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ABSTRACT multiple sources to be combined to answer queries, and we refer to
this asmulti-streamanalysis. Multi stream analysis arises in many

contexts, including large scale web advertising networks, the inter-
net, sensor networks, and real time data analysis [6]. In large scale
web-based advertising networks, clicks originating from different

internet hosts result in multiple click streams that need to be merged
at a single server for analysis and identification of suspicious pub-

core processors and powerful servers driven by these prrsess lishers or IP addresses [21]. In the Internet, network monitors at
calls for efficient parallel designs that can effectively utilize the COre routers process streams of packets arriving from different o

parallelism of the multicores, since performance improvement is gins for ac_cognting purposes, and _detection of malicious activities
possible only through effective parallelism. In this paper, we ad- such as Distributed Denial of Serwce attacks [29].. In sensor .net-
dress the problem of parallelizimgulti-stream analysia the con- works, data streams from multiple sensors are typically combined
text of multicore processors. Specifically, we concentrate on par- t @ single server for analysis, mining, and querying [2, 18]. Sim-
allelizing frequent elements, tdg-and frequency counting over 'larly, analysis of web server logs, monitoring calls in cellular net-
multiple streams. We discuss the challenges in designing an efﬁ_work_s, real time anal)_/5|s of credit ca_rd and ATM transactions etc.
cient parallel system for multi-stream processing. Our evaluation require real t|me.mult|-stream a”f?"ys.'s [4]. .

and analysis reveals that traditional “contention” based locking re- A number of high-throughput distributed stream processing sys-
sults in excessive overhead and wait, which in turn leads to se- tems have been proposed, such as Borea_lls [1]. ar_ld Medusa [3].
vere performance degradation in modern multicore architectures. | '€S€ Systems distribute the load on multiple distributed servers
Based on our analysis, we propose a “cooperation” based locking to ensure high throughput. But with the advent of multicore pro-

paradigm for efficient parallelization of frequency counting. The cessors and extrgmely powerful servers driven by th.ese.proc.es-
proposed “cooperation” based paradigm removes waits associated©'s: even centralized servers are now capable of delivering high

with synchronization, and allows replacing locks by much cheaper throu_ghput stream processing. For instance, the Sun SPARC En-
atomic synchronization primitives. Our implementation of the pro- t€'Prise T5220 server powered by a UltraSPARC T2 processor [25]

posed paradigm to parallelize a well known frequency counting al- &1d Supporting 1Gbps network connectivity has 64 hardware thread
gorithm shows the benefits of the proposed “cooperation” based contexts which can be used for efficient and high throughput stream
locking paradigm when compared to the traditional “contention” processing. Even standard workstatlo_ns are now pow_ered by pro-
based locking paradigm. In our experiments, the proposed “cooper-C€SSOrs witht — § cores [16], and provide great potential for par-

ation” based design outperforms the traditional “contention” based allel processing. Efficient parallel designs are therefore needed to

design by a factor of — 5.5.X for synthetic zipfian data sets. exploit such parallel hardware to support the processing of large
numbers of streams with high and varying arrival rates. Note that

stream processing systems have considerable data dependencies

1. INTRODUCTION and shared data structures, and efficient parallel systems require
thoughtful and efficient design.
Q/Iulti-Stream Analysis and Multicores: Multi-stream analysis

as inherent parallel processing needs since stream elements are
arriving from multiple sources at possibly variable rates, and the
streams need to be combined for answering queries on the union.
In the past when processors consisted of only one execution unit,
the most efficient approach was to exploit some form of operating
system support such @l | or sel ect to transform the prob-

Many real-world data stream analysis applications suateasork
monitoring click stream analysisand others require combining
multiple streams of data arriving from multiple sources. This is
referred to asmulti-stream analysis To deal with high stream
arrival rates, it is desirable that such systems be capable of sup-
porting very high processing throughput. The advent of multi-

Data stream analysis forms an important class of applications
where data is streaming in, and processing has to be done in rea
time. In traditional designs [23], data was considered to be arriv-
ing from a single source, and a plethora of sequential designs for
the single-streanproblem have been proposed [19, 20, 23]. But a
number of common data stream applications require streams from
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and notice is given that copying is by permission of the VerygeaData the advent of multicore processors [16, 25], each processor now
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paper we investigate the challenges of such a parallel design.
Parallelizing Frequency Counting. Efficient parallel designs are
the only means of improving performance in a multicore architec-

cooperation” paradigm and describes the implementation details of
the parallel system while providing arguments for correctness. Sec-
tion 5 experimentally evaluates the proposed “cooperation” based

ture. But, due to data dependencies arising from updates to a com-design and compares it with traditional “contention” based design.

mon structure, the problem is not “embarrassingly parallel”. Thus,
adding more threads witiotlead to linear speedup. As it turns out,
similar to many parallel algorithms and structures, parallelizing fre-
guency counting is non-trivial, and actually it is very hard to eke
out parallelism. Our experiments with a parallel frequency count-
ing system designed using the traditional notion of “contention”
based locking reveal the high overhead of a parallel system. Fre-
quently, contending threads that share a resource negditdor

it if it is being exclusively held by some other thread. This results
in wasted CPU cycles when the (hardware) threads do not perform
useful work. To minimize the waits and the wasted CPU cycles, we
propose a “cooperation” based locking paradigm where the threads
“cooperate” (and not “contend”) when sharing resources. When-
ever a resource sought by a threéBdis not available, thefl;'s
work is “delegated” to the thredt; currently holding the resource,
andT; can move to its next joll’;’s request will eventually be pro-
cessed byl’;. As a result, even though locks and shared resources
are still presentyaits associated with the locks have been elimi-
nated. This allows efficient usage of the inherent parallelism, and
results in higher processing throughput. Additionally, the proposed
design paradigm allows replacing locks by much cheaper atomic
synchronization primitives. In a previous work [8], we demon-
strate the effectiveness of the “thread cooperation” paradigm for
intra-operator parallelism of stream operations, and in this paper,
we use this paradigm fonulti-stream analysisConcepts similar to
“thread cooperation”, such as the escrow transactional model [26],
have earlier been used in the field of databases.

In this paper, we parallelize a standard frequency counting al-
gorithm which forms the basis for frequent elements andktop-
queries. Frequent elements [5, 19, 20] andkd@; 20, 24] queries
are an important class of queries for stream analysis applications
and the research community has proposed several algorithms fo
answering such queries efficiently. A frequent elements query re-
turns all the elements whose frequency of occurrence is above a
certain threshold. For example, a query of the form “advertise-
ments that are clicked more than 0.1% of the total clicks” is a fre-
guent elements query. On the other hand, aitapiery returns the
k elements with the highest frequency. Again, a query of the form
“top-25 most clicked advertisements” is a tépguery.

Contributions:

e \We propose and formalize the notion of “thread cooperation”
for parallel analysis of multiple data streams. This concept of “threa
cooperation” removewaitsassociated with locks, and will find use
in various other “lock-based” designs.

e \We propose a parallel design of tBpace Savinglgorithm [20],
which Cormode et al. [5] have shown to have best performance
amongst a number afounter basedlgorithms. Even though our
design is based dBpace Savinghe proposed paradigm can easily
be augmented to accommodate other standard frequency countin
algorithms such akossy Counting19].

e We provide correctness proof sketches of the proposed design,
and analyze the performance of the proposed “cooperation based’
design. Our experiments show a factorof 5.5 X improvement
over traditional “contention” based locking paradigm.

