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ABSTRACT
Many real-world data stream analysis applications such asnetwork
monitoring, click stream analysis, and others require combining
multiple streams of data arriving from multiple sources. This is
referred to asmulti-stream analysis. To deal with high stream
arrival rates, it is desirable that such systems be capable of sup-
porting very high processing throughput. The advent of multi-
core processors and powerful servers driven by these processors
calls for efficient parallel designs that can effectively utilize the
parallelism of the multicores, since performance improvement is
possible only through effective parallelism. In this paper, we ad-
dress the problem of parallelizingmulti-stream analysisin the con-
text of multicore processors. Specifically, we concentrate on par-
allelizing frequent elements, top-k, and frequency counting over
multiple streams. We discuss the challenges in designing an effi-
cient parallel system for multi-stream processing. Our evaluation
and analysis reveals that traditional “contention” based locking re-
sults in excessive overhead and wait, which in turn leads to se-
vere performance degradation in modern multicore architectures.
Based on our analysis, we propose a “cooperation” based locking
paradigm for efficient parallelization of frequency counting. The
proposed “cooperation” based paradigm removes waits associated
with synchronization, and allows replacing locks by much cheaper
atomic synchronization primitives. Our implementation of the pro-
posed paradigm to parallelize a well known frequency counting al-
gorithm shows the benefits of the proposed “cooperation” based
locking paradigm when compared to the traditional “contention”
based locking paradigm. In our experiments, the proposed “cooper-
ation” based design outperforms the traditional “contention” based
design by a factor of2 − 5.5X for synthetic zipfian data sets.

1. INTRODUCTION
Data stream analysis forms an important class of applications

where data is streaming in, and processing has to be done in real
time. In traditional designs [23], data was considered to be arriv-
ing from a single source, and a plethora of sequential designs for
thesingle-streamproblem have been proposed [19, 20, 23]. But a
number of common data stream applications require streams from
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multiple sources to be combined to answer queries, and we refer to
this asmulti-streamanalysis. Multi stream analysis arises in many
contexts, including large scale web advertising networks, the inter-
net, sensor networks, and real time data analysis [6]. In large scale
web-based advertising networks, clicks originating from different
internet hosts result in multiple click streams that need to be merged
at a single server for analysis and identification of suspicious pub-
lishers or IP addresses [21]. In the Internet, network monitors at
core routers process streams of packets arriving from different ori-
gins for accounting purposes, and detection of malicious activities
such as Distributed Denial of Service attacks [29]. In sensor net-
works, data streams from multiple sensors are typically combined
at a single server for analysis, mining, and querying [2, 18]. Sim-
ilarly, analysis of web server logs, monitoring calls in cellular net-
works, real time analysis of credit card and ATM transactions etc.
require real time multi-stream analysis [4].

A number of high-throughput distributed stream processing sys-
tems have been proposed, such as Borealis [1] and Medusa [3].
These systems distribute the load on multiple distributed servers
to ensure high throughput. But with the advent of multicore pro-
cessors and extremely powerful servers driven by these proces-
sors, even centralized servers are now capable of delivering high
throughput stream processing. For instance, the Sun SPARC En-
terprise T5220 server powered by a UltraSPARC T2 processor [25]
and supporting 1Gbps network connectivity has 64 hardware thread
contexts which can be used for efficient and high throughput stream
processing. Even standard workstations are now powered by pro-
cessors with4 − 8 cores [16], and provide great potential for par-
allel processing. Efficient parallel designs are therefore needed to
exploit such parallel hardware to support the processing of large
numbers of streams with high and varying arrival rates. Note that
stream processing systems have considerable data dependencies
and shared data structures, and efficient parallel systems require
thoughtful and efficient design.
Multi-Stream Analysis and Multicores: Multi-stream analysis
has inherent parallel processing needs since stream elements are
arriving from multiple sources at possibly variable rates, and the
streams need to be combined for answering queries on the union.
In the past when processors consisted of only one execution unit,
the most efficient approach was to exploit some form of operating
system support such aspoll or select to transform the prob-
lem into asingle streamproblem. It is widely acknowledged that
these system calls introduce a significant overhead into the system.
But in a sequential world, this was a preferred solution. But with
the advent of multicore processors [16, 25], each processor now
has multiple threads that can execute in parallel, and a system can
improve its performance by exploiting the inherent parallelism to
process each incoming stream using one or more threads. In this



paper we investigate the challenges of such a parallel design.
Parallelizing Frequency Counting. Efficient parallel designs are
the only means of improving performance in a multicore architec-
ture. But, due to data dependencies arising from updates to a com-
mon structure, the problem is not “embarrassingly parallel”. Thus,
adding more threads willnot lead to linear speedup. As it turns out,
similar to many parallel algorithms and structures, parallelizing fre-
quency counting is non-trivial, and actually it is very hard to eke
out parallelism. Our experiments with a parallel frequency count-
ing system designed using the traditional notion of “contention”
based locking reveal the high overhead of a parallel system. Fre-
quently, contending threads that share a resource need towait for
it if it is being exclusively held by some other thread. This results
in wasted CPU cycles when the (hardware) threads do not perform
useful work. To minimize the waits and the wasted CPU cycles, we
propose a “cooperation” based locking paradigm where the threads
“cooperate” (and not “contend”) when sharing resources. When-
ever a resource sought by a threadTi is not available, thenTi’s
work is “delegated” to the threadTj currently holding the resource,
andTi can move to its next job.Ti’s request will eventually be pro-
cessed byTj . As a result, even though locks and shared resources
are still present,waits associated with the locks have been elimi-
nated. This allows efficient usage of the inherent parallelism, and
results in higher processing throughput. Additionally, the proposed
design paradigm allows replacing locks by much cheaper atomic
synchronization primitives. In a previous work [8], we demon-
strate the effectiveness of the “thread cooperation” paradigm for
intra-operatorparallelism of stream operations, and in this paper,
we use this paradigm formulti-stream analysis. Concepts similar to
“thread cooperation”, such as the escrow transactional model [26],
have earlier been used in the field of databases.

In this paper, we parallelize a standard frequency counting al-
gorithm which forms the basis for frequent elements and top-k
queries. Frequent elements [5, 19, 20] and top-k [7, 20, 24] queries
are an important class of queries for stream analysis applications,
and the research community has proposed several algorithms for
answering such queries efficiently. A frequent elements query re-
turns all the elements whose frequency of occurrence is above a
certain threshold. For example, a query of the form “advertise-
ments that are clicked more than 0.1% of the total clicks” is a fre-
quent elements query. On the other hand, a top-k query returns the
k elements with the highest frequency. Again, a query of the form
“top-25 most clicked advertisements” is a top-k query.
Contributions:
• We propose and formalize the notion of “thread cooperation”

for parallel analysis of multiple data streams. This concept of “thread
cooperation” removeswaitsassociated with locks, and will find use
in various other “lock-based” designs.
•We propose a parallel design of theSpace Savingalgorithm [20],

which Cormode et al. [5] have shown to have best performance
amongst a number ofcounter basedalgorithms. Even though our
design is based onSpace Saving, the proposed paradigm can easily
be augmented to accommodate other standard frequency counting
algorithms such asLossy Counting[19].
• We provide correctness proof sketches of the proposed design,

and analyze the performance of the proposed “cooperation based”
design. Our experiments show a factor of2 − 5.5X improvement
over traditional “contention” based locking paradigm.
Organization: Section 2 provides a survey of related work, and a
brief description of theSpace Saving[20] algorithm which we se-
lect to parallelize. Section 3 analyzes some common approaches
towards designing a parallel system, and our analysis motivates the
need for a new design paradigm. Section 4 formalizes the “thread

cooperation” paradigm and describes the implementation details of
the parallel system while providing arguments for correctness. Sec-
tion 5 experimentally evaluates the proposed “cooperation” based
design and compares it with traditional “contention” based design.
Section 6 concludes the paper.

