithm and an implementation of
semantic matching. In SII, 2005.

[18] R. Gligorov, W. ten Kate, Z. Aleksovski, and F. van
Harmelen. Using google distance to weight
approximate ontology matches. In WWW, 2007.

[19] B. He and K. Chang. Statistical schema matching
across web query interfaces. In SIGMOD, 2003.

[20] M. A. Hearst. Automatic acquisition of hyponyms
from large text corpora. In Proc. of ICL, 1992.

[21] J. J. Jiang and D. W. Conrath. Semantic similarity
based on corpus statistics and lexical taxonomy. In
ROCLING X, 1998.

[22] K. Kotis and G. A. Vouros. The hcone approach to
ontology merging. In ESWS, 2004.

[23] D. Lenat, R. Guha, K. Pittman, D. Pratt, and
M. Shepherd. Cyc: Towards programs with common
sense. Communications of the ACM, 33(9), May 1990.

[24] D. Lin. Automatic retrieval and clustering of similar
words. In Proc. of ICL, 1998.

[25] J. Madhavan, S. R. Jeffery, S. Cohen, X. L. Dong,
D. Ko, C. Yu, and A. Halevy. Web-scale data
integration: You can only afford to pay as you go. In
CIDR, 2007.

[26] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity
flooding: A versatile graph matching algorithm. In
ICDE, 2002.

[27] J. Munkres. Algorithms for the assignment and
transportation problems. J. SIAM, 1957.

[28] E. Rahm and P. Bernstein. A survey of approaches to
automatic schema matching. VLDB Journal, 2001.

[29] M. Sahami and T. D. Heilman. A web-based kernel
function for measuring the similarity of short text
snippets. In WWW, 2006.

[30] J. Wang, J.-R. Wen, F. H. Lochovsky, and W.-Y. Ma.
Instance-based schema matching for web databases by
domain-specific query probing. In VLDB, 2004.

[31] W. Wu, C. Yu, A. Doan, and W. Meng. An interactive
clustering-based approach to integrating source query
interfaces on the deep web. In SIGMOD, 2004.

[32] Z. Zhang, B. He, and K. Chang. Light-weight
domain-based form assistant: querying web databases
on the fly. In VLDB, pages 97–108, 2005.