Organization: Section 2 provides a survey of related work, and a
brief description of theSpace Savinf20] algorithm which we se-

lect to parallelize. Section 3 analyzes some common approaches
towards designing a parallel system, and our analysis motivates the,

need for a new design paradigm. Section 4 formalizes the “thread

!

Section 6 concludes the paper.

2. RELATED WORK

2.1 Data Stream Processing

A class of frequency counting algorithms, referred t@asnter
basedtechniques [19, 20], monitor a subset of the stream elements
and maintain an approximate frequency count of the elements. The
goal is to guarantee high accuracy while having a small memory
footprint. Different approaches use different heuristics to deter-
mine the set of elements to be monitored, and thus limit the space
overhead. For example, lmssy Counting19], the stream is di-
vided into rounds, and at the end of every round, potentially in-
frequent elements are deleted. Thigpproximate algorithm has a
space bound aP (2 log(eN)), whereN is the length of the stream
ande is the error bound. Th&pace Savinglgorithm [20], on the
other hand, uses a different heuristic to limit space, details of which
are provided in Section 2.2.

Different solutions have also been suggested for answering top-
queries [7, 24]. Mouratidis et al. [24] suggest the use of geometri-
cal properties to determine tliieskyband, and use this abstraction
to answer topk queries, whereas Das et al. [7] propose a technique
which is capable of answering ad-hoc tbgueries, i.e., the algo-
rithm does not need prior knowledge of the attribute on which the
top-k queries have to be answered.

There has also been considerable research in distributed frequent
elements [18], distributed tojp-monitoring [2], and distributed str-
eam processing systems [1, 3]. At first glance, it might seem that
the multiple streams problem can be formulated as distributed stre-
ams, and the entire body of relevant literature can be used. But
rthere is a subtle difference between distributed streams and the mul-
tiple streams problem we are considering. In distributed stream
processing, since the streams are processed on distributed nodes,
memory and processing is independent, and the onus is on reduc-
ing the communication overhead. On the other hand, in the multi-
stream case, the streams are processed on the same machine shar-
ing processing and memory, and the onus is on efficient processing
while effectively sharing the processor and memory among the dif-
ferent streams. Additionally, distributed stream processing systems
have to deal with fault-tolerance, load balancing and many related

dissues of distributed systems [1], while these issues are not relevant

in multi-stream analysis on a single powerful server.

The advent of modern multicore architectures [16, 25] have open-
ed new frontiers, and their ubiquitous presence calls for algorithms
that can efficiently exploit the parallelism inherent to these architec-
tures. Although much research has been done in the stored database
arena for exploiting parallelism [12, 13], very little research has fo-
cussed on stream operators. Gedik et al. [10] propose the use of

Lell processors for parallel windowed stream joins. The proposed

technique is targeted to the Cell architecture, and leverages specific
features of Cell processors to improve performance. The growing
demand for high throughput stream processing calls for designing
other efficient parallel algorithms for stream processing, and this is
the focus of this paper.

2.2 Space Saving Algorithm

We select to parallelize th8pace Savinglgorithm [20] which
has been demonstrated to have the best throughput amongst its class
of frequency counting algorithms [5]. An interesting property of



Algorithm 2.1 Space Savinglgorithm

1: maxCounters— 1/¢, numMonitored— 0
2: for each elemente) in the streando
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3:  /*Checkif {e) is already being monitored */ % 0] 60| 60 60
4. if (L(IJ(UP((@))) then § 40| 40 40 a0
5: IncrementCountelg)) o
6: else 20 20| 20 20
7. if (numMonitorEd< maxCounter)sthen O~ 4 81632 © asieaz © asiezz © a sieaz
8: AddElemer(e, 1); numMonitored-++ a=re «==2° «==s @==e
1%; elsgverwrite(Minimum frequency elemen) Figure 1: Profiling of the independent design using hierarchical
merge. The query rate was setto 1 query every 50,000 elements.
Table 1: Main Operations in Space Saving the design of the system. We explore two straightforward designs,
Operation Description provide a brief experimental evaluation of these techniques, and ex-
L OOKUP(e) Check whether elemetis being monitored plore some extensions to the two basic techniques. Our experimen-
IncrementCountde) | Increment the frequency ef tal setup uses an Intel quad core processor [16], and synthetically

AddElemertk, freq)
Overwritgmin, e)

Add element with frequencyfreq

2 — i generated data following Zipfian distribution [30] where the zipfian
Overwrite the minimum frequency element with

factor « is varied from 1.5 to 3.0 in steps of 0.5. The parameter
controls the distribution, smaller corresponds to a uniform distri-
the algorithm is that it is deterministic and provides tight space bution while higheta corresponds to a more skewed distribution.
bounds corresponding to the user specified error beuvtdch de- More details of the experimental setup appear in Section 5. Due to
termines the number of elements and counters that need to be monspace limitations, we provide selected results in this section, and
itored. Space Savingnonitors onlyO(%) counters for providing additional results can be found in [9].

e-approximate answers. Algorithm 2.1 gives an overvie\@pce
Saving The main operations performed by the algorithm have been 3.1 |ndependent Structures
This straightforward design corresponds to #iered nothing

listed in Table 1. The algorithm monitors a subset of the stream el-

ements which we refer to as tiMonitored Set. If the element paradigm, where threads do not share any data or state informa-
being processed is already being monitored, then its count is in- tion, and each thread has its own independent local structure. The
crementedlcrementCountgr Otherwise, if the number of moni-  idea is to simulate sequential execution, and run multiple copies
tored elements is less than the maximum bouni(¢)), then the of the same algorithm executing on different streams. Each stream
element is added to the monitored sétidElemen)t else the cur- has a local structure, and therefore there is no need for synchro-
rent elemenOverwritesthe element with minimum frequency and  nization. If there are: different streams, then there asalifferent
increments its count by one. Overwriting the minimum frequency local structures, and these structures need to be merged periodi-
element is a heuristic used by the algorithm to limit space. The cally into a global structure so that queries can be answered from

intuition being that the minimum frequency element is least likely the global structure. Even though each thread processes only a frac-

to be of interest to a frequent elements or toguery. Thus, the
space bound of the algorithmisin(O(%, |A|)), where|A| is the
size of the alphabet of the stream.

For Overwriting, this algorithm needs to track the minimum fre-
guency element. Th8tream Summargtructure [20] is used for
this purpose. This structure consists ad@ubly-linked listof fre-
guency buckets which are sorted by frequency. Each bucket con-
tains a list of elements which have the same frequency as that of
the bucket. A nice property of this structure is that it maintains the
elements sorted by frequency @(1) time per element. This al-
lows answering both frequent elements and tagpieries using the
same structure. For every stream element, the algorithm looks it up
in the Search StructuréL OOKUP), and then updates the element
in the Stream Summarstructure. For lookup, the algorithm needs
to have an efficiengearch structurehat can be integrated with the
Stream Summarstructure, and a hash table is most suited for this
purpose. ThéMonitored Set is thus represented by a combination
of Search StructurandStream Summarylherefore LOOKUP has
to be supported by the hash table and the rest of the operation in
Table 1 must be supported Bgream Summary

3. INTUITIVE PARALLEL DESIGNS

In this section, we start by examining several possible intuitive
designs for parallelizing frequency counting foulti-stream anal-

tion of the entire stream, since the minimum element in the local
structure is not guaranteed to be the global minimum element, if
the local structure is not large enough, it might lead to higher error.
Lemma 3.1 (proof in [9]) provides a lower bound for the size of the

local structures in order that the global error bound is preserved.