2. RELATED WORK

2.1 Data Stream Processing
A class of frequency counting algorithms, referred to ascounter

basedtechniques [19, 20], monitor a subset of the stream elements
and maintain an approximate frequency count of the elements. The
goal is to guarantee high accuracy while having a small memory
footprint. Different approaches use different heuristics to deter-
mine the set of elements to be monitored, and thus limit the space
overhead. For example, inLossy Counting[19], the stream is di-
vided into rounds, and at the end of every round, potentially in-
frequent elements are deleted. Thisǫ-approximate algorithm has a
space bound ofO( 1

ǫ
log(ǫN)), whereN is the length of the stream

andǫ is the error bound. TheSpace Savingalgorithm [20], on the
other hand, uses a different heuristic to limit space, details of which
are provided in Section 2.2.

Different solutions have also been suggested for answering top-k
queries [7, 24]. Mouratidis et al. [24] suggest the use of geometri-
cal properties to determine thek-skyband, and use this abstraction
to answer top-k queries, whereas Das et al. [7] propose a technique
which is capable of answering ad-hoc top-k queries, i.e., the algo-
rithm does not need prior knowledge of the attribute on which the
top-k queries have to be answered.

There has also been considerable research in distributed frequent
elements [18], distributed top-k monitoring [2], and distributed str-
eam processing systems [1, 3]. At first glance, it might seem that
the multiple streams problem can be formulated as distributed stre-
ams, and the entire body of relevant literature can be used. But
there is a subtle difference between distributed streams and the mul-
tiple streams problem we are considering. In distributed stream
processing, since the streams are processed on distributed nodes,
memory and processing is independent, and the onus is on reduc-
ing the communication overhead. On the other hand, in the multi-
stream case, the streams are processed on the same machine shar-
ing processing and memory, and the onus is on efficient processing
while effectively sharing the processor and memory among the dif-
ferent streams. Additionally, distributed stream processing systems
have to deal with fault-tolerance, load balancing and many related
issues of distributed systems [1], while these issues are not relevant
in multi-stream analysis on a single powerful server.

The advent of modern multicore architectures [16, 25] have open-
ed new frontiers, and their ubiquitous presence calls for algorithms
that can efficiently exploit the parallelism inherent to these architec-
tures. Although much research has been done in the stored database
arena for exploiting parallelism [12, 13], very little research has fo-
cussed on stream operators. Gedik et al. [10] propose the use of
Cell processors for parallel windowed stream joins. The proposed
technique is targeted to the Cell architecture, and leverages specific
features of Cell processors to improve performance. The growing
demand for high throughput stream processing calls for designing
other efficient parallel algorithms for stream processing, and this is
the focus of this paper.

2.2 Space Saving Algorithm
We select to parallelize theSpace Savingalgorithm [20] which

has been demonstrated to have the best throughput amongst its class
of frequency counting algorithms [5]. An interesting property of



Algorithm 2.1 Space Savingalgorithm
1: maxCounters← 1/ǫ, numMonitored← 0
2: for each element〈e〉 in the streamdo
3: /* Check if 〈e〉 is already being monitored */
4: if (LOOKUP(〈e〉)) then
5: IncrementCounter(〈e〉)
6: else
7: if (numMonitored< maxCounters) then
8: AddElement(e, 1); numMonitored++
9: else

10: Overwrite(Minimum frequency element, e)

Table 1: Main Operations in Space Saving
Operation Description
LOOKUP(e) Check whether elemente is being monitored
IncrementCounter(e) Increment the frequency ofe
AddElement(e, freq) Add elemente with frequencyfreq
Overwrite(min, e) Overwrite the minimum frequency element withe

the algorithm is that it is deterministic and provides tight space
bounds corresponding to the user specified error boundǫ which de-
termines the number of elements and counters that need to be mon-
itored. Space Savingmonitors onlyO( 1

ǫ
) counters for providing

ǫ-approximate answers. Algorithm 2.1 gives an overview ofSpace
Saving. The main operations performed by the algorithm have been
listed in Table 1. The algorithm monitors a subset of the stream el-
ements which we refer to as theMonitored Set. If the element
being processed is already being monitored, then its count is in-
cremented (IncrementCounter). Otherwise, if the number of moni-
tored elements is less than the maximum bound (O(1/ǫ)), then the
element is added to the monitored set (AddElement), else the cur-
rent elementOverwritesthe element with minimum frequency and
increments its count by one. Overwriting the minimum frequency
element is a heuristic used by the algorithm to limit space. The
intuition being that the minimum frequency element is least likely
to be of interest to a frequent elements or top-k query. Thus, the
space bound of the algorithm ismin(O( 1

ǫ
, |A|)), where|A| is the

size of the alphabet of the stream.
ForOverwriting, this algorithm needs to track the minimum fre-

quency element. TheStream Summarystructure [20] is used for
this purpose. This structure consists of adoubly-linked listof fre-
quency buckets which are sorted by frequency. Each bucket con-
tains a list of elements which have the same frequency as that of
the bucket. A nice property of this structure is that it maintains the
elements sorted by frequency inO(1) time per element. This al-
lows answering both frequent elements and top-k queries using the
same structure. For every stream element, the algorithm looks it up
in the Search Structure(LOOKUP), and then updates the element
in theStream Summarystructure. For lookup, the algorithm needs
to have an efficientsearch structurethat can be integrated with the
Stream Summarystructure, and a hash table is most suited for this
purpose. TheMonitored Set is thus represented by a combination
of Search StructureandStream Summary. Therefore,LOOKUP has
to be supported by the hash table and the rest of the operation in
Table 1 must be supported byStream Summary.

3. INTUITIVE PARALLEL DESIGNS
In this section, we start by examining several possible intuitive

designs for parallelizing frequency counting formulti-stream anal-
ysis. In these designs, each stream is assigned a thread which pro-
cesses the elements. Recall that theSpace Savingalgorithm up-
dates a structure (Monitored Set) while processing the elements.
So the manner in which the threads share the structure determines
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Figure 1: Profiling of the independent design using hierarchical
merge. The query rate was set to 1 query every 50,000 elements.

the design of the system. We explore two straightforward designs,
provide a brief experimental evaluation of these techniques, and ex-
plore some extensions to the two basic techniques. Our experimen-
tal setup uses an Intel quad core processor [16], and synthetically
generated data following Zipfian distribution [30] where the zipfian
factorα is varied from 1.5 to 3.0 in steps of 0.5. The parameterα
controls the distribution, smallerα corresponds to a uniform distri-
bution while higherα corresponds to a more skewed distribution.
More details of the experimental setup appear in Section 5. Due to
space limitations, we provide selected results in this section, and
additional results can be found in [9].

3.1 Independent Structures
This straightforward design corresponds to theshared nothing

paradigm, where threads do not share any data or state informa-
tion, and each thread has its own independent local structure. The
idea is to simulate sequential execution, and run multiple copies
of the same algorithm executing on different streams. Each stream
has a local structure, and therefore there is no need for synchro-
nization. If there aren different streams, then there aren different
local structures, and these structures need to be merged periodi-
cally into a global structure so that queries can be answered from
the global structure. Even though each thread processes only a frac-
tion of the entire stream, since the minimum element in the local
structure is not guaranteed to be the global minimum element, if
the local structure is not large enough, it might lead to higher error.
Lemma 3.1 (proof in [9]) provides a lower bound for the size of the
local structures in order that the global error bound is preserved.

LEMMA 3.1. For ǫ-approximate answers, the size of every lo-
cal structure must be at leastO(1/ǫ).

COROLLARY 3.2. Using independent structures forn streams,
the total space complexity forǫ-approximate answers isO(n/ǫ).