LEMMA 3.1. For e-approximate answers, the size of every lo-
cal structure must be at leaé(1/¢).

COROLLARY 3.2. Using independent structures farstreams,
the total space complexity ferapproximate answers 9(n/¢).

Therefore, it follows from Corollary 3.2 that the independent de-
sign has high space overhead. In addition, the local structures need
to be merged periodically to obtain the global structure from where
the queries can be answered. SinceStream Summarstructure
can be used to efficiently answer both frequent elements as well
as topk queries, in order for the merged global structure to re-
tain those properties while remainimgapproximate, all elements
of every local structure need to be merged. Different heuristics (dis-
cussed in our technical report [9]) can be used to reduce the merge
overhead, but then either the error increases, or the properties of
Stream Summargre not preserved. Furthermore, the merge over-
head is dependent on the query frequency — the greater the query
frequency, the higher the number of merges and higher is the over-

ysis In these designs, each stream is assigned a thread which prohead. The merge overhead also increases with any increase in the

cesses the elements. Recall that 8pace Savinglgorithm up-
dates a structureMonitored Set) while processing the elements.

number of parallel streams and threads, and for smaller values of
the error boundct. Thus, it is intuitive that even though the fre-

So the manner in which the threads share the structure determinegjuency counting part of the independent design would scale, the
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Figure 2: Profiling of the shared design using “contention”
based locking.

shared resources waste cycles of idle CPU cores, which could have
otherwise done useful work.

3.3 Discussion

Extensions of the straightforward techniques:There are several
other simple schemes that extend the techniques proposed above.
One possible approach can be to maintain a combination of lo-
cal and global counters (i.e.,Hybrid Structure) to limit the con-
tention (by maintaining local counters for frequent elements and a
global structure for infrequent elements) as well as space overhead
(no need to replicate relatively infrequent elements). Analysis re-
veals that this approach is also not very efficient. For a relatively

space overhead and the high merge overhead makes this design indniform input, most of the items will hit the global structure (since

efficient with increasing number of streams and query frequency.
Our experimental evaluation confirms this, and Figure 1 provides a
profile of the time spent by thadependendesign with 1 query per
50,000 elements processed. Alongxis is the number of streams
(and hence threads) and alog@xis is the time spent for an oper-
ation as percentage of total time. It is evident from Figure 1 that

most items are infrequent), thereby degenerating intostteed
design For a relatively skewed input, very few elements will hit
the global structure (since most elements are infrequent and hence
stored locally to reduce contention), thus reducing toitidepen-

dent designAnother extension is hash based schemehere ele-
ments are hashed to threads, i.e., same elements go to same threads.

as the number of threads increase, the merge overhead makes thi§ven though this design will need less synchronization, load bal-

design inefficient. Refer to our technical report [9] for a detailed
evaluation of thandependentlesign and details about the merge
algorithm used.

3.2 Shared Structures
The limitations of the independent design are high space over-

head and merge overhead. To reduce the overhead, the threads can

share theMonitored Set, and this forms the basis for tf&hared
designwhich we discuss in this subsection. Since multiple threads
are accessing the same structure, the threads must synchronize, a
this synchronization needs to be done at two levels:

e Element Level Synchronization Multiple threads operating

on the same element must be serialized so that there is only one

thread operating on the element in tBgeam SummaryThis is
achieved by acquiring a lock in tleearch structuren the element
being processedElement level synchronization therefore serializes
all threads processing the same element in the stream

e Bucket Level Synchronization Since an increment or over-

ancing among threads will be an issue when the input distribution
is skewed, as some threads are overloaded, while others are lightly
loaded.
Characteristics of a Good Designideally, we would like a design
with the following properties:
e Small memory footprint and no merge overhesawhilar to the
shared design.
e Low contention overheasimilar to the independent design.
In the next section, we show how “contention” in locking can be

reduced by “thread cooperation” so that shared structures can also

e used efficiently.

4. THREAD COOPERATION PARADIGM

4.1 Formalization

As observed in Section 3.3, instead of threads contending for
shared resources, they can ratbeoperatethereby boosting each
other and in turn improving the overall system performance. In this

write operation needs to move an element from one frequency bucke®aradigm, even though locks are not eliminated completely, “waits”

to another bucket in th&tream Summarstructure, a thread per-

associated with locks have been eliminated. The delegated request

forming this operation needs to obtain locks on the source and theiS “queued”, and the type of queueing depends on the semantics of
destination buckets. Since there can be several elements within &he request being delegated. '
frequency bucket, a lock on a bucket prevents other threads from L€t us consider a system comprised of threads (hardware or soft-

operating on any element belonging to that buckBticket-level

ware} and the task to be completed is a setefueststhat are

synchronization therefore serializes accesses to a frequency bucket@ssociativeandcommutative The system is said tmake progress
The queries (which are only readers) also need to obtain locks soif the input set ofrequestss being consumed. The following prin-

that the writers are blocked while a reader is processing a bucket.
In this design, since a single global structure is used, the space

complexity remains?(%) and there is no merge overhead. Thus,

the shareddesign saves on space and merge cost. But since mul-

tiple locks need to be acquired for every element being processed
and due to multiple levels of synchronization, using the traditional

“contention” based locking paradigm results in high contention over-

head.

Figure 2 provides a profile of the time spent by the shared de-
sign. Alongz-axis is the number of streams (and hence threads)
and alongy-axis is the time spent for an operation as percentage
of total time. Figure 2 reveals that a majority of the time is spent
contending either for synchronization at tement-levebr at the
bucket-level Thus, even though thehareddesign has low space

ciples formally express thiiread cooperatiomodel:

PRINCIPLE 4.1. Request Delegationlf thread T; is trying to
acquire a shared resourde and it succeeds in acquiring, it will
complete its request usifi@®. If it fails to acquireR, it will “dele-

'gate” its request to the thread; that currently has exclusive access

to R, and “proceeds” to its next request. All other threads trying to
acquireR will “delegate” their requests tdl’;. OnceT} finishes its
own request, and before it relinquishes control oReit will check
for any pending requests dk and will relinquishR only when all
pending delegated requests have been processed.

PrRINCIPLE 4.2. Minimal Existence Once a thread has ac-
quired a shared resource, it will abstain from acquiring other shared
resources.

and merge overhead, the overhead due to contention and wait forip hardware threactorresponds to an execution unit with its own

shared resources makes this design inefficient. Multicore architec-

set of registers and local resources and is different fraofavare

tures have a large number of CPU cores, and threads waiting forthread



Boundary satisfying an
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Table 2: Basic atomic primitives.

fesgrare [ Operation | Description |
Stream CAS(addr, Atomically compare thezxpected value to the stored
expected, new) | value ataddr, and swap withhew if successful
Stream Summary Search I AF(addr) Atomically increment the locationddr and read the|
Structure incremented value
SWP(addr, Atomically swap the present value atldr with the
new) passechew value and return the old value

Figure 3: Overview of the parallel design ofSpace Savingising
thread cooperation

hold, this framework is independent of the choice of the different

Note thatequestsaredelegatedn two different scenariossirst, structures involved and the actue_ll algorithm used to process the
when a shared resource is moilable andsecondwhen a thread stream elements. The “cooperation” based model does not guar-
has already acquired a shared resource, and needs another shar@ntee any ordering of the requests, but this does not impact the
resource. In either case, the threads relycoaperationto make correctness of thBpace Savinglgorithm.
progress To guarantee correctness, an implementation must satisfy

the following invariant: LEMMA 4.1. Order Invariance: The final outcome of th&pace

Savingalgorithm is invariant to the order in which the stream ele-

INVARIANT 4.1. Fulfillment Guarantee Once a thread has ~ Ments are processed.

delegated request, the request is neitiestnor left unfulfilled. This follows directly from the definition of the frequency count-

ing problem. Given a stream of elements, th&pace Savinglgo-

rithm reports all the elements whose frequency is aledvewhere

e is the user specified error bound [20]. Therefore, as long as an
lement appears more thaiV times in the input streanfpace
avingguarantees that the element will be reported, irrespective of

where the element appeared in the stream.

There are multiple benefits of tleeoperationbased approach:

e Removal of Waits: Whenever there is contention for a shared
resource, the threads follow Principle 4.1 and dowait. This pre-
vents wastage of useful computational resources and allows thread
to make progress.

e Arbitration Overhead Removal: Since the threads do not
contend for shared resources, this paradigm reduces the overhead
of arbitration of locks among the contending threads.

The “thread cooperation” model logically separates the requests
(tasks to be performed by a thread) from the execution threads.

This allows the system to be viewed as a set of threads process- Corollary 4.2 follows directly from Lemma 4.1. In general, most
ing a set of requests, and it does not matter which thread processestream processing algorithms are invariant to the order of process-

which request. This is analogous to how the operating system (OS)jng, and thethread cooperatioparadigm can be applied to them.
schedules jobs on the hardware execution threBedegationen-

sures that only the request is “blocked” and the associated thread4.3  Implementation Details

can detach itself from the request and move forward to process the As depicted in Figure 3, the System can be viewed as two dif-
next request. This is analogous to the OS blocking I/O requests andferent components which interact with each other through an in-
not the actual CPU that was processing the job. Note that threadsterface that ensures that Invariant 4.2 holds. Recall that when pro-
sharing resources do need synchronization, buttaits associ- cessing the elements, a thread first accesseSehech Structure
ated with synchronization primitives have been eliminated. In ad- ang this structure directs the thread to the appropriate location in
dition, as described later, cooperation based synchronization allowsihe Stream SummaryIn the implementation, an element in the
replacing locks with atomic operations which are much cheaper hash table gearch structurgpoints to the corresponding element
synchronization primitives. in the Stream Summargtructure, and this element in ti&tream
Summaryin turn points to the bucket to which it belongs. Our
implementation uses a number of atomic instructions. Refer to Ta-
ble 2 for a brief description of the atomic operations used in the
implementation. Only th€AS operation need to supported by the
underlying hardware, and the rest of the operations can be imple-
mented using th€AS primitive. Note that the atomic operations
paradigm. The boundary conceptually separatesStream Sum-  supported by the hardware are much cheaper than acquiring locks.
mary and theSearch Structureand these structures interact with We now discuss the two different components in Figure 3 in detail,
each other through a well-defined interface, and need not be awareand provide sketches of correctness proof of the methods. Our ap-
of the implementation details. The parallel stream processing sys-proach for proving correctness is as folloWie design isorrect

tem should guarantee that the following invariant holds: if all the invariants are satisfied. Therefore, for each individual op-
erations, if all the invariants are satisfied as a precondition for the
operation, the operation is said to be correct if it ensures that all
the invariants are satisfied as a postcondition.

COROLLARY 4.2. Correctness of the Cooperation based par-
allel design: Reordering of requests due tequest delegatiodoes
not affect the correctness &pace Saving

4.2 Parallelizing Space Saving

Once we have formalized ttteread cooperatiorparadigm, we
now show how we can use this paradigm for parallelizBgace
Saving Figure 3 provides a high level overview of the system de-
sign for parallelizingSpace Savingsing thethread cooperation

INVARIANT 4.2. Boundary Invariant: If ThreadT; processing
element(e) has crossed the boundary into tgéream Summary
structure, then it is thenly thread active in théStream Summary

thati ing the el }
atis processing the elemefa 4.3.1 Search Structure or Hash table

The Search Structurshould guarantee that Invariant 4.2 holds
and this provides thelement level synchronizatioras discussed

The hash table lookup is equivalent to th®@OKUP operation in
Table 1. Even though there have been proposals for different lock-

in Section 3.2. As long as the desired properties and the invariantsfree hash table implementations (such as Shalev et al. [28]), the



hash table used by the frequency counting algorithms has certain  win frequency ~ Maxfrequency  inUse
special requirements and characteristics. We design a simple con- H— g |
current hash table where separate chaining is used to resolve hash | queue |

collisions, and bucket-level locks are used to synchronize insertions X i elements
to the same chain. We modify the conventional design of a chained ? * Request queue

hash table [17] to suit the requirements specific to the application. —— B (lock free) parked
Lookup and insertion: The hash table is designed with minimal L

locking: the “readers” in the hash table do not need locks. Locks List of Elements with same frequency

are needed only to serialize insertions to the same hash bucket. In

this design, threads are blocked only when they are trying to insert Figyre 4: Concurrent Stream Summargtructure based on the
into the same hash bucket. If a moderately robust hash function «tnread cooperation” paradigm.

(such asmultiplicative hashind17]) is used, then the likelihood

of two “writers” mapping to the same hash bucket is very rare and
hence the associated wait is also small. In order for the “readers” to
traverse the list “lock-free”, the following structural invariant must
be satisfied at all times:

before relinquishing access, it has to ensure that there are no dele-
gated requests so that Invariant 4.1 is satisfied. To relinquish, the
thread first performs @AS of 1 (expected value) with (new value)

on thecount field corresponding to the entry in the hast table. If

this succeeds, there are no delegated requests, and the element has
been relinquished. Any other thread performing a subsedusht

for acquiring the element will reacbunt as 1, and hence will be

able to acquire the element (Invariant 4.6). Failure implies pending
delegated requests and the thread will d&/® with 1 which will

return the number of delegated requests, and@ett to 1. This

INVARIANT 4.3. Atalltimes during execution, a pointer should
either be pointing to a valid node or be setrtall.

Deletion: Deletion of a hash table entry is done lazily — the entry
to be deleted is atomically marked as deleted, and this implies log-
ical removal. Once an entry is removed logically, it can either be

physically removed by some other thread or be reused. In this de-€NSUres that the owning thread still has exclusive access to the el-
sign, the location of the entry is reused for future insertions into the €Ment and prevents other threads from crossing the boundary. The
chain, and the following invariant guarantees correctness. In the thréad then subtracts 1 from this value (which corresponds to the

implementation, deletions are marked by settingutik:e field of reque;t for this thread in the earl!er round) and crosses the bound-

the (key, value) pair in the hash table toull. ary with the _subtracted value as mcre_ment to the frequency o_f t_he
element. This ensures that both Invariants 4.1 and 4.2 are satisfied.