Therefore, it follows from Corollary 3.2 that the independent de-
sign has high space overhead. In addition, the local structures need
to be merged periodically to obtain the global structure from where
the queries can be answered. Since theStream Summarystructure
can be used to efficiently answer both frequent elements as well
as top-k queries, in order for the merged global structure to re-
tain those properties while remainingǫ-approximate, all elements
of every local structure need to be merged. Different heuristics (dis-
cussed in our technical report [9]) can be used to reduce the merge
overhead, but then either the error increases, or the properties of
Stream Summaryare not preserved. Furthermore, the merge over-
head is dependent on the query frequency – the greater the query
frequency, the higher the number of merges and higher is the over-
head. The merge overhead also increases with any increase in the
number of parallel streams and threads, and for smaller values of
the error boundǫ. Thus, it is intuitive that even though the fre-
quency counting part of the independent design would scale, the
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Figure 2: Profiling of the shared design using “contention”
based locking.

space overhead and the high merge overhead makes this design in-
efficient with increasing number of streams and query frequency.
Our experimental evaluation confirms this, and Figure 1 provides a
profile of the time spent by theindependentdesign with 1 query per
50,000 elements processed. Alongx-axis is the number of streams
(and hence threads) and alongy-axis is the time spent for an oper-
ation as percentage of total time. It is evident from Figure 1 that
as the number of threads increase, the merge overhead makes this
design inefficient. Refer to our technical report [9] for a detailed
evaluation of theindependentdesign and details about the merge
algorithm used.

3.2 Shared Structures
The limitations of the independent design are high space over-

head and merge overhead. To reduce the overhead, the threads can
share theMonitored Set, and this forms the basis for theShared
designwhich we discuss in this subsection. Since multiple threads
are accessing the same structure, the threads must synchronize, and
this synchronization needs to be done at two levels:
• Element Level Synchronization: Multiple threads operating

on the same element must be serialized so that there is only one
thread operating on the element in theStream Summary. This is
achieved by acquiring a lock in thesearch structureon the element
being processed.Element level synchronization therefore serializes
all threads processing the same element in the stream.
• Bucket Level Synchronization: Since an increment or over-

write operation needs to move an element from one frequency bucket
to another bucket in theStream Summarystructure, a thread per-
forming this operation needs to obtain locks on the source and the
destination buckets. Since there can be several elements within a
frequency bucket, a lock on a bucket prevents other threads from
operating on any element belonging to that bucket.Bucket-level
synchronization therefore serializes accesses to a frequency bucket.

The queries (which are only readers) also need to obtain locks so
that the writers are blocked while a reader is processing a bucket.
In this design, since a single global structure is used, the space
complexity remainsO( 1

ǫ
) and there is no merge overhead. Thus,

the shareddesign saves on space and merge cost. But since mul-
tiple locks need to be acquired for every element being processed,
and due to multiple levels of synchronization, using the traditional
“contention” based locking paradigm results in high contention over-
head.

Figure 2 provides a profile of the time spent by the shared de-
sign. Alongx-axis is the number of streams (and hence threads)
and alongy-axis is the time spent for an operation as percentage
of total time. Figure 2 reveals that a majority of the time is spent
contending either for synchronization at theelement-levelor at the
bucket-level. Thus, even though theshareddesign has low space
and merge overhead, the overhead due to contention and wait for
shared resources makes this design inefficient. Multicore architec-
tures have a large number of CPU cores, and threads waiting for

shared resources waste cycles of idle CPU cores, which could have
otherwise done useful work.

3.3 Discussion
Extensions of the straightforward techniques:There are several
other simple schemes that extend the techniques proposed above.
One possible approach can be to maintain a combination of lo-
cal and global counters (i.e., aHybrid Structure) to limit the con-
tention (by maintaining local counters for frequent elements and a
global structure for infrequent elements) as well as space overhead
(no need to replicate relatively infrequent elements). Analysis re-
veals that this approach is also not very efficient. For a relatively
uniform input, most of the items will hit the global structure (since
most items are infrequent), thereby degenerating into theshared
design. For a relatively skewed input, very few elements will hit
the global structure (since most elements are infrequent and hence
stored locally to reduce contention), thus reducing to theindepen-
dent design. Another extension is ahash based schemewhere ele-
ments are hashed to threads, i.e., same elements go to same threads.
Even though this design will need less synchronization, load bal-
ancing among threads will be an issue when the input distribution
is skewed, as some threads are overloaded, while others are lightly
loaded.
Characteristics of a Good Design:Ideally, we would like a design
with the following properties:
• Small memory footprint and no merge overheadsimilar to the
shared design.
• Low contention overheadsimilar to the independent design.

In the next section, we show how “contention” in locking can be
reduced by “thread cooperation” so that shared structures can also
be used efficiently.

4. THREAD COOPERATION PARADIGM

4.1 Formalization
As observed in Section 3.3, instead of threads contending for

shared resources, they can rathercooperate, thereby boosting each
other and in turn improving the overall system performance. In this
paradigm, even though locks are not eliminated completely, “waits”
associated with locks have been eliminated. The delegated request
is “queued”, and the type of queueing depends on the semantics of
the request being delegated.

Let us consider a system comprised of threads (hardware or soft-
ware)1 and the task to be completed is a set ofrequeststhat are
associativeandcommutative. The system is said tomake progress
if the input set ofrequestsis being consumed. The following prin-
ciples formally express thethread cooperationmodel:

PRINCIPLE 4.1. Request Delegation: If thread Ti is trying to
acquire a shared resourceR and it succeeds in acquiringR, it will
complete its request usingR. If it fails to acquireR, it will “dele-
gate” its request to the threadTj that currently has exclusive access
to R, and “proceeds” to its next request. All other threads trying to
acquireR will “delegate” their requests toTj . OnceTj finishes its
own request, and before it relinquishes control overR, it will check
for any pending requests onR and will relinquishR only when all
pending delegated requests have been processed.

PRINCIPLE 4.2. Minimal Existence: Once a thread has ac-
quired a shared resource, it will abstain from acquiring other shared
resources.
1A hardware threadcorresponds to an execution unit with its own
set of registers and local resources and is different from asoftware
thread.



Figure 3: Overview of the parallel design ofSpace Savingusing
thread cooperation.

Note thatrequestsaredelegatedin two different scenarios.First,
when a shared resource is notavailable, andsecond, when a thread
has already acquired a shared resource, and needs another shared
resource. In either case, the threads rely oncooperationto make
progress. To guarantee correctness, an implementation must satisfy
the following invariant:

INVARIANT 4.1. Fulfillment Guarantee: Once a thread has
delegateda request, the request is neitherlostnor left unfulfilled.

There are multiple benefits of thecooperationbased approach:
• Removal of Waits: Whenever there is contention for a shared

resource, the threads follow Principle 4.1 and do notwait. This pre-
vents wastage of useful computational resources and allows threads
to make progress.
• Arbitration Overhead Removal: Since the threads do not

contend for shared resources, this paradigm reduces the overhead
of arbitration of locks among the contending threads.

The “thread cooperation” model logically separates the requests
(tasks to be performed by a thread) from the execution threads.
This allows the system to be viewed as a set of threads process-
ing a set of requests, and it does not matter which thread processes
which request. This is analogous to how the operating system (OS)
schedules jobs on the hardware execution threads.Delegationen-
sures that only the request is “blocked” and the associated thread
can detach itself from the request and move forward to process the
next request. This is analogous to the OS blocking I/O requests and
not the actual CPU that was processing the job. Note that threads
sharing resources do need synchronization, but thewaits associ-
ated with synchronization primitives have been eliminated. In ad-
dition, as described later, cooperation based synchronization allows
replacing locks with atomic operations which are much cheaper
synchronization primitives.