INVARIANT 4.4. Once a location has been marked as deleted, Note that as a result of delegated requests accumulating inside the

the key in the location has been removed from the hash table andhash table, increments to counts of elements are processed in bulk,

any subsequent lookup for that key should refiaiture. and we refer to this aulk increment. Due to space limitations,
the pseudocode, details of the operations, and correctness proofs of
INVARIANT 4.5. Unique key: At no point should two valid lo-  the operations of hash table have been moved to [9].

cations in the hash table contain the same key. 4.3.2 Concurrent Stream Summary
The invariants listed above correspond to basic properties of the  In this section, we discuss the implementation of@uacurrent
hash table and any concurrent design must satisfy them. In addi-Stream Summargtructure based on the proposiddead cooper-
tion, there are certain application specific requirements. To guar- ation paradigm. The concurrent analogueSifeam Summaris
anteeelement level synchronizationthe most common approach ~ very similar to the originaBtream Summarstructure in [20]. This
would be to have the hash table ensure this level of synchronization,modified structure is shown in Figure 4. The structure consists of a
because every thread processing a stream element first accesses ti§ingly linked list offrequency bucket€ach bucket maintains a list
hash table. Therefore, if thredd hasexclusive acces® element of elements which have the same frequency as that represented by
e, then any thread’j(j # i) processing: must wait. Since the the bucket. The buckets are in ascending order of frequency (from
elements (which form keys in the hash table) are a point of con- left to right), and the elements traverse through this structure of
tention in the hash table, Principle 4.1 can be used to delegate thebuckets as their frequency changes while the stream is being pro-
request and alloW; to proceed with other requests while guar- cessed. Each bucket hagjaeueof requests for holding requests
antees to process tlielegatedequests as per Invariant 4.1. Since delegated to the bucket, and we use a standard “lock-free” queue
the requests in a frequency counting algorithm are increments toimplementation [27]. As shown in Figure 4, each bucket in the
the count, “queueing” a delegation in the hash table is simple, and linked list consist of different fields. Theezt field points to the
can be achieved through a field that stores a pendingt corre- next node in the list. ThewUsefield is used to guarantdmicket
sponding to the element. If the pendiag:nt is 0, this implies that level synchronizationand if set to 1, indicates that the bucket is al-
no thread owns the element and there are no pending requests. Théeady owned by a thread. When a thread wants to access a bucket,
first thread that increments theunt acquiresexclusive accessn it performs aCAS of 0 (expected value) with 1 (new value) on the
the element, and all other threads delegate the request by atomiinUsefield. Success implies that the bucket was available and now

cally incrementing the count. The following invariant guarantees inUseis set to 1, and the thread performing the operation gets ex-

element level synchronizatiorand hence satisfies Invariant 4.2: clusive access to it. On failure, the thread appends the request to
the bucket’s queue, and moves on to the next stream element. The
INVARIANT 4.6. A thread obtains exclusive access téay in marked field is used to represent logical presence, and if it is set
the hash table if th&€ AF operation oncount corresponding to the to true, then the node is considered to have blegically removed
key returnsl. from the list and marked fagarbage collection

Optimistic Traversal: Multiple “reader” threads might traverse
Relinquishing an element Once a thread has processed a stream the list of frequency buckets, and the list has been designed to allow
element, it has to relinquiséxclusive acces® the element. But optimistic traversal In other words, the readers traverse the list



without acquiring locks, and abort the traversal if something goes Algorithm 4.1 Processing th&ddElemenRequest
wrong. To ensure correctness and safety, the following invariant 1: Procedure AddElemer{element, bucket)

should always be satisfied: 2: [* minFreqis the pointer to the minimum frequency bucket */
3: if (element.frequency: bucket.frequencythen
INVARIANT 4.7. At no point of execution should a “reader” 4. bucketAddToLisfelement)
read invalid locations (garbage), i.e., all pointers in the list of fre- g; elsi? El‘b(s(l:tla(r;e_r}%:]e':?ggrltﬁsénbucket.frequencyt]ﬂen
guency bucket should point to valid buckets or be satitb 7. newBucket= getNewBuckéelement frequency)
. 8: newBucketAddToListelement
Maintenance of sort order: The sort order of the buckets should o newBucket.next— butlcket )
be maintained at all times according to the following invariant: 10: minFreq:= newBucket
11:  else
INVARIANT 4.8. If m andn are two buckets such that.next = 12: DelegateRequestToBuckainFreg
n, andm.marked = false A n.marked = false, then: 13: else

14:  FindDestBuckébucket, element)
15: end ProcedureAddElement

Since the readers traverse “lock-free”, if empty buckets are reused
for different frequencies, it could lead to violation of the sort order.
The following invariant prevents this:

m. frequency < n.frequency.

(¢) an element with the same frequency as that of the bugk¢gn
element with frequency greater than that of the bucttetegation
INVARIANT 4.9. Once a bucket is assigned a frequency, its fre- of the add request for a ppt existent buck_et immediately following
guency can never be changed. the current bucket), andii) an element with frequen_cy less than
the present bucket (add request of new element with frequéncy
Lazy Removal: If a bucket does not contain any elements and there being added to thilonitored set anddelegatedo a minimum fre-
are no pending requests, iisarked field is atomically set tarue quency bucket whose frequency is greater than 1). Algorithm 4.1
and islogically removedfrom the structure. Physical removal is  Provides a high level overview of how the add request is processed,
done lazily. Although marked buckets are still present in the struc- and this operation subsumes thedElemenbperation in Table 1.
ture, any operation on these buckets is not-defined, so any “reader’!f the addition is to the same bucket, it can be processed right away,
accessing a marked bucket should abort the read and restart the provhile addition to a higher frequency bucket is handled byRinel-
cess. To ensure correctness, the following invariant should hold: ~ DestBucket For inserting elements with frequency less than the
current minimum frequency, the requestdislegatecto the mini-

INVARIANT 4.10. A bucket withmarked set totrue cannot be mum frequency bucket.
reused. It can only eventually be removed from the structure. Any  To argue the correctness of Algorithm 4.1, we must show that it
operation on a marked bucket is undefined and should fail. does not violate any of the structural invariants. In line 7, when the

new node is created, the creator is the only thread with access to the
Once a bucket is logically removed, physical removal from the bucket and hence is free to perform any operation on the kticket
structure is done by a thread which acquires the bucketimmediately The new bucket is first made to point to the old minimum frequency
preceding thenarkedbucket. If a sequence of buckets are marked, (line 9) and then it is madpublic® by the assignment in line 10.
the entire sequence can be removed by the thread owning the buckeThus Invariant 4.7 is satisfied at all times. Again, the conditional at
immediately preceding the sequence. This comprises the garbagéine 6 ensures that Invariant 4.8 is maintained. Thereforiini-
collection process. During physical removal, only the next pointer DestBucketloes not violate any invariants, then all other invariants
of the bucket immediately preceding the sequence of marked buck-are satisfied because this function does not affect those properties.
ets is changed. The thread owning the preceding bucket can thereTherefore, this operation is correct.
fore garbage collect the buckets without acquiring additional locks. Implementation of FindDestBucket and its Correctness
Finding the next bucket when incrementing the count of an el-
INVARIANT 4.11. A marked bucket or a sequence of marked ement is an important operation for botldElementand Incre-
buckets can only be physically removed from the structure by & mentCounterThis function finds the appropriate bucket for insert-
thread that is the owner of the bucket immediately preceding the jng an element into the structure. If the current next node is not
sequence of buckets. If there are no preceding buckets, then thane destination for the element, then either a new bucket needs to
owner of the bucket can itself physically remove the bucket. be inserted after the present bucket, or the list of buckets needs
to be traversed. List traversal is necessary to hahdlk incre-

As rza?ﬁrs travEtrs?_l:obck freg, ontce a st_equ;ehnce %f blliCIt(Etf‘”']S mentsresulting from delegations in the hash table (Section 4.3.1).
removed, thereé might Stll be réaders traversing tnese buckets. 1N&, qiner case, the design of the structure allows optimistic traver-

structure of the sequence is therefore preserved so that the readergal If at any point during traversal through the list, the “reader”
can eventually rejoin the main structure. A mechanism similar to finds that it is accessing a node that has been marI’<ed for garbage
refergnce °°”r?“”9 in Java, or hazard pomters [22] can be usgd tocollection, then it aborts the present run, and starts the traversal
reqlalm a physically remoyed bu_cket Wlthout_resultlng in dangllng again. From an efficiency perspective, this failure and abort will be
pointers in threads that might still have a pointer to the reclaimed rare. as this case would arise when d;ealing Witk increments
memory. We now explain the individual operationsSafeam Sum- and this is common only for the high frequency elements, which

marywhich implements the operations in Table 1. are generally towards the extreme right of @encurrent Stream

ImEIerXSStEaltlon oftAddEI(tement andtlts t():orlr(e(t:tniﬁs h Summary structure. For the less frequent elements in the middle
n AddElementequest arrives at a bucket eitner Wnen a New ¢ e strycture, the next node will be the destination in most cases.
element is being added to tMonitored set (corresponding té\d-

dElemenin Table 1), or an existing element's count is being incre-  2Sych a node is callegrivateand only the creator can access it.

mented (during increment and overwrite). Owing to de¢egation 3Making public implies that other threads can access the bucket
of the requests, thadd request to a bucket can be of three types: and is now treated as a shared resource.




Algorithm 4.2 Processing thincrementCounteRequest 4.3.3 Auto Tuning and Throttling

1: ProcedurelncrementCountéelement, increment) The crux of the proposed “thread cooperation” model is the use
2: bucketRemoveFromLigelement) of requestelegationto remove “waits”. When a request is dele-
ZZ il_ement.frequency = Increment gated inside the hash tablBdarch Structuje the counts accumu-

. FindDestBuckébucket, element) .
5: if (bucketisEmpty) && bucketnoPendingRequeg)s then late, and all delegated requests are processed in bulk. But when
6:  gcStatus= bucketatomicMarkGarbageCollecté}l a request is delegated in thencurrent stream summasjructure,
7. if (gcStatus true && bucket = minFreg then each delegated request adds to the queue of requests, and the thread
8: newMinFreq;= findNewMinFreqBucketinFreq currently owning the bucket has to process all the requests to sat-
o: minFreq:= newMinFreq isfy Invariant 4.1. Thus, if many requests are delegated to the same
10: end ProcedurelncrementCounter bucket, this will lead to an excessive increase in the length of the re-

guest queue, and in turn may lead to performance degradation. This
happens predominantly for uniform streams where most of the ele-

The pseudocode and the correctness proof of this operation can bénents are infrequent, and therefore a large number of elements are
found in [9]. deleted from thévionitored Set. Since all deletions happen at the

Implementation of IncrementCounter and its Correctness minimum frequency bucket, this bucket becomes a “hot-spot”. In
ThelncrementCounterequest (Table 1) increments the count of ~Such a scenario, parallelism is limited by the structure, and addi-
an element while maintaining the sort order of the elements, and is fional threads are simply adding to the overhead of the system.
one of the most frequent operations for the application under con- 10 @void performance degradation in such a scenario, we propose
sideration. Algorithm 4.2 provides an overview of how the opera- & Mechanism oduto tuning and throttlingf threads. Whenever a
tion is implemented. After an element has been incremented (i.e., thread delegates a request in 8igam summaryit monitors the
removed from the original bucket), if the bucket becomes empty gueue size of the bucket to which the request is delegated. If the
and has no pending requests, then the bucket should be atomicallylueue size is above a threshgidthen this bucket is a potential
marked for garbage collection. “hot-spot” and continuous additions to its request queue might lead
As above, correctness of the operation is proved by showing it t0 performance degradation. Therefore, this thread will “throttle”
does not violate any of the structural invariants. Each of the con- itself and sleep for a small time slice. This can be treated as an-
stituent operations satisfy the invariants (as argued in the previousother form of “thread cooperation” where a thread abstains from
sections). If after the increment, the bucket becomes empty, andoVerloading an already overloaded bucket. This feedback loop dra-
there are no pending requests, then the thread will atomically mark Matically improves the performance when dealing with uniform
for garbage collection (line 6) thus satisfying Invariant 4.9. If the Streams, but also introduces some overhead due to the necessity of
minimum frequency bucket is marked for garbage collection, since Monitoring the queue sizes. In Section 5 we evaluate the benefits
there are no other buckets preceding this bucket the current thread®S Well as overhead resulting framto tuning and throttling
removes the bucket (line 9) thus satisfying Invariant 4.11. firite .
NewMinFreqBuckeis similar to theFindDestBuckebperation and 4.3.4  Space Analysis
returns the first valid bucket immediately after the curmaitiFreq The parallelimplementation &pace Savings described earlier
bucket, and in the process removes any marked nodes if presentUses a single sharembncurrent stream summaryBut additional
Since this find minimum operation is similar to thimdDestBucket ~ space is required to “queue” requests that have been delegated. If

operation, its correctness is similar to the correctness prdanadt an element has been queued, at any instant, there is only one request
DestBucket Other invariants are satisfied because this operation corresponding to that element. This is equivalent to the element
does not alter these properties. being in the input stream, which would anyway have to be allocated
Implementation of Overwrite and its Correctness space to be buffered. Thus instead of the element being present
Overwriteis specific to theSpace Savinglgorithm which uses  in the input buffer, it is encapsulated as a request in the queue.
this operation to limit the number of counters monitorederwrite Additional space is required for locks and synchronization, which
implementsSpace Savinglgorithm’s heuristic of replacing a min-  is again of the same order as the number of counters. Thus, the

imum frequency element with a new un-monitored incoming ele- Space complexity for the parallel algorithm is of the same order as
ment. It selects a candidate element from the minimum frequency that of the sequential algorithm, i.€,(1).
bucket, overwrites it with the current element being processed, and . .
then increments the count of the new element. To select a c¢':1ndidate4-3'5 Answering Queries

for overwriting, the thread will follow the principle dflinimal Ex- The Concurrent Stream Summasgructure maintains the ele-
istence(Principle 4.2) and will not block on any shared resource. It ments in a sorted order, so that queries can efficiently traverse this
will start from the first element in the minimum frequency bucket, structure to find the appropriate elements. Queries can be pro-
and to overwrite the element, the corresponding entry irSesgach cessed with high efficiency because the elements of interest will
Structureshould be deleted. This deletion is non-blocking, and have high frequencies and reside in the rightmost end of the struc-
failure implies that some other thread is trying to increment that el- ture, and the low frequency elements will be cluttered in the left-
ement, and the increment request should be in the request queue ofmost end (assuming frequencies increase from left to right). There-
the minimum frequency bucket. The thread then moves on to the fore, as the queries start from the minimum frequency, they can
next element in the bucket, and the process is repeated. If all ele-very quickly prune out the low frequency elements and reach the
ments are busy and none of them could be overwritten, this implies region of interest. Again, queries can be answered without acquir-
that all these elements have pending increment requests. The overing any locks. Details of how different types of frequent elements
write request is thusleferredtill all the increment requests have  and topk queries are answered can be found in [9].

been processed. Since a single thread will process all these re- . .

quests, the processing can be highly optimized as the thread now#-4 ~ Generalization of the Framework

has more knowledge about the requests. The pseudocode for the In this paper, we explain the application of the proposed frame-
operation and its correctness proof can be found in [9]. work for parallelizing theSpace Savinglgorithm. One of the rea-
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sons for selectingpace Savingvas that a recent work [5] com-
pared a number of frequency counting algorithms and demonstrated
that Space Savingutperforms similar algorithms in terms of pro-
cessing speed and accuracy (expressed as precision and reaall). A
other reason is thdpace Savindpas a constant space bound of
O(%) and this simplifies the algorithm implementation.