4.2 Parallelizing Space Saving
Once we have formalized thethread cooperationparadigm, we

now show how we can use this paradigm for parallelizingSpace
Saving. Figure 3 provides a high level overview of the system de-
sign for parallelizingSpace Savingusing thethread cooperation
paradigm. The boundary conceptually separates theStream Sum-
mary and theSearch Structure, and these structures interact with
each other through a well-defined interface, and need not be aware
of the implementation details. The parallel stream processing sys-
tem should guarantee that the following invariant holds:

INVARIANT 4.2. Boundary Invariant: If ThreadTi processing
element〈e〉 has crossed the boundary into theStream Summary
structure, then it is theonly thread active in theStream Summary
that is processing the element〈e〉.

The Search Structureshould guarantee that Invariant 4.2 holds
and this provides theelement level synchronizationas discussed
in Section 3.2. As long as the desired properties and the invariants

Table 2: Basic atomic primitives.
Operation Description
CAS(addr,
expected, new)

Atomically compare theexpected value to the stored
value ataddr, and swap withnew if successful

IAF(addr) Atomically increment the locationaddr and read the
incremented value

SWP(addr,
new)

Atomically swap the present value ataddr with the
passednew value and return the old value

hold, this framework is independent of the choice of the different
structures involved and the actual algorithm used to process the
stream elements. The “cooperation” based model does not guar-
antee any ordering of the requests, but this does not impact the
correctness of theSpace Savingalgorithm.

LEMMA 4.1. Order Invariance:The final outcome of theSpace
Savingalgorithm is invariant to the order in which the stream ele-
ments are processed.

This follows directly from the definition of the frequency count-
ing problem. Given a stream ofN elements, theSpace Savingalgo-
rithm reports all the elements whose frequency is aboveǫN , where
ǫ is the user specified error bound [20]. Therefore, as long as an
element appears more thanǫN times in the input stream,Space
Savingguarantees that the element will be reported, irrespective of
where the element appeared in the stream.

COROLLARY 4.2. Correctness of the Cooperation based par-
allel design:Reordering of requests due torequest delegationdoes
not affect the correctness ofSpace Saving.

Corollary 4.2 follows directly from Lemma 4.1. In general, most
stream processing algorithms are invariant to the order of process-
ing, and thethread cooperationparadigm can be applied to them.

4.3 Implementation Details
As depicted in Figure 3, the system can be viewed as two dif-

ferent components which interact with each other through an in-
terface that ensures that Invariant 4.2 holds. Recall that when pro-
cessing the elements, a thread first accesses theSearch Structure
and this structure directs the thread to the appropriate location in
the Stream Summary. In the implementation, an element in the
hash table (search structure) points to the corresponding element
in the Stream Summarystructure, and this element in theStream
Summaryin turn points to the bucket to which it belongs. Our
implementation uses a number of atomic instructions. Refer to Ta-
ble 2 for a brief description of the atomic operations used in the
implementation. Only theCAS operation need to supported by the
underlying hardware, and the rest of the operations can be imple-
mented using theCAS primitive. Note that the atomic operations
supported by the hardware are much cheaper than acquiring locks.
We now discuss the two different components in Figure 3 in detail,
and provide sketches of correctness proof of the methods. Our ap-
proach for proving correctness is as follows:The design iscorrect
if all the invariants are satisfied. Therefore, for each individual op-
erations, if all the invariants are satisfied as a precondition for the
operation, the operation is said to be correct if it ensures that all
the invariants are satisfied as a postcondition.

4.3.1 Search Structure or Hash table
The hash table lookup is equivalent to theLOOKUP operation in

Table 1. Even though there have been proposals for different lock-
free hash table implementations (such as Shalev et al. [28]), the



hash table used by the frequency counting algorithms has certain
special requirements and characteristics. We design a simple con-
current hash table where separate chaining is used to resolve hash
collisions, and bucket-level locks are used to synchronize insertions
to the same chain. We modify the conventional design of a chained
hash table [17] to suit the requirements specific to the application.
Lookup and insertion: The hash table is designed with minimal
locking: the “readers” in the hash table do not need locks. Locks
are needed only to serialize insertions to the same hash bucket. In
this design, threads are blocked only when they are trying to insert
into the same hash bucket. If a moderately robust hash function
(such asmultiplicative hashing[17]) is used, then the likelihood
of two “writers” mapping to the same hash bucket is very rare and
hence the associated wait is also small. In order for the “readers” to
traverse the list “lock-free”, the following structural invariant must
be satisfied at all times:

INVARIANT 4.3. At all times during execution, a pointer should
either be pointing to a valid node or be set tonull.

Deletion: Deletion of a hash table entry is done lazily – the entry
to be deleted is atomically marked as deleted, and this implies log-
ical removal. Once an entry is removed logically, it can either be
physically removed by some other thread or be reused. In this de-
sign, the location of the entry is reused for future insertions into the
chain, and the following invariant guarantees correctness. In the
implementation, deletions are marked by setting thevalue field of
the〈key, value〉 pair in the hash table tonull.

INVARIANT 4.4. Once a location has been marked as deleted,
the key in the location has been removed from the hash table and
any subsequent lookup for that key should returnfailure.

INVARIANT 4.5. Unique key:At no point should two valid lo-
cations in the hash table contain the same key.

The invariants listed above correspond to basic properties of the
hash table and any concurrent design must satisfy them. In addi-
tion, there are certain application specific requirements. To guar-
anteeelement level synchronization, the most common approach
would be to have the hash table ensure this level of synchronization,
because every thread processing a stream element first accesses the
hash table. Therefore, if threadTi hasexclusive accessto element
e, then any threadTj(j 6= i) processinge must wait. Since the
elements (which form keys in the hash table) are a point of con-
tention in the hash table, Principle 4.1 can be used to delegate the
request and allowTj to proceed with other requests whileTi guar-
antees to process thedelegatedrequests as per Invariant 4.1. Since
the requests in a frequency counting algorithm are increments to
the count, “queueing” a delegation in the hash table is simple, and
can be achieved through a field that stores a pendingcount corre-
sponding to the element. If the pendingcount is 0, this implies that
no thread owns the element and there are no pending requests. The
first thread that increments thecount acquiresexclusive accesson
the element, and all other threads delegate the request by atomi-
cally incrementing the count. The following invariant guarantees
element level synchronizationand hence satisfies Invariant 4.2:

INVARIANT 4.6. A thread obtains exclusive access to akey in
the hash table if theIAF operation oncount corresponding to the
key returns1.

Relinquishing an element: Once a thread has processed a stream
element, it has to relinquishexclusive accessto the element. But

Figure 4: Concurrent Stream Summarystructure based on the
“thread cooperation” paradigm.

before relinquishing access, it has to ensure that there are no dele-
gated requests so that Invariant 4.1 is satisfied. To relinquish, the
thread first performs aCAS of 1 (expected value) with0 (new value)
on thecount field corresponding to the entry in the hast table. If
this succeeds, there are no delegated requests, and the element has
been relinquished. Any other thread performing a subsequentIAF
for acquiring the element will readcount as 1, and hence will be
able to acquire the element (Invariant 4.6). Failure implies pending
delegated requests and the thread will do aSWP with 1 which will
return the number of delegated requests, and setcount to 1. This
ensures that the owning thread still has exclusive access to the el-
ement and prevents other threads from crossing the boundary. The
thread then subtracts 1 from this value (which corresponds to the
request for this thread in the earlier round) and crosses the bound-
ary with the subtracted value as increment to the frequency of the
element. This ensures that both Invariants 4.1 and 4.2 are satisfied.
Note that as a result of delegated requests accumulating inside the
hash table, increments to counts of elements are processed in bulk,
and we refer to this asbulk increment. Due to space limitations,
the pseudocode, details of the operations, and correctness proofs of
the operations of hash table have been moved to [9].