The thread cooperatiorbased framework is not limited to the
Space Savinglgorithm and can be easily extended to other fre- D umplo 20 (Thready
qguency counting algorithms. It is evident from the description of
the IncrementCounteoperation that the framework can handle ar- Figure 5: Execution time for saturated workload.
bitrary increments in frequency of the elements. Thus, any fre-
guency counting algorithm in which the frequency of the counters 6

increases monotonicallfalgorithms such akossy Counting19]), .

can be adapted to the framework. For adapting other algorithms, o 4 Streams

most of the operations (except ti@verwrite operation) will re- g4 =16 Seonms
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main unchanged. For example, thessy Counting19] algorithm 32 Streams
divides the stream into multiple rounds and at the end of the round
removes elements which are infrequent. Therefore, for adaptation 25
into the framework, only th®verwriterequest irSpace Savinbas

to be replaced by a request that removes the minimum frequency
bucket at round boundaries.

2 2.5
Zipfian a

Figure 6: Speedup of the “cooperation” based design compared
to the “contention” based design for saturated workload.

5. EXPERIMENTAL EVALUATION lesser chance for exploiting parallelism. In our experiments, we set

In this section, we experimentally evaluate the proposed frame- ¢ = 0.0001. In this section, for a fair evaluation, we compare the
work. The experiments have been performed on an Intel Core 2 cooperativedesign to theshared design Theindependentiesign
Quad Q6600 processor [16]. This processor has 4 cores, each co is hot included in the comparison since its performance is heavily
responding to a hardware thread and operating at a clock speed oflependent on the query rate andvhereas the remaining two are
2.4GHz, and the cores sharé.a Cache of 4MB. The machine has  more stable.

3.2 GB available main memory and runs Fedora Core Linux with

kernel 2.6.26.6-49.fc8. All algorithms and the framework have 2.1 ~Saturated Workload

been implemented in C++ and compiled using GNU C++ compiler  In this experiment, we evaluate the maximum throughput of the
with Level 2 optimization. The data set is synthetically generated proposed design by usingsaturated workloadvherein a thread

and follows zipfian distribution which is very close to realistic data always has some element to process whenever it has finished pro-
distribution [30]. The zipfian factor determines whether the dis-  cessing the earlier element, or in other words, a threadtigrated
tribution is uniform or skewed. The frequency of the elements in with work. Figure 5 provides a comparison of the execution times
the distribution varies ag; = % where((a) = ZL‘:“l = of the “cooperation” based design (referred t&Caspin this graph
whereNN is the length of the streamid| is the size of the alpha- @S Well as the rest of the graphs in this section) and the “contention”
bet, andf; represents the frequency of th& frequent element. based design (referred to &kared). Along thex-axis, we plot the
Smaller values ofy represent lesser skew in the distribution with number of streams (and hence the number of threads), and along

o = 0 representing uniform distribution. As the value @fin- they-axis we plot the execution time in seconds. Different lines in
creases, the skew of the data distribution also increases. The datd€ graph correspond to different values:ofAn ideal system with
set has a total 00 million elements and an alphabet &fmil- linear speed-up will have a horizontal line, and the smaller the slope

lion. GCC built-in atomic primitives were used for performing the ~ ©f the graphs, the better itis. As is evident from Figure 5, not only
atomic operations, angthread library was used for threads and doesCoop outperformShared in terms of execution timeCoop
locks. In our first set of experiments, we choose data witim demor_lstrates be_tter scglablllty since the slope of the lines corre-
the range 1.5 to 3.0. The lowervalues have not been evaluated SPonding taCoopis considerably smaller than that8hared The
because the frequent elements and kaglements are more inter- bgneflts och_)op with respect to execution time can be seen from
esting and meaningful in a skewed distribution, than in a uniform Figure 6 which plots the speedup 6bop compared toShared
distribution. In the case of a uniform data (suctras: 1.0) there In this figure, thez-axis represents the varying zipfianand the

are a lot of infrequent elements, and scSipace Savinghere will y-axis corresponds to the speedup. For a particular zipfidhe

be a lot ofOverwriterequests, thereby making the minimum fre- ~ SPeedup is computed a#; 5" /T(; %, wherei represents the
quency bucket a “hot spot”. Thus, such a distribution will not bene- number of streams (4, 8, etc.). As is evident from Figur€@op

fit from parallelization. For such a scenario, we propas® tuning outperformsSharedby a factor ranging fron2 — 5.5.X. This ex-

and throttling (Section 4.3.3), and the effectiveness of the scheme periment demonstrates the superiority of the performance of the
is demonstrated by the experiments in the latter part of this section Proposed “cooperation” based design.

for data sets withx < 1. In all our experiments, the number of

streams is varied fror up to32 in multiples of2, and each stream 5.2 Unsaturated Workload

has 1 million elements, i.e., in an experiment with 32 streams, the In many realistic applications, the workload might not be sat-
total number of elements processedamillion. The performance urated, i.e., due to variable arrival rates, when a thread is ready
of algorithms does not vary significantly for smaller values of error to process the next stream element, there is a likelihood that the
bounde, while larger values ot result in performance degrada- next element has not yet arrived. In such a case, we say that the
tion. Largere also results in smaller number of buckets, and hence read “failed” and the thread needs to wait for the arrival of the next
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Figure 8: Comparison of execution times ofharedand cooper-

Figure 7: Execution time for an unsaturated workload. ation based design withauto tuning for saturated workload.