4.3.2 Concurrent Stream Summary
In this section, we discuss the implementation of theConcurrent

Stream Summarystructure based on the proposedthread cooper-
ation paradigm. The concurrent analogue ofStream Summaryis
very similar to the originalStream Summarystructure in [20]. This
modified structure is shown in Figure 4. The structure consists of a
singly linked list offrequency buckets. Each bucket maintains a list
of elements which have the same frequency as that represented by
the bucket. The buckets are in ascending order of frequency (from
left to right), and the elements traverse through this structure of
buckets as their frequency changes while the stream is being pro-
cessed. Each bucket has aqueueof requests for holding requests
delegated to the bucket, and we use a standard “lock-free” queue
implementation [27]. As shown in Figure 4, each bucket in the
linked list consist of different fields. Thenext field points to the
next node in the list. TheinUsefield is used to guaranteebucket
level synchronizationand if set to 1, indicates that the bucket is al-
ready owned by a thread. When a thread wants to access a bucket,
it performs aCAS of 0 (expected value) with 1 (new value) on the
inUsefield. Success implies that the bucket was available and now
inUse is set to 1, and the thread performing the operation gets ex-
clusive access to it. On failure, the thread appends the request to
the bucket’s queue, and moves on to the next stream element. The
marked field is used to represent logical presence, and if it is set
to true, then the node is considered to have beenlogically removed
from the list and marked forgarbage collection.
Optimistic Traversal: Multiple “reader” threads might traverse
the list of frequency buckets, and the list has been designed to allow
optimistic traversal. In other words, the readers traverse the list



without acquiring locks, and abort the traversal if something goes
wrong. To ensure correctness and safety, the following invariant
should always be satisfied:

INVARIANT 4.7. At no point of execution should a “reader”
read invalid locations (garbage), i.e., all pointers in the list of fre-
quency bucket should point to valid buckets or be set tonull.

Maintenance of sort order: The sort order of the buckets should
be maintained at all times according to the following invariant:

INVARIANT 4.8. If m andn are two buckets such thatm.next =
n, andm.marked = false ∧ n.marked = false, then:
m.frequency < n.frequency.

Since the readers traverse “lock-free”, if empty buckets are reused
for different frequencies, it could lead to violation of the sort order.
The following invariant prevents this:

INVARIANT 4.9. Once a bucket is assigned a frequency, its fre-
quency can never be changed.

Lazy Removal: If a bucket does not contain any elements and there
are no pending requests, itsmarked field is atomically set totrue
and is logically removedfrom the structure. Physical removal is
done lazily. Although marked buckets are still present in the struc-
ture, any operation on these buckets is not-defined, so any “reader”
accessing a marked bucket should abort the read and restart the pro-
cess. To ensure correctness, the following invariant should hold:

INVARIANT 4.10. A bucket withmarked set totrue cannot be
reused. It can only eventually be removed from the structure. Any
operation on a marked bucket is undefined and should fail.

Once a bucket is logically removed, physical removal from the
structure is done by a thread which acquires the bucket immediately
preceding themarkedbucket. If a sequence of buckets are marked,
the entire sequence can be removed by the thread owning the bucket
immediately preceding the sequence. This comprises the garbage
collection process. During physical removal, only the next pointer
of the bucket immediately preceding the sequence of marked buck-
ets is changed. The thread owning the preceding bucket can there-
fore garbage collect the buckets without acquiring additional locks.

INVARIANT 4.11. A marked bucket or a sequence of marked
buckets can only be physically removed from the structure by a
thread that is the owner of the bucket immediately preceding the
sequence of buckets. If there are no preceding buckets, then the
owner of the bucket can itself physically remove the bucket.

As “readers” traverse lock free, once a sequence of buckets is
removed, there might still be readers traversing these buckets. The
structure of the sequence is therefore preserved so that the readers
can eventually rejoin the main structure. A mechanism similar to
reference counting in Java, or hazard pointers [22] can be used to
reclaim a physically removed bucket without resulting in dangling
pointers in threads that might still have a pointer to the reclaimed
memory. We now explain the individual operations ofStream Sum-
marywhich implements the operations in Table 1.
Implementation of AddElement and its Correctness

An AddElementrequest arrives at a bucket either when a new
element is being added to theMonitored set (corresponding toAd-
dElementin Table 1), or an existing element’s count is being incre-
mented (during increment and overwrite). Owing to thedelegation
of the requests, theAdd request to a bucket can be of three types:

Algorithm 4.1 Processing theAddElementRequest
1: ProcedureAddElement(element, bucket)
2: /* minFreqis the pointer to the minimum frequency bucket */
3: if (element.frequency= bucket.frequency)then
4: bucket.AddToList(element)
5: else if(element.frequency< bucket.frequency)then
6: if (bucket =minFreq) then
7: newBucket:= getNewBucket(element.frequency)
8: newBucket.AddToList(element)
9: newBucket.next:= bucket

10: minFreq:= newBucket
11: else
12: DelegateRequestToBucket(minFreq)
13: else
14: FindDestBucket(bucket, element)
15: end ProcedureAddElement

(i) an element with the same frequency as that of the bucket,(ii) an
element with frequency greater than that of the bucket (delegation
of the add request for a not existent bucket immediately following
the current bucket), and(iii) an element with frequency less than
the present bucket (add request of new element with frequency1
being added to theMonitored set anddelegatedto a minimum fre-
quency bucket whose frequency is greater than 1). Algorithm 4.1
provides a high level overview of how the add request is processed,
and this operation subsumes theAddElementoperation in Table 1.
If the addition is to the same bucket, it can be processed right away,
while addition to a higher frequency bucket is handled by theFind-
DestBucket. For inserting elements with frequency less than the
current minimum frequency, the request isdelegatedto the mini-
mum frequency bucket.

To argue the correctness of Algorithm 4.1, we must show that it
does not violate any of the structural invariants. In line 7, when the
new node is created, the creator is the only thread with access to the
bucket and hence is free to perform any operation on the bucket2.
The new bucket is first made to point to the old minimum frequency
(line 9) and then it is madepublic3 by the assignment in line 10.
Thus Invariant 4.7 is satisfied at all times. Again, the conditional at
line 6 ensures that Invariant 4.8 is maintained. Therefore, ifFind-
DestBucketdoes not violate any invariants, then all other invariants
are satisfied because this function does not affect those properties.
Therefore, this operation is correct.
Implementation of FindDestBucket and its Correctness

Finding the next bucket when incrementing the count of an el-
ement is an important operation for bothAddElementand Incre-
mentCounter. This function finds the appropriate bucket for insert-
ing an element into the structure. If the current next node is not
the destination for the element, then either a new bucket needs to
be inserted after the present bucket, or the list of buckets needs
to be traversed. List traversal is necessary to handlebulk incre-
ments resulting from delegations in the hash table (Section 4.3.1).
In either case, the design of the structure allows optimistic traver-
sal. If at any point during traversal through the list, the “reader”
finds that it is accessing a node that has been marked for garbage
collection, then it aborts the present run, and starts the traversal
again. From an efficiency perspective, this failure and abort will be
rare, as this case would arise when dealing withbulk increments,
and this is common only for the high frequency elements, which
are generally towards the extreme right of theConcurrent Stream
Summary structure. For the less frequent elements in the middle
of the structure, the next node will be the destination in most cases.

2Such a node is calledprivateand only the creator can access it.
3Making public implies that other threads can access the bucket
and is now treated as a shared resource.



Algorithm 4.2 Processing theIncrementCounterRequest
1: ProcedureIncrementCounter(element, increment)
2: bucket.RemoveFromList(element)
3: element.frequency += increment
4: FindDestBucket(bucket, element)
5: if (bucket.isEmpty() && bucket.noPendingRequests()) then
6: gcStatus:= bucket.atomicMarkGarbageCollected()
7: if (gcStatus =true && bucket = minFreq) then
8: newMinFreq:= findNewMinFreqBucket(minFreq)
9: minFreq:= newMinFreq

10: end ProcedureIncrementCounter

The pseudocode and the correctness proof of this operation can be
found in [9].
Implementation of IncrementCounter and its Correctness

TheIncrementCounterrequest (Table 1) increments the count of
an element while maintaining the sort order of the elements, and is
one of the most frequent operations for the application under con-
sideration. Algorithm 4.2 provides an overview of how the opera-
tion is implemented. After an element has been incremented (i.e.,
removed from the original bucket), if the bucket becomes empty
and has no pending requests, then the bucket should be atomically
marked for garbage collection.

As above, correctness of the operation is proved by showing it
does not violate any of the structural invariants. Each of the con-
stituent operations satisfy the invariants (as argued in the previous
sections). If after the increment, the bucket becomes empty, and
there are no pending requests, then the thread will atomically mark
for garbage collection (line 6) thus satisfying Invariant 4.9. If the
minimum frequency bucket is marked for garbage collection, since
there are no other buckets preceding this bucket the current thread
removes the bucket (line 9) thus satisfying Invariant 4.11. Thefind-
NewMinFreqBucketis similar to theFindDestBucketoperation and
returns the first valid bucket immediately after the currentminFreq
bucket, and in the process removes any marked nodes if present.
Since this find minimum operation is similar to theFindDestBucket
operation, its correctness is similar to the correctness proof ofFind-
DestBucket. Other invariants are satisfied because this operation
does not alter these properties.

Implementation of Overwrite and its Correctness
Overwrite is specific to theSpace Savingalgorithm which uses

this operation to limit the number of counters monitored.Overwrite
implementsSpace Savingalgorithm’s heuristic of replacing a min-
imum frequency element with a new un-monitored incoming ele-
ment. It selects a candidate element from the minimum frequency
bucket, overwrites it with the current element being processed, and
then increments the count of the new element. To select a candidate
for overwriting, the thread will follow the principle ofMinimal Ex-
istence(Principle 4.2) and will not block on any shared resource. It
will start from the first element in the minimum frequency bucket,
and to overwrite the element, the corresponding entry in theSearch
Structureshould be deleted. This deletion is non-blocking, and
failure implies that some other thread is trying to increment that el-
ement, and the increment request should be in the request queue of
the minimum frequency bucket. The thread then moves on to the
next element in the bucket, and the process is repeated. If all ele-
ments are busy and none of them could be overwritten, this implies
that all these elements have pending increment requests. The over-
write request is thusdeferredtill all the increment requests have
been processed. Since a single thread will process all these re-
quests, the processing can be highly optimized as the thread now
has more knowledge about the requests. The pseudocode for the
operation and its correctness proof can be found in [9].

4.3.3 Auto Tuning and Throttling
The crux of the proposed “thread cooperation” model is the use

of requestdelegationto remove “waits”. When a request is dele-
gated inside the hash table (Search Structure), the counts accumu-
late, and all delegated requests are processed in bulk. But when
a request is delegated in theconcurrent stream summarystructure,
each delegated request adds to the queue of requests, and the thread
currently owning the bucket has to process all the requests to sat-
isfy Invariant 4.1. Thus, if many requests are delegated to the same
bucket, this will lead to an excessive increase in the length of the re-
quest queue, and in turn may lead to performance degradation. This
happens predominantly for uniform streams where most of the ele-
ments are infrequent, and therefore a large number of elements are
deleted from theMonitored Set. Since all deletions happen at the
minimum frequency bucket, this bucket becomes a “hot-spot”. In
such a scenario, parallelism is limited by the structure, and addi-
tional threads are simply adding to the overhead of the system.

To avoid performance degradation in such a scenario, we propose
a mechanism ofauto tuning and throttlingof threads. Whenever a
thread delegates a request in thestream summary, it monitors the
queue size of the bucket to which the request is delegated. If the
queue size is above a thresholdρ, then this bucket is a potential
“hot-spot” and continuous additions to its request queue might lead
to performance degradation. Therefore, this thread will “throttle”
itself and sleep for a small time slice. This can be treated as an-
other form of “thread cooperation” where a thread abstains from
overloading an already overloaded bucket. This feedback loop dra-
matically improves the performance when dealing with uniform
streams, but also introduces some overhead due to the necessity of
monitoring the queue sizes. In Section 5 we evaluate the benefits
as well as overhead resulting fromauto tuning and throttling.

4.3.4 Space Analysis
The parallel implementation ofSpace Savingas described earlier

uses a single sharedconcurrent stream summary. But additional
space is required to “queue” requests that have been delegated. If
an element has been queued, at any instant, there is only one request
corresponding to that element. This is equivalent to the element
being in the input stream, which would anyway have to be allocated
space to be buffered. Thus instead of the element being present
in the input buffer, it is encapsulated as a request in the queue.
Additional space is required for locks and synchronization, which
is again of the same order as the number of counters. Thus, the
space complexity for the parallel algorithm is of the same order as
that of the sequential algorithm, i.e.,O( 1

ǫ
).

4.3.5 Answering Queries
The Concurrent Stream Summarystructure maintains the ele-

ments in a sorted order, so that queries can efficiently traverse this
structure to find the appropriate elements. Queries can be pro-
cessed with high efficiency because the elements of interest will
have high frequencies and reside in the rightmost end of the struc-
ture, and the low frequency elements will be cluttered in the left-
most end (assuming frequencies increase from left to right). There-
fore, as the queries start from the minimum frequency, they can
very quickly prune out the low frequency elements and reach the
region of interest. Again, queries can be answered without acquir-
ing any locks. Details of how different types of frequent elements
and top-k queries are answered can be found in [9].

4.4 Generalization of the Framework
In this paper, we explain the application of the proposed frame-

work for parallelizing theSpace Savingalgorithm. One of the rea-



sons for selectingSpace Savingwas that a recent work [5] com-
pared a number of frequency counting algorithms and demonstrated
thatSpace Savingoutperforms similar algorithms in terms of pro-
cessing speed and accuracy (expressed as precision and recall). An-
other reason is thatSpace Savinghas a constant space bound of
O( 1

ǫ
) and this simplifies the algorithm implementation.

The thread cooperationbased framework is not limited to the
Space Savingalgorithm and can be easily extended to other fre-
quency counting algorithms. It is evident from the description of
the IncrementCounteroperation that the framework can handle ar-
bitrary increments in frequency of the elements. Thus, any fre-
quency counting algorithm in which the frequency of the counters
increases monotonically(algorithms such asLossy Counting[19]),
can be adapted to the framework. For adapting other algorithms,
most of the operations (except theOverwrite operation) will re-
main unchanged. For example, theLossy Counting[19] algorithm
divides the stream into multiple rounds and at the end of the round
removes elements which are infrequent. Therefore, for adaptation
into the framework, only theOverwriterequest inSpace Savinghas
to be replaced by a request that removes the minimum frequency
bucket at round boundaries.