element when the read “succeeds”. We model this behavior by al- imum sampled queue size grows to abdut 4 orders magnitude
lowing a read to “fail” with certain probability. In other words, a higher than in the case with > 1.5. This results in severe per-
failure probability of10% means that with every read, there is a formance degradation since a majority of the work is delegated to
10% chance that the read will fail. Thus the saturated workload & single thread, thereby reducing the system to a sequential system
considered in the previous subsection has a failure probability of With all the overhead of a concurrent systehoito tuning and throt-
0%. That experiment would demonstrate the overhead on the sys-tling prevents queues from building up rapidly, and allows better
tems at higher arrival rates. When a read “fails”, the thread does notdistribution of the work. Our experimental samples using 1.5
access thlonitored Set. This might have two implications) if showed maximum queue size of the order of hundreds and aver-
the structure is already overloaded, this will lead to a reduction in age queue size of the order of tens. So, in our experiments, we set
the load and can be treated as “load-shedding” and this might resultthe queue size threshojdto 500. Therefore, for skewed data, the
in reduced execution times;) if the structure is lightly loaded, it~ threads will hardly be throttled and can perform at their peak rate,
has the potentia| to accommodate more concurrency, and hence thl'e for almost uniform data, threads will be repeatedly throttled
failed read implies failed opportunity and this will lead to increased incorporating admission control and better load distribution.
execution time. Thus, for a system that is performing at its peak for  In Figure 8, we plot the execution time of the Cooperation based
a saturated workload, an unsaturated workload will result in an in- design usingauto tuningand compare it wittShared Along the
crease in total time of completion due to slower arrival rate. But for z-axis, we plot the number of streams and along grexis, we
a system which is overloaded for a saturated workload, an unsatu-plot the execution time in seconds. Different lines correspond to
rated workload might lead to lesser execution time. different values otv, andCoop AT represents “cooperation” based
Figure 7 plots the execution time of the two designs as the fail- design withauto tuning In this experiment, we use a saturated
ure probability is varied. Along the-axis we plot the number of ~ Workload. To improve clarity of the graph, we only provide the
streams and along the-axis, we plot the execution time in sec-  lines corresponding ta = 0.5 and1 (our new data sets) and =
onds. The different lines correspond to different values of zipfian 1.5 and2.5 (representatives from the previously used data sets). As
« and the different designs. The zipfiarof the input distribution is evident from the figureCoop AT performs reasonably for lower
is varied from1.5 to 3.0 and the experiment is repeated for differ-  values ofo (almost uniform) wher€oop AT outperformsShared
ent probabilities of not finding a stream element when a thread is by a factor of~ 2.X. For higher values (skewed), its performance
ready. It is evident from Figure 7 that the behavior of the designs is almost similar to that of the “cooperation” based design without
is almost similar to that with the saturated case (Figure 5) except auto tuning
that with increasing failure probabi“ty’ the graphs moop and Auto tuningintroduces the overhead of pl’OfI'Ing of queue sizes,
Sharedare getting closer. This is due to the fact that the low con- and when the threads are not throttled (in the skewed case), this is
tention overhead itCoop allows more concurrency compared to pure overhead compared @op. But our experiments reveal that
that of Shared In Shared, the contention overhead is very high this overhead is limited te- 5% (for example, fora = 2.0 and
(Figure 2), and if a thread “fails” a read and does not access the Number of streams a5, the average execution time f@oop is
structure, it contributes to reducing the contention overhead on the4.195586s and that ofCoop AT is 4.299514 resulting in an over-
structure, and hence the overall execution time does not increasehead of~ 3.29%). Thus for a very small overhead, we have an
much. These experiments further strengthen the claim that the “co-algorithm that performs well for the entire spectrumcof If the
operation” based design has low contention overhead and allowssystem designer knows that the stream to be processed has a high
higher concurrency, as a result of which decreased packetlarriv Skew, thenauto tuningcan be turned off allowing higher perfor-
rate increases execution time which is bound to happen in a systemmance, but turning oauto tuningonly marginally degrades per-
operating at its peak. Refer to our technical report [9] for detailed formance while allowing greater flexibility.
analysis, and for graphs of speedup corresponding to the execution

times reported in this subsection. 5.4 Profiling the Cooperation based design
. . In this section, we provide an in depth analysis of the proposed
5.3 Evaluation of Auto Tunmg “cooperation” based parallel design. Figure 9 plots the various pro-
In Section 4.3.3, we discussed the potential for usiotp tun- filing results of the design without usirauto tuningwhile Fig-

ing and throttlingto deal with “hot-spots” when processing uniform  ure 10 plots the corresponding results of the design wesig tun-

data distributions. In all the previous experiments, we considered ing. Figures 9(a) and 10(a) plot a breakup of the time spent by the
distributions for zipfianx > 1.5, and in this section, we evaluate  design on various important operations expressed as a percentage of
the impact ofauto tuningfor o < 1.0. Due to too many overwrites  the total time of execution. The-axis plots the number of streams,

of minimum frequency element in the case of uniform distributions, and they-axis plots the time spent on operations as a percentage of
the minimum frequency bucket becomes a “hot-spot”. Profiling ex- total time. Hashrefers to the time spent for the hash table opera-
periments revealed that withoatito-tuning for o« = 0.5, the max- tions, Stream Summanmgfers to the time spent for ti&tream Sum-
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Figure 9: Detailed profile of cooperation based design without autouning while processing a saturated workload.
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Figure 10: Detailed profile of cooperation based design with auto tuing while processing a saturated workload.

mary operationsQueuerefers to the sum of time spent in append- quests. The number of streams is plotted alongetaeis, and the
ing the delegated requests to the queues associated with buckets ipercentage of delegated requests is plotted alongves. For
Stream Summargnd removing the requests from the queue when highera (skewed streams) and increasing number of threads, more
processing them. As is evident from Figures 9(a) and 10(a), very threads are likely to be processing the same elements (since in a
little time is spent in the hash table felement level synchroniza- skewed distribution, few elements have dominant presence in the
tion and theStream Summaifpr bucket level synchronization(in stream). Therefore, more requests are delegated in the hash table
contrast to Figure 2). A considerable portion of the time is spent due toelement level synchronization The number of hash del-
on the operations related to the request queue, and a more scalablegations increase with the number of threads and the increase in
gueue implementation would thus result in further improvement in «. Note that in spite of the large number of requests delegated in
performance of the proposed design. Our present queue implementhe hash table, neither is the hash table a point of contention, nor
tation does not allocate memory wisely, and this is in part respon- is a significant portion of execution time spent synchronization in
sible for the high overhead of the queue operations. Note that thethe hash table (Figures 9(a) and 10(a)). This demonstrates the ef-
time for the queue operations is higher for smaller values of zipfian ficiency of the proposedooperationbased design in reducing the
«. This is because for more uniform distributions, different threads waits associated with synchronization. Due to space limitations,
are generally processing different elements, and hence would notadditional profiling experiments have been moved to [9].
be blocked at the hash table, therefore resulting in large number of
accesses to thetream Summarnince the summary structure has 6, CONCLUDING REMARKS
B e I AT e consice th proble o anayzing mulile cita
concurrent accesses to the request quéues result in the increase I%treams and propose a parallel algorithm for the_problem in the
. . context of multicore processors. The proposed design uses the con-
time for gueue operations. cept ofthread cooperatiorio removewaits associated with locks

The above analysis is further supported by Figures 9(b), 10(b) |

i - ./ Removal of thewaits is particularly significant in the context of
and Figures 9(c), 10(c) which plot the average sampled queue S2€multicore processors where a waiting thread results in wasted CPU

. ¥:‘ycles. Additionally, the proposed model allows synchronization
Figures 9(b) and 10(b) plot the number of streams (or threads) using only atomic operations which are much cheaper than locks

along thez-axis, and the sampled queue size in log scale along the required for synchronizing in the “contention” based design. The

y-axis. The bars in the graph plot the average of the sampled queue . )
sizes, while the thin lines overlayed on the bars plot the correspond-pmposed design conceptually segregates the requests from the ex

ing maximum sampled queue size. As discussed earlier, for smallerecUtion threads, and whenever a shared resource rel quired by the
va%llues of zipfian tphe mqinimum fre. uency bucket becorﬁesa“hot request is not available, only the request is blockeeldgated)

Y pharn, quency . _and the thread can move on to process the next request. This is
spot”, and this is reflected by the considerably larger queue sizes Vi in th f lelism i It
for o = 1.5 in Figure 9(b). The queue sizes far= 0.5 and1.0 extremely important in the context of parallelism in multicore pro-
R : : e cessors, and the benefits of the proposed design is evident from
in Figure 10(b) demonstrate the successub tuningin limiting h - | | hich sh hat th d -
the queue sizes even for uniform distributions, and explains the im- t. € experlmenta} results which show t ’c.‘t.t € proposed ‘coopera-

Lo . tion” based design outperforms the traditional “contention” based

proved performance dfoop AT as shown in Figure 8. Finally,

Figures 9(c) and 10(c) show the successful removalaifs asso- design by a factor of — 5.5X over the entire spectrum of uni-

ciated withelement level synchronizatiorby plotting the requests form to skewed data sets. In spiterotilt-streamanalysis systems
) y yp 9 d being extremely hard to parallelize, our parallel design effectively
delegated in the hash table as a percentage of the total number of re- . L : L oS
uses the inherent parallelism in multicores with significantly lower
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