5. EXPERIMENTAL EVALUATION
In this section, we experimentally evaluate the proposed frame-

work. The experiments have been performed on an Intel Core 2
Quad Q6600 processor [16]. This processor has 4 cores, each cor-
responding to a hardware thread and operating at a clock speed of
2.4GHz, and the cores share aL2 Cache of 4MB. The machine has
3.2 GB available main memory and runs Fedora Core Linux with
kernel 2.6.26.6-49.fc8. All algorithms and the framework have
been implemented in C++ and compiled using GNU C++ compiler
with Level 2 optimization. The data set is synthetically generated
and follows zipfian distribution which is very close to realistic data
distribution [30]. The zipfian factorα determines whether the dis-
tribution is uniform or skewed. The frequency of the elements in
the distribution varies asfi = N

iαζ(α)
whereζ(α) =

∑|A|
i=1

1
iα

whereN is the length of the stream,|A| is the size of the alpha-
bet, andfi represents the frequency of theith frequent element.
Smaller values ofα represent lesser skew in the distribution with
α = 0 representing uniform distribution. As the value ofα in-
creases, the skew of the data distribution also increases. The data
set has a total of50 million elements and an alphabet of5 mil-
lion. GCC built-in atomic primitives were used for performing the
atomic operations, andpthread library was used for threads and
locks. In our first set of experiments, we choose data withα in
the range 1.5 to 3.0. The lowerα values have not been evaluated
because the frequent elements and top-k elements are more inter-
esting and meaningful in a skewed distribution, than in a uniform
distribution. In the case of a uniform data (such asα ≤ 1.0) there
are a lot of infrequent elements, and so inSpace Saving, there will
be a lot ofOverwriterequests, thereby making the minimum fre-
quency bucket a “hot spot”. Thus, such a distribution will not bene-
fit from parallelization. For such a scenario, we proposeauto tuning
and throttling(Section 4.3.3), and the effectiveness of the scheme
is demonstrated by the experiments in the latter part of this section
for data sets withα ≤ 1. In all our experiments, the number of
streams is varied from4 up to32 in multiples of2, and each stream
has 1 million elements, i.e., in an experiment with 32 streams, the
total number of elements processed is32 million. The performance
of algorithms does not vary significantly for smaller values of error
boundǫ, while larger values ofǫ result in performance degrada-
tion. Largerǫ also results in smaller number of buckets, and hence
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Figure 5: Execution time for saturated workload.
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Figure 6: Speedup of the “cooperation” based design compared
to the “contention” based design for saturated workload.

lesser chance for exploiting parallelism. In our experiments, we set
ǫ = 0.0001. In this section, for a fair evaluation, we compare the
cooperativedesign to theshared design. The independentdesign
is not included in the comparison since its performance is heavily
dependent on the query rate andǫ, whereas the remaining two are
more stable.

5.1 Saturated Workload
In this experiment, we evaluate the maximum throughput of the

proposed design by using asaturated workloadwherein a thread
always has some element to process whenever it has finished pro-
cessing the earlier element, or in other words, a thread issaturated
with work. Figure 5 provides a comparison of the execution times
of the “cooperation” based design (referred to asCoop in this graph
as well as the rest of the graphs in this section) and the “contention”
based design (referred to asShared). Along thex-axis, we plot the
number of streams (and hence the number of threads), and along
they-axis we plot the execution time in seconds. Different lines in
the graph correspond to different values ofα. An ideal system with
linear speed-up will have a horizontal line, and the smaller the slope
of the graphs, the better it is. As is evident from Figure 5, not only
doesCoop outperformShared in terms of execution time,Coop
demonstrates better scalability since the slope of the lines corre-
sponding toCoop is considerably smaller than that ofShared. The
benefits ofCoop with respect to execution time can be seen from
Figure 6 which plots the speedup ofCoop compared toShared.
In this figure, thex-axis represents the varying zipfianα and the
y-axis corresponds to the speedup. For a particular zipfianα, the
speedup is computed as:T Shared

(i,α) /T Coop

(i,α) , wherei represents the
number of streams (4, 8, etc.). As is evident from Figure 6,Coop
outperformsSharedby a factor ranging from2 − 5.5X. This ex-
periment demonstrates the superiority of the performance of the
proposed “cooperation” based design.

5.2 Unsaturated Workload
In many realistic applications, the workload might not be sat-

urated, i.e., due to variable arrival rates, when a thread is ready
to process the next stream element, there is a likelihood that the
next element has not yet arrived. In such a case, we say that the
read “failed” and the thread needs to wait for the arrival of the next
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Figure 7: Execution time for an unsaturated workload.

element when the read “succeeds”. We model this behavior by al-
lowing a read to “fail” with certain probability. In other words, a
failure probability of10% means that with every read, there is a
10% chance that the read will fail. Thus the saturated workload
considered in the previous subsection has a failure probability of
0%. That experiment would demonstrate the overhead on the sys-
tems at higher arrival rates. When a read “fails”, the thread does not
access theMonitored Set. This might have two implications:i) if
the structure is already overloaded, this will lead to a reduction in
the load and can be treated as “load-shedding” and this might result
in reduced execution times,ii) if the structure is lightly loaded, it
has the potential to accommodate more concurrency, and hence a
failed read implies failed opportunity and this will lead to increased
execution time. Thus, for a system that is performing at its peak for
a saturated workload, an unsaturated workload will result in an in-
crease in total time of completion due to slower arrival rate. But for
a system which is overloaded for a saturated workload, an unsatu-
rated workload might lead to lesser execution time.

Figure 7 plots the execution time of the two designs as the fail-
ure probability is varied. Along thex-axis we plot the number of
streams and along they-axis, we plot the execution time in sec-
onds. The different lines correspond to different values of zipfian
α and the different designs. The zipfianα of the input distribution
is varied from1.5 to 3.0 and the experiment is repeated for differ-
ent probabilities of not finding a stream element when a thread is
ready. It is evident from Figure 7 that the behavior of the designs
is almost similar to that with the saturated case (Figure 5) except
that with increasing failure probability, the graphs forCoop and
Sharedare getting closer. This is due to the fact that the low con-
tention overhead inCoop allows more concurrency compared to
that of Shared. In Shared, the contention overhead is very high
(Figure 2), and if a thread “fails” a read and does not access the
structure, it contributes to reducing the contention overhead on the
structure, and hence the overall execution time does not increase
much. These experiments further strengthen the claim that the “co-
operation” based design has low contention overhead and allows
higher concurrency, as a result of which decreased packet arrival
rate increases execution time which is bound to happen in a system
operating at its peak. Refer to our technical report [9] for detailed
analysis, and for graphs of speedup corresponding to the execution
times reported in this subsection.

5.3 Evaluation of Auto Tuning
In Section 4.3.3, we discussed the potential for usingauto tun-

ing and throttlingto deal with “hot-spots” when processing uniform
data distributions. In all the previous experiments, we considered
distributions for zipfianα ≥ 1.5, and in this section, we evaluate
the impact ofauto tuningfor α ≤ 1.0. Due to too many overwrites
of minimum frequency element in the case of uniform distributions,
the minimum frequency bucket becomes a “hot-spot”. Profiling ex-
periments revealed that withoutauto-tuning, for α = 0.5, the max-
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Figure 8: Comparison of execution times ofsharedand cooper-
ation based design withauto tuning for saturated workload.

imum sampled queue size grows to about3 − 4 orders magnitude
higher than in the case withα ≥ 1.5. This results in severe per-
formance degradation since a majority of the work is delegated to
a single thread, thereby reducing the system to a sequential system
with all the overhead of a concurrent system.Auto tuning and throt-
tling prevents queues from building up rapidly, and allows better
distribution of the work. Our experimental samples usingα ≥ 1.5
showed maximum queue size of the order of hundreds and aver-
age queue size of the order of tens. So, in our experiments, we set
the queue size thresholdρ to 500. Therefore, for skewed data, the
threads will hardly be throttled and can perform at their peak rate,
while for almost uniform data, threads will be repeatedly throttled
incorporating admission control and better load distribution.

In Figure 8, we plot the execution time of the Cooperation based
design usingauto tuningand compare it withShared. Along the
x-axis, we plot the number of streams and along they-axis, we
plot the execution time in seconds. Different lines correspond to
different values ofα, andCoop AT represents “cooperation” based
design withauto tuning. In this experiment, we use a saturated
workload. To improve clarity of the graph, we only provide the
lines corresponding toα = 0.5 and1 (our new data sets) andα =
1.5 and2.5 (representatives from the previously used data sets). As
is evident from the figure,Coop AT performs reasonably for lower
values ofα (almost uniform) whereCoop AT outperformsShared
by a factor of∼ 2X. For higher values (skewed), its performance
is almost similar to that of the “cooperation” based design without
auto tuning.

Auto tuningintroduces the overhead of profiling of queue sizes,
and when the threads are not throttled (in the skewed case), this is
pure overhead compared toCoop. But our experiments reveal that
this overhead is limited to∼ 5% (for example, forα = 2.0 and
number of streams as16, the average execution time forCoop is
4.195586s and that ofCoop AT is 4.299514 resulting in an over-
head of∼ 3.29%). Thus for a very small overhead, we have an
algorithm that performs well for the entire spectrum ofα. If the
system designer knows that the stream to be processed has a high
skew, thenauto tuningcan be turned off allowing higher perfor-
mance, but turning onauto tuningonly marginally degrades per-
formance while allowing greater flexibility.

5.4 Profiling the Cooperation based design
In this section, we provide an in depth analysis of the proposed

“cooperation” based parallel design. Figure 9 plots the various pro-
filing results of the design without usingauto tuningwhile Fig-
ure 10 plots the corresponding results of the design usingauto tun-
ing. Figures 9(a) and 10(a) plot a breakup of the time spent by the
design on various important operations expressed as a percentage of
the total time of execution. Thex-axis plots the number of streams,
and they-axis plots the time spent on operations as a percentage of
total time. Hashrefers to the time spent for the hash table opera-
tions,Stream Summaryrefers to the time spent for theStream Sum-
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Figure 9: Detailed profile of cooperation based design without auto tuning while processing a saturated workload.
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Figure 10: Detailed profile of cooperation based design with auto tuning while processing a saturated workload.

maryoperations,Queuerefers to the sum of time spent in append-
ing the delegated requests to the queues associated with buckets in
Stream Summaryand removing the requests from the queue when
processing them. As is evident from Figures 9(a) and 10(a), very
little time is spent in the hash table forelement level synchroniza-
tion and theStream Summaryfor bucket level synchronization(in
contrast to Figure 2). A considerable portion of the time is spent
on the operations related to the request queue, and a more scalable
queue implementation would thus result in further improvement in
performance of the proposed design. Our present queue implemen-
tation does not allocate memory wisely, and this is in part respon-
sible for the high overhead of the queue operations. Note that the
time for the queue operations is higher for smaller values of zipfian
α. This is because for more uniform distributions, different threads
are generally processing different elements, and hence would not
be blocked at the hash table, therefore resulting in large number of
accesses to theStream Summary. Since the summary structure has
limited parallelism due tobucket level synchronization, a lot of
requests are delegated in this structure. The increase in number of
concurrent accesses to the request queues result in the increase in
time for queue operations.

The above analysis is further supported by Figures 9(b), 10(b)
and Figures 9(c), 10(c) which plot the average sampled queue size
and percentage of requests delegated in the hash table respectively.
Figures 9(b) and 10(b) plot the number of streams (or threads)
along thex-axis, and the sampled queue size in log scale along the
y-axis. The bars in the graph plot the average of the sampled queue
sizes, while the thin lines overlayed on the bars plot the correspond-
ing maximum sampled queue size. As discussed earlier, for smaller
values of zipfianα, the minimum frequency bucket becomes a “hot
spot”, and this is reflected by the considerably larger queue sizes
for α = 1.5 in Figure 9(b). The queue sizes forα = 0.5 and1.0
in Figure 10(b) demonstrate the success ofauto tuningin limiting
the queue sizes even for uniform distributions, and explains the im-
proved performance ofCoop AT as shown in Figure 8. Finally,
Figures 9(c) and 10(c) show the successful removal ofwaitsasso-
ciated withelement level synchronizationby plotting the requests
delegated in the hash table as a percentage of the total number of re-

quests. The number of streams is plotted along thex-axis, and the
percentage of delegated requests is plotted along they-axis. For
higherα (skewed streams) and increasing number of threads, more
threads are likely to be processing the same elements (since in a
skewed distribution, few elements have dominant presence in the
stream). Therefore, more requests are delegated in the hash table
due toelement level synchronization. The number of hash del-
egations increase with the number of threads and the increase in
α. Note that in spite of the large number of requests delegated in
the hash table, neither is the hash table a point of contention, nor
is a significant portion of execution time spent synchronization in
the hash table (Figures 9(a) and 10(a)). This demonstrates the ef-
ficiency of the proposedcooperationbased design in reducing the
waits associated with synchronization. Due to space limitations,
additional profiling experiments have been moved to [9].

6. CONCLUDING REMARKS
In this paper, we consider the problem of analyzing multiple data

streams and propose a parallel algorithm for the problem in the
context of multicore processors. The proposed design uses the con-
cept ofthread cooperationto removewaitsassociated with locks.
Removal of thewaits is particularly significant in the context of
multicore processors where a waiting thread results in wasted CPU
cycles. Additionally, the proposed model allows synchronization
using only atomic operations which are much cheaper than locks
required for synchronizing in the “contention” based design. The
proposed design conceptually segregates the requests from the ex-
ecution threads, and whenever a shared resource required by the
request is not available, only the request is blocked (delegated),
and the thread can move on to process the next request. This is
extremely important in the context of parallelism in multicore pro-
cessors, and the benefits of the proposed design is evident from
the experimental results which show that the proposed “coopera-
tion” based design outperforms the traditional “contention” based
design by a factor of2 − 5.5X over the entire spectrum of uni-
form to skewed data sets. In spite ofmulti-streamanalysis systems
being extremely hard to parallelize, our parallel design effectively
uses the inherent parallelism in multicores with significantly lower



overhead. In addition to the gains for comparatively skewed data,
our design is also efficient for uniform data sets where achieving
parallelism is a much harder problem. In this paper, we implement
the Space Savingalgorithm, but the framework is general enough
to accommodate other frequency counting algorithms [19].

During the course of implementation of this system, we gained
useful experience and learned several important lessons which ap-
ply to parallel systems in general.First, even though individual
lock operations are not very expensive, acquiring and releasing mil-
lions of locks per second results in significant overhead, which is in
part responsible for the inefficiency of theshared design. Second,
a lot of operations use locks only for mutual exclusion, and do not
require the serialization order imposed by locks. For such applica-
tions, mutual exclusion can be achieved by using cheaper atomic
operations, whiledelegationallows removal of waits. Exploiting
these application specific characteristics might result in significant
improvement in performance.Third, frequent system calls are also
expensive, and introduce significant overhead. Memory allocation
is one such expensive call, and frequent memory allocation can
considerably deteriorate performance. As a result, spending time
with a custom memory allocator is often useful.

In the last few years, there has been growing interest in dif-
ferent non-conventional parallel processing architectures such as
Graphics processors [11, 14], cell broadband engine [10, 15], etc.
These processors were originally designed for different applica-
tion domains, but recent results have shown promise in the use
of these processors for data management operations. The present
cooperation baseddesign does not differentiate the processing ca-
pabilities of the threads, and hence is suitable forhomogeneous
conventional multicore architectures such as chip multiprocessors
(CMP) [16, 25]. Heterogeneous processing capability in combina-
tion with specialized instructions, such as vector operations, sup-
ported by Graphics and Cell processors open new challenges. In
the future, we would like to explore the possibility of extension of
the proposed paradigm to these other novel architectures. Addi-
tionally, experiments in this paper concentrate on a specific type of
CMP architecture [16] known as thefat campprocessors [12]. The
fat campprocessors are characterized by fewer cores where each
core has been optimized for extremely efficient single thread per-
formance. Another class of CMPs, referred to aslean campproces-
sors [12], are characterized by large number of cores and hardware
threads [25], but each hardware thread is not optimized for effi-
cient single thread performance. In the future, we would also like
to evaluate the performance of the proposed design on theselean
campprocessors.
